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ABSTRACT

New sunspot data composites, some of which are radically different in the character of their long-term variation,
are evaluated over the interval 1845–2014. The method commonly used to calibrate historic sunspot data, relative
to modern-day data, is “daisy-chaining,” whereby calibration is passed from one data subset to the neighboring
one, usually using regressions of the data subsets for the intervals of their overlap. Recent studies have illustrated
serious pitfalls in these regressions, and the resulting errors can be compounded by their repeated use as the data
sequence is extended back in time. Hence, the recent composite data series by Usoskin et al., RUEA, is a very
important advance because it avoids regressions, daisy-chaining, and other common, but invalid, assumptions: this
is achieved by comparing the statistics of “active-day” fractions to those for a single reference data set. We study
six sunspot data series, including RUEA and the new “backbone” data series (RBB, recently generated by Svalgaard
& Schatten by employing both regression and daisy-chaining). We show that all six can be used with a continuity
model to reproduce the main features of the open solar flux variation for 1845–2014, as reconstructed from
geomagnetic activity data. However, some differences can be identified that are consistent with tests using a basket
of other proxies for solar magnetic fields. Using data from a variety of sunspot observers, we illustrate problems
with the method employed in generating RBB that cause it to increasingly overestimate sunspot numbers going
back in time, and we recommend using RUEA because it employs more robust procedures that avoid such problems.
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1. INTRODUCTION

Sunspot number is a primary index of long-term solar
activity (Usoskin 2013; Hathaway 2015), and its reliable
definition is of importance for studies of the solar dynamo,
solar irradiance, coronal physics, space weather, space climate,
and solar–terrestrial relations. The sunspot number is defined
daily by the formula introduced by Wolf (1861):

( ) ( )= ´ +R k N N10 , 1G S

where NG is the number of sunspot groups, NS is the number of
individual sunspots, and k is a calibration factor that varies with
location, instrumentation, and observer procedures. Before
1982, compilation of R used a single primary observer for most
days (on some days after 1877 when no primary observer could
make observations, an average from secondary observers was
used); after 1982 multiple observers on each day were used.
The k-factors for different observers can differ by a factor as
large as three (Clette et al. 2015) and so are critical to the
accurate quantification of R. To extend sunspot data to times
before when both NG and NS were recorded systematically,
Hoyt et al. (1994) and Hoyt & Schatten (1998) defined the
group sunspot number RG to be

( )= á ¢ ´ ñR k N12.08 2G G n

where k′ is the site/observer calibration factor for sunspot
groups only and the averaging is carried out over the n
observers who are available for the day in question. The factor
of 12.08 makes the means of RG and R (specifically, version 1
of the international sunspot number, RISNv1; see below) the
same over 1875–1976. Note that assuming that the k- or k′-

factors in Equations (1) and (2) are constants assumes that the
counts from different observers are proportional to each other,
such that application of the appropriate constant multiplicative
factor renders them the same. Initially, Wolf considered that the
k-factors were constant for each observer (Wolf 1861) but he
later realized that this was not, in general, valid and that
observers’ k- and k′-factors depend on the level of solar activity
(Wolf 1873), and so they were calculated either quarterly or
annually (using daily data) at the Zürich observatory (see
Friedli 2016). It is well known that estimates of R and RG

diverge as one goes back in time. This could be due to real
long-term changes in the ratio NS/NG, but otherwise it would
reflect erroneous long-term drifts in the calibration factors for
either R or RG (i.e., k and k′, respectively) or both. Recently,
Friedli (2016) has shown that the ratio NS/NG has a regular
solar cycle variation but no long-term change and so can be
used as a way of calibrating different observers. A series of
workshops were held in recent years to try to investigate the
differences between R and RG (Clette et al. 2015). This has
stimulated the generation of a number of new sunspot number
and sunspot group number composites. These vary in a
surprisingly radical way with considerable implications for our
understanding of the solar dynamo and its variability. The
methods used to make these sunspot number data composites,
as well as the centennial-scale variations in the derived data
series, are reviewed and assessed in this paper.
Both sunspot numbers and sunspot group numbers are

synthetic indices and somewhat limited indicators of solar
magnetic activity. They give information on the larger
magnetic features in the photosphere only, and they do not
vary linearly with many of the key parameters of solar and
heliospheric activity and structure. Moreover, there is a
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threshold effect whereby a lack of sunspots does not
necessarily imply the absence of the cyclic solar activity. For
recent solar cycles we have other metrics that are more directly
relevant and measured with less subjectivity: as a result,
sunspot numbers are of importance mainly because of the
longevity of the data sequence. Hence, if sunspot numbers are
to be useful, it is vital check that their long-term variation is as
accurately reproduced as it can be. That is the aim of the
present paper.

