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Abstract: Sea-level rise (SLR) from global warming may have severe consequences for coastal cities,
particularly when combined with predicted increases in the strength of tidal surges. Predicting the
regional impact of SLR flooding is strongly dependent on the modelling approach and accuracy
of topographic data. Here, the areas under risk of sea water flooding for London boroughs were
quantified based on the projected SLR scenarios reported in Intergovernmental Panel on Climate
Change (IPCC) fifth assessment report (AR5) and UK climatic projections 2009 (UKCP09) using a
tidally-adjusted bathtub modelling approach. Medium- to very high-resolution digital elevation
models (DEMs) are used to evaluate inundation extents as well as uncertainties. Depending on the
SLR scenario and DEMs used, it is estimated that 3%–8% of the area of Greater London could be
inundated by 2100. The boroughs with the largest areas at risk of flooding are Newham, Southwark,
and Greenwich. The differences in inundation areas estimated from a digital terrain model and a
digital surface model are much greater than the root mean square error differences observed between
the two data types, which may be attributed to processing levels. Flood models from SRTM data
underestimate the inundation extent, so their results may not be reliable for constructing flood
risk maps. This analysis provides a broad-scale estimate of the potential consequences of SLR and
uncertainties in the DEM-based bathtub type flood inundation modelling for London boroughs.

Keywords: sea-level rise; flooding; digital elevation model; risk; uncertainties

1. Introduction

Floods from sea surge will have significant impacts on the world’s coastal zones, particularly
considering the projected sea-level rise (SLR) [1]. The reported annual losses from flood hazards
have reached tens of billions of US dollars (USD) in the past decade, and many hundreds of people
are killed each year [2]. Recent reports from United Nation Environment Program (UNEP) indicate
that one third of the coastal regions run a high risk of degradation, especially from infrastructure
development and pollution. Given this magnitude of potential loss that a sea water flood could cause
to human life, property, and the economy, flood inundation modelling in urbanized coastal regions
is increasingly relevant. Planning and conservation practitioners require reliable scientific data to
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conduct vulnerability assessments that identify which parts of their city could be inundated by a
potential flood.

Several approaches have been applied on regional and global scales to map the coastal flood levels
to SLR [3,4]. Many flood models use fluid dynamics to simulate different hydrodynamic conditions.
However, complexities in the urban environment and lack of proper hydrologic data often compromise
the effectiveness of those models [5]. Static modelling techniques provide an alternative with less data
requirements to assess the maximum inundation extent for a given combination of SLR and sea surge.

The estimate of areas that are expected to experience SLR inundation depends not only on the
complexity or simplicity of the flood modelling approach, but also on the elevation data used. Gesch [6]
showed that the accuracy of the elevation data determines the predicted vulnerability of urban coasts
to the effects of flooding events. This accuracy, however, varies considerably depending on the
source. Historically, topographic maps and photogrammetric methods were employed as the source of
elevation data. Because heights are obtained from contour lines, the elevation data are intrinsically
limited by the gap between contours of the topographic maps [7].

Since 2000, digital elevation models (DEMs) derived from satellite data are increasingly used
for flood mapping [8]. Today, DEMs are generated from different sources and techniques such as
photogrammetric methods using stereo pair aerial photographs and satellite data [9], terrestrial and
airborne laser scanning [10,11], radar interferometry [12], and structure from motion techniques [13,14].
Increased sophistication of satellite remote sensing techniques has made it possible to construct
global DEMs that provide elevation data for all of the land masses of the world. However, global
DEMs typically have significantly lower accuracy and resolution than DEMs constructed using more
proximate sensing techniques, such as airborne Light Detection And Ranging (LiDAR).

From the acquisition stage of the raw base data to the development of a DEM, a large number of
measurements are involved [15]. Each of these are subject to some level of error and uncertainty. Errors
introduced during data collection [16] arise due to excessive smoothing [17], transformation [18], and
positioning [19]. The errors and uncertainties can occur in both the vertical (Z) and horizontal (XY)
coordinates. Cooper [20] categorized errors in DEMs into: (a) gross errors (result of user error or
equipment failure), (b) systematic errors (due to deterministic bias in the data collection or processing),
and random errors (from the great variety of measurement operational tasks in producing the DEM).
These errors and uncertainties can affect the reliability and usefulness of DEM-based flood analyses.
Several researchers have investigated methods such as visual analysis and statistical approaches to
identify the errors in the DEMs [21–24]. Diagnostic visualization of errors rely mostly on summary
graphs and DEM-derived outputs such as slope and shaded reliefs [23]. The most common statistical
descriptor to measure the errors in DEM is the root mean square error [23,25]. However, Fisher [23]
suggested that the use of standard deviation and mean error provides a better description of the
statistical distribution of the error.

The objectives of this research are to investigate how estimates of inundation extents are affected by
the vertical uncertainty of different DEMs and to examine the effect of different inundation models on
quantifying flood risk. The study area is one of the largest cities in Europe, London (Figure 1). London,
home to greater than 8.5 million people, has an average population density of 5223 people/km2.
Currently, 1.5 million people and 300,000 properties are estimated to be located in the tidal flood risk
area [26]. The 33 boroughs of Greater London cover an area of 1573 km2 (Figure 1).The city is expected
to continue to grow in population and to expand further into the adjoining Thames estuary. The city
is the economic hub of the UK but also plays a central role in international commerce. Much of the
commercial areas are located close to the tidal River Thames, notably the City of London and Canary
Wharf (within Tower Hamlets).

London experiences a high risk of flooding along the stretches of the River Thames, with more than
350 km2 (22.25%) located in the floodplain zone [27]. A large part of central London was developed
on low-lying land alongside River Thames by large-scale reclamation of marshes and mudflats in
the 17th century [28]. London’s Strategic Flood Frame Work (LSFFW) team identifies three major
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types of flooding in the London risk register: surface flooding during intense rain, inundation of
flood plains by river water, and tidal-surge flooding [29]. Surface flooding in the city occurs when
rainfall exceeds natural or piped drainage capacity and excess water collects in low lying and flat
areas. During heavy rainfall, rain water can fill the low lying areas quickly with little or no warning.
Fluvial flooding results from a river overtopping its banks and can occur within 30 min of the onset of
rain [26]. Tidal flooding in the Greater London (Figure 1) occurs during the high tide conditions or
during storm events. The tidal area of the Thames stretches from Sheerness and Shoeburyness in the
east to Teddington Weir in the west (Figure 1). Major influences on tidal flooding of London are the
volume of water already in the river, the height of the astronomical tide (HAT) and the surge level.
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Figure 1. (left) the boroughs that constitute Greater London and Greater London’s (right) location
within southern England and. The topographical (LiDAR) elevation (m), the River Thames, Greater
London boroughs with area (km2), and locations mentioned in the text are labelled.

The historical record of flooding along the Thames Estuary dates back to the Anglo Saxon
Chronicle of 1099 [28]. Localized flooding in London from the Thames is now perceived as a major
risk [27,30]. The Houses of Parliament, Whitehall, City Hall, Canary Wharf, Westminster Abbey,
the Tower of London, Kew Gardens, and the O2 Arena are all in flood risk areas. These areas also have
several schools, hospitals, train stations, power stations, and substations, which would be damaged if
sea water flooding was to occur [27]. The other flood-prone areas identified by the UK Environment
Agency include large parts of the boroughs of Southwark, Lambeth, Tower Hamlets, Hammersmith,
Fulham, Wandsworth, Barking, Dagenham, Woolwich and Newham together with many residential
areas in Essex and Kent [27,30].

