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Abstract: Current progress in wearable and implanted health monitoring technologies has strong
potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients.
A typical health monitoring system consists of a network of wearable or implanted sensors that
constantly monitor physiological parameters. Collected data are relayed using existing wireless
communication protocols to a base station for additional processing. This article provides researchers
with information to compare the existing low-power communication technologies that can potentially
support the rapid development and deployment of WBAN systems, and mainly focuses on remote
monitoring of elderly or chronically ill patients in residential environments.

Keywords: biomedical; eHealthcare; information and communications technology (ICT); telemonitoring;
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1. Introduction

The ageing population around the world has been rapidly growing as a result of increased
longevity, mainly attributable to the substantial improvement in nourishment, medicine and public
health. In the United Kingdom alone, the population over the age of 85 is predicted to nearly triple by
2035 [1]; in the United States, the population over the age of 65 is estimated to double by 2040 [2]; in
the People’s Republic of China, the population over the age of 60 is expected to double by 2040 [3];
and by the year 2050 Japan will have the eldest population in human history, with an average age of
52 years [4].

Simultaneously, public-funded healthcare systems in many developed countries are currently
confronting an increase in the number of people diagnosed with chronic diseases such as obesity
and diabetes. These chronic illnesses are not simply a result of ageing population but are due to
inappropriate diet, sedentary lifestyle and insufficient physical activity [5,6]. As reported by the World
Health Organization (WHO), diabetes is estimated to become the seventh leading cause of death by
2030 [7]. Due to its chronic nature, diabetes is an expensive illness not only for individual patients but
also for healthcare systems as well.

These estimates and statistics indicate the fact that, continuously providing healthcare services
to patients who are diagnosed with chronic conditions and increasing number of elderly people
with various health difficulties is significantly increasing the cost of healthcare systems [8–10].
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Therefore, healthcare systems are becoming unsustainable in their current form [9,11]. According to
scientists [12–15], early disease detection and diagnosis is extremely important; on the one hand, it
assists to effectively slow the progress of illness [13–15]; on the other hand, it helps to significantly
reduce the cost of healthcare systems [12,14].

It is, however, possible to utilize the latest technological advances in Wireless Body Area Network
(WBAN) systems along with Information and Communications Technologies (ICTs) for the early
detection and prevention of potential diseases that may occur later in the people’s lives [16–18]. This
can be done by integrating ultra-low-power none-invasive and/or invasive sensor nodes into WBAN
systems for continuous monitoring of health conditions [19]. Each node within a WBAN system is
capable of capturing physiological data such as electrocardiogram (ECG), electroencephalography
(EEG), respiratory rate, body temperature and movement and transmits the collected data either
as raw samples or low-level post-processed information to a base station wirelessly in order to be
further analyzed and processed [20]. A WBAN system is able to provide long-term health monitoring
of people without limiting their daily activities [21]. Such a system can be utilized to develop an
intelligent and inexpensive healthcare monitoring solution which can be used as part of a diagnostic
process [22]. The future system will be able to remotely monitor elderly people and chronically ill
patients in their own residential environments where they are most relaxed and comfortable, and to
minimize expensive hospitalization costs and reduce frequent hospital visits [22].

There are similar published studies in this area such as [23,24] that investigate some aspects
of WBAN research such as physical and data link layer, and also compare a number of low-power
radio technologies. The primary contribution of this paper is to not only investigate and compare the
existing low-power on-body communication technologies, but also to consider the requirements and
challenges of these low-power wearable technologies to communicate with the home infrastructure.
Therefore, this paper considers the applicability and practical use of the existing low-power wearable
technologies in a residential environment.

1.1. Residential Environment eHealthcare System Architecture

A typical architecture of a residential environment eHealthcare system [25] consists of four layers
as shown in Figure 1. Each layer of this architecture is further explained in more detail as follows.
The BAN layer (layer 1) incorporates a number of sensor nodes operating within a wireless network.
Sensor nodes in this layer are designed such that they can be placed on the human body as very
small patches (on-body sensors), sewed into fabric (wearable sensors), or implanted under the skin
(in-body sensors).
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Such sensors continuously capture and relay vital parameters. However, depending on the
functionalities and computation capabilities of nodes, data may require low-level on-tag processing
prior to transmission. The collected data then may either initially be relayed to a central coordinator
on the body or may be transmitted directly to the upper layers for further processing. The required
transmission power by a sensor node in an off-body communication is mainly dependent on a number
of factors such as Body Path Loss (BPL), Receive Noise Figure (RNF) and Signal to Noise Ratio
(SNR) [26]. BPL greatly depends on the radiation patterns of the antennas used [27,28]. RNF is also a
device-dependent factor. Each device has its own RNF and is indicated in its datasheet. SNR however
is influenced by the quality of the overall communication link. The performance of SNR can be
improved by a number of techniques such as Error Control Coding (ECC) techniques and Single-Input
and Multiple-Output (SIMO) methods [29,30].

Layer 2 contains user interaction devices. Depending on the selected wireless communication
protocol, different devices may be required to be used. For instance, Bluetooth-based sensor nodes
require Bluetooth-based monitoring devices such as smartphones or PDAs. Layer 2 acts as an Access
Point (AP). APs for residential monitoring are usually located within a room environment. Each room
is equipped with an AP, where wireless devices are connected to a wired network, Wi-Fi or other
relevant standards [31]. Collected data from this layer is required to be transferred to an upper layer
(layer 3) in order to be prepared for the final destination. From room (layer 2) to black box (layer 3),
there are a number of home networking possibilities that need to be considered [32].

There are three “room-to-box” scenarios which are explained in more detail as follows. First
scenario provides an approach based on dedicated cabling. In this scenario, either both data and power
are transferred over a cable (e.g., Power over Ethernet (POE)) [33] or data and power are transferred
over separate cables (e.g., power over mains and data over Ethernet) [34]. The main disadvantage of
this scenario is the requirement for cable installation which adds repetition complexity and cost to the
system [35]. Table 1 lists some of the existing wired home networking technologies that can potentially
be used to transfer the data over the cables [35,36].

Table 1. Possible wired home networking technologies.

Characteristic RS-485 CAN Ethernet

Network Topology Bus Bus Star
Theoretical Max Bandwidth 35 Mbit/s 1 Mbit/s 10 Mbit/s´100 Mbit/s

Practical Bandwidth 1 Mbit/s 1 Mbit/s 2 Mbit/s
Stack Size (Use of resources) Light Light Plus Heavy

Management of Cabling Complicated Complicated Straightforward

The second scenario relies on Power Line Communication (PLC) technology, where data and
power are transferred over the mains [37]. The main advantage of this scenario is the use of existing
electrical wiring infrastructure and electrical outlets [38]. PLC is a reliable technology and in terms of
cost, it is less expensive than a dedicated cabling scenario [38]. However, embedded based standards
for PLC are limited in bandwidth. Another important disadvantage of PLC technology is that data
may be lost due to an unexpected power outage [38].

The final scenario is based on existing wireless communication protocols such as Wi-Fi or ZigBee
in order to transfer the collected data from rooms to black box [35]. However, this communication
method is considered less reliable when it is compared to dedicated cabling and PLC technology [38].

The third layer of the proposed system architecture as depicted in Figure 1 consists of a Decision
Measuring Unit (DMU). A DMU is an automatic computing system which performs all major
computing operations and is connected to the Internet. It is the main core of the solution where all
important decisions are made. The role of the DMU is to collect, filter and analyze the information. The
aim of the DMU is to create a typical example of resident’s environment that includes a comprehensive
database of resident’s medical profile. The DMU is able to recognize resident’s conditions based on the
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information obtained from a number of sensors which are transformed into knowledge and a list of
user-defined policy rules. Subsequently, appropriate decisions are made automatically regarding the
health status of inhabitant. The DMU is connected to a back-end medical institution such as a hospital
in which physicians are able to consider people’s health status.

The last layer (layer 4) of this architecture as shown in Figure 1 provides healthcare services to
patients. The analyzed data stored in the DMU is delivered to a remote server in a hospital, where
medical professionals have access to it. In this layer, two different types of services may be provided
by healthcare personnel: healthcare services and emergency services.

1.2. Taxonomy and Requirements

Let us summarize the primary requirements and design considerations of wireless communication
technologies that can potentially be applied in WBAN systems before ending this section. These
requirements can be categorized into four main subjects: low power consumption, transmission
reliability and latency, data rates, security and privacy.