The key problem in generating homogeneous composites of
R and RG is the estimation of the k- and k′-factors for the
historic observers. Until recently, all composites used “daisy-
chaining” whereby the calibration is passed from the data from
one observer to that from the previous or next observer
(depending on whether the compiler is working, respectively,
backward or forward in time) by comparison of data during an
overlap period when both made observations. Hence, for
example, if proportionality is assumed and intercalibration
of observer numbers i and (i+1) in the data composite yields
ki/ki+1 = ( )+fi

i 1 , then daisy-chaining means that the first
(i= 1) and last (i= n) observers’ k-factors are related by

( )( )= P =
+k k f1 n i 1

n
i

i 1 . A similar product applies for the k′-
factors for group sunspot numbers. Hence, daisy-chaining
means that all sunspot and sunspot group numbers, relative to
modern values, are influenced by all of the intercalibrations
between data subsets at subsequent times.

Because meteorological conditions vary with location and
from day to day, and some sunspot groups last for only 1 day
(Willis et al. 2016), it is important to compare observers only
on a daily basis and only on days when both were able to make
observations. Otherwise, significant errors are caused by days
when observations were not possible if annual or monthly
means are compared. Often comparisons have been made using
linear, ordinary least-squares regression. Errors caused by
inadequate and/or inappropriate regression techniques were
discussed by Lockwood et al. (2006) in relation to differences
between reconstructions of the magnetic field in near-Earth
interplanetary space from geomagnetic activity data. The
seriousness of potential problems has been expressed suc-
cinctly by Nau (2016): “If any of the assumptions is violated
(i.e., if there are nonlinear relationships between dependent and
independent variables or the errors exhibit correlation, hetero-
scedasticity, or non-normality), then the forecasts, confidence
intervals, and scientific insights yielded by a regression model
may be (at best) inefficient or (at worst) seriously biased or
misleading.” Lockwood et al. (2016a) have studied these
pitfalls in the context of sunspot group numbers, using annual
means of observations from the Royal Observatory, Green-
wich/Royal Greenwich Observatory (hereafter “RGO”) for
after 1920, when there are no concerns about their calibration.
They compared the RGO sunspot group numbers with data
synthesized to simulate what a lower-acuity observer (i.e., one
who has a higher k′) would have seen. This was done by
assuming that the lower-acuity observer would only detect
groups above a threshold of total spot area in the group
(uncorrected for foreshortening near the limb, i.e., as detected
by the observer) and studying the effect of this threshold. It was
shown that there is no single regression procedure that always
retrieves the original RGO data, and tests must be applied to
check that the assumptions inherent in the procedure applied
are not violated. Specifically, it was shown that errors of up to
30% could arise in one regression of annual mean data even for

two data series with a correlation exceeding 0.98 over two full
solar cycles. The biggest problems are associated with
nonlinearity and non-normal distributions of data errors that
violate the assumptions made by most regression techniques:
such errors should always be tested for (for example, using a
quantile–quantile [“Q–Q”] plot comparison against a normal
distribution) before a correlation is used for any scientific
inference or prediction (Lockwood et al. 2006, 2016a).
Lockwood et al. (2016a) confirmed that significant errors

were introduced by assuming proportionality between the
results of two observers and that this is, in both principle and
practice, incorrect and leads to non-normal error distributions
and hence errors in regressions. In fact, sets of sunspot data
often do not have a linear relationship. Using the ratio of
sunspot numbers (or sunspot group numbers) from two
different observers also implicitly assumes proportionality
and generates asymmetric errors that vary hyperbolically with
the denominator, such that both the ratio and its uncertainty
tend to infinity as the denominator tends to zero. This has been
dealt with in two ways in the past: (1) neglecting values where
the denominator falls below an arbitrarily chosen threshold, and
(2) taking averages over an extended period (greater than a
solar cycle) so the denominator does not become small. Neither
of these is satisfactory: on top of generating asymmetric error
distributions, method 1 preferentially removes solar minimum
values, and method 2 matches the mean values but loses
information about the solar cycle amplitudes because sunspot
numbers and sunspot group numbers do not fall to zero in all
minima. It is not necessary to assume proportionality (or even
linearity), nor to make use of ratios, nor to ignore the effect of
missing observation days. Hence, adherence to good practice
can avoid all of the associated pitfalls. Unfortunately, some
reconstructions make use of one of more of these unreliable
practices, and it is easy, but not satisfactory, to dismiss without
proof the effects of this as being small.
These issues are particularly important in daisy-chaining of

