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Airborne scanning laser altimetry (LiDAR) is an important new data source for river flood modelling. LiDAR can give dense and accurate DTMs of floodplains for use as model bathymetry. Spatial resolutions of 0.5m or less are possible, with a height accuracy of 0.15m. 

LiDAR gives a Digital Surface Model (DSM), so vegetation removal software (e.g. TERRASCAN) must be used to obtain a DTM. An example used to illustrate the current state of the art will be the LiDAR data provided by the EA, which has been processed by their in-house software to convert the raw data to a ground DTM and separate vegetation height map. Their method distinguishes trees from buildings on the basis of object size. EA data products include the DTM with or without buildings removed, a vegetation height map, a DTM with bridges removed, etc.

Most vegetation removal software ignores short vegetation less than say 1m high. We have attempted to extend vegetation height measurement to short vegetation using local height texture. Typically most of a floodplain may be covered in such vegetation. The idea is to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This obviates the need to calibrate a global floodplain friction coefficient. It’s not clear at present if the method is useful, but it’s worth testing further.

The LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is a low pass filtering operation, in which objects of high spatial frequency such as buildings, river embankments and walls may be incorrectly classed as vegetation. The problem is particularly acute in urban areas. A solution may be to apply pattern recognition techniques to LiDAR height data fused with other data types such as LiDAR intensity or multispectral CASI data. We are attempting to use digital map data (Mastermap structured topography data) to help to distinguish buildings from trees, and roads from areas of short vegetation. The problems involved in doing this will be discussed. A related problem of how best to merge historic river cross-section data with a LiDAR DTM will also be considered.

LiDAR data may also be used to help generate a finite element mesh. In rural area we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees, so that e.g. hedge elements can be assigned higher friction coefficients than those in adjacent fields. We are attempting to extend this approach to urban area, so that the mesh is decomposed in the vicinity of buildings, roads, etc as well as trees and hedges. A dominant points algorithm is used to identify points of high curvature on a building or road, which act as initial nodes in the meshing process. A difficulty is that the resulting mesh may contain a very large number of nodes. However, the mesh generated may be useful to allow a high resolution FE model to act as a benchmark for a more practical lower resolution model.

A further problem discussed will be how best to exploit data redundancy due to the high resolution of the LiDAR compared to that of a typical flood model. Problems occur if features have dimensions smaller than the model cell size e.g. for a 5m-wide embankment within a raster grid model with 15m cell size, the maximum height of the embankment locally could be assigned to each cell covering the embankment. But how could a 5m-wide ditch be represented? Again, this redundancy has been exploited to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within finite elements at the waterline.

As you know, Bristol and ESSC have been using remotely sensed data to parameterise and validate 2D flood models for some time now. In particular, we’ve been using LiDAR data to improve model parameterisation, and its proving to be extremrly useful for this. The DTMs from LiDAR can be used to construct dense and accurate floodplain bathymetry for the model. In addition, in rural areas we’ve tried to estimate floodplain vegetation heights from the LiDAR returns, and used these to estimate spatially distributed friction coefficients over the floodplain.

Considerable processing is necessary to extract all this information from the raw LiDAR data. The basic problem in LiDAR post-processing is how to separate ground hits from hits on surface objects such as vegetation or buildings. Ground hits can be used to construct a DTM of the underlying ground surface, while surface object hits, taken in conjunction with ground hits, allow object heights to be determined. Many schemes have been developed to perform LiDAR post-processing. An example we’ve just seen is the system developed at the EA, which I believe uses a combination of edge detection and the commercial TERRASCAN software to convert the raw data to a DTM and a separate vegetation height map. 

Most vegetation removal software ignores short vegetation less than 1m or so high. In a rural floodplain, the majority of the land surface may be covered with this type of vegetation, and the resistance due to vegetation may dominate the boundary friction term. In the past we’ve attempted to extend vegetation height measurement to short vegetation using local height texture. This shows a vegetation height map with short vegetation. The idea was to assign friction coefficients depending on local vegetation height, so that friction is spatially varying. This makes the modelling a bit more physically-based, and removes the need to calibrate a global floodplain friction coefficient. We used a system of empirical equations to convert vegetation heights to Manning’s n values. We only applied to method to one flood, and it’s not clear at present if it’s useful, but it’s worth testing further. One result of this study, though, was that we developed our own LiDAR post-processing software.

A LiDAR DTM is usually determined by looking for local minima in the raw data, then interpolating between these to form a space-filling height surface. This is the approach we take in our own LiDAR segmenter. We first interpolate through pixels which are local minima, to produce a initial rough estimate of ground heights over the whole image. We then detrend the image to remove first-order trends, by subtracting the original image from the rough DTM. The detrended height image is then segmented on the basis of its local height texture. Regions of short vegetation should have low texture measures, and regions of tall vegetation should have larger values. 

The process of constructing the DTM by looking for minima in the raw data is actually a low pass filtering operation, in which objects of high spatial frequency such as buildings may be wrongly classed as vegetation. This is bad because we’d like to apply different friction factors to buildings and trees. We originally developed the segmenter for rural areas where there are few buildings, but the problem is much more serious urban areas, and in the FRMRC work we want to concentrate on urban flooding. For example, if you have a wide building, the DTM may climb up to the roof of the building because the algorithm doesn’t realise that the only local minima are on the roof. One solution would be to apply pattern recognition techniques to detect buildings and trees as regions, and distinguish them on the basis of their sizes and textures. Again, we’d like to distinguish roads and man-made surfaces from areas of short vegetation, and this could be done by using LiDAR intensity data in conjunction with LiDAR height data.  