Marsh [31] identified that the major risk of flooding in London at present is from storm surges
during low-pressure conditions and high winds that intensify tidal peaks. Tidal circulation in the
Thames is driven by gravitational forcing, density variations due to salinity, and wind stress [32].
The average daily range of water levels in the Thames estuary is about 7 m [27]. However, during
low pressure conditions, the water levels in the estuary can be increased by surge from the North
Sea. As low pressure depressions move across the Atlantic towards the British Isles a bulge of water
is created in its path. A surge tide happens when this mass of water moves down the east coast of
England. The funnel shape of the Thames estuary leads the entering surge to increase water levels
by 1 to 3 m, causing a major flood threat, especially if occurring during a “spring” tide (higher than
normal tide levels) [27].
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Global warming-enhanced sea levels will increase this risk by giving rise to dangerous tide levels.
Additional risk is caused by the subsidence in the southeast of England of about 1.5 mm a year [30].
Several flood defenses are installed in the Thames estuary and its banks. The most prominent one is
the Thames Barrier, which spans a width of 520 m across the river and protects 125 km2 of central
London from flooding. The Environment Agency reports that, as of April 2015, the Thames Barrier has
been closed 175 times since it started operation in 1982. Of these closures, 88 were to protect against
tidal flooding [27,30]. The frequency of the closure has increased tremendously in recent years, with
48 closures in 2014 [27].

2. Data and Methods

Using the data and methods described below, we conducted an elevation-based assessment of
tidally-adjusted sea-level rise inundation vulnerability for the Greater London area for a “no protection
scenario”. This assumes the Thames without the current flood defenses, i.e., the large embankments and
Thames Barrier, because the DEMs used in this study do not incorporate detailed engineering-grade
structures. Water levels in the Thames estuary are considered as they would appear during the mean
highest high tide (MHHW).

2.1. Elevation Data Sources

DEMs come from a number of sources (topographic maps, photogrammetry, LIDAR, IFSAR) in
a variety of forms with different datum and coordinate systems which are dependent on the source
agency. However, almost all consist of records that contain gridded arrays of numbers which represent
the ground elevation above sea level [23]. In the literature, the terms DEM (Digital Elevation Model),
DTM (Digital Terrain Model), and DSM (Digital Surface Model) are all used to refer to these gridded
arrays of numbers. A DEM is understood to be a raster or a set of vector contours, in which the pixel
values represent the ground elevation above sea level over a specific area of the Earth. A DSM is a
raster in which the pixel values represent the elevations above sea level of the ground and all features
on it, including the tops of buildings, trees, and any other objects in addition to the natural terrain.
A DEM can be edited to generate a DTM, which is a representation of a bare-Earth model that contains
elevations of natural terrain features where vegetation, buildings, and other non-ground objects have
been digitally removed [33]. Hence, the DSM elevation is higher in urban and forested areas than the
DTM. Here, we use the term DEM as the general term for DSMs and DTMs, unless otherwise indicated.
To resolve the datum conflicts between data sources, all the DEMs are projected into OSGB 1936 datum
with OSTN02 rubber sheet transformation applied.

2.1.1. Ordnance Survey DEM

Two of the DEMs we analyze are from the Ordnance Survey (OS), UK. The first, the OS open data
elevation model called OS Terrain 50, has a grid spacing of 50 m [34] and covers the entirety of Great
Britain. It is available in tiles of 10 ˆ 10 km. This DEM, developed originally using photogrammetric
methods, is updated annually using other OS datasets. The required DEM tiles for Greater London
were download from the Ordnance Survey [34] website. The second is a high-resolution DEM called OS
Terrain 5 with a grid spacing of 5 m. With the greater accuracy “significant” landscape features can be
included [35]. This dataset is regularly updated from the large scale OS database, which should ensure
real-world representation. The OS Terrain 5 data are available in 5 km ˆ 5 km tiles and were ordered
through http://digimap.edina.ac.uk/ [35]. Both datasets are available as “bare earth” representation
(buildings and vegetation excluded), so they can be considered to be DTMs. In the literature, the term
DEM is often used as a generic form for both DTMs and DSMs. The OS Terrain 5 and OS Terrain 50 m
DTMs used in this study are, hereafter, referred to as “5 m DEM” and “50 m DEM” respectively, unless
otherwise indicated.
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2.1.2. LiDAR DEM

A very high-resolution airborne LiDAR dataset procured in the summers of 2005 and 2008, which
covers the entire Greater London [36], was also used in this study. The point clouds obtained from
LiDAR source were processed at 1 m grid spacing. The DEM used in this study was not treated
for the removal of surface features, such as buildings, and therefore is a DSM. This was resampled
into 5, 10, 30, and 50 m grids in order to compare the results with the OS Terrain data and SRTM
DEM. Bilinear interpolation techniques, which take a weighted average of the nearest cells, were used
in the resampling because they are preferable to cubic and nearest neighbour techniques for DEM
resampling [37–39]. The resampled LiDAR DEMs are hereafter referred as 5 m DEMRe, 10 m DEMRe,
30 m DEMRe and 50 m DEMRe.

2.1.3. SRTM DEM

The Shuttle Radar Topography Mission (SRTM) DEM, with a spatial resolution of approximately
30 m, was also used. This mission was flown aboard the space shuttle Endeavour in 2000 to create the
first near-global digital elevation dataset. The NASA (National Aeronautics and Space Administration),
NGA (National Geospatial-Intelligence Agency), ASI (Italian Space Agency) and DLR (German
Aerospace Center) collaborated to create the SRTM DEM using interferometric radar. From the
difference of two radar images taken at slightly different angles, the surface elevation is calculated [40].
SRTM data were obtained from EarthExplorer (http://earthexplorer.usgs.gov/) at a resolution of
1 arc-second (30 m) [41].

2.2. Inundation Model

The bathtub inundation model assumes that an area with an elevation less than a projected flood
level will be flooded like a “bathtub”. Flooding areas are determined through a simple calculation
procedure in a GIS environment where the elevation in each cell of a DEM is compared against a
predicted sea level and all cells with values lower than the predicted sea level are considered flooded.
As only elevation data are required for its application, it permits estimates when detailed hydrological
data is absent (which is often the case). The “bathtub” can be filled in two ways: with and without
hydrological connectivity [42]. Bathtub models that consider hydrological connectivity, e.g., the passage
of water from one cell to another, require that in addition to being below the flood level, an area must
be hydrologically connected to the source of the flooding (e.g., the ocean or river) for it to be inundated.
Several studies have applied bathtub models to map coastal flood inundation around the globe using
both non-connected and hydrologically-connected methods [43,44]. Vaan de Sante et al. [42] and others
suggested that a simulation with hydrological connectivity is more appropriate because a coastal flood
directly influences only the adjacent land zone.

Following Poulter and Halpin [45], in this study two approaches are adopted to simulate flood
inundation using SRTM and the other DEMs. The first approach, which does not consider hydrological
connectivity, is a zero-way rule in which a raster cell is flooded if its elevation is less than the projected
sea level. The second approach considers hydrological connectivity by simulating that a raster cell will
be flooded if its elevation is below the projected sea level and if it is connected to a cell that is either
flooded or open water. Here, the eight-way connectivity rule is used, so a raster cell is considered
to be connected to all eight surrounding cells in both its cardinal and diagonal directions. Figure 2
describes the differences between different approaches. Although the bathtub model has several
documented limitations [46,47], we believe that it is a satisfactory approach for our study, because
we focus primarily on how estimates of inundation extents are affected by the vertical uncertainty of
different DEMs.