calibrations to generate a long-interval data composite because
errors compound with successive regressions (Lockwood et al.
2016a, 2016d). For these reasons, the recent group sunspot
number reconstruction by Usoskin et al. (2016) is a very
important development because it avoids using either regres-
sion or daisy-chaining and does not even need to assume that
the k′-factors (for a given level of solar activity) remained
constant for any one observer (although, for simplicity, this
assumption was made in the initial paper). In addition, the
method assumes neither proportionality nor linearity between
the results of different observers and evaluates each observer
on a daily basis and not using monthly or annual means. This
rigor was achieved by comparing all data to a standard data set
covering a reference period (the RGO data between 1900 and
1976 were used, and this standard is evaluated in Section 2.3).
This means that, for example, isolated fragments of data,
disconnected from the data sequence by a data gap, can be
employed without having to use questionable data, or an
assumption, to bridge that gap—something that cannot be done
for any form of daisy-chaining. Furthermore, should any
segment of data be incorrect or badly calibrated, the error does
not corrupt any other data segments, whereas for daisy-
chaining the error propagates from that segment to all others
calibrated from it; thus, every error infects all prior data (if the
calibrations are passed back in time, starting from modern
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data), and if they arise from the systematic application of
unreliable procedures, these errors will compound.

In the Usoskin et al. (2016) procedure, the comparisons with
the reference data set are made by, effectively, considering the
relationship between an observer’s sunspot group count and the
statistics of the fraction of all observation days that were
“active” (i.e., on which sunspots were observed). Hence, the
only requirement is that the observer had distinguished between
days on which he/she could see the solar disk but detected no
sunspots (i.e., nonactive days) and days on which the solar disk
could not be observed (i.e., missing data, for example, due to
cloud cover). The method uses the probability distribution
functions (pdfs) of different group numbers and makes no
assumptions of proportionality or linearity of the relationship
between the data from different observers.

Another example of the use of a nonparametric, daisy-chain-
free calibration of observers is the recent work by Friedli
(2016), who recalibrated observers using the statistics of NS,
NG, and the ratio NS/NG. At the time of writing, this work has
yet to be published, so we do not include it here as one of the
data composites tested: however, the data sequence derived by
Friedli (2016) is similar to RUEA, which is tested.

2. SUNSPOT DATA COMPOSITES

We here study six different sunspot number and sunspot
group number data composites, introduced in the following six
subsections. These are plotted in the six panels of Figure 1,
and, to enable comparisons, each is compared to the same black
line, which is the median Rmed of all available sequences for
each year (which number three in 1650, rising to six by the
present day). To compute Rmed, all group numbers have been
multiplied by the 12.08 normalization factor adopted by Hoyt
& Schatten (1998) for RG (see Equation (2)).

2.1. The International Sunspot Number Version 1, RISNv1

This is a composite of sunspot numbers, as defined by
Equation (1), initially generated by Wolf and continued at the
Zürich observatory until 1980 and subsequently compiled by
SIDC (the World Data Center for the production, preservation,
and dissemination of the international sunspot number and the
Solar Physics Research department of the Royal Observatory of
Belgium) until 2015 July, when it was replaced by version 2
(see Section 2.2). Like all the series, except that by Usoskin
et al. (2016) (see Section 2.4), the calibration is by daisy-
chaining. The annual means are shown by the brown line in
Figure 1(f-i), while Figure 1(f-ii) shows the difference between
RISNv1 and Rmed. Monthly RISNv1 covers the interval
1818–2014. The primary station, assumed to have k = 1, was
Zürich until 1980, after which the Specola Solare Observatory
in Locarno was used as the standard (Clette et al. 2007).

