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Abstract. The Arctic Snow Microstructure Experiment (AS-

MEx) took place in Sodankylä, Finland in the winters of

2013–2014 and 2014–2015. Radiometric, macro-, and mi-

crostructure measurements were made under different ex-

perimental conditions of homogenous snow slabs, extracted

from the natural seasonal taiga snowpack. Traditional and

modern measurement techniques were used for snow macro-

and microstructure observations. Radiometric measurements

of the microwave emission of snow on reflector and absorber

bases were made at frequencies 18.7, 21.0, 36.5, 89.0, and

150.0 GHz, for both horizontal and vertical polarizations.

Two measurement configurations were used for radiometric

measurements: a reflecting surface and an absorbing base be-

neath the snow slabs. Simulations of brightness temperatures

using two microwave emission models, the Helsinki Univer-

sity of Technology (HUT) snow emission model and Mi-

crowave Emission Model of Layered Snowpacks (MEMLS),

were compared to observed brightness temperatures. RMSE

and bias were calculated; with the RMSE and bias values

being smallest upon an absorbing base at vertical polariza-

tion. Simulations overestimated the brightness temperatures

on absorbing base cases at horizontal polarization. With the

other experimental conditions, the biases were small, with

the exception of the HUT model 36.5 GHz simulation, which

produced an underestimation for the reflector base cases.

This experiment provides a solid framework for future re-

search on the extinction of microwave radiation inside snow.

1 Introduction

Snow is a vital component of the water cycle, and is critically

important for meteorological and climatological studies due

to its high albedo, high thermal emissivity, and thermal insu-

lating properties (Cohen and Rind, 1991). In addition, over 1

billion people rely on snowmelt for their fresh water drinking

supply (Barnett et al., 2005). To predict and monitor the evo-

lution of potential snowmelt, continuous observations of key

parameters such as snow water equivalent (SWE), height of

snowpack (HS, as defined by Fierz et al., 2009), and snow

extent (SE) are required throughout the year. While tradi-

tional snow pit and automatic weather station observations

are important, remote sensing observations of snow with pas-

sive microwave radiometers are currently the only means

in northern countries to provide vital global daily measure-

ments of snow properties. As snow crystals act as scattering

centres for upwelling microwave radiation, the size of the

snow crystal, the radiation wavelength (and therefore its fre-

quency), and the snow depth all play a role in dictating the

amount of scattering present in a snowpack (Chang et al.,

1987; Hallikainen et al., 1987).

Over the last 30 years, space-borne passive microwave ob-

servations have been used to estimate snow mass and SWE

(Chang et al., 1987; Hollinger et al., 1990; Kelly et al.,

2003; Takala et al., 2011). The basis of snow mass esti-

mates (Chang et al., 1987) is based on comparison of the

observed brightness temperature at a frequency where scat-

tering by the snow crystals is dominant (> 25 GHz, 37 GHz
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is commonly used) with the observed brightness temperature

at a frequency where scattering is not dominant (< 25 GHz,

19 GHz is commonly used). Numerous empirical formulae

were developed for estimating SWE from the passive mi-

crowave observations (Künzi et al., 1982; Chang et al., 1987;

Hallikainen, 1989; Amlien, 2008); however, relying on rigid

regression coefficients, these empirical approaches were of-

ten only valid for certain regional areas with poor inter-

annual consistency (Derksen et al., 2003). Purely theoret-

ical models for snow emission have also been developed

(e.g. Tsang et al., 2000). However, these models tend to be

very complex and due to the diversity of ancillary informa-

tion required, their use in practical SWE retrieval from satel-

lite observations is limited. Sitting between empirical and

theoretical models are semi-empirical models; these combine

radiative transfer theory with results from observations, ad-

justing key model components empirically. Two commonly

used semi-empirical models are the Helsinki University of

Technology (HUT) snow emission model (Pulliainen et al.,

1999; Lemmetyinen et al., 2010) and the Microwave Emis-

sion Model of Layered Snowpacks (MEMLS, Wiesmann and

Mätzler, 1999; Mätzler and Wiesmann, 1999).

Both the HUT snow emission model and MEMLS use

snow parameters to describe the snowpack and snow mi-

crostructure. These parameters include physical temperature,

density, and some form of microstructure parameter. This mi-

crostructure parameter (describing size, shape, orientation of

snow grains) has a large effect on the observed brightness

temperature (Foster et al., 1999; Armstrong et al., 1993) be-

cause the intensity of scattered microwave radiation is di-

rectly linked to snow microstructure (Chang et al., 1987).