Remote Sens. 2016, 8, 366 6 of 23

Remote Sens. 2016, 8, 366 6 of 22 

 

 
Figure 2. Different bathtub approaches: (a) zero-connectivity rule which shows that all the cells in the 
raster having elevation value ≤1 m are flooded; (b) four-way hydrological connectivity rule for 1 m 
SLR where a cell is flooded only if it is connected to a water body directly or via adjacent cells in 
cardinal directions; and (c) eight-way hydrological connectivity rule for 1 m SLR where a cell is 
flooded only if it is connected to a water body directly or via adjacent cells in either cardinal or 
diagonal directions. 

2.3. Projected Sea Level Rise 

Three scenarios of SLR are considered based on the literature concerned with global (Section 
2.3.1) and regional (Section 2.3.2) scales. These are: (i) 0.68 m by 2095 (UKCP09 for London); (ii) 0.82 
m by 2100 (RCP8.5); and (iii) 1.9 m by 2100 (UKCP09 high++ for London). 

2.3.1. Global 

Global sea levels are projected to continue to rise beyond the 21st century as thermal expansion 
and melting of glaciers progress [48,49]. The IPCC Fourth Assessment Report [50] gives a global 
scenario estimated range (5th to 95th percentile) of 0.18–0.59 m SLR between present day (assuming 
a 1980–1999 baseline) and 2100. However, it is likely that the rate of global mean SLR during the 21st 
century will exceed the rate observed during the baseline period due to increases in ocean warming, 
melting of glaciers, ice caps, and a combined contribution from the Greenland and Antarctic ice sheets 
[1]. Improved process based models which account for land-ice contributions show 5% to 95% ranges 
of global mean SLR projections to be 0.26 to 0.55 m for Representation Concentration Pathway (RCP) 
2.6; 0.32 to 0.63 m for RCP4.5; 0.33 to 0.63 m for RCP6.0; and 0.45 to 0.82 m for RCP8.5 [1]. 

2.3.2 Regional 

Although almost all world coastlines are experiencing a rise in sea level, natural modes of 
climate variability, tectonic movements, subsidence by compaction, and anthropogenic factors 
influence the magnitude of SLR in different regions and times [48]. Sea levels around the United 
Kingdom (UK) have risen by about 1 mm/ year over the last century [51]. Defra guidance [51] 
projected a 0.90 m SLR for London by 2100, based on the maximum global mean sea level range 
climate scenario. The UKCP09 estimates that SLR for London will be approximately 0.21–0.68 m by 
2095 [52]. The UKCP09 also modelled a worst case scenario that gives SLRs of up to 1.9 m by 2100 
(high++ scenario); however, it is noted that this is highly unlikely. These estimates take into account 
the land movement in the region. In addition, the UKCP09 projection models account for ocean 
carbon cycle feedbacks, uncertainty due to natural variability, and other uncertainties associated with 
the modelling and statistical processing which were not included in the previous projections [51]. 

2.4. Tidal Surface Creation 

To incorporate the tidal variability within the Thames estuary, a “modelled” surface that 
represents the same vertical datum as the elevation data is needed. The Port of London Authority 

Figure 2. Different bathtub approaches: (a) zero-connectivity rule which shows that all the cells in the
raster having elevation valueď1 m are flooded; (b) four-way hydrological connectivity rule for 1 m SLR
where a cell is flooded only if it is connected to a water body directly or via adjacent cells in cardinal
directions; and (c) eight-way hydrological connectivity rule for 1 m SLR where a cell is flooded only if
it is connected to a water body directly or via adjacent cells in either cardinal or diagonal directions.

2.3. Projected Sea Level Rise

Three scenarios of SLR are considered based on the literature concerned with global (Section 2.3.1)
and regional (Section 2.3.2) scales. These are: (i) 0.68 m by 2095 (UKCP09 for London); (ii) 0.82 m by
2100 (RCP8.5); and (iii) 1.9 m by 2100 (UKCP09 high++ for London).

2.3.1. Global

Global sea levels are projected to continue to rise beyond the 21st century as thermal expansion
and melting of glaciers progress [48,49]. The IPCC Fourth Assessment Report [50] gives a global
scenario estimated range (5th to 95th percentile) of 0.18–0.59 m SLR between present day (assuming
a 1980–1999 baseline) and 2100. However, it is likely that the rate of global mean SLR during the
21st century will exceed the rate observed during the baseline period due to increases in ocean
warming, melting of glaciers, ice caps, and a combined contribution from the Greenland and Antarctic
ice sheets [1]. Improved process based models which account for land-ice contributions show 5%
to 95% ranges of global mean SLR projections to be 0.26 to 0.55 m for Representation Concentration
Pathway (RCP) 2.6; 0.32 to 0.63 m for RCP4.5; 0.33 to 0.63 m for RCP6.0; and 0.45 to 0.82 m for
RCP8.5 [1].

2.3.2. Regional

Although almost all world coastlines are experiencing a rise in sea level, natural modes of climate
variability, tectonic movements, subsidence by compaction, and anthropogenic factors influence the
magnitude of SLR in different regions and times [48]. Sea levels around the United Kingdom (UK)
have risen by about 1 mm/ year over the last century [51]. Defra guidance [51] projected a 0.90 m SLR
for London by 2100, based on the maximum global mean sea level range climate scenario. The UKCP09
estimates that SLR for London will be approximately 0.21–0.68 m by 2095 [52]. The UKCP09 also
modelled a worst case scenario that gives SLRs of up to 1.9 m by 2100 (high++ scenario); however, it is
noted that this is highly unlikely. These estimates take into account the land movement in the region.
In addition, the UKCP09 projection models account for ocean carbon cycle feedbacks, uncertainty due
to natural variability, and other uncertainties associated with the modelling and statistical processing
which were not included in the previous projections [51].

2.4. Tidal Surface Creation

To incorporate the tidal variability within the Thames estuary, a “modelled” surface that represents
the same vertical datum as the elevation data is needed. The Port of London Authority (PLA)
hydrographic service manages tidal information and predictions from several tide gauges along
the River Thames and estuary. The mean highest high tide (MHHW) information for 23 sites along the
river and estuary were obtained from the PLA handbook of tide tables 2009 (http://www.pla.co.uk/)
(Figure 1). For incorporating tidal variability in the study region, we followed the simplest approach
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given in the NOAA’s Sea Level Rise tool [53]. First, we created a point shapefile for the tide gauge
stations in ArcGIS using their latitude, longitude, together with MHHW information and the datum
conversion factor. We then interpolated a raster surface by inverse distance weighted from the point
tide gauges. Finally, we added the SLR for each of the scenarios to this surface (Section 2.3). In order to
obtain inundation extents of the total land area from the river and sea only, the inland water bodies
were screened out in the flooding area estimation. Additionally, removing the inland waterbodies
should reduce errors in the estimates, although the data may be incomplete for areas, such as small
canals and ditches.

2.5. Accuracy Assessment

To investigate the accuracy of DEMs and uncertainty in the projected inundation levels, the
absolute vertical accuracies of all six DEMs (1 m DEM, 5 m DEMRe, 5 m DEM, 30 m DEMRe, 30 m
SRTM DEM, and 50 m DEM) were estimated in ArcGIS relative to independent reference points from
Ordnance Survey, UK. The reference points (3539 spot heights on ground distributed across the east of
England) include 38 within Greater London that were used to measure the accuracy of DEMs.

Root mean square error (RMSE), which has become a standard measure of the map accuracies of
elevation datasets [6,54], is calculated in this study:

RMSE “

g

f

f

e

ř

´

Zdem ´ Zre f

¯2

n
(1)

where Zdem is the vertical coordinate of the check points in the elevation dataset, Zref is the high-
accuracy spot height in the reference dataset, and n is the number of points checked. The National
Standard for Spatial Data Accuracy (NSSDA) measurement of linear error (LE95) with a 95% confidence
level is calculated from:

LE95 “ 1.96 ˚ RMSE

Mean error is calculated using the following equation:

ME “

ř

Zdem ´ Zre f

n

ME can be either negative or positive; a negative value of the ME tells us that the measurements
consistently underestimate the true values, while a positive ME indicates the opposite [23].