2.2. The International Sunspot Number Version 2, RISNv2

In 2015 July, SIDC changed its primary data product to
RISNv2, in which many data were recalibrated to make a number
of corrections to RISNv1 (Clette et al. 2015). It should be noted
that this series must be scaled down by a factor 0.6 to be
compared to RISNv1 because it was decided to dispense with a
factor that had been applied in the generation of RISNv1 for
historical reasons. The most recent correction is to allow for a
drift in the Locarno reference station k-factor. This drift was

found by research aimed at explaining why the relationship
between the F10.7 solar radio flux and RISNv1 broke down
dramatically just after the long and low-activity minimum
between solar cycles 23 and 24 (Johnson 2011). The Locarno
k-factors were reassessed using the average of 16 other stations
(out of a total of about 80) that provided near-continuous data
over the 32 yr interval studied. The results showed that the
Locarno k-factors had varied between 1.15 in 1987 and 0.85 in
2009 (i.e., by±15%). The best evidence for this correction is
the large number of sunspot observers that vary in the same
way with respect to the Locarno data, but we also note that it is
also supported by tests against ionospheric data (Lockwood
et al. 2016e).
A second major correction is for what has become termed the

“Waldmeier discontinuity” (Svalgaard 2011; Aparicio et al.
2012; Cliver et al. 2013). This is thought to have been caused
by the introduction of a weighting scheme for sunspot counts
according to their size and a change in the procedure used to
define a group (including the so-called “evolutionary”
classification that considers how groups evolve from one day
to the next), both changes that may have been introduced by the
then director of the Zürich observatory, Max Waldmeier
(Hockey 2014), after he took over responsibility for the
production of the Wolf sunspot number in 1945. Note that
these changes affect the sunspot numbers and the sunspot
group numbers used to derive them in Zürich, but not
necessarily by the same amount. Note also that this
discontinuity affects only Zürich data (and data sets calibrated
to it) but is not relevant to independent data such as the data
generated at RGO. However, as discussed by Friedli (2016),
some of these changes might have been made gradually since
the group number weighting was partly used by other observers
(e.g., Wolfer, Brunner) before Waldmeier took charge of the
Zürich observatory in 1945.
The changes made by Waldmeier improved the sunspot

number as a metric of solar magnetic activity and gave an
algorithm that was improved, fixed, and better defined.
However, Waldmeier would have been unable to apply his
new algorithm to much of the prior data retrospectively, and so
it was inevitable that his improvements led to a discontinuity,
of some magnitude, in the composite series. Note that the only
options open to Waldmeier were either to improve the metric or
to knowingly continue to use less-than-optimal existing
procedures to remain fully compatible with prior data. From
a modern perspective, it is easy to think that Waldmeier made
the wrong choice as we now have other, more specific and less
subjective solar metrics and observations and we use sunspots
mainly to understand long-term variations. However, in 1945
priorities were different because relationships between sunspots
and factors such as ionospheric plasma concentrations were
being discovered and explored, and hence the requirement was
to make sunspot numbers as accurate and representative of
solar activity as they could be. Hence, Waldmeier made a
decision that was appropriate to the science of his day.
By comparison with other long time series of solar and

solar–terrestrial indices, Svalgaard (2011) makes a compelling
case that this discontinuity is indeed present in the Zürich data
series at about 1945. However, there is debate as to how large
the correction should be, debate that is discussed in Section 3
of the present paper. There is also debate as to whether or not
the correction is a simple multiplicative factor (i.e., the
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corrected data should be proportional to the uncorrected data
and the discontinuity is just a sensitivity change, making the
corrected sunspot number R′= fRR) or if there is also
effectively a zero-level offset (R′= fRR+ δ) or indeed is it
nonlinear, such that the effect at high and low solar activity is
different (R′= fRR

n+ δ). The RISNv2 series correction approx-
imates to a multiplicative factor of fR = 1.18, i.e., values before
the discontinuity need increasing by 18% to become consistent
with modern values (Clette & Lefévre 2016).

There are other calibration debates inherent in RISNv1. For
example, Leussu et al. (2013) studied the difference between

the data of Schwabe and of Wolf and concluded that RISNv1

should be reduced by 20% before 1848. This conclusion is
contested by Clette et al. (2015). As this only influences
the first 3 yr of the interval studied here, this issue is not
considered further in the current paper. Another debated
intercalibration is between the data generated by Schwabe
(which ends in 1867) and by Wolfer (which commences a
whole solar cycle later in 1878). This is addressed in Section 5
of the present paper.
The variation of RISNv2 is shown in mauve in Figure 1(e-i)

and its deviation from the median Rmed in Figure 1(e-ii).