1.2.1. Low-Power Consumption

Low-power consumption is considered to be one of the most important and challenging
requirements in WBAN systems. Devices in WBAN systems mainly consume energy during sensing
vital information, wireless communication and data processing. However, compared to sensing
information and data computation, wireless communication consumes a significant amount of energy.
Thus, reducing the energy consumption of data transmission during communication can conserve
considerable amounts of the energy reserves. In almost all WBAN devices, batteries are the main
source of power supply, but they are also the largest component in terms of weight and volume
compared to other electronic components. This is important because in many WBAN applications
such as pacemakers, wearable devices must be able to operate for very long duration of time without
being recharged or replaced. Many techniques have been proposed in the past to lower the power
consumption of such devices. As an example, an energy-efficient hybrid system has recently been
proposed by Ghamari et al. [39] to minimize the required transmission energy consumption of such
systems by utilizing energy harvesting techniques and low-power MAC protocols. In order to minimize
power consumption, it is also important that the upper layer, the application layer, uses a better strategy
of sampling and transmitting data that is more convenient for its application. As an example, the
system can reduce the sampling rate of pulse when the user is at rest according to the motion sensor.
Dieter et al. [40] and Krause et al. [41] showed how selective sampling strategies can decrease the power
consumption of such systems which results in an increase in the deployment lifetime of wearable
technologies. Furthermore, authors in [42] believe that, in order to lower the power consumption, it is
also possible to reduce the sampling rate below the Nyquist rate while still achieving an acceptable
quality reconstruction.

In the bigger picture, the topology of network and placement of sensors also play a role in power
consumption. The network topology consists of multiple healthcare sensors and relay nodes. Location
of these network elements are mostly fixed and are in close proximity of each other. In this setup,
the messages can be relayed through the network to communicate various physiological parameters.
The optimization of network mesh and positioning is explained in [43]. Authors in [44,45] show that
cooperative transmission with the use of relay nodes can boost the efficiency. In [46], Ahmed et al.,
refined the network/MAC layer towards an energy efficient routing protocol. A joint optimization of
positioning and routing is developed in [47]. Finally, in [48] Liu et al. considered the quality of service
(QoS) requirements.

1.2.2. Transmission Reliability and Latency

Data transmission reliability and latency are two extremely important factors in patient monitoring
applications. High reliability and low latency of data transfer ensures that real time data is successfully
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transmitted and is immediately accessible to healthcare providers. Reliability directly influences the
quality of patient monitoring. It can be life-saving in many situations and in a worst-case event; it can
be disastrous when a life threatening incident has not been observed or detected.

On-body channel modeling is another key consideration that has significant impact on the
robustness of the communication link. On-body radio propagation channels are mainly influenced by
the frequent body movements and dynamic characteristic of the communication channel. Although
complicated analysis techniques such as Finite-Difference Time-Domain (FDTD) is able to provide an
accurate representation of static on-body radio propagation as shown in [49], extending such analysis
into dynamic on-body channel modeling cases is typically too costly. As a result of that many studies
focus on statistical techniques or uncomplicated analytical approaches [50,51].

In addition, data transmission reliability and latency are mostly relied on the design of Physical
(PHY) and Medium Access Control (MAC) layers. In order to achieve optimal reliability and network
efficiency, appropriate MAC layer protocols are required to be designed to fulfill the particular needs
of specific applications [37,38]. Reliability of WBAN systems can also be determined in terms of their
major Quality of Service (QoS) parameters such as transmission loss rate, delay profile and delay jitter.

1.2.3. Data Rates

Due to the great diversity of the applications in WBAN systems, data rates differ greatly, ranging
from low data rate sensors focused mainly on on-body monitoring at a few kbps to high data
rate systems designed for multimedia data streams of several Mbps [52]. Information may also
be transmitted in bursts, though this way of transmitting information is not considered energy efficient
due to the fact that burst transmission sends out very high data transmission rate with very short
transmission durations. In medical applications, the reliability of the WBAN systems also depends on
the employed data rates as low data rate devices are able to manage high BER environments, whereas,
devices with higher data rates are most suitable to be used in lower BER conditions [53].

1.2.4. Security and Privacy

The transmission of health-related information between on-body sensors and monitoring devices
in WBAN systems and subsequently over the internet to central controllers in hospitals is strictly
private and confidential. Health-related information must be encrypted so that the patient’s privacy is
protected. Healthcare professionals who have access to information must be confident that the patient’s
vital information is not tampered with or altered and did truly originate from the monitored individual.
Furthermore, an overly secure system might disallow healthcare professionals from accessing vital
health-related information in certain emergency events and thus jeopardize patient’s life. Moreover,
enriching the current systems with security and privacy mechanisms significantly increases the cost of
energy for communication which results in more power drain from small batteries [52].

The rest of this paper is organized into six sections. Section 2 reviews a number of existing
low-power communication technologies that are appropriate candidates for remote health monitoring
applications. Section 3 compares and discusses the advantage and disadvantage of using the existing
low-power technologies. Section 4 discusses the future prospects of remote health monitoring systems.
Section 5 provides a brief overview of some of the most recent research articles published in the area of
telemonitoring systems and finally Section 6 provides a conclusion to this article.

2. Candidate Wireless Technologies

This section reviews the latest wireless communication technologies that are able to support the
rapid development and deployment of BAN systems.
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2.1. Popular Low-Power Wireless Technologies

2.1.1. Bluetooth Low Energy (BLE)

As part of the Bluetooth 4.0 standard, an alternative to classic Bluetooth known as Bluetooth
Low Energy (BLE) was introduced [54]. BLE was initially developed by Nokia in 2006. It was
designed to provide an extremely low power idle mode, uncomplicated device discovery and highly
reliable transfer of data. BLE is able to wirelessly connect miniature, low-power devices to mobile
terminals which make it an appropriate candidate for the health-monitoring (BAN) applications. BLE
is hardware-optimized version of Bluetooth because of its main differences such as data packet
format, radio transceiver and baseband digital signal processing compared to classic Bluetooth.
BLE is able to provide up to 1 Mbps data rate. Since BLE utilizes fewer numbers of channels for
pairing BLE devices, it consumes considerably less time (few milliseconds) for device discovery and
synchronization compared to seconds for Bluetooth. This is significantly valuable for resource-limited
and latency-critical devices such as those used in health-monitoring applications. BLE employs
a simplified protocol stack and is mainly concerned on short-range, star-topology network with
uncomplicated routing algorithms.

2.1.2. IEEE 802.15.4 and ZigBee

IEEE 802.15.4 [55] and ZigBee [56] are two widely used radio standards in BAN applications.
IEEE 802.15.4 technology includes physical (PHY) and Medium Access Control (MAC) layer protocols
focusing on low data rate and medium-range wireless communications which makes it an appropriate
solution for health-monitoring applications.

Similar to IEEE 802.15.4, ZigBee is an enhanced version which provides additional layer protocols
such as network, security and application layers that reside on top of physical and MAC layers
defined by IEEE 802.15.4. The main purpose of both standards is to provide low power solution
for battery-powered devices. The physical layer utilizes Direct Sequence Spread Spectrum (DSSS)
modulation technique for interference mitigation and the MAC layer also utilizes Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) for channel access. The ZigBee standard
provides support for flexible network topology. Devices in a ZigBee network are distinct between
Reduced Function Device (RFD) and Full Function Device (FFD). FFDs are able to set up a mesh
network where low duty cycle reduced function devices join the network as leaf nodes. In addition,
ZigBee fully supports the low duty cycle operation of nodes (sensor nodes turn off their radios most of
the time to reduce energy expenditure).

Contrary to ZigBee, classic Bluetooth does not support low duty cycling operation. In Bluetooth
devices, a slave node must be kept synchronized to the master node for data transmission. As a result
of that, there is an increase in ‘radio on’ period which in turn leads to increased energy consumption.
The ZigBee Alliance incorporates several public profiles which simplifies distribution of systems with
interoperable multi-supplier ZigBee-based devices. For instance, ZigBee has recently developed a
profile termed Personal Health and Hospital Care (PHHC) [57]. The aim of this profile is to provide
reliable and secure monitoring of non-invasive, non-critical healthcare applications mainly focused
on physical fitness, chronic disease and aging. The PHHC profile also fully supports ISO/IEEE 11073
standard [58] and utilizes the ISO/IEEE 11073 protocol for exchange of medical information.

Moreover, the ZigBee Alliance has recently introduced an optional feature in the ZigBee 2012
specification. This feature is termed ZigBee PRO Green Power [59]. Green Power provides adequate
power for battery-less devices with harvested energy and allows them to actively join ZigBee PRO
2012 networks. Furthermore, IEEE 802 has recently introduced the first international WBAN standard
called IEEE 802.15.6 [60]. The main purpose of this standard is to provide a short-range, low-power
and extremely reliable communications in the vicinity of or inside the human body. IEEE 802.15.6 is
targeted to serve a range of medical and non-medical applications.
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2.2. Alternative Low-Power Wireless Technologies

2.2.1. Classic Bluetooth

Classic Bluetooth is a Wireless Personal Area Network (WPAN) technology [61] where a number of
Bluetooth devices (up to eight) form a short-range personal network known as a piconet. In Bluetooth,
slave devices must be paired and synchronized with a master device before data communication
starts. This is usually achieved via the use of common clock between the communicating devices.
Bluetooth operates in the 2.4 GHz ISM frequency band; it utilizes frequency hopping mechanism among
79 channels with an average rate of 1600 hops per second to minimize interference. The Bluetooth
standard classifies devices into three groups based on transmission power and corresponding coverage
area. The wireless communication range supported by the standard provides adequate coverage for
WBAN communications. The Bluetooth SIG has developed the Health Device Profile (HDP) [61,62]
capable of providing usage models for fitness and healthcare devices. HDP is also able to wirelessly
connect devices such as glucose meters, pulse oximeters, weight scales, thermometers and blood
pressure monitors to sink devices such as cell phones, PDAs, laptops and personal computers.