We’ve chosen to opt for the simpler approach of using digital map data to resolve different surface types. This shows Mastermap data of Carlisle including buildings, roads, man-made surfaces, railways, gardens, natural surfaces and water. We’ve modified the segmenter to use fused LiDAR and map data. Objects in the map with high spatial frequencies such as buildings are simply masked out in the process of interpolating through the local minima. We don’t mask out roads, as they are vegetation-free regions that can be used to tie down the DTM heights in their locality. Then at the end of the segmentation, the building heights can be re-introduced directly into the DTM if you wish. Also, the vegetation heights of buildings, roads, railways and man-made surfaces are set to zero in the vegetation height map. We’re also using pattern recognition to boost the map information, for example we’re detecting garages and garden sheds that may not be present in the map data on the basis of their low texture compared with taller vegetation. Incidentally, in this scheme we get rid of cars from the DTM because they are smaller than the window size used for finding minima. They do go into the vegetation height map initially, but get erased when the vegetation heights over roads are zeroed. This is probably not too bad as the cars will probably mostly have moved between the time of the LiDAR acquisition and any subsequent flood. It’s probably best to treat cars stochastically as an added friction component on roads.

One pre-processing operation that’s necessary before segmentation is to remove bridges, which are false blockages to flow. We’re developing an automatic technique to do this for bridges crossing water. This involves connecting together segments of water not separated by more than the width of a bridge, then marking as unknown the heights of roads and railways crossing water. You can see in this example the road height is replaced with a bright symbol standing for unknown. These heights now have to be filled in by interpolation. We’re still working on this method. Some roads will still need to be edited out manually though e.g. roads on flyovers not crossing water.

We need to do further work to put into the DTM linear features such as embankments, ditches and walls that may not be present in the map. It’s particularly important to get the height of an embankment right as this controls flow onto the floodplain. Any method needs to take into account the fact that the embankment may be vegetated e.g. with a line of trees, and may have a rapid height variation perpendicular to its length. LiDAR DTM errors are known to increase in vegetated areas and areas of high slope.

We also need to develop better methods of connecting river cross-section data with LiDAR DTMs. Where the cross-section heights coincide with the LiDAR heights on the floodplain, these can be compared to check the accuracy of the LiDAR. This can act as a supplement to the LiDAR height accuracy provided by the EA, which is not necessarily aimed at the flooding application.

LiDAR data may also be used to help generate a finite element mesh. In rural areas we have decomposed a floodplain mesh according to taller vegetation features such as hedges and trees. The LiDAR veg height map is on the left and the mask is on the right. The idea was that if you had a hedge separating two fields the friction factor might be higher over the hedge than over the fields. So we decomposed the mesh further in the region of the hedge to allow the elements spanning the hedge to have different friction factors to those in the adjacent fields. In the fields the elements were kept larger because the friction was more slowly-varying here. We used the EASIMESH meshing package, and wrote a preprocessor to this to allow us to perform the meshing automatically.

We originally did this for rural areas, but we’ve started to adapt the method to cope with vegetated urban areas. In order to look at the fine detail of how flooding propagates in an urban area, we thought it would be useful to apply a high resolution finite element model such as Matt Horritt’s SFV model which is capable of dealing with hundreds of thousands of nodes. This could then act as a benchmark against which to test faster lower resolution models. So we’re aiming to use the mesh we generate with SFV. We’ve used fused LiDAR and map data to form the DTM. However, to start with, this shows the method for a DTM derived from map data alone, where the map data are composed of buildings and roads, with a section of river in the top right. The boundary of an object such as a house is searched to find the position of the points of dominant curvature, such as the corners of the house, and nodes are placed at these dominant points. Between the dominant points, nodes are placed at a minimum node spacing of 6m, which matches the dimensions of the houses. Then a distance transform is constructed, in which each pixel’s grey value is its distance from the nearest boundary. Then nodes are inserted into the mesh with the size of the node depending on the local distance. 

This shows the mesh with larger elements further from the edges. The river is covered by about 6 large elements aligned in the direction of the flow according to a method developed by Matt Horritt. You’re getting a lot of nodes, about 3000 in this image of 0.5 x 0.5km, due to the small dimensions of the houses.

Then this approach has been extended to include urban vegetation. On the left is the LiDAR image (1m resolution), and on the right the vegetation height map obtained using fused LiDAR and map data. 

This shows the vegetation classified into a number of height bands. Red is short veg < 1.2 m high, green is intermediate veg up to 5m, yellow is trees above this, and black is buildings. The distance transform is on the right. 

Then this is the mesh. Now there are 6000 nodes in this area. You can see how the mesh breaks down around individual trees. This work is still in progress. We’re still having problems with the meshing software. Also, the mesh hasn’t yet been used with the SFV model, which will probably also give problems.

A final topic that I’m just going to skim over is the opportunities and problems that arise because the LiDAR data has a much higher resolution than a typical flood model. An example of an opportunity is that Paul Bates and others have exploited the data redundancy to improve wetting/drying algorithms using the sub-grid-scale LiDAR heights within the finite elements spanning the flood edge. An example of a problem is what can occur when you assign a LiDAR height to a model node. A common way of doing this is to make a local average of heights near the node. Problems occur if features have dimensions smaller than the averaging area. For example, if you have a narrow embankment, averaging could lower the height assigned to it, and we’ve coped with this in the past by using its maximum height locally instead. Another important point here is that it’s only by coupling the LiDAR to the model that you can estimate the sensitivity of the model output to errors in the LiDAR DTM.

A final thought is how useful LiDAR is proving to be for flood modelling, even though its potential is only just beginning to be tapped. It does bring a new set of problems with it, but I think its advantages far out weigh its disadvantages.
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