However, the amount of scattering, described by the scatter-

ing coefficient in both the HUT snow emission model and

MEMLS, is empirically defined based on observations (Pul-

liainen et al., 1999; Wiesmann and Mätzler, 1999; Pan et al.,

2015). However, MEMLS also includes an option to define

the scattering coefficient purely on a physical basis (Mätzler

and Wiesmann, 1999).

The Arctic Snow Microstructure Experiment (ASMEx)

took place at the Arctic Research Centre of Finnish Mete-

orological Institute (FMI-ARC) in Sodankylä, Finland in the

winter seasons of 2013–2014 and 2014–2015. During the

ASMEx, macro-, microstructure, and radiometric measure-

ments of homogeneous snow slabs were made. The snow

slabs were extracted from the natural seasonal taiga snow-

pack. The radiometric measurements were made on two dif-

ferent bases: one assumed perfect absorber and one perfect

reflector. Observations of snow macro- and microstructure

were made after radiometric measurements. The observed

parameters were fed into the HUT snow emission model

and MEMLS to produce simulated brightness temperatures.

Only homogeneous slabs of dry snow were considered for

microwave emission simulation. This was to avoid using wet

snow in the radiometric measurements, as the dielectric prop-

erties of dry and wet snow are very different. The real and

imaginary parts of the dielectric constant of water are much

greater than those of ice (Stiles and Ulaby, 1981), increasing

the complexity of the behaviour of the dielectric properties

of snow.

This paper uses both the HUT snow emission model and

MEMLS to simulate the microwave emission of homogenous

snow slabs extracted from the natural snowpack in FMI-ARC

during ASMEx, and compares simulated and observed mi-

crowave emission from the snow slabs. The ultimate aim of

ASMEx is to improve the understanding of the microwave

extinction processes within the snowpack, and their relation

to microstructural properties of natural snow cover. This will

enable to improve the precision of future and existing snow

emission models.

2 Methods and models

2.1 Methods

2.1.1 Excavation of snow slabs

The snow slabs were extracted from the natural snowpack in

the intense observation area (IOA) of the FMI-ARC that is

situated in the clearing of a sparse pine forest, in Sodankylä,

Finland. A snow sample of size 80× 60 cm was mechani-

cally removed from the snowpack. The thickness of these

slabs varied typically between 14 and 19 cm, with the ex-

ception of one slab, comprised of depth hoar, being approx-

imately 5 cm thick. Snow slabs were taken from different

depths within the snowpack, in order to capture a range of

grain sizes and types. The snow slabs were taken at differ-

ent periods during the two winters of ASMEx, to capture a

wider range of grain sizes and types. Each of the snow slabs

was extracted from a homogeneous layer, and its stratigraphy

was manually assessed after the radiometric measurements.

The preparation and extraction of the snow slabs was a del-

icate process. Once a homogeneous layer of sufficient thick-

ness was selected, the sample was prepared by pushing a

metal plate (surrounded by a microwave transparent plastic

sheet to avoid snow freezing to the metal plate, both at am-

bient temperature) into the snowpack and selecting the snow

sample with a plastic frame as shown in Fig. 1. The plastic

frame was also allowed to cool to the ambient temperature,

in order to reduce the snow melt–freeze problem. Cuts were

made to the surface snow, using metal plates and saws, paral-

lel to the sides of the plastic frame. This allowed the frame to

sink to the level of the embedded metal frame. All cuts were

made outside to the plastic frame, in order to limit the dis-

ruption to the potential sample. Once the plastic frame was

level with the metal plate, the entire sampling apparatus and

snow sample were pulled out of the snowpack. Any snow

above the slab sample and plastic frame was removed. The

top of the snow sample was carefully smoothed with a metal

plate as gently as possible without making artificial features
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Figure 1. Snow sample was taken from snowpack with a plastic

frame, a metal plate and a saw, and a metal bottom plate surrounded

by a plastic sheet.

on the slab surface. Immediately after extraction, the slabs

were placed in front of the radiometer for brightness temper-

ature measurements. A total of 14 samples were extracted in

that manner.

2.1.2 Radiometric measurements

The microwave radiometric measurements were made with

two RPG-XCH-DP Dicke Switch radiometers, installed on

top of the radiometric tower in the IOA. The experimental set

up of radiometric measurements is described in Fig. 2. Five

different frequencies (18.7, 21.0, 36.5, 89.0, and 150.0 GHz)

at both horizontal and vertical polarizations were used, al-

though not all frequencies were working for all slabs. Ta-

bles 1 and 2 detail the radiometric data collected from the

ASMEx slabs in 2014 and 2015, respectively. The radiomet-

ric measurements were made at an inclination angle of 50◦.