2.2.2. ANT

ANT [63] is a low-power proprietary wireless technology designed and developed for a broad
range of wireless sensor network (WSN) applications. ANT is specifically appropriate for low data rate
battery powered sensor nodes and covers a range of network topologies from simple peer-to-peer to
complex mesh networks. ANT is a candidate for wireless connectivity in battery powered applications
such as health monitoring where ultra-low power consumption is required. ANT operates in the
2.4 GHz frequency band, supports a data rate of 1Mb/s and employs TDMA scheme to address
interference issues. ANT+ facilitates wireless communication of devices from different companies
by providing predefined network parameters and data payload structures including device profiles.
Existing ANT+ device profiles consist of heart rate monitors, stride-based speed and distance monitors,
bike speed and power. Several upcoming device profiles include weight scales, multi-sport speed and
distance, and environment sensors.

2.2.3. RuBee

RuBee [64] is considered an alternative to Radio-Frequency Identification (RFID). It is a
bidirectional active wireless protocol that employs long wave magnetic signals (not RF signals) to
transmit and receive 128 byte packets of data within a local network. RuBee is based on the IEEE
1902.1 [65] standard and is specifically designed to provide high security in harsh environments. Similar
to the IEEE 802 standards, RuBee enables the networking of devices by employing point-to-point
active radiating transceivers. This protocol operates at the low frequency end, 131 kHz. Similar
to WiFi, Bluetooth and ZigBee, RuBee is an on-demand packet based protocol but with lower data
rate. In addition, RuBee’s low operating frequency provides a significant benefit in terms of power
consumption. It can provide a battery life of up to fifteen years using a single lithium button cell
battery and it is also able to provide a coverage distance of up to 50 feet according to [58]. However,
RuBee’s low operating frequency requires a bigger antenna size which makes this technology a likely
inappropriate candidate for BAN applications where the size of antenna plays an important role.
In contrast to RFID, RuBee does not have signal reflections and cannot be blocked by materials such as
steel and liquid. Therefore, it is a robust technology especially in harsh environment visibility and
security applications [66,67].

2.2.4. Sensium

Sensium [68] is an ultra-low power wireless platform mainly designed to provide customized
health services for chronic disease management applications [69]. Sensium is capable of providing an
ultra-low power monitoring of vital health signs such as PH levels, blood glucose and ECG signals.
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The main aim of Sensium is to be embedded in a digital plaster to be prescribed by physicians. Sensium
operates in the 900 MHz frequency band and supports a data rate of 160 kb/s. Sensium is considered
as one of the leading ultra-low power wireless technologies for low data-rate on-body applications.
Sensium utilizes a master/slave communication structure, in which an on-body slave node transmits
multiple vital signs to a personal server such as smart phone, PDA or a personal computer from
time to time. Since sensium utilizes a star topology, joining a network is managed centrally. Energy
consumption of nodes is also managed centrally; nodes are programmed to keep their radios in sleep
mode until they are given time slots by central server.

2.2.5. Zarlink

Zarlink [70,71] is a proprietary ultra-low power RF transceiver specifically designed for medical
implantable applications. Zarlink utilizes Cyclic Redundancy Check (CRC) error detection along with
Reed-Solomon error correction scheme to provide a highly reliable communication link. It operates in
the MICS (402–405 MHz) and ISM (433–434 MHz) bands. Zarlink supports data rates of up to 800 kb/s.
Zarlink is able to operate in both an implant and a base station. Depending on the selected system type,
different requirement is needed especially in terms of power consumption. Therefore, Zarlink has
specified two important operation modes: Implantable Medical Device (IMD) mode and base mode.
When Zarlink is configured as an IMD mode, the radio is asleep most of the time which consumes
only µW of power compared to mW of power in other modes. However, communication between
two nodes cannot occur if either node’s radio is in sleep mode. Therefore, a mechanism is required to
wake up the receiver’s radio to ensure the sender’s transmit and receiver’s listen operations coincide.
This can be done by either utilizing an ultra-low power 2.4 GHz radio or directly by using the IMD
processor. Zarlink is considered as one of the leading ultra-low power wireless technology for low-data
rate medical implantable applications (TRX = 5 mA, low-power mode = 1 mA and ultra-low power
wakeup circuit = 250 nA).

2.2.6. Z-Wave

Z-Wave [72] is a proprietary wireless communication protocol mainly designed for automation
in home and light commercial environments. Z-Wave was initially developed by ZenSys (now a
division of Sigma Designs) [73] and is currently managed by the Z-Wave Alliance [74]. One of the main
advantages of Z-Wave compared to some other technologies is that it operates in the sub-1 GHz band
(around 900 MHz) which avoids interference with other wireless technologies operating in the crowded
2.4 GHz band such as WiFi, Bluetooth and ZigBee. Z-Wave technology utilizes a number of low-cost
low-power RF transceiver chips which are embedded into home electronic devices such as lighting,
intercom and entertainment systems. Z-Wave uses a low-power wireless technology to communicate
with Z-Wave-based devices. This technology is optimized to provide reliable transmission of small
data packets from a control unit to Z-Wave devices in a network. Z-Wave protocol utilizes frame check
sequence, frame acknowledgement, retransmission, CSMA/CA and complex routing algorithms to
ensure reliable communication in multipath environment of a residential house. Z-Wave supports
mesh networking, provides 9.6 kb/s and 40 kb/s data rates, and uses Gaussian Frequency-Shift Keying
(GFSK) modulation scheme. Z-Wave recently introduced the Z-Wave 500 series, a next generation
upgrade to the Z-Wave chip and module which supports a higher data rate of up to 100 kb/s. Z-Wave
is able to include up to 232 nodes in a Z-Wave network. This technology defines two different types
of devices: controllers and slaves. Controllers have unidirectional control over slave devices. They
are responsible for sending commands to slave devices, which receive the task and send back the
corresponding answer [75].

2.2.7. Insteon

Insteon [76] is a proprietary mesh networking technology specifically designed for home and
personal electronics applications. Insteon makes use of both Radio Frequency (RF) signals and home’s
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existing electrical wiring infrastructure (PLC) to transmit data from one device to another. Insteon
is able to utilize RF-only devices, power-line-only devices or can simultaneously support both types
of communication systems. Therefore, it is considered as one of the most reliable home automation
technology. Insteon devices are called peers because all Insteon devices are able to transmit, receive
and relay other messages completely independent of a controller. Insteon communication range can be
extended by means of a multi-hop approach. In this method, an Insteon network uses two or more
hops to deliver information from a source to a destination. Similar to Z-Wave, Insteon also limited
the maximum number of hops allowed for each message to four. In addition, in PLC applications,
Insteon operates at 131.65 kHz and uses Binary Phase-Shift Keying (BPSK) modulation technique; in
RF applications it operates in the ISM (902–924 MHz) band and uses Frequency-Shift Keying (FSK)
modulation scheme. Insteon utilizes Automatic Repeat request (ARQ) scheme to achieve reliable
data transmission over unreliable or noisy communication channels. Insteon supports instantaneous
data rates of 13.165 kb/s. It also supports a number of encryption methods such as rolling-code,
managed-key and public-key [77].

2.2.8. Wavenis

Wavenis is a wireless protocol architecture created as a proprietary technology by Coronis systems
and promoted by the Wavenis Open Standard Alliance [78]. Wavenis is specifically designed to provide
an ultra-low power and long-range wireless solution for a vast range of Machine to Machine (M2M)
applications such as industrial process control, environmental monitoring and healthcare monitoring.
In the majority of M2M applications, devices are expected to have low data rates and to operate
on battery. However, recharging or replacing batteries not an easy task in many situations, saving
battery power without compromising reliability is an important challenge. Moreover, a high link
budget is needed to achieve adequately long-range communication in a number of M2M applications.
Wavenis is an appropriate candidate to provide solution for these challenges. The main features
of Wavenis technology include power conservation, reliability, network coexistence and resistance
against interference. Wavenis operates worldwide in the 433 MHz, 868 MHz and 915 MHz ISM bands.
It supports different data rates of 4.8 kb/s, 19.2 kb/s and 100 kb/s, uses GFSK modulation scheme
and employs fast Frequency-Hopping Spread Spectrum (FHSS) technology. The MAC layer of the
Wavenis protocol consists of two transmission techniques: synchronous and asynchronous. In the
synchronous communication networking mode nodes are equipped with a combination of CSMA
and TDMA channel access schemes. In this case, a randomly computed time slot is allocated to a
node willing to acquire the channel. Prior to transmission in the allocated time slot, the node listen
to the shared medium to check for any on-going transmission. If the shared medium is occupied by
other nodes, the node calculates a new time slot for its next transmission. However, asynchronous
communication networking applies in applications where reliability plays an important role such as
security systems and in such applications CSMA/CA mechanism is used [75].