3. Results

For several reasons, the future sea level rise is uncertain (Section 2.3). Of the three scenarios
(UKCP09 London (0.68 m), RCP8.5 of IPCC (0.82 m) and UKCP09 high ++ London (1.9 m)) simulated
for the end of the century, we consider the UKCP09 high++ London scenario as the most likely because
recent studies [55,56] argue that the sea-level rise is likely to exceed 1 m by 2100.

3.1. Scenario 1: 0.68 m SLR UKCP09

Using the eight-way connectivity bathtub approach with a projected SLR of 0.68 m from the
present MHHW, about 17 boroughs of Greater London (GL) with a total surface area of between
0.01 km2 and 14.9 km2 are predicted to be inundated (Figure 3a and Table A1). The largest absolute
areas of inundation are predicted for Newham (11.55–14.29 km2), Southwark (4.10–12.91 km2),
Greenwich (6.13–8.89 km2), Havering (6.57–8.77 km2), and Barking and Dagenham (6.04–8.07 km2).
The inundation for the total GL area is largest from the 5 m DEM (82.23 km2) and smallest from SRTM
DEM (49.87 km2). The flooded areas predicted from 1 m DEM, 5 m DEMRe, 30 m DEMRe, and 50 m
DEM are 61.76 km2, 64.49 km2, 61.64 km2, and 63.51 km2, respectively. In summary, the flood estimates
of the eight-way connectivity are related as: 5 m DEM > 5 m DEMRe > 50 m DEM > 1 m DEM > 30 m
DEMRe > SRTM DEM.
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Using the same SLR (0.68 m), but with a non-connectivity approach, flood waters are predicted to
reach all the mapped locations, and parts of 22 boroughs will be inundated (Figure 4a and Table A1),
which is five more than the estimate from the eight-way connectivity approach. Again, the total flood
areas estimated by the SRTM DEM (56.36 km2) are much smaller than those estimated by the other
DEM’s. Estimated total inundation areas from 1 m DEM, 5 m DEMRe, 5 m DEM, 30 m DEMRe, and
50 m DEM are 68.24 km2, 69.37 km2, 87.95 km2, 66.41 km2, and 70.60 km2, respectively. The total
estimates of inundation areas from zero-connectivity approaches have a different ordering to the
eight-way connectivity: 5 m DEM > 50 m DEM > 5 m DEMRe > 1 m DEM > 30 m DEMRe > SRTM
DEM. However, the difference between the 5 m DEMRe and 50 m DEM estimates is small. Under
this scenario, large parts of Greenwich, Havering, Bexley, Newham, Southwark, and Barking and
Dagenham are predicted to be flooded to a depth of 2 m or more. The depths and spatial extents of
flood inundation for the GL area obtained from different DEMs (except for 30 m DEMRe) for scenario 1
are shown in Figure 5a–e. The difference between inundation extents from 5 m DEMRe and 30 m
DEMRe was found to be insignificant. The boroughs having the largest estimated percentage impact are
Southwark (14.17%–44.76%) and Newham (31.90%–40.27%) followed by Hammersmith and Fulham
(0.58%–28.11%), Barking and Dagenham (16.75%–24.17%) and Tower Hamlets (6.21%–20.32%).
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3.2. Scenario 2: 0.82 m SLR RCP8.5

Under the 0.82 m SLR scenario, the eight-way connectivity approach predicts flooding extents of
49.87 to 87.26 km2 or 3.16%–5.5% of the total GL area (1573 km2) (Figure 3b and Table A2). The RCP8.5
estimates are approximately 0–5 km2 larger than the UKCP09 0.62 m SLR (Section 3.1). The 0.14 m
larger SLR is predicted to cause about a 5.8% increase in flooded areas with the 1 m DEM, 5.2% with
the 5 m DEMRe, 5.7% from the 5 m DEM, 4.4% from the 30 m DEMRe, and 7% from the 50 m DEM.
Because the SRTM DEM elevations are only given as integers, the increase of 0.14 m from UKCP09
does not make any difference in the flood level estimates. Borough level estimates for flooding areas
by the eight-way connectivity bathtub model are similar to the UKCP09 estimates, with the RCP 8.5
also suggesting Newham (11.99–14.87 km2) and Southwark (4.10–13.10 km2) to be the most vulnerable
areas followed by Greenwich (6.27–9.12 km2) and Barking and Dagenham (6.25–8.45 km2) (Figure 3b
and Table A2).

The difference between the areas estimated by the eight-way connectivity approach and
the zero-connectivity approach for the RCP8.5 projection from different DEMs is 4.09–6.77 km2

(Figures 3b and 4b, Table A2). The number of boroughs partly inundated from the RCP8.5 projection
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again increases from 17 to 22 in the zero-connectivity approach. Unlike the UKCP09 scenario, the
RCP8.5 projection has the same DEM ordering of the flood areal extent from both approaches: 5 m
DEM > 50 m DEM > 5 m DEMRe > 1 m DEM > 30 m DEMRe > SRTM DEM. Figure 6 shows the flood
depth for London boroughs in scenario 2. The depths and spatial extents of flood inundation for
the GL area obtained from different DEMs are shown in Figure 6a–e. Although the largest flooding
extent is estimated for Newham and Southwark, the flood depth is greatest in Bexley, Havering, and
Greenwich boroughs (Figure 6a–e). Overall, flood depth decreases towards the Teddington Wier
from Sheerness and Shoeburyness. The boroughs with the largest percentage impact are the same
as for the UKCP09 scenario but with slightly larger values: Southwark (14.17%–45.45%), Newham
(33.03%–41.73%), Hammersmith and Fulham (0.58%–33.78%), Barking and Dagenham (17.33%–25%),
and Tower Hamlets (6.21%–21.43%).
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names that correspond to the numbers.

3.3. Scenario 3: 1.90 m SLR UKCP09 High++

Using the eight-way connectivity approach, 67–125 km2 of GL land area is predicted to be
inundated from the 1.9 m SLR (UKCP09 high++); including about 15.36–19.30 km2 in Newham
(Figure 3c and Table A3). Among the other boroughs, Southwark (6.24–14.63 km2), Barking and
Dagenham (8.53–11.92 km2), Havering (8.89–12.16 km2), Bexley (8.2–10 km2), and Hammersmith and
Fulham (0.39–10.52 km2) have large areal impacts (Figure 3c and Table A3). The UKCP09 high++
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scenario results in flood levels that are 28.55% higher than RCP8.5 and 32.70% higher than UKCP09
with the 1 m DEM; 29.51% higher than RCP8.5 and 33.54% higher than UKCP09 with the 5 m DEMRe
estimate; 30.18% higher than RCP8.5 and 34.21% higher than UKCP09 for the 5 m DEM estimate;
25.27% higher than both RCP8.5 and UKCP09 for the SRTM DEM estimate; and 37.37% higher than
RCP8.5 and 41.79% higher than UKCP09 for the 50 m DEM estimate. The spatial extent of flood
inundations for the GL UKCP09 high++ projections are shown in Figure 7. The zero-connectivity
model shows a total flood estimate of 77.78–127.14 km2 of the GL area (Figure 4c and Table A3). The
increased percentage of flood estimates for UKCP09 high++ varies between 21.42%–40.79% for RCP8.5
and 21.42%–45.62% for UKCP09 estimates. The spatial extent of flood inundation under UKCP09
high++ projections (Figure 7) show some flooding areas covered by >3 m. It is apparent (Figure 7e) that
the flood depths in Lewisham and Southwark obtained from 50 m DEM are largely underestimated
when compared to the results from other DEMs (Figure 7a–c).