Equivalent sky brightness temperatures were also made to

measure the intensity of the downwelling radiation.

Radiometric measurements followed a comparable proce-

dure as in Wiesmann et al. (1998). The first measurement

was made with the snow slab on top of the reflective metal

base. The metal base acts as a perfect reflector by reflect-

ing the downwelling emission of microwave radiation from

the sky. Once the snow slab had been observed at all fre-

quencies, sky measurements at an equivalent incidence an-

gle were made. The metal plate was then carefully removed

from the set up, so that the snow slab was upon the as-

sumed perfect absorber. The radiometric measurements were

then repeated. Emissivity tests of the absorbing material, us-

ing the experimental setup in Fig. 2 without the snow slab

and metal plate, proved that the assumption of a near-perfect

blackbody was valid for all slab experiments, with the ex-

ception of slabs B05 and B07. For these two slabs, the metal

strips in the tape, used to hold the top-most piece of Sty-

rofoam together, caused a reduction in brightness temper-

ature at horizontal polarizations at different frequencies. A

Figure 2. Setup for radiometer measurements with a 50◦ inclination

angle.

correction (none at 18.7 GHz, −1 K at 21.0 GHz, −2 K at

36.5 GHz, −8 K at 89.0 GHz, and −15 K at 150.0 GHz) was

applied to the absorbing base brightness temperature data

for slabs B05 and B07.Throughout the radiometric measure-

ments the physical temperatures of snow, air, and absorbing

material were also measured for modelling purposes.

2.1.3 Measurements of snow macro- and

microstructure

Once the radiometric measurements had been completed,

the destructive sampling of the physical parameters of snow

macro- and microstructure took place. Initially, the stratig-

raphy of the slab was observed using the SnowMicroPen

(SMP; Schneebeli and Johnson, 1998 and Schneebeli et al.,

1999). The SMP uses a sensitive piezoelectric force sensor

on top of a penetrative rod, which is capable of detecting

changes in penetrative resistance at a high resolution (4 µm).

A total of 12 SMP profiles were taken across each slab to

assess the stratigraphy and homogeneity. The nominal loca-

tions of the SMP profiles, as well as all other macro- and

microstructure measurements, are shown in Fig. 3. From the

SMP profiles, it is possible to detect layers as well as pro-

duce profiles of density, correlation length, and specific sur-

face area (SSA) of the snow (Proksch et al., 2015). For the

purposes of this experiment, nine slabs (eight dry and one

wet) could be considered homogeneous, with minimal hor-

izontal and vertical features. The other five slabs exhibited

significant vertically layered structures, and contained fea-

tures such as ice crusts within the snow. These internal fea-

tures would produce additional scattering and internal reflec-

tions that would be difficult to quantify in the models for

simulation.

The SSA is defined as the ratio between the surface area of

the ice and its mass (Legagneux et al., 2002). A new method

for measuring the SSA is the IceCube instrument, which is

a commercially available version of DUFISSS (Gallet et al.,

2009). The IceCube instrument uses a 1310 nm infrared laser

to measure the hemispherical reflectance from the sample.
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Table 1. Radiometric data measured from the 2014 ASMEx slabs. Brightness temperatures from reflective base (TBM), sky after reflective

base measurements (TBM,SKY), absorbing base (TBA), and sky after absorbing base measurements (TBA,SKY) are presented. Horizontal

(vertical) brightness temperatures are shown.

Sample Freq TBM (K) TBM,SKY (K) TBA (K) TBA,SKY (K)