2.2.9. BodyLAN

BodyLAN is an ultra-low power, low-cost and reliable BAN platform created as a proprietary
technology by FitLinxx [79]. BodyLAN is designed to be used in a vast variety of applications such as
consumer electronics, activity and wellness devices, medical devices and fitness equipment. In terms
of power usage, BodyLAN provides much lower power consumption rate compared to Bluetooth
devices. This wireless technology uses a single radio channel, short burst duration and extremely
low duty cycle. BodyLAN utilizes GFSK modulation technique which prevents BodyLAN packets
from colliding with 802.11 g/Orthogonal Frequency-Division Multiplexing (OFDM)/ DSSS packets.
BodyLAN operates in the 2.4 GHz ISM band and supports data rates of 250 kb/s and 1 Mb/s. It also
utilizes a peer-to-peer network topology without centralized timing. Devices in a BodyLAN network
are categorized into two groups of transmit-only and transmit/receive devices. In terms of security,
BodyLAN encrypts frame payloads and dynamically changes algorithms based on device addresses
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and timing plans. In addition, following the collection of data, the ActiHealth network utilizes a secure
VPN connection between the ActiHealth data server and application servers in order to guarantee the
security of the collected information.

2.2.10. Dash7

Dash7 [80,81] is a proprietary open source, ultra-low power and long-range wireless
communication protocol which was initially designed for military usage and has been adapted for
use in commercial applications. Dash7 technology is based on the ISO/IEC 18000-7 open standard
using an active RFID. This technology is currently managed by the Dash7 Alliance which offers
interoperability among Dash7-based devices. Dash7 operates in the 433 MHz band, supports nominal
and maximum data rates of 28 kb/s and 200 kb/s respectively. Dash7 is able to cover distances in the
order of hundred meters to a few kilometers [82]. Dash7 networks are specifically suited for low power
consumption applications where data transmission is sporadic and operated considerably slower such
as telemetry systems [83]. Dash7 utilizes Bursty, Light, Asynchronous, Stealth, and Transitive (BLAST),
i.e., Dash7 networking technology is especially appropriate to be used in bursty and light (packet
sizes are maximized to 256 bytes) applications with asynchronous communication [81]. In addition,
Dash7-based devices are inherently portable and upload-centric, thus, the devices are not required
to be managed by fixed infrastructure such as base stations [84]. Dash7-based devices are being
used today in a vast number of applications such as building automation, smart meters, hazardous
material monitoring, manufacturing and warehouse optimization, inventory management and mobile
payments [85].

2.2.11. ONE-NET

ONE-NET [86] is a proprietary open source standard, mainly designed to solve the problems of a
wireless network in the home environment. ONE-NET is specifically optimized to support low-power
long-range applications. One of the main characteristics of ONE-NET is that it is open to most
proprietary software and hardware and is capable of being implemented with a vast range of low-cost
low-power off-the-shelf microcontrollers and transceivers from numerous manufacturers such as Texas
Instruments, Silicon Labs and Freescale. ONE-NET operates in different frequency ranges of 433 MHz,
868 MHz, 915 MHz and 2400 MHz. It uses Wideband FSK modulation technique and supports base and
maximum data rates of 38.4 kb/s and 230 kb/s respectively. ONE-NET takes advantage of different
network topologies for connecting ONE-NET-based devices. It utilizes peer-to-peer (P2P), star and
multi-hop topologies with the master node organizing the P2P connections. Star topology is able to
minimize cost and complexity of peripherals. Multi-hop network topology utilizes two or multiple
wireless hops in order to cover larger communication area. ONE-NET is able to support maximum
indoor and outdoor communication ranges of 100 m and 500 m respectively. ONE-NET wireless
technology is specifically optimized for low-power consumption such as battery-operated devices.
According to ONE-NET specification, low-duty-cycle battery-operated ONE-NET-based devices are
able to achieve up to five years battery life on an AA or AAA Alkaline battery. In terms of security,
ONE-NET utilizes the extended tiny encryption algorithm version two with thirty-two iterations [77].

2.2.12. EnOcean

EnOcean [87] is a proprietary energy harvesting wireless sensor technology designed to be applied
in a vast variety of applications such as building automation and control systems, transportation,
cold-chain management, environmental monitoring and health monitoring. EnOcean is promoted by
EnOcean Alliance to ensure interoperability of EnOcean products among different device vendors.
EnOcean wireless technology is specifically optimized to provide solutions for ultra-low power
consumption and energy harvesting applications. EnOcean-based devices utilize ultra-low power
electronics and micro energy converters to enable wireless communications among battery-free sensors,
switches, controllers and gateways. The main purpose of EnOcean’s energy harvesting technology is
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to derive energy from surroundings such as light, motion, pressure and transform them into electrical
energy that can be utilized. Recently, EnOcean is ratified as a new international wireless standard by the
International Electrotechnical Commission (IEC) as ISO/IEC 14543-3-10 to accelerate the development
of energy-optimized wireless sensor networks. Products based on EnOcean are designed to operate
without batteries and are engineered to run maintenance-free. EnOcean operates in frequency ranges
of 315 MHz, 868.3 MHz and 902 MHz. It uses Amplitude-Shift Keying (ASK) modulation technique,
utilizes relatively small data packets (limited to 14 bytes) and supports data rates up to 125 kb/s.
This technology is also able to support maximum indoor and outdoor communication ranges of 30 m
and 300 m respectively.

2.2.13. Emerging Intra-Body Communication Technologies

Intra-Body Communication (IBC) technology is one of the emerging possible solutions for
providing an ultra-low power communication over very short range links that specifically target
WBAN applications. This technology is a non-RF wireless communication that utilizes human body
as the medium for data transmission. IBC has recently been outlined in the newly ratified IEEE
802.15.6 standard and has shown to have advantages in terms of energy efficiency over many existing
low-power RF protocols as it is able to transmit data with ultra-low transmission power below
1 mW [88,89].

The IBC technology utilizes three main approaches to wirelessly interconnect in-body implanted
devices: ultrasonic communication, capacitive coupling and galvanic coupling techniques. Ultrasonic
communication has recently been proposed in [90] to address the limitations of RF propagation in the
human body. In water-based environments such as the human body where 65 percent is composed of
water, radio waves are not perfectly suited. This is mainly due to the fact that water typically absorbs
some portion of the radio waves. Thus, more amount of energy is required to successfully transfer the
RF signal in the human body.

Hence, acoustic waves are considered one of the possible transmission technologies of choice
for in-body communications as they are recognized to enhance the data throughput in media
mostly composed of water comparing to RF signals [91]. Furthermore, Federal Communication
Commission (FCC) regulations has limited the maximum allowable bandwidth that can be used for RF
electromagnetic wave propagation available to Implanted Medical Devices (IMD) [91]. This therefore
has greatly limited the data throughput of such devices [91]. As an example, for frequency range
of 401–406 MHz, the maximum allowable bandwidth that can be used is around 300 kHz which
greatly limits the communication rates of such devices to a maximum of 50 kb/s [91]. Alternatively,
Okunev et al., showed in [92] that digital acoustic intra-body systems can provide up to 0.5–1.0 Mbit/s
data rate at BER = 0.001 with real acoustic transducers in frequency range of about 1–2 MHz [92].

In the capacitive coupling technique, human body is capacitively coupled to the surrounding
environment [88]. In this technique, a current loop through the external ground creates the signal
between the body channel transceiver. Alternatively, galvanic coupling method is performed by
coupling Alternating Current (AC) in to the human body. In this technique, AC current is flowed
through the body and human body is considered as a waveguide [88,89].

The energy efficiency advantage of these two coupling techniques over wireless protocols is
mainly due to two reasons. One is due to the existence of lower path loss which does not include the
otherwise detrimental effects of body shadowing in RF communications. The other reason is due to the
utilization of wearable electrodes that are used as communication interface rather than low-impedance
antennas. Moreover, in terms of security, IBC technology was shown itself to be more secure and
less susceptible to interference compared to RF communication which makes it a possible low-power
communication solution for Body Area Network (BAN) applications.