Remote Sens. 2016, 8, 366 11 of 22 

 

than both RCP8.5 and UKCP09 for the SRTM DEM estimate; and 37.37% higher than RCP8.5 and 
41.79% higher than UKCP09 for the 50 m DEM estimate. The spatial extent of flood inundations for 
the GL UKCP09 high++ projections are shown in Figure 7. The zero-connectivity model shows a total 
flood estimate of 77.78–127.14 km2 of the GL area (Figure 4c and Table A3). The increased percentage 
of flood estimates for UKCP09 high++ varies between 21.42%–40.79% for RCP8.5 and 21.42%–45.62% 
for UKCP09 estimates. The spatial extent of flood inundation under UKCP09 high++ projections 
(Figure 7) show some flooding areas covered by >3 m. It is apparent (Figure 7e) that the flood depths 
in Lewisham and Southwark obtained from 50 m DEM are largely underestimated when compared 
to the results from other DEMs (Figure 7a–c). 

 
Figure 7. Flood depths obtained for inundated London boroughs from the eight-way hydrological 
connectivity approach by UKCP09 high++ sea-level rise scenario of 1.90 m. (a) 1 m LiDAR DEM; (b) 
5 m LiDAR DEMRe; (c) 5 m DEM; (d) 30 m SRTM DEM; and (e) 50 m DEM. Figure 1 gives the borough 
names that correspond to the numbers. 

3.4. RMSE, NSSDA, and ME Estimation 

The descriptive statistics for the six DEMs used (Table 1) suggest that, as expected, the 1 m, 
resampled 5 m and 30 m LiDAR DEMs have the best agreement with the “true” values obtained from 
the spot height data. The RMSE estimated for these three DEMs are between 0.61 and 0.67 m, which 

Figure 7. Flood depths obtained for inundated London boroughs from the eight-way hydrological
connectivity approach by UKCP09 high++ sea-level rise scenario of 1.90 m. (a) 1 m LiDAR DEM;
(b) 5 m LiDAR DEMRe; (c) 5 m DEM; (d) 30 m SRTM DEM; and (e) 50 m DEM. Figure 1 gives the
borough names that correspond to the numbers.

3.4. RMSE, NSSDA, and ME Estimation

The descriptive statistics for the six DEMs used (Table 1) suggest that, as expected, the 1 m,
resampled 5 m and 30 m LiDAR DEMs have the best agreement with the “true” values obtained from
the spot height data. The RMSE estimated for these three DEMs are between 0.61 and 0.67 m, which
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is both considerably better than the other three DEMs and close to industry standards for LiDAR
data [57]. The RMSEs estimated for the 5 m OS Terrain and 50 m OS Terrain data are 1.19 and 1.17 m,
respectively. Although the RMSE for SRTM DEM (3.33 m) is the largest, like other studies [7,58],
we found that it is still better than the product specification (9.73 m). Moreover the ME of SRTM
is better than that of OS Terrain DEMs (Table 1). The corresponding NSSDA standards for vertical
accuracies are also shown in Table 1. Assuming that the DEMs meet the NSSDA standards, the best
accuracy that could be expected at a 95% confidence level is 1.21 m as given by the LiDAR DEM.

Table 1. Root mean square error (RMSE), national standard for spatial data accuracy (NSSDA)
measurement of linear error (L.E.) with a 95% confidence level, and mean error (ME) for the different
DEMs used in this study.

Elevation Data Approx. Resolution (m) RMSE (m) NSSDA (m) (95%) ME

LiDAR 1 m 1 0.67 1.33 ´0.001
LiDAR 5 m DEMRe 5 0.66 1.30 ´0.05
5 m DEM OS data 5 1.19 2.35 ´0.84

LiDAR 30 m
DEMRe

30 0.61 1.21 ´0.02

SRTM 30 m DEM 30 3.33 6.54 ´0.40
50 m DEM OS data 50 1.17 2.30 ´0.79

4. Discussion

DEMs with very fine resolutions developed from interferometric SAR techniques and relatively
straightforward sources, such as terrestrial and airborne LiDAR, are increasingly available, particularly
for urban regions. These DEMs can provide accurate delineation of topographical vulnerabilities to
natural phenomenon including flooding. For instance, Gesch [7] used a 3 m LiDAR DEM to map
SLR flooding in parts of the United States; Cooper et al. [59] used 1.3 m LiDAR for flood mapping in
Kahului Harbor, Hawaii; and Zhang [60] employed a 1.5 m LiDAR to derive inundation polygons in
South Florida. In the past, when no high-resolution DEM was available, 30 second SRTM DEM, ASTER
GDEM, 1 arc second SRTM DEM, and GTOPO 30 have been used in many parts of the world by various
researchers for inundation studies [3,61]. In addition, regionally available national elevation data [44]
and the recently developed TanDEM-X DEM [54] are also useful for flood inundation studies. As noted
previously, DEMs derived from different sources and techniques often have varying resolutions and
levels of uncertainty.

A previous study in the Thames estuary estimated an area of about 1000 km2 to be inundated [33];
however, that study used an unlikely global scale SLR. Rowley et al. [3] also used unlikely hypothetical
SLR values of up to 6 m for mapping inundation levels and did not account for the tidal variability
in their analysis. Although our study does not use a hydrodynamic simulation, we apply a simpler
bathtub flood model to very likely SLR scenarios for GL using high-resolution topographic data and
accounting for the tidal variability in the Thames estuary. The results suggest that the high-resolution
DEMs are effective for estimating flooding areas and pinpointing hotspots of potential vulnerability in
GL. However, the inundation estimates vary greatly depending on the source and techniques used to
construct the elevation model and on the hydrological connectivity assumptions.

The main goals of this analysis included understanding the impacts of the different DEMs in flood
modelling, as well as the hydrological connectivity approaches. Strauss et al. [44] noted the impact
of methodology chosen with respect to SLR threshold projection and hydrological connectivity to
the water bodies. Several previous studies indicate that an eight-way connectivity model produces
more reasonable results than a zero-connectivity approach [7,42]. These studies provide an improved
understanding of the dynamic effect of flow models and contribute to an overall transition beyond the
simple threshold-only “bathtub” approach.

Our results are in agreement with these previous studies. Figure 8 demonstrates the hydrological
connectivity issue: the red areas (Figure 8a) indicate very low elevation topography. Although the
violet and cyan pixels in Figure 8b, corresponding to the red colour in Figure 8a, have low elevation,
only cyan coloured pixels are hydrologically connected to the tidal Thames and, therefore, have high
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chances of flooding. By using such a hydrologically-connected approach, we find that the overall
inundation extent estimates decrease between 1.68 km2 and 12.01 km2 when compared with the
zero-connectivity method (Figures 3 and 4 Tables A1–3). Indeed, boroughs that are distant to the
Thames (e.g., Hackney and Waltham Forest) are flooded with the zero connectivity approach. Although
the inundation extent of these boroughs are smaller, considering their spatial location, inundation
seems to be unrealistic and so the zero connectivity approach probably results in overestimation of
the inundation extent. Therefore, we only discuss the inundation extents estimated by the eight-way
connectivity model in the following.
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risk and connected to the Thames estuary (cyan) and non-connected cells (violet). Higher elevation
areas (e.g., part of borough 24) are not flooded from a SLR of 0.82 m.