(GHz) H pol V pol H pol V pol H pol V pol H pol V pol

A01 18.7 22.94 23.43 18.06 17.90 243.27 258.29 14.01 13.24

A01 21.0 30.42 30.87 24.11 24.01 238.51 257.81 18.59 18.74

A01 36.5 51.66 52.13 38.21 38.58 243.80 257.82 25.23 25.51

A02 21.0 46.41 54.53 15.22 15.83 152.52 217.99 14.39 14.85

A02 36.5 93.71 115.81 23.89 24.98 144.62 192.49 22.21 23.39

A03 18.7 37.28 35.96 19.57 19.83 255.18 272.08 19.57 19.83

A03 21.0 50.94 50.87 32.01 32.13 257.10 272.19 32.01 32.13

A04 18.7 77.45 79.14 19.30 19.16 221.22 254.11 19.30 19.16

A04 21.0 111.81 111.96 29.17 29.09 217.65 248.46 29.17 29.09

A05 18.7 47.95 48.96 19.43 17.84 225.19 262.16 19.79 18.51

A05 21.0 63.11 64.68 28.63 28.70 239.14 263.03 29.36 29.46

A05 89.0 180.79 201.66 54.13 53.37 193.85 202.99 65.79 65.02

A05 150.0 205.16 212.83 96.23 100.98 205.65 212.11 109.70 111.87

A06 18.7 28.54 31.80 7.40 9.11 228.19 256.50 8.29 9.87

A06 21.0 41.92 45.64 12.63 12.23 235.55 256.59 13.46 12.77

A06 89.0 177.19 192.06 29.48 27.36 185.05 198.34 29.58 27.76

A06 150.0 181.88 188.24 42.61 34.88 184.20 189.46 47.66 35.22

A07 18.7 27.34 27.94 9.78 10.20 229.06 258.48 10.58 11.00

A07 21.0 37.85 38.03 13.80 14.40 224.12 257.64 14.55 14.59

A07 89.0 165.43 183.30 30.17 30.54 168.96 186.30 30.17 30.54

A07 150.0 175.07 186.75 45.36 39.93 174.46 187.88 45.36 39.93

Figure 3. Approximate locations of the macro- and microstructure

measurements in the snow slab. Individual SMP and micro-CT mea-

surement locations are also depicted.

The SSA of the snow slab was measured at two different

locations in a vertical profile with 3 cm intervals. The tradi-

tional grain size,E, is defined by Fierz et al. (2009) as largest

extent of an average grain. In this study, post-processed vi-

sual estimation of traditional grain size was made from the

macrophotographs to improve repeatability of the estimation.

Snow grains from the SSA samples were collected and sep-

arated upon a 1 mm reference grid for macrophotography, in

order to have profiles of traditional grain size and SSA from

the same location. Traditional grain size was estimated visu-

ally from macrophotographs with 0.25 mm resolution.

Snow samples were taken from the centre of the radiome-

ter footprint to be scanned with microcomputed tomogra-

phy (micro-CT) apparatus. The cast samples were analysed

via three-dimensional x-ray tomography in WSL Institute of

Snow and Avalanche Research, SLF, Switzerland, to produce

a three dimensional image of the snow (Heggli et al., 2009).

From this image, it is possible to measure many important

microstructural parameters, especially a vertically highly re-

solved profile of density and correlation length.

In addition to the different number of microstructural mea-

surements of the snow slab, vertical profiles of physical tem-

perature and density took place in other locations within the

slab with a vertical resolution of 5 cm. The density profiles

were made using a density cutter with a volume of 500 cm3.

2.2 Models

2.2.1 Helsinki University of Technology snow emission

model

The Helsinki University of Technology (HUT) snow emis-

sion model (Pulliainen et al., 1999; Lemmetyinen et al.,

2010) is a semi-empirical model, which uses the radiative

Geosci. Instrum. Method. Data Syst., 5, 85–94, 2016 www.geosci-instrum-method-data-syst.net/5/85/2016/
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Table 2. Radiometric data measured from the 2015 ASMEx slabs (horizontal/vertical polarization). Brightness temperatures from reflective

base (TBM), sky after reflective base measurements (TBM,SKY), absorbing base (TBA), and sky after absorbing base measurements (TBA,SKY)

are presented.

Sample Freq TBM (K) TBM,SKY (K) TBA (K) TBA,SKY (K)