Nevertheless, IBC technology cannot solely be used in BAN systems. The data gathered by
IBC-based sensors are required to be transmitted to a base station for further processing. For this
reason, IBC technology must be combined with one of the existing energy efficient communication
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protocols such as ZigBee or Bluetooth Low Energy (BLE) [93]. Figure 2 shows a typical architecture of
a possible energy efficient BAN system. In this scenario, IBC technology is employed for intra-body
communications. IBC based sensor devices transfer the health-relevant information through the body
to a central node which acts as a coordinator. This central coordinator is in charge of establishing a
communication link between on-body devices and a base station. Thus, it uses one of the existing
low-power communication protocols to transfer the collected data to a base station.
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3. Discussion

In wearable health monitoring systems, energy efficient functioning of wearable devices is
highly dependent on the selection of appropriate communication protocols. This is because wireless
communication, unlike sensing and computation, consumes a significant amount of energy in the
sensor nodes. Thus, a suitable selection of low-power communication technology can substantially
increase the useful lifetime. This section highlights some of the important features of possible
low-power communication technologies that must be taken into account when choosing a particular
technology choice. There are a number of low-power wireless communication protocols that
can accomplish this task. Out of these protocols, ZigBee and Bluetooth are most broadly used.
The preference of Zigbee over Bluetooth/BLE or vice versa can be made based on the following factors.
See Tables 2–5 for a detailed comparison between ZigBee and BLE.
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Table 2. Physical layer comparison of ZigBee and Ble.

Characteristic ZIGBEE Bluetooth Low Energy

Frequency Band 2400, 868, 915 MHz 2400 MHz

Bit Rate 20 Kb/s (868 MHz), 40 Kb/s (915
MHz), 250 Kb/s (2400 MHz) 1 Mb/s

Modulation Type BPSK, O-QPSK GFSK

Spread Spectrum Technology DSSS FHSS

Nominal TX Power –32 dBm to 0 dBm –20 dBm to 10 dBm

Receiver Sensitivity –85 dBm –70 dBm

Number of Physical Channels
27 channels: 16 channels in the
2450 MHz, 10 channels in the

915 MHz, 1 channel in the 868 MHz

40 channels in FDMA:
3 advertising channels,

37 data channels

Channel Bandwidth 2 MHz (5 MHz wasteful spectrum) 2 MHz (no wasteful spectrum)

Table 3. Link layer comparison of ZigBee and Ble.

Characteristic ZIGBEE Bluetooth Low Energy

Multiple Access Scheme CSMA-CA, slotted CSMA-CA FDMA, TDMA
Maximum Packet Size 133 Bytes 47 Bytes

Protocol Efficiency (ratio of
payload to total packet length) 102/133 = 0.76 (76 Percent Efficient) 31/47 = 0.66 (66 Percent Efficient)

Error Control Method ARQ, FEC ARQ, FEC
CRC Length 2 Bytes 2 Bytes

Latency <16 ms (beacon-centric network) <3 ms

Identifiers 16-bit short address
64-bit extended address

48-bit public device address
48-bit random device address

Table 4. Network layer comparison of ZigBee and Ble.

Characteristic ZIGBEE Bluetooth Low Energy

Network Topology P2P, Star, Cluster Tree, Mesh P2P, Star
Single-hop/Multi-hop Multi-hop Single-hop
Nodes/Active Slaves >65,000 Unlimited

Device Types Coordinator, Router, End Device Master, Slave
Networking Technology PAN PAN

Table 5. Comparison of other properties of ZigBee and Ble.

Characteristic ZIGBEE Bluetooth Low Energy

Authentication CBC-MAC Shared Secret
Encryption AES-CTR AES-CCM

Range 100 Meters 10 Meters

Implementation Size 45–128 KB(ROM)
2.7–12 KB (RAM)

40 KB (ROM)
2.5 KB (RAM)

3.1. Protocol Efficiency

Protocol efficiency needs to be considered before selecting a low-power communication protocol.
It greatly influences the energy efficiency of the selected protocol. This is because an inefficient
communication protocol spends the majority of its time transferring overhead information rather than
transmitting the actual payload data. Thus, little data may be transferred over a fixed duration of time
and devices transferring the information may quickly run out of power. The efficiency of protocols can
be calculated based on the ratio of actual payload information to the total length of the data packets.
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It is therefore very easy to compute the protocol efficiency of ZigBee and BLE by considering their
packet formats (see Table 3); BLE has protocol efficiency of 66%, whereas ZigBee has protocol efficiency
of 76%. Although, the results show that ZigBee is more protocol efficient than BLE, in many low
data-rate low-power health monitoring systems wearable sensor nodes are only required to partially
utilize the total available payload space to transfer data, hence, lower protocol efficiency does not
necessarily mean that a particular protocol is inappropriate.

3.2. User Flexibility

According to the Bluetooth Special Interest Group (SIG), the majority of the Bluetooth-based
smartphones will support BLE by 2018. This will offer great flexibility to end users, as a BLE-enabled
smartphone can potentially be utilized as an access point. ZigBee needs a ZigBee-enabled device as an
access point (currently there are no mobile phones with ZigBee capabilities).

3.3. Communication Range

ZigBee is considered to be a wireless Local Area Network (LAN) technology, thus it covers a
greater range, whereas BLE is a WPAN protocol and its range is more limited. In a typical health
monitoring system, there are scenarios in which collected data is required to be transferred to an access
point within a room distance. In these scenarios, both BLE and ZigBee are considered as suitable
protocols. However, in scenarios where data needs to be transmitted to a local station located in the
other side of the house, if no other home networking infrastructures such as WiFi, PLC or Ethernet
is employed, ZigBee is regarded as the better solution, simply because BLE is unable to cover the
required distance by itself.

3.4. Energy Efficiency

Without a proper, in-depth analysis of these protocols, very little can be derived in terms of
their energy efficiency. However, comparing the characteristics of these protocols can provide an
approximate estimation of their energy expenditures during data transmission. Multiple access
schemes are one of the important features that need to be considered more carefully as these can
affect the energy efficiency of protocols. BLE uses Frequency Division Multiple Access (FDMA)
along with Time Division Multiple Access (TDMA) schemes, whereas ZigBee employs CSMA/CA
scheme. FDMA/TDMA schemes are more suitable to be used on high-load networks as they share the
communication channel more efficiently and fairly, but are inefficient at low-load networks as there is
usually delay in channel access. While the CSMA/CA scheme is more appropriate to be employed at
low-load networks as there is no delay in channel access, is inefficient at high-load networks as packet
collisions may happen. For more comprehensive comparison of ZigBee and BLE, see Tables 2–5.

Due to the limited range requirements of a residential environment eHealthcare system, full
meshing capability of any wireless communication platform may not be necessary, however if no
meshing is supported, the infrastructure must be extended so that the premises is fully covered.
Alternatively, multi-hop based routing of wireless communication packets may provide the required
range of the application, but this solution requires multiple nodes with adequate power budget.

Alternative low-power wireless technologies include ANT, but also include recently developed
proprietary technologies. These technologies usually are very constrained solutions that provide
extremely low power requirements at the expense of much reduced data rate or range of
communication. Some of them offer the flexibility of variable data rate and hence power consumption,
and can operate at a number of radio frequencies.

A few of these protocols such as RuBee, Zarlink and Dash7 are only able to operate on lower
frequency bands. Lower frequency bands are less crowded with radio services and they are less
exposed to external interference, hence they have lower likelihood of packet collisions which results in
lower power consumption. In addition, operating on lower frequency bands come with an advantage
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of good signal penetration through a variety of materials including the human body, however, the
required antenna size is larger than those used at higher frequencies.

Among the low-power protocols, only ZigBee uses DSSS whereas BLE, Bluetooth and Wavenis
employ FHSS. Spread spectrum techniques are employed for a range of reasons including increasing
resistance to unwanted interference and noise. DSSS radios are believed to operate better for large
data packets in low to medium interference environments, while FHSS radios operate better for small
data packets in high interference environments. Moreover, FHSS radios perform better indoors and in
harsh multipath environments because frequency hopping techniques are able to manage multipath
fading environments by hopping to new frequency channels [94].

In terms of robustness, ANT, RuBee and Z-Wave only use error detection schemes such as CRC
or Longitudinal Redundancy Check (LRC) whereas the rest of the protocols take advantage of an
additional Forward Error Correction (FEC) technique along with error detection schemes. Error
detection schemes are used in two-way communication systems in which packet retransmission will be
requested by the receivers if errors are detected in the received data. This error control technique offers
high transmission reliability and very low system complexity and is able to protect the information
against most possible error occurrences over a comparatively quiet channel. However, applying a
simple error-detection-only technique can also have a severe disadvantage. In erroneous channels,
if the level of noise increases such that there is a high possibility that packets have at least one
error, then the channel will quickly be occupied with retransmissions. As a consequence, no new
information will be transmitted and the system throughput will decrease, and ultimately approach
zero (This drawback affects many latency-sensitive applications such as health monitoring systems).
Therefore, a combination of CRC and FEC techniques that most of the protocols use in this survey can
protect the information in various channel conditions.

Many of these protocols such as BLE, Bluetooth, ANT, Z-Wave, Wavenis, BodyLAN and Dash7
use GFSK modulation while a number of other protocols such as Zarlink, Insteon and ONE-NET
employ FSK modulation. GFSK modulation is an improved version of the FSK in which the data
must be filtered via a Gaussian filter prior to modulating the carrier. This leads to a narrower power
spectrum of the modulated signal which results in higher transfer speed of data in the same channel
bandwidth [95]. In addition, GFSK modulation has the potential to cover a greater communication
range compared to FSK modulation [96].