Varying flood inundation polygons are obtained for GL for the same SLR scenarios with different
DEMs (Section 3). For instance, under the UKCP09 scenario, the area of GL estimated to be flooded
varies from 61 km2 (1 m DEM and resampled 30 m DEM), to 64 km2 (resampled 5 m DEM, and
50 m DEM), to 82 km2 (5 m DEM from Ordnance Survey), to 49 km2 (SRTM DEM) (Table A1). These
differences in inundation extents estimated from different DEMs may be due to one or more of
the following:

(i) artefacts in the DEM resulting from the measurement source,
(ii) artefacts introduced at the production stage,
(iii) differences in processing methodology, and
(iv) varying resolution of DEMs.

Indeed, even a small error in the DEM data can produce very different inundation polygons,
particularly when using the hydrological connectivity approach (Tables A1–A3). The order of the
RMSEs for the DEMs is: 30 DEMRe < 5 m DEMRe < 1 m DEM < 50 m DEM < 5 m DEM < SRTM
DEM. Although 30 m and 5 m DEMRe are derived from 1 m DEM, they show higher accuracy. This is
probably because of the smoothening effect of the bilinear interpolation technique [62]. This effect of
resampling is demonstrated in Figure 9a. Resampling DEM from 1 to 5 m produces a difference of less
than 1 m elevation for about 90% of total area in GL, 1–3 m for about 6% of total area and 3–5 m for
about 3% of total area. This difference varies with resampling resolution (Figure 9a).

It is curious that the estimates of flood areas from the 5 m DEM are considerably higher than those
of the 1 m DEM and its resampled products. These differences are likely attributable to the processing
of the DEMs. As noted, the airborne LiDAR derived 1 m DEM and DEMRe’s function as Digital Surface
Models (DSMs), whereas the photogrammetrically-derived 5 m DEM and 50 m DEM from OS are
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Digital Terrain Models (DTMs). A DTM is a ‘bare earth’ elevation model where vegetation and other
surface features, such as buildings, have been identified and removed, whereas a DSM includes these
surface objects.

The differences in 5 m and 50 m OS DEMs are shown in Figure 9b. Since 1 m DEM and 5 m DEMRe
data include surface objects, they tend to exclude the areas of buildings from the estimates of flooding
areas. On the other hand, in a DTM areas having buildings that are below the flood level will be
included in the flood area. Figure 9c shows that approximately 16% of the area in GL is underestimated
in >3 m category for the DTM compared to the DSM, whereas overestimation is only 1% for the same
category. This indicates that the DTM contains significantly lower elevation values, which results
in a greater flooded area than a DSM. Griffin et al. [63] argued that the best approach for modelling
flood inundation is to use a DTM together with an appropriate surface roughness condition, but their
studies deal with tsunami inundation where the water flow has the force to destroy buildings. For SLR
flooding, the ideal DEM may lie between a DSM and a DTM, because some structures may resist
flow, while others allow water to flow through them and may even collapse with prolonged flooding.
Furthermore, future SLR flooding predictions cannot be validated a priori, unlike riverine flood or
tsunami inundation models. Hence, there is need to develop methods to assess what DEM is optimal
for simulating tidally-adjusted SLR inundations.
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Figure 9. Percentage of areas overestimated and underestimated in DEMs when: (a) resampled 5 m
DEMRe, 10 m DEMRe, and 50 m DEMRe, are compared with the original 1 m LiDAR DEM, (b) 50 m
OS DEM is compared to the 5 m OS DEM, (c) 5 m OS DEM (DSM) is compared to the resampled 5 m
DEMRe, and (d) SRTM elevations DEM is compared with the other elevation datasets.

Our results also show that SRTM DEM underestimates the flooded areas compared to the higher
accuracy DEMs. Large areas west of the City of London (code 33) are estimated to be flooded according
to the LiDAR DEMs and OS Terrain data, but they are not included in the flood inundation zones
mapped by SRTM DEM (Figures 5 and 6). Estimated flood inundation areas obtained from SRTM
DEM are about 11–25 km2 smaller than the 1 m DEM predictions. Similar results are also found with
the resampled 5 m and 30 m LiDAR DEMRe. This large difference may be because: (i) SRTM DEM
(3.33 m RMSE) has large inaccuracies in vertical accuracy compared to the other DEMs, and (ii) flooded
polygons can only be determined for whole-metre increments because the vertical increment of the
SRTM-DEM is 1 m. The latter results in identical estimates of flooded areas for the UKCP09 and
RCP8.5 scenarios when using SRTM DEM (Section 3).
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Elevations in the low-lying areas are often overestimated in SRTM DEM [54,64,65]. Figure 10
demonstrates the vertical inaccuracies in elevation values in SRTM DEM for GL. When compared
SRTM elevation pixels with the 50 m DEM, it can be seen that most parts of boroughs 33 (City of
London), 25 (Westminster), 24 (Kensington and Chelsea), and 26 (Camden) are in the category of
overestimated pixels (Figure 10a). Comparison with 5 m DEM shows similar overestimates (Figure 10d).
The red area (Fig 10a) has the most tall buildings in London. Thus, it appears that SRTM DEM is
a surface model rather than a terrain model. The percentage of pixels overestimated by the SRTM
DEM compared to other DEMs (Figure 9d) is much larger (about 66%–74% of total area) than that
of the underestimated elevation pixels, which explains the large underestimation in flooding extent.
The peaks in the underestimated elevation areas for the categories greater than 3 m in the comparison
of the SRTM DEM with the 1 m DEM may be attributed to the higher accuracy of LiDAR DEM in
estimating building heights (Figure 9d, Figure 10c).

Remote Sens. 2016, 8, 366 15 of 22 

 

Elevations in the low-lying areas are often overestimated in SRTM DEM [54,64,65]. Figure 10 
demonstrates the vertical inaccuracies in elevation values in SRTM DEM for GL. When compared 
SRTM elevation pixels with the 50 m DEM, it can be seen that most parts of boroughs 33 (City of 
London), 25 (Westminster), 24 (Kensington and Chelsea), and 26 (Camden) are in the category of 
overestimated pixels (Figure 10a). Comparison with 5 m DEM shows similar overestimates (Figure 
10d). The red area (Fig 10a) has the most tall buildings in London. Thus, it appears that SRTM DEM 
is a surface model rather than a terrain model. The percentage of pixels overestimated by the SRTM 
DEM compared to other DEMs (Figure 9d) is much larger (about 66%–74% of total area) than that of 
the underestimated elevation pixels, which explains the large underestimation in flooding extent. The 
peaks in the underestimated elevation areas for the categories greater than 3 m in the comparison of 
the SRTM DEM with the 1 m DEM may be attributed to the higher accuracy of LiDAR DEM in 
estimating building heights (Figure 9d, Figure 10c). 

 
Figure 10. Location of overestimated and underestimated elevation pixels in SRTM DEM compared 
to (a) 50 m DEM with square box shown in detail in (b), (c) 1 m DEM, and (d) 5 m DEM. 