(GHz) H pol V pol H pol V pol H pol V pol H pol V pol

B01 18.7 18.73 18.33 10.87 9.82 246.71 257.23 11.04 9.74

B01 21.0 28.69 28.69 17.92 17.49 245.98 258.02 17.83 17.46

B01 36.5 42.71 44.08 21.99 22.48 241.77 254.49 21.58 21.81

B02 18.7 20.60 19.30 8.66 8.21 229.52 251.64 7.51 6.49

B02 21.0 30.56 28.61 13.69 13.72 231.56 252.80 11.77 11.65

B02 36.5 54.75 54.55 24.00 24.27 228.46 247.58 19.49 19.86

B03 18.7 24.64 23.74 13.33 11.84 234.63 264.68 13.30 11.48

B03 21.0 37.70 36.85 24.79 23.76 243.67 265.30 24.15 23.13

B03 36.5 57.32 56.63 27.16 26.32 241.55 263.11 26.26 25.41

B04 18.7 24.78 22.95 10.38 9.12 229.91 261.78 9.64 9.03

B04 21.0 31.14 30.06 14.61 13.61 232.52 260.89 14.30 13.29

B04 36.5 64.69 63.53 23.54 21.80 229.18 255.05 23.21 21.67

B05 18.7 35.56 33.28 7.71 8.02 233.71 255.74 8.01 8.29

B05 21.0 43.27 41.96 13.73 12.75 242.98 257.92 15.28 13.40

B05 36.5 85.16 88.68 22.57 21.87 226.33 241.98 22.84 21.94

B05 89.0 162.60 161.70 42.60 33.90 178.50 175.20 43.50 36.00

B05 150.0 199.70 187.60 67.40 54.00 195.70 186.10 67.70 57.40

B06 18.7 22.89 22.31 9.02 8.43 238.45 260.81 9.11 8.27

B06 21.0 30.09 28.78 12.46 12.46 239.06 261.53 12.49 11.37

B06 36.5 63.62 62.54 21.83 21.34 236.89 258.01 21.95 21.39

B06 89.0 195.4 200.85 30.05 30.05 208.27 210.84 38.43 31.09

B06 150.0 201.43 194.45 44.46 44.46 202.49 193.59 60.18 43.68

B07 18.7 55.39 55.25 10.18 9.65 209.77 242.70 10.08 9.50

B07 21.0 62.84 64.10 12.72 12.22 214.42 243.58 12.23 11.74

B07 36.5 124.04 131.10 21.12 20.80 195.59 211.41 21.83 20.91

B07 89.0 167.92 165.34 37.24 29.18 167.85 165.21 35.02 27.93

B07 150.0 190.38 180.01 57.67 45.89 189.56 179.56 51.66 44.31

transfer approach to model the microwave brightness temper-

ature. It is capable of treating the snow as a single homoge-

neous layer (Pulliainen et al., 1999) or as a series of homo-

geneous layers (Lemmetyinen et al., 2010), with the layers

being defined by its physical temperature, density, observed

grain diameter, and SWE.

The model’s basic assumption is that the microwave ra-

diation is scattered mostly in the forward direction, which

allows simplifying the radiative transfer equation to a sin-

gle flux. Calculation of the absorption coefficient in the HUT

model is based on empirical models by Mätzler (1987); while

the total extinction coefficient (sum of absorption and scatter-

ing coefficients) was originally calculated by Hallikainen et

al. (1987) from observations of natural snow slabs collected

in southern Finland. The extinction coefficients calculated by

Hallikainen et al. (1987) is valid between 18 and 90 GHz.

Calculation of the total extinction coefficient was originally

based on the mean observed grain size (Table 1, Hallikainen

et al., 1987), which can be interpreted to be close to the tradi-

tional measure of grain size, E (Fierz et al., 2009). However,

an effective grain size Deff, i.e. the grain size value that cor-

responds to the total scattering effects from the snowpack,

was later introduced by Kontu and Pulliainen (2010) to alle-

viate large errors arising from the use of E in model simu-

lations. According to Kontu and Pulliainen (2010), effective

grain size and traditional grain size are related by

Deff =

(
1− e−1.5E

)
. (1)

Other extinction coefficient relationships exist for the HUT

model (Roy et al., 2004; Kontu and Pulliainen, 2010), but

these have not been used here. A possible reason for discrep-

ancies noted by both Kontu and Pulliainen (2010) as well

as Roy et al. (2004) for coarse grained snow is that mea-

sured E in the data set by Hallikainen et al. (1987) extended

only up to 1.6 mm. The extinction coefficient model may thus

not hold for E> 1.6 mm.

The HUT model uses up- and downwelling emissions, rep-

resented by single-flux approximations, to calculate the total

emission at the top of the snowpack. Multiple reflections at

layer interfaces are accounted. Separate modules were used

to simulate the effect of vegetation and atmosphere to de-
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tected emission were published with the original model, but

were not applied here.

2.2.2 Microwave Emission Model of Layered

Snowpacks

MEMLS (Wiesmann and Mätzler, 1999; Mätzler and Wies-

mann, 1999) is also based on radiative transfer theory, treat-

ing the snowpack as a stack of horizontal layers, with each

layer being characterized by its depth, physical temperature,

density, and exponential correlation length. Although expo-

nential correlation length Pex was not directly measured,

it can be calculated via measurements of density (Mätzler,

2002) and SSA (Toure et al., 2008), such that:

Pex =

3
(

1−
ρsnow

ρice

)
SSA

(2)

where ρsnow is the density of snow, and ρice is the density of

ice (917 kg m−3).