All these protocols are equipped with at least one type of encryption or level of security. Some
of these encryptions are strong while others are very limited and offer little protection. In addition,
Bluetooth, RuBee, Dash7 and EnOcean provide alternative security engines within the same chip which
may be beneficial in particular applications. Some applications require less stringent security, whilst
others may be able to exploit the optional extra encryption methods at different times. It is difficult to
mention which security technique is more appropriate as it is so application and regulatory dependent.
However, the fact that all radios offer some method of securing the communication channel ensures a
level of security.

Alternative radios may also provide benefits such as a flexible packet format (length) that may
result in more efficient packing of data per transmission. Most of these radios such as ZigBee, Wavenis
and Dash7 do not require additional infrastructure in order to fully cover a residential area; however,
some of them such as BLE, Bluetooth, Sensium and Zarlink may require more infrastructure to support
a greater range. For more comprehensive comparison of alternative low-power wireless technologies,
see Tables 6–13. Star symbol in the Tables 6–13 refers to undefined information.

Different protocols offer various connection management schemes. It may be considered a
disadvantage if a body-worn sensor node has to maintain link with specific infrastructure or other
sensor nodes. It may be advantageous if a link can be made and broken at any point without severely
affecting latency and power budget.
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Table 6. Physical layer comparison of Bluetooth, Ant, RuBee, Sensium, Zarlink and Insteon.

Characteristic Bluetooth ANT RuBee Sensium Zarlink Insteon

Frequency Band 2400 MHz 2400–2485 MHz 131 KHz 868 MHz,
915 MHz

402–405 MHz,
433–434 MHz

RF: 869.85, 915, 921 MHz
Powerline: 131.5 KHz

Bit Rate 1–3 Mbps 1 Mbps 9.6 Kbps 50 Kbps 200/400/800 kbps RF: 38.4 Kbps
Powerline: 13.1 Kbps

Modulation Type GFSK GFSK ASK, BPSK, BMC BFSK 2FSK/4FSK RF: FSK
Powerline: BPSK

Spread Spectrum Technology FHSS No No No * No
Nominal TX Power 0/4/20 dBm 4 dBm ´20 dBm ´10 dBm 2 dBm *
Receiver Sensitivity ´90 dBm ´86 dBm * ´102 dBm ´90 dBm ´103 dBm

Number of Physical Channels 79 125 2 16 10 MICS, 2 ISM *
Channel Bandwidth 1 MHz 1 MHz * 200 kHz * *

* refers to undefined information.

Table 7. Link layer comparison of Bluetooth, Ant, RuBee, Sensium, Zarlink and Insteon.

Characteristic Bluetooth ANT RuBee Sensium Zarlink Insteon

Multiple Access Scheme TDMA TDMA * TDMA, FDMA * TDMA + Simulcast

Maximum Packet Size 358 bytes 19 bytes 128 bytes * * Standard: 10 bytes
Extended: 24 bytes

Error Control Method CRC, FEC CRC CRC CRC, FEC CRC, FEC CRC, FEC
Checksum Length 1-byte/2-byte 2-byte 1-byte * * 1-byte

Identifiers 48-bit Public Device * 32-bit * * 24-bit Module ID

* refers to undefined information.
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Table 8. Network layer comparison of Bluetooth, Ant, RuBee, Sensium, Zarlink and Insteon.

Characteristic Bluetooth ANT RuBee Sensium Zarlink Insteon

Network Topology Piconet, Scatternet P2P, Star, Tree, Mesh P2P Star P2P Dual-mesh (RF & Powerline), P2P, Mesh
Single-hop/Multi-hop Multi-hop * * Single-hop * Multi-hop
Nodes/Active Slaves 8 65,000 + 1 Unlimited 8 + 1 * Unlimited

Device Types Master, Slave Master, Slave Controller, Responder Master, Slave * All are peers
Networking
Technology PAN PAN PAN PAN PAN PAN

* refers to undefined information.

Table 9. Comparison of other properties of Bluetooth, Ant, RuBee, Sensium, Zarlink and Insteon.

Characteristic Bluetooth ANT RuBee Sensium Zarlink Insteon

Security
Optional Pre-Shared

Key, 128-bit
Encryption

AES-128 Data
Encryption, Link
Authentication

Optional AES
Encryption, Private

Key, Public Key
Public Key * Rolling Code,

Public Key

Range 10 m 30 m On-Body Only 30 m 5 m On-Body Only 2 m In-Body Only 45 m(Outdoors)

Implementation Size 100 Kbytes (ROM),
30 Kbytes (RAM) 128 Kbytes (Flash) 0.5–2 Kbytes (SRAM) 48 Kbytes (RAM),

512 bytes (ROM) * 3 Kbytes (ROM),
256 Bytes (RAM)

Certification Body Bluetooth SIG ANT + Alliance None None None Insteon Alliance

Proprietary No Yes No Yes Yes Yes

* refers to undefined information.
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Table 10. Physical layer comparison of Z-Wave, Wavenis, BodyLan, Dash7, One-net and Enocean.

Characteristic Z-Wave Wavenis BodyLAN Dash7 ONE-NET EnOcean

Frequency Band 868, 908, 2400 MHz 433, 868, 915, 2400 MHz 2400 MHz 433 MHz 433, 868, 915, 2400 MHz 315, 868, 902 MHz

Bit Rate 9.6/40 Kbps, 200 Kbps 4.8/19.2/100 Kbps 250 Kbps, 1 Mbps 28, 55.5, 200 Kbps 38.4, 230 Kbps 125 Kbps

Modulation Type GFSK GFSK GFSK FSK, GFSK Wideband FSK ASK

Spread Spectrum Technology No Fast FHSS * No No No

Nominal TX Power ´3 dBm 14 dBm (Max) 0 dBm 0 dBm * 6 dBm

Receiver Sensitivity ´104 dBm ´110 dBm ´93 dBm ´102 dBm * ´98 dBm

Number of Physical Channels * 16 Channels @ 433 & 868
MHz, 50 Channels @ 915 MHz 1 8 25 *

Channel Bandwidth * 50 kHz * 216, 432, 648 kHz * 280 kHz

* refers to undefined information.

Table 11. Link layer comparison of Z-Wave, Wavenis, BodyLan, Dash7, One-net and Enocean.

Characteristic Z-Wave Wavenis BodyLAN Dash7 ONE-NET EnOcean

Multiple Access Scheme CSMA/CA CSMA/TDMA, CSMA/CA TDMA, CDMA CSMA/CA * CSMA/CA
Maximum Packet Size 64 bytes * 62 bytes 256 bytes 5 bytes 14 bytes
Error Control Method LRC FEC, Data Interleaving, Scrambling CRC, FEC CRC, FEC * CRC, FEC

Checksum Length 1-byte No * 2-byte * 1-byte
Identifiers 32-bit (home ID), 8-bit (node ID) 48-bit MAC Address * EUI-64 * *

* refers to undefined information.
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Table 12. Network layer comparison of Z-Wave, Wavenis, BodyLan, Dash7, One-net and Enocean.

Characteristic Z-Wave Wavenis BodyLAN Dash7 ONE-NET EnOcean

Network Topology Mesh P2P, Star, Tree, Mesh, Repeater P2P, Ad-Hoc, Star BLAST, Mesh P2P, Star, Mesh P2P, Star, Mesh
Single-hop/Multi-hop Multi-hop Multi-hop * Multi-hop Multi-hop Multi-hop
Nodes/Active Slaves 232 Up to 100,000 * 232 4096 >4000

Device Types Controller, Slave Single Type Single Type Blinker, Endpoint, Gateway, Subcontroller Master, Slave Master, Slave
Networking Technology PAN LAN PAN PAN, LAN PAN PAN

* refers to undefined information.

Table 13. Comparison of other properties of Z-Wave, Wavenis, BodyLan, Dash7, One-net and Enocean.