The horizontal resolution of the DEM affects the delineation of inundation zones to resolve flow 
through and around individual features, which may help to explain the differences in inundation 
extents using SRTM DEM versus using of other DEMs (Figures 3 and 4, Tables A1–A3). The difference 
in inundation extent between SRTM DEM and the other DEMs increases from lower to higher SLR 
projections. It appears that given the low accuracy of SRTM DEM, it may only be useful for 
identifying large floodplains [66]. In this regard, Gallegos et al. [67] suggested that a horizontal 
resolution of 5 m may be required for detailed evaluation of risk assessment, so SRTM DEM may not 
have sufficient resolution to simulate flood inundation with confidence. Similar observations have 
been made in other studies [3,7,63]. However, the 50 m DEM, which is an OS derivative from 10 m 
contours using photogrammetric techniques that are updated annually using other high-resolution 
terrain datasets, provides much better estimates of the total flooded areas despite the low horizontal 
resolution [34]. For disaster prevention and mitigation purposes, we agree with Wang et al. [65], that 
an overestimation of the flood hazard is more desirable than underestimation. Hence, we recommend 
using the freely available 50 m open DEM data for inundation studies in UK, if no high-resolution 
data are available. However, the SRTM DEM is currently the best freely available global elevation 
dataset that could be used to generate inundation polygons for understanding risks and 

Figure 10. Location of overestimated and underestimated elevation pixels in SRTM DEM compared to
(a) 50 m DEM with square box shown in detail in (b), (c) 1 m DEM, and (d) 5 m DEM.

The horizontal resolution of the DEM affects the delineation of inundation zones to resolve flow
through and around individual features, which may help to explain the differences in inundation
extents using SRTM DEM versus using of other DEMs (Figures 3 and 4 Tables A1–3). The difference
in inundation extent between SRTM DEM and the other DEMs increases from lower to higher SLR
projections. It appears that given the low accuracy of SRTM DEM, it may only be useful for identifying
large floodplains [66]. In this regard, Gallegos et al. [67] suggested that a horizontal resolution
of 5 m may be required for detailed evaluation of risk assessment, so SRTM DEM may not have
sufficient resolution to simulate flood inundation with confidence. Similar observations have been
made in other studies [3,7,63]. However, the 50 m DEM, which is an OS derivative from 10 m
contours using photogrammetric techniques that are updated annually using other high-resolution
terrain datasets, provides much better estimates of the total flooded areas despite the low horizontal
resolution [34]. For disaster prevention and mitigation purposes, we agree with Wang et al. [65], that
an overestimation of the flood hazard is more desirable than underestimation. Hence, we recommend
using the freely available 50 m open DEM data for inundation studies in UK, if no high-resolution
data are available. However, the SRTM DEM is currently the best freely available global elevation
dataset that could be used to generate inundation polygons for understanding risks and vulnerabilities.
As Schumann et al. [68] suggest, if SRTM data are carefully processed and uncertainties are properly
accounted for, they can be useful for the evaluation of flood models.
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5. Conclusions

Different digital elevation data have been tested for modelling the extent of SLR flood inundation
for three different scenarios in the Greater London area. The adapted bathtub approach and results
presented in this study are useful alternatives to hydro-dynamic models considering computational
requirements and data availability. We summarize the main conclusions of this study in the
following statements:

(i) An eight-way connectivity bathtub approach gives significantly smaller flood inundation
extents than the zero connectivity approach, indicating that the zero-connectivity approach
may overestimate flooded areas due to the hydrological connectivity issue.

(ii) Large variability in inundation estimates is observed for the same SLR scenario when using
different elevation datasets, and this is attributed to differences in horizontal and vertical
resolution, as well as processing methodologies.

(iii) Flood inundation models developed using 1 m airborne LiDAR DEM give inundation extents
between 61.76 and 91.77 km2 for three different SLR scenarios; 5 m DEMRe gives 64.24–96.60 km2;
5 m DEM gives 82.23–124.99 km2, 30 m DEMRe gives 61.64–91.04 km2, SRTM DEM gives
49.87–66.74 km2 and 50 m DEM gives 63.51–109.13 km2. Thus, while 1 m DEM, 5 m DEMRe, 30 m
DEMRe, and 50 m DEM give similar inundation extents, the extents estimated by 5 m DEM are
much larger, while the extents estimated by SRTM DEM are much smaller.

(iv) Differences in inundation areas estimated between DSMs and DTMs for the same SLR scenarios
are considerably larger than the RMSE differences between the datasets. As expected, using
DTMs tends to result in higher inundation extents while using DSMs tends to result in lower
inundation extents. Thus, we recommend to use a DTM and add objects using a DSM that may
considerably influence the prediction such as large buildings, pillars of bridges, etc.

(v) Flood inundation estimates using SRTM DEM appear to significantly underestimate inundation
extents, possibly as a result of high RMSE and low vertical and horizontal resolution. Therefore,
careful consideration should be made when assessing inundation zones from flood models using
SRTM DEM.

(vi) Although there are concerns about using DEMs having low spatial resolution, we recommend
that the regionally available open data 50 m DEM be used for inundation studies of the UK rather
than SRTM DEM, if no high-resolution data are available.

Although this study illustrates the uncertainties regarding the modelling approach and elevation
data, it does not account for flood protection measures or local hydrodynamics, including differences
in roughness conditions for different types of land cover. Nevertheless, it demonstrates that even small
differences in vertical accuracies of DEM have a strong effect on the quantitative assessment of the SLR
inundation associated with climate change. In addition, the uncertainties related to both hydrological
connectivity and processing levels must be assessed given the complexity of flood modelling.
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Appendix

Table A1. Potential inundation areas for Greater London boroughs (in km2) obtained from the 0.68 m UKCP09 London sea-level rise scenario as estimated from six
different elevation datasets (Section 2.1) and two different connectivity (eight-way hydrological and zero) approaches (Section 2.2). Only the boroughs that will be
impacted are included (compare with Figure 1). Bold values indicate boroughs having ě3 km2 inundation areas.

Boroughs 1 m DEM 5 m DEMRe 5 m DEM 30 m DEM 30 m DEMRe 50 m DEM

8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect
1. Kingston upon Thames - 0.14 - 0.14 - - - 0.03 - 0.17 - 0.03

4. Hounslow 0.59 1.08 0.69 1.01 0.45 0.91 0.17 0.24 0.72 1.10 0.38 0.78
5. Ealing - 0.02 - 0.02 - - - - - - - -

6. Havering 6.78 7.61 7.34 7.59 6.83 8.17 8.77 9.37 6.70 7.29 6.57 7.8
11. Lambeth 1.94 1.96 2.21 2.24 3.74 3.79 0.03 0.44 2.14 2.16 1.29 1.42

12. Southwark 8.76 8.82 8.67 8.88 12.91 12.92 4.1 4.09 8.62 8.70 9.09 9.34
13. Lewisham 1.66 1.71 1.83 1.87 2.82 2.83 0.96 1.18 1.64 1.65 1.7 1.72
14. Greenwich 6.13 6.36 6.3 6.4 8.89 8.91 6.66 6.84 5.82 6.03 7.04 7.66

15. Bexley 7.19 7.28 7.34 7.43 7.38 8.06 7.56 7.96 7.06 7.18 7.64 7.9
17. Waltham Forest 0.1 0.1 0.13 0.5 0.13 0.05

18. Redbridge 0.08 0.2 0.10 0.12 0.08 0.3 0 0.18 0.12 0.15 0.35 0.35
20. Richmond upon Thames 1.91 3.00 2.89 3.00 2.65 2.85 0.6 0.98 2.64 2.87 0.59 1.82

22. Wandsworth 3.32 3.36 3.32 3.40 5.13 5.16 0.28 1.44 3.27 3.32 3.85 3.99
23. Hammersmith and Fulham 2.64 3.74 2.1 3.79 3.41 4.61 0.09 0.5 2.39 3.56 1.34 2.11
24. RB Kensington and Chelsea 0.14 0.27 0.12 0.21 0.11 0.2 0.02 0.06 0.16 0.26 0.03 0.06

25. City of Westminster 0.54 1.06 0.85 1.05 1.47 1.5 0.06 0.1 0.62 1.05 0.18 0.8
27. Tower Hamlets 2.44 2.83 2.71 2.98 3.94 4.02 1.23 1.7 2.33 2.56 2.28 2.79

28. Islington 0.01 0.01 0.01 - 0.01
29. Hackney - 0.08 - 0.14 - 0.2 - 0.19 - 0.08 0.08
31. Newham 11.55 12.00 11.76 12.23 14.29 14.58 11.99 12.58 11.00 11.54 12.88 13.28

32. Barking and Dagenham 6.05 6.54 6.23 6.73 8.07 8.73 7.34 7.97 6.40 6.60 8.29 8.6
33. City of London 0.05 0.05 0.02 0.02 0.06 0.06 0.01 0.01

Total 61.76 68.24 64.49 69.37 82.23 87.95 49.87 56.36 61.64 66.41 63.51 70.6
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Table A2. Potential inundation areas for Greater London boroughs obtained from the 0.82 m RCP8.5 global sea-level rise scenario as estimated from six different
elevation datasets (Section 2.1) and two different connectivity (eight-way hydrological and zero) approaches (Section 2.2). Only the boroughs that will be impacted are
included (compare with Figure 1). Bold values indicate boroughs having ě3 km2 inundation areas.