These data are used to calculate absorption and scattering

coefficients within the snow, as well as transmissivity and re-

flectivity between adjacent snow layers. A two-flux (up- and

downwelling) model is used to calculate the emitted bright-

ness temperature at the top of the snowpack. However, the

absorption and scattering coefficients are adjusted with six

flux coefficients (up- and downwelling, and four horizon-

tal directions). The scattering coefficient was empirically de-

fined from radiometric and macro- and microstructure mea-

surements as laid out by Wiesmann et al. (1998) and it is valid

between 10 and 100 GHz. An optional feature, originally im-

plemented for coarse-grained snow with a large correlation

length, is to use the improved Born approximation (Mätzler

and Wiesmann, 1999) for the calculation of the scattering co-

efficient.

3 Results

3.1 Macro- and microstructure observations

Preliminary analyses of snow macro- and microstructure

measurements include slab thickness, physical temperature,

density, SSA, grain size E, and homogeneity. E ranged from

0.5 to 2.0 mm, average slab densities ranged from 130 to

340 kg m−3, and physical snow temperature ranged from

−14 to 0 ◦C. The variability of snow characteristics and ho-

mogeneity from all 14 slabs are shown in Table 3. Bulk aver-

ages and standard deviations of micro-CT-derived SSA and

density values are given in Table 4. Locally calibrated bulk

averages and standard deviations of SMP-derived SSA and

density values are given in Table 5.

3.2 Comparison of snow emission models

The parameters from the eight dry homogeneous slabs in Ta-

ble 3 were fed into both the single-layer HUT snow emis-

Figure 4. HUT (light blue) and MEMLS (dark blue) simulated

brightness temperatures plotted against observed brightness temper-

atures at 18.7 (circle), 21.0 (square), and 36.5 GHz (triangle). The

correlation coefficients of the single-layer HUT model (HUTCC)

and MEMLS (MEMLSCC) are also displayed.

sion model and into MEMLS to produce simulated bright-

ness temperatures. The ground layer in both of the models

was modified to simulate the absorbing and reflecting bases

by altering the reflecting properties of the ground, to model

the reflective properties of the metal plate (r = 1) and the ab-

sorbing base (r = 0). The absorbing and reflective bases were

simulated assuming a near-perfect absorption and reflection

at the snow-base interface. The directly measured down-

welling sky contribution was applied as the downwelling

flux in both models. The simulated brightness temperatures

at 18.7, 21.0, and 36.5 GHz were compared to the observed

brightness temperatures, as shown in Fig. 4, and the 2-D

correlation coefficient for each model was calculated. The

RMSE and bias values were calculated for each base simula-

tion, at both horizontal and vertical polarizations. The RMSE

and bias at the two higher frequencies (89.0 and 150.0 GHz)

were not calculated for this study. Figure 5 shows the RMSE

values and Fig. 6 shows the bias values of the simulations.

The values in Fig. 5 show that for the absorbing base, the

HUT model simulations tend to have smaller RMSE val-

ues than MEMLS, while for the reflective base simulations

the RMSE values are comparable at 18.7 and 21.0 GHz. At

36.5 GHz the HUT snow emission model produces larger

RMSE values than MEMLS. The RMSE values for the ab-

sorbing base of vertical polarization (V-ABS) are the small-

est.

It can be seen from Fig. 6 that the reflective base cases have

the smallest bias, with 18.7 and 21.0 GHz only having very

Geosci. Instrum. Method. Data Syst., 5, 85–94, 2016 www.geosci-instrum-method-data-syst.net/5/85/2016/



W. Maslanka et al.: Arctic Snow Microstructure Experiment for the development of snow emission modelling 91

Table 3. Averaged results from macro- and microstructure measurements. It should be noted that slab A03 was wet, so was not considered

for model simulation.

Date Slab Temperature Density Grain size SSA Thickness Homogenous

ref. (◦C) (kg m−3) (mm) (m2 kg−1) (cm)

Bulk SD Bulk AD Bulk SD Bulk SD Bulk SD

avg. avg. avg. avg. avg.