Characteristic Z-Wave Wavenis BodyLAN Dash7 ONE_NET EnOcean

Security 128-bit AES
Encryption 128-bit AES Encription *

Private Key (i.e.,
AES 128), Public Key

(i.e., ECC, RSA)

XTEA2 Algorithm, Key
Management

Rolling Code, 128-bit AES
Encription, CMAC Algorithm,

Private Key, Public Key

Range 30 m (Indoors),
100 (Outdoors)

200 m (Indoors),
1000 m (Outdoors) 122 m (Outdoors) 2000 m 100 m (Indoors),

500 m (Outdoors)
300 m (Outdoors),

30 m (Indoors)

Implementation Size 32–64 Kbytes (Flash),
2–16 Kbytes (SRAM)

48 Kbytes (Flash), 400 Bytes
(RAM), 20 Bytes

(Non-Volatile Memory)
* 8–16 KB (Built Size) 16 K (ROM), 1 K (RAM), 128 Bytes

(Non-Volatile Memory) 32 KB (Flash), 2 KB (RAM)

Certification Body Z-Wave Alliance Wavenis Alliance None Dash7 Alliance ONE-NET Alliance EnOcean Alliance

Proprietary Yes No Yes No No No

* refers to undefined information.
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4. Future Prospects

Nowadays, smartphone devices are more pervasive, user-accepted and powerful than ever.
A large proportion of people carry their smartphones with them all the time and thus the idea of simple
and continuous connectivity is not inaccessible anymore [97]. Mobile health (termed as mHealth)
technologies have also experienced a slight change in direction from wearing and/or implanting
body sensors to carrying a powerful wireless device with multifunctional capabilities such as a
smartphone [98]. Healthcare providers may soon be able to monitor and measure vital signs without
the need of on-body and/or implanted sensors (non-contact vital sign monitoring) [99]. For example,
researchers from Rice University have been developing a non-contact video-camera system that can
precisely monitor and measure temperature, pulse and breathing rate from changes in a patient’s
skin color [99]. Smartphones can also be independently used for sleep monitoring. For instance,
iSleep [100] takes advantage of the built-in microphone to detect the unconscious actions during sleep
such as body movement, coughing and snoring, which are closely associated with the perceived
quality of sleep people receive. Although, a more complete review of non-contact vital sign monitoring
systems is not in the scope of this article, a number of examples of such systems are described in
the literature [101–103]. The rest of this section is categorized into three parts. Part A summarizes a
number of major advantages of smartphone-based healthcare applications. Part B considers some
challenges of such solutions and finally part C explains the most areas of mHealth research that are
expected to grow in the near future.

4.1. Advantages of Smartphone-Based Healthcare Applications

A collection of different types of low-cost sensors (e.g., accelerometer, gyroscope, camera,
magnetometer, pedometer, goniometer, actometer, biometric and pressure) embedded in smartphones
have enabled these multifunctional devices to be applied in many aspects of future healthcare systems.
In addition, combination of some of these sensors such as biometric sensors with big data has provided
a potential for smartphones to hugely impact the future of healthcare systems. For instance, people
may habitually check their smartphones 100 times a day. This statistic information can be used to
enable smartphone devices to frequently obtain the user’s facial scan. In this way, vital signs such as
heart rate or blood pressure can be measured [104]. If this technique is used over a large population
and such biometric data is collected in the cloud, contagious disease outbreaks can be discovered more
quickly [104].

With the prevalent use of smartphones and the appearance of fourth generation of mobile
telecommunications technology (4G) that provides higher speed mobile broadband internet access
services along with the ubiquity of Wi-Fi technology, healthcare informatics (an interdisciplinary field
combining healthcare, computer science and information science) is now able to overcome time and
location limitations. This is enormously important specifically in cases that an immediate response is
extremely critical or when a patient’s condition is not stable and dynamically changing.

In contrast to intrusive wearable devices that impose a burden on user’s daily activities,
smartphones are non-intrusive, non-obstructive and not required to follow a cumbersome usage
protocol. This results in reducing the possible usability complications.

Smartphones do not require supplementary hardware and many health-related mobile apps
are accessible and free which lead to a more cost-effective solution compared to traditional
wearable devices. Smartphones also have potential to manage chronic diseases such as Alzheimer’s,
Hypertension and Diabetes. This can be done by frequent monitoring of patients through mobile apps
or message reminders regarding the drug dosage information.

4.2. Challenges of Smartphone-Based Healthcare Applications

There is an uncertainty regarding the usefulness of disease control by smartphones.
Ryan et al. [105] considered the cost-effectiveness of utilizing smartphone-supported self-monitoring
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of Asthma. He discovered that self-management by smartphones were not cost-effective in patients.
This means that specific patient group will require careful, personalized treatment plan to address the
specific needs and problems of patients who are suffering from a particular disease [106].

While the use of smartphones present great opportunities to improve healthcare quality for
patients with chronic conditions, yet there has not been an effective strategy to move from pilot studies
to implementation in the wider population [107]. In addition, the care of the elderly possibly cannot
simply rely on smartphones as elderly individuals may be visually impaired, unable to use their hands
effectively or even, unable to use the technology at all.

4.3. Fastest Areas of mHealth Growth in the Near Future

Areas of mHealth that are expected to have the most growth potential in the near future are
explained as follows [108].

Patient monitoring is expected to have the fastest area of growth in the near future. This is because
it is capable to early detect and prevent potential diseases that may occur later in life. This also can
help to significantly reduce the cost of healthcare systems.

Patient location tracking is estimated to have the second most area of mHealth growth in the near
future. This is simply because the need to locate and track patients with chronic conditions such as
Alzheimer’s and dementia is great and thus the number of possible platforms proposing such solutions
are steadily increasing [108].

5. Summary of Recent Research Articles

One of the main goals of this paper is to provide a brief overview of the most recent technological
advances in the area of eHealthcare systems where healthcare providers are able to remotely monitor
patients through the state-of-the-art WBAN systems along with existing ICTs. Since this area of research
is able to significantly affect the existing healthcare systems by reducing the current operational costs,
it has attracted the attention of a large number of researchers and scientists during the past decade
and as a result of that many promising prototypes have been designed and developed. This section
attempts to consider some of the most recent scientific publications in the field of telemonitoring
systems for elderly and chronically ill patients.

In order to find the most relevant research articles in this area of research, three scientific databases
were used for this review paper. We used the IEEE Xplore Digital Library, the ACM Digital Library
and the PubMed scientific databases. The survey is limited to recent articles no older than five years as
the wireless technologies of concern were only adopted widely in this period. In order to select the
related articles from a large number of papers appeared in the search results, the following specific
objective criteria were used when we were examining the abstracts and the main body of the texts,
(A) only articles consisting of on-body (including wearable) sensors that may or may not be considered
along with off-body (ambient) sensors; (B) articles that are more focused on elderly health monitoring
and addressing chronic health issues; (C) articles that use a type of wireless communication technology.
In addition, this survey excluded scientific papers that mainly address in-body (implantable) sensors
and ambient sensors (out of the scope of this survey). The research selected 35 articles out of the
134 results that met the selection criteria. The main information extracted from these 35 articles is
presented in Table 14.
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Table 14. Included published articles between 2010 and 2015.

{Publication
Date} [Ref.]

On-body OR
Off-Body Sensors Monitoring Parameters Wireless Comm & Gateway Novelty

{2015} [109] On-body Body Positioning, Motion Bluetooth, Smartphone A wearable assistant for gait training for Parkinson
Disease with Freezing of Gait

{2015} [110] On-body Body Positioning Bluetooth, Smartphone A wristband community alarm with in-built fall detector

{2015} [111] On-body Body Positioning Bluetooth, PC Presents a description of the dataset for
simulation of falls, near-falls and ADL

{2014} [112] On-body Spontaneous Blink Rate, Heart Rate Bluetooth, Wi-Fi, PC Anxiety detection technique using Google Glass

{2014} [113] On-body Skin Humidity, Heart Rate,
Temperature, Body Positioning Bluetooth, PC Monitors ADL based on custom-designed wearable WSN

{2014} [114] On-body Body Positioning, Motion ZigBee, PC A low-cost open architecture wearable
WSN for healthcare applications

{2014} [115] On-body Body Positioning ZigBee, PC Presents synchronous wearable WSN
composed of autonomous textile nodes

{2014} [116] On-body Body Positioning, Motion ZigBee, PC A Parkinson’s Disease remote
monitoring system based on WSN

{2014} [117] On-Body Heart Rate, Body Temperature Wi-Fi, Smartphone, PC Presents a system for remote monitoring based on
mobile augmented reality (MAR) and WSN

{2013} [118] On-body Off-body

Blood pressure, heart Rate, blood oxygen
saturation, heart rate, body temperature, body
positioning, pressure, humidity, carbon dioxide,
explosive gas, ambient light, ambient temperature

ZigBee, Femtocell Proposes a smart hybrid sensor network for indoor
monitoring using a multilayer femtocell

{2013} [119] On-body Off-body Heart Rate, Body Positioning, Motion, sound WiFi, GPRS, PDA, Smartphone
Proposes general rules of design of
complex universal systems for health and
behavior-based surveillance of human

{2013} [120] On-body Body Positioning ZigBee, Sink Node Focused on recognizing advanced motions (11 motions)
by using 3D acceleration sensor

{2013} [121] On-body Body positioning (accelerometer & gyroscope) ZigBee, Sink Node A new fall detection system is proposed by using one
sensor node which can be worn as a necklace

{2013} [122] On-body Heart rate, blood pressure,
respiration rate, oxygen saturation

Bluetooth, GSM, Smartphone
(Android-Based)

Reports preliminary study results that characterize the
performance, energy, and complexity attributes of both
mobile and cloud-based solutions for medical monitoring

{2012} [123] On-body Heart rate (PPG), body temperature,
body positioning Bluetooth, GSM, Smartphone

Monitors the posture of the patient in the bed
(tilt monitoring) in order to help to reduce the
cases of bedsore in bedridden elders
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Table 14. Cont.