Boroughs 1 m DEM 5 m DEMRe 5 m DEM 30 m DEM 30 m DEMRe 50 m DEM

8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect
1. Kingston upon Thames 0.15 0.14 0.01 0.03 0.17 0.03

4. Hounslow 1.05 1.25 0.87 1.12 0.89 1.17 0.17 0.24 0.94 1.28 0.5 0.91
5. Ealing 0.04 0.04 0.04

6. Havering 7 7.9 7.45 7.72 7.23 8.68 8.77 9.37 6.90 7.56 6.9 8.26
11. Lambeth 2.16 2.16 2.35 2.38 3.95 3.96 0.03 0.44 2.37 2.38 1.53 1.67

12. Southwark 8.91 8.96 8.96 9.05 13.11 13.12 4.1 4.09 8.78 8.87 9.98 10.23
13. Lewisham 1.7 1.75 1.94 1.98 2.87 2.87 0.96 1.18 1.71 1.73 1.86 1.87
14. Greenwich 6.28 6.52 6.52 6.57 9.13 9.15 6.66 6.84 6.01 6.24 7.8 7.88

15. Bexley 7.26 7.37 7.4 7.49 7.95 8.41 7.56 7.96 7.13 7.26 7.94 8.13
17. Waltham Forest 0.1 0.1 0.14 0.5 0.14 0.05

18. Redbridge 0.08 0.22 0.12 0.15 0.31 0.31 0.18 0.14 0.18 0.36 0.36
20. Richmond upon Thames 2.96 3.27 3.17 3.29 3.07 3.26 0.6 0.98 2.88 3.06 0.71 2.1

22. Wandsworth 3.5 3.56 3.5 3.58 5.39 5.39 0.28 1.44 3.39 3.47 3.97 4.13
23. Hammersmith and Fulham 2.94 4.28 2.84 4.2 3.95 5.54 0.09 0.5 2.78 4.10 1.62 2.52
24. RB Kensington and Chelsea 0.15 0.32 0.14 0.23 0.13 0.23 0.02 0.06 0.17 0.31 0.03 0.08

25. City of Westminster 0.62 1.16 1.06 1.17 1.72 1.72 0.06 0.1 0.66 1.10 0.21 0.95
27. Tower Hamlets 2.69 3 2.84 3.13 4.18 4.24 1.23 1.7 2.51 2.74 2.9 3.02

28. Islington 0.02 0.01 0.01 0.01
29. Hackney 0.12 0.16 0.23 0.19 0.09 0.08
31. Newham 11.96 12.42 12.43 12.68 14.87 15.11 11.99 12.58 11.49 11.97 13.33 13.86

32. Barking and Dagenham 6.26 6.77 6.48 6.96 8.45 9.03 7.34 7.97 6.55 6.80 8.69 8.98
33. City of London 0.06 0.06 0.03 0.03 0.06 0.06 0.02 0.02

Total 65.57 71.42 68.09 72.18 87.26 92.64 49.87 56.36 64.43 69.51 68.34 75.11
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Table A3. Potential inundation areas for Greater London boroughs obtained from the 1.90 meter UKCP09 high++ London sea-level rise scenario as estimated from
six different elevation datasets (Section 2.1) and two different connectivity (eight-way hydrological and zero) approaches (Section 2.2). Only the boroughs that will be
impacted are included (compare with Figure 1). Bold values indicate boroughs having ě3 km2 inundation areas.

Boroughs 1 m DEM 5 m DEMRe 5 m DEM 30 m DEM 30 m DEMRe 50 m DEM

8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect 8-way 0-connect
1. Kingston upon Thames 0.18 0.22 0.05 0.06 0.60 0.20 0.01 0.08

4. Hounslow 2.8 2.73 2.91 3.91 3.82 3.85 0.06 0.93 2.95 3.24 2.89 2.96
5. Ealing 0.22 0.24 0.24 0.38 0.31 0.31 0 0.01 0.27 0.27 0.01 0.03

6. Havering 8.89 9.48 9.7 13.15 12.16 12.21 10.76 12.03 9.49 9.74 11.79 12.08
11. Lambeth 3.07 3.22 3.22 3.76 4.92 4.92 0.3 0.9 3.18 3.24 3.67 3.72

12. Southwark 10.37 10.51 10.51 11.34 14.63 14.64 6.24 6.65 10.31 10.32 13.39 13.39
13. Lewisham 2.27 2.36 2.48 2.58 3.28 3.36 1.69 1.85 2.24 2.32 2.74 2.78
14. Greenwich 7.84 8 8.05 8.72 10.54 10.61 8.5 8.55 7.65 7.75 9.5 9.57

15. Bexley 8.2 8.47 8.51 8.59 10 10.1 9.11 9.18 7.98 8.18 9.78 9.94
17. Waltham Forest 0.5 0.69 0.66 1.14 0.52 2.04

18. Redbridge 0.47 0.4 0.43 0.5 0.56 0.56 0.02 0.37 0.38 0.39 0.54 0.54
20. Richmond upon Thames 5.48 5.66 5.88 7.69 6.92 7.09 1.42 2.31 5.56 5.95 5.38 5.51

22. Wandsworth 4.24 4.31 4.49 5.02 6.46 6.46 0.68 2.57 4.33 4.51 5.09 5.15
23. Hammersmith and Fulham 7.14 6.78 6.92 7.57 10.52 10.69 0.39 1.36 6.29 6.68 7.23 0.11
24. RB Kensington and Chelsea 0.63 0.5 0.67 0.92 0.78 0.82 0.03 0.1 0.71 0.33 0.34

25. City of Westminster 1.73 1.84 1.89 2.06 2.94 2.94 0.07 0.16 1.79 1.83 2.01 2.04
27. Tower Hamlets 4.05 4.39 4.49 4.76 5.81 5.93 2.17 2.71 4.00 4.13 4.42 4.52

28. Islington 0.01 0.01 0.01
29. Hackney 0.37 0.4 0.08 0.58 0.31 0.28 7.23
31. Newham 15.76 16.02 16.31 17.22 19.3 19.37 15.36 16.22 15.51 15.78 18.39 18.63

32. Barking and Dagenham 8.53 8.51 8.81 9.07 11.81 11.83 9.93 10.38 8.45 8.70 11.92 11.92
33. City of London 0.09 0.04 0.05 0.06 0.17 0.17 0.06 0.06 0.05 0.05

Total 91.77 93.45 96.6 108.61 124.99 127.14 66.74 77.78 91.04 94.76 109.13 112.65
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