13 Jan 2014 A01 −13.1 0.1 135.5 28.4 0.5 0.1 35.8 6.3 17.8 0.8 Yes

14 Jan 2014 A02 −22.2 0.4 264.2 21.6 0.7 0.2 15.4 5.6 15.6 0.4 No

11 Feb 2014 A03 −0.3 0.4 227.7 41.9 0.6 0.2 18.0 4.5 16.6 0.5 Yes

13 Feb 2014 A04 −0.5 0.4 225.7 41.9 0.9 0.3 11.3 2.3 18.0 0.5 No

3 Mar 2014 A05 −0.8 0.1 286.7 36.5 0.9 0.2 15.8 3.7 15.6 0.4 No

18 Mar 2014 A06 −7.6 0.7 280.0 14.9 0.8 0.2 17.5 2.7 14.8 0.7 Yes

20 Mar 2014 A07 −5.1 3.5 284.8 15.2 0.9 0.1 15.5 2.6 14.8 0.3 No

2 Feb 2015 B01 −13.2 0.9 139.5 23.9 0.5 0.1 36.4 5.9 14.8 0.3 Yes

5 Feb 2015 B02 −10.9 0.2 160.3 34.1 0.5 0.1 36.4 8.0 13.9 0.2 Yes

19 Feb 2015 B03 −2.6 0.4 234.0 24.0 0.6 0.1 22.8 4.0 14.9 0.2 Yes

11 Mar 2015 B04 −5.4 0.2 268.2 26.3 1.1 0.1 21.2 2.0 16.2 0.3 Yes

12 Mar 2015 B05 −3.2 0.5 337.5 9.0 1.9 0.1 10.3 0.3 5.4 0.4 Yes

24 Mar 2015 B06 −5.4 0.3 315.0 17.5 1.3 0.1 17.3 2.4 14.5 0.4 Yes

25 Mar 2015 B07 −3.7 0.4 282.5 17.1 2.0 0.2 9.4 0.5 15.2 0.3 No

Figure 5. Simulated brightness temperature RMSE at horizon-

tal (H) and vertical (V) polarizations for the absorber material

base (ABS) and the reflective metal plate base (REF). Eight slabs

were simulated at 18.7 and 21.0 GHz, while seven slabs were simu-

lated at 36.5 GHz.

small magnitude (< |2 K|) biases. At 36.5 GHz, the HUT

model is negatively biased and MEMLS is slightly positively

biased. It suggests that the HUT model underestimated the

microwave emission while MEMLS slightly overestimated

it at 36.5 GHz on the reflective base cases. The bias for the

absorbing base of horizontal polarization (H-ABS) was pos-

itive regardless of model or frequency. The bias for the V-

ABS simulations (< |6 K|) was negative for all frequencies

with MEMLS, and with HUT model positive at 18.7 and

21.0 GHz, and slightly negative at 36.5 GHz.

The larger magnitude bias in the REF situations in the

single-layer HUT simulations can be attributed to the way

Figure 6. Simulated brightness temperature bias at horizontal (H)

and vertical (V) polarizations for the absorber material base (ABS)

and the reflective metal plate base (REF). Eight slabs were sim-

ulated at 18.7 and 21.0 GHz, while seven slabs were simulated at

36.5 GHz.

which the simulated emission is calculated. The bias in HUT

for both REF situations is largely reduced (bias< |3 K|),

when the snow thickness is doubled. This doubling of snow

depth mimics the doubling of the path length that the down-

welling radiation must travel through when the ground is a

near perfect reflector (as the downwelling radiation passes

through the slab to the reflective plate, is reflected, then trav-

els back through the snow slab). By not doubling the snow

depth, the single-layer HUT snow emission model does not

correctly model the experimental situation, as it only models

the radiation propagating from the ground to the surface, thus

underestimating the reflective simulations.
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Table 4. Micro-CT-derived bulk average and standard deviation values of SSA and density. The values for A and B correspond to positions A

and B in Fig. 3. Micro-CT A02A was not analysed, thus values of SSA and density are not given.

Position SSA (m2 kg−1) Density (kg m−3)

A B A B

Slab Bulk SD Bulk SD Bulk SD Bulk SD

ref. avg. avg. avg. avg.