{Publication
Date} [Ref.]

On-body OR
Off-Body Sensors Monitoring Parameters Wireless Comm & Gateway Novelty

{2012} [124] On-body Atmospheric air pressure ZigBee, PC

Presents a new approach to identifying and
verifying the location of wearable wireless
sensor nodes placed on a body by inferring differences
in altitudes using atmospheric air pressure sensors

{2012} [125] On-body Heart rate, blood oxygen, body temperature,
respiration rate, pulse rate

ZigBee, GPRS, Smartphone
(Android-Based)

Proposes a new approach to monitor
patients based on distributed WBAN

{2012} [126] On-body Unknown ZigBee, GSM, PDA
Evaluates different types of interferences and disturbances
such as ISI, MUI and noise through different techniques such
as MUD receivers, DES-CMA and link adaptation

{2011} [127] On-body Off-body Body positioning, audio sound,
motion difference with audio sound? ZigBee, PC

Audio data processing and sound directionality analysis in
conjunction to motion information and subject’s visual
location is used to verify fall and indicate an emergency event

{2011} [128] On-body Heart rate, body positioning Bluetooth, GSM, Smartphone
This work presents a methodology for an appropriate
monitoring of strength training. The results are translated
into appropriate feedback to the user

{2011} [129] On-body Body positioning, body pressure Unknown, PC Uses a waist-worn sensor for reliable fall detection
and the determination of the direction of a fall

{2011} [130] On-body Heart rate, body temperature,
blood oxygen, body positioning,

Bluetooth, GSM, Smartphone
(Android-Based)

Textile platform based on open hardware and software,
collects on-body data and stores them wirelessly
on an open Cloud infrastructure

{2011} [131] On-body Heart rate, blood oxygen,
body temperature, body pressure Bluetooth, GSM, PC

The proposed system is a compact device which has various
wearable sensors all attached inside a glove which
continuously monitors vital parameters of the elderly person

{2011} [132] On-body Heart rate, blood pressure,
temperature, blood oxygen Proprietary, GSM, Smartphone Shows how a group key can be securely established between

the different sensors within a BAN

{2011} [133] On-body ECG, heart rate, respiration rate,
body positioning

Bluetooth, GSM, PC,
Smartphone

Proposes a system consists of a T-shirt sensorized to
continuously record and analyzed human
parameters during work activities at home

{2011} [134] On-body Heart rate, respiratory rhythm, oxygen
saturation, blood pressure, body temperature ZigBee, WiFi, GSM, GPRS, PDA

Proposes a system suitable for continuous long-time
monitoring, as a part of a diagnostic procedure or can achieve
medical assistance of a chronic condition
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Table 14. Cont.

{Publication
Date} [Ref.]

On-body OR
Off-Body Sensors Monitoring Parameters Wireless Comm & Gateway Novelty

{2011} [135] On-body ECG ZigBee, PC Presents the development of a system for wireless ECG
monitoring

{2011} [136] On-body ECG, blood pressure, heart beat rate,
body temperature Proprietary, GPRS, GSM, PC

Proposes a network based Wireless patient monitoring
system, which can monitor multiple patients in hospital to
measure various physical parameters

{2010} [137] On-body Off-body ECG, pressure, fire, light,
moisture, sound, temperature ZigBee, Laptop, PDA

A mixed positioning algorithm (object proximity
positioning, signaling active positioning and signaling
passive positioning

{2010} [138] On-body Off-body

Heart rate, respiration, inspiration & expiration
time & volume, temperature & humdity, motion
activity & fall detection, cough & snoring
detection, ambient light, carbon monoxide,
volatile organic compound, air particle

Bluetooth, PDA Addresses two specific diseases (chronic obstructive
pulmonary disease and chronic kidney disease)

{2010} [139] On-body Off-body Heart rate, skin temperature,
pulse rate, motion, physical contact

Bluetooth, WiFi, ZigBee, Z-Wave,
GSM, IP, Home Base Station
(with Hydra middleware)

Hydra middleware is used to make it possible to achieve
integration and self-organization of sensors

{2010} [140] On-body Off-body Body positioning, motion Unknown, PC Applies real-time target extraction and a skeletonization
procedure to quantify the motion of moving target

{2010} [141] On-body Heart rate, blood pressure,
body positioning, location (GPS)

Bluetooth, GSM, GPRS,
Smartphone, PDA

This system contains some functions to assist elderly such
as regular reminder, quick alarm, medical guidance

{2010} [142] On-body Body positioning Bluetooth, 3G, GPRS, WiFi,
Smartphone (Windows based), PDA

Monitors the activity of individuals at night, through the
use of simple wearable accelerometers

{2010} [143] On-body ECG, body temperature Bluetooth, GSM, PDA, Smartphone Designs a periodic data management system to manage
wireless interface of sensor units with the patient database
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Survey Results

Among the articles that are included in Table 14, seven articles consider off-body
(ambient) sensors along with on-body sensors [118,119,127,137,140]. In many of these
articles, a data fusion technique is used to integrate multiple data sources into meaningful
information. The other 28 articles investigate only on-body sensors [109–117,120–126,128–136,141,142].
Moreover, half of the articles employ mobile devices such as smart phones or PDAs
as base stations. 16 articles out of 35 articles used classic Bluetooth as the main
wireless communication technology [109–113,122,123,128,130,131,133,138,139,141–143]. Therefore,
classic Bluetooth is considered as the most popular technology among the included
articles. On the other hand, 14 studies used ZigBee as the main wireless communication
technology [114–116,118,120,121,124–127,132–135,137,139]. Therefore, ZigBee is considered as the
second most popular technology among the included articles. However, surprisingly, in none
of the included studies BLE is used, which is likely to be explained because BLE is a relatively
recent technology.

Five articles out of 35 articles as shown in [110,111,121,127,129] focus on fall detection systems
based on various sensor types and different techniques, whereas, four articles of the articles that are
listed in Table 14 [111,113,119,142] concentrate on Activities of Daily Living (ADL) of patients and
elderly people. A few of these articles also investigate specific chronic conditions such as anxiety [112],
chronic obstructive pulmonary and chronic kidney [138] and Parkinson’s disease [109,116].

Thirsty articles out of 35 articles that are listed in Table 14 used one of the popular wireless
technologies such as Bluetooth or ZigBee. Some of the systems reviewed in Table 14 as shown
in [112,117,119,134,139,142] use WiFi protocol for wireless communication. However, according to
many studies such as [142–148], WiFi technology has shown that it is more power-hungry than
Bluetooth technology. Thus, these systems appear to have high power requirement especially when
compared to home-based eHealthcare system requirements. When power is of little concern, the
choice of wireless is less critical and designers usually choose ones they are familiar with, easy to
implement or in certain scenarios ones which fit with existing infrastructure (WiFi, GSM, etc.). A home
environment eHealthcare system has tight restrictions on power consumption, which therefore rule
out many protocols including WiFi and classic Bluetooth, or even ZigBee. There is however a distinct
lack of application of alternative low- power wireless technologies or even BLE technology. This may
be due to aforementioned need to interface with infrastructure or other devices.

A true home-based patient monitoring system must be able to transparently monitor individuals
in home environment over extended periods of time. In these systems, sensor power requirements
are of utmost importance. Hence it is imperative that the employed wireless technologies have
minimal power consumption. If the application and choice of communication technology allow, energy
harvesting based operation has the potential to power the devices indefinitely. It is expected that in the
years following this survey a large body of research will accumulate with systems utilizing devices that
require no specific attention from those they monitor (i.e., charging). These systems would therefore
allow devices to be worn in everyday clothing and be operating continuously.

6. Conclusions

In this survey paper, a review of the currently available low-power wireless communication
protocols that can potentially be employed in WBAN systems is provided. More specifically, this
survey paper provides a review of the current research in the area of WBANs with a specific focus
on low-power consumption, transmission reliability, latency, data rates and security. A comparison
of various energy-efficient and reliable wireless communication protocols are provided. This survey
paper also considers the requirements and challenges of WBAN systems in a typical eHealthcare
system in order to explore how such systems are able to effectively communicate with the home
infrastructure. The imposed restrictions and requirements of WBAN systems are pointed out. The
shortfalls of various WBAN systems in the residential environments are diagnosed and discussed and
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also suggestions for developing more appropriate systems for residential eHealthcare are proposed.
In this survey, WBANs are used to enable healthcare professionals to continuously monitor patients
and elderly people in their own residential environments. In this way, abnormal conditions can be
detected early which results in major improvements in the quality of patients’ lives. This survey then
investigates the future prospects of eHealthcare systems which includes the advantages, challenges
and the fastest areas of growth in the near future. Finally, this survey concludes with a brief review of
a number of currently published articles in the area of eHealthcare systems.
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