A01 29.3 4.3 29.9 4.3 95.6 40.7 91.3 35.9

A02 X X 13.1 4.3 X X 250.0 65.7

A03 16.2 5.2 16.6 5.5 202.4 48.5 198.6 45.6

A04 9.3 2.0 9.4 2.2 311.9 62.1 308.2 64.5

A05 9.9 3.7 9.8 2.4 285.0 62.7 283.4 47.6

A06 12.7 2.2 12.9 2.2 277.0 28.6 270.7 29.7

A07 10.6 2.2 10.9 1.2 288.6 86.8 270.1 25.4

B01 27.0 4.0 28.0 3.9 136.7 54.4 147.0 52.7

B02 24.7 3.6 26.0 3.7 189.3 62.5 176.5 60.2

B03 16.6 1.4 16.6 1.3 249.8 34.0 253.7 35.1

B04 16.2 2.4 15.8 2.3 267.8 40.4 272.2 39.7

B05 8.2 1.1 8.5 0.3 321.1 69.3 318.5 43.8

B06 12.7 1.0 12.8 1.0 319.1 32.5 318.7 24.0

B07 7.8 0.7 8.1 0.7 325.7 42.2 289.2 36.3

Table 5. Locally calibrated SMP-derived bulk average and standard deviation values of SSA and density. The values for B2 and C2 correspond

to positions B2 and C2 in Fig. 3.

SSA (m2 kg−1) Density (kg m−3)

Position B2 C2 B2 C2

Slab Bulk SD Bulk SD Bulk SD Bulk SD

ref. avg. avg. avg. avg.

A01 38.0 4.8 39.0 5.6 147.2 35.4 144.1 37.9

A02 21.7 3.7 21.6 3.0 295.6 38.7 297.3 37.6

A03 28.2 4.3 28.5 3.9 201.2 30.1 198.6 26.5

A04 19.2 4.6 18.2 7.9 268.9 39.1 275.6 44.8

A05 21.9 4.6 21.7 5.4 255.3 36.8 246.6 32.9

A06 24.2 2.4 23.9 3.4 261.6 24.5 269.2 34.6

A07 24.6 2.2 24.7 1.4 254.3 20.9 253.9 14.7

B01 26.1 3.3 26.2 3.3 230.5 25.1 228.5 25.8

B02 27.8 2.3 27.9 2.9 216.7 23.1 217.7 26.8

B03 27.5 2.5 26.5 1.4 220.2 15.1 227.4 12.3

B04 26.3 5.2 26.7 5.9 230.1 45.9 225.8 47.6

B05 18.5 4.2 18.6 4.5 254.0 15.1 263.3 30.0

B06 20.8 1.5 21.1 1.9 289.7 16.2 285.3 21.2

B07 23.2 5.9 21.8 4.5 256.7 54.3 267.0 38.9

The doubling of the snow thickness also reduces the errors

introduced by slab B05 (initial thickness 5.4 cm), as the small

thickness is not enough for scattering to be correctly simu-

lated. Additional errors will be introduced, due to the slight

changes in the snow density and microstructural parameter

that were not recorded by the traditional observations, due

to the coarse resolution of the method (vertical profile of 3–

5 cm). There were variations in density and SSA that were

recorded by the micro-CT and SMP observations, but were

not recorded with the traditional observation techniques.

4 Summary

The Arctic Snow Microstructure Experiment (ASMEx) con-

sisted of radiometric, macro-, and microstructure measure-

ments of snow slabs upon absorbing and reflecting bases.
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Brightness temperatures of the homogeneous snow slabs

were simulated with the HUT snow emission model and with

MEMLS. Results of the comparison of simulations and ob-

servations are described in Sect. 3.2. The HUT model pro-

duced smaller RMSE across all three frequencies for the sim-

ulations upon an absorbing base. The reflective base simu-

lations produced RMSE values that were comparable with

the HUT model and MEMLS at 18.7 and 21.0 GHz. Both

models overestimated the brightness temperature at H-ABS,

and at V-ABS the single-layer HUT model slightly overes-

timated the brightness temperature while MEMLS underes-

timated it. Both models produced very small biases for the

reflective base cases, with the exception of the HUT model

at 36.5 GHz.

The RMSE and bias is influenced by internal extinction

processes within the snow slabs, which are imperfectly sim-

ulated by the model physics. The relatively high errors, espe-

cially at H pol, considering the highly controlled measure-

ment setup, highlight the requirement for further develop-

ment of the models, as well as the need to better quantify the

snow microstructural properties themselves. These prelimi-

nary brightness temperature simulations will be repeated in

the future using the physical snow properties collected by the

modern techniques including SMP and micro-CT measure-

ments. Ultimately, a revised extinction model will be created

for the HUT snow emission model, and implemented with

the aim to improve the model inversions of SWE from radio-

metric measurements of microwave emission. This revised

extinction coefficient, based on the data collected during the

ASMEx campaign, will be a function of microstructural pa-

rameter and frequency.
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