Figure 1. Various sunspot number sequences studied in this paper. Each is here compared to the median of all available sequences in that year (which vary in number
from three in 1650 to six in 2015), Rmed, shown in black in each panel. Gray and white vertical bands define, respectively, odd- and even-numbered sunspot cycles
(from minimum to minimum), and the cyan band is the Maunder minimum. (a-i) The corrected sunspot number, RC (in blue), proposed by Lockwood et al. (2014c).
(b-i) The “backbone” group number reconstruction, RBB (in red), of Svalgaard & Schatten (2016). (c-i) The group number derived by Usoskin et al. (2016), RUEA (in
orange). (d-i) The Hoyt & Schatten (1998) group number, RG, which has been extended to 2015 using the SOON data set, as calibrated against RG by Lockwood et al.
(2014c). (e-i) Version 2 of the international sunspot number, RISNv2, introduced by SIDC (see text) in 2015 July (in purple) (Clette et al. 2015). (f-i) Version 1 of the
international sunspot number, RISNv1, that was issued by SIDC until 2015 July (in brown) (Clette et al. 2007). To help identify the differences, the lower panels in each
pair show the difference between each and Rmed (so a-ii shows RC− Rmed, etc.).
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2.3. The Group Sunspot Number of Hoyt and Schatten, RG

The group sunspot number, as defined by Equation (2), was
introduced by Hoyt et al. (1994) and Hoyt & Schatten (1998),
who generated an intercalibrated series that begins in 1610 and
has been much used. For 1875–1976, RG uses the RGO
photoheliographic sunspot group data (Willis et al. 2013a,
2013b). This has been updated to the present day using the
group sunspot data generated by the SOON network as the
RGO observations ceased in 1976. The version shown in green
in Figure 1(d-i) uses the calibration of RGO and SOON data,
derived by two different statistical techniques by Lockwood
et al. (2014c). It also employs some corrections to the
seventeenth-century data by Vaquero et al. (2011): its deviation
from the median Rmed is shown in Figure 1(d-ii). With the
SOON data added, RG extends from 1610 to the present day.

The RGO data, and hence RG, are fully independent of
RISNv1 (using different observations, scaling practices, and
personnel) and are not influenced in any way by the Waldmeier
discontinuity. Indeed, for 1918–1976 RG provides a valuable
standard for comparisons because, uniquely, it can be
reproduced because the original RGO photographic plates
have survived. These raw data can be reanalyzed to check the
stability of the k′-factors in the work of the RGO observers who
made the sunspot group counts. The plates have been digitized
by the Mullard Space Science Laboratory in the UK and
analyzed with an automated scaling algorithm that can derive
sunspot group areas and numbers (Çakmak 2014). This
automated scaling of the RGO images reproduces the manually
scaled daily sunspot group numbers well, with a correlation of

monthly values of over 0.93; however, there are differences, as
discussed below and demonstrated by the annual means shown
in Figure 2 (from Tlatov & Ershov 2014).
Lockwood et al. (2016a) compared RGO data with

deliberately degraded RGO data to demonstrate that the
relationship between observers of different visual acuities is,
in general, nonlinear. Figure 2 demonstrates the good
agreement between the RGO data set and other data, once
this nonlinearity is accounted for. Parts (a) and (b) of this figure
compare annual-mean group number data from the standard
RGO data set ([NG]RGO, in black) with that from Mount Wilson
Observatory ([NG]MWO, in blue), data from the Solar
Observatory of the National Astronomical Observatory of
Japan ([NG]NAOJ, in green), and the auto-scaled data from the
RGO photoheliographic plates ([NG]RGO2, in red). The MWO
data are often given as the number of independent groups in 10-
month intervals and have been recalculated here to be annual
means of daily NG, as for the other data. In Figure 2(a) the data
have been scaled linearly over the interval 1920–1945. It can be
seen that agreement over this interval is very good but that this
linear scaling leads to a peak of [NG]MWO in solar cycle 19
(around 1958) that is larger than the peak in [NG]RGO and much
larger in the auto-scaled RGO data, [NG]RGO2. This non-
linearity is investigated in parts (c), (d), and (e) of Figure 2.
Figure 2(c) is a scatter plot [NG]NAOJ as a function of [NG]RGO.
A linear fit of the RGO and NAOJ data over the full period of
their overlap gives an overall k′ value of 1.050, if the RGO data
are taken to define k′ = 1. For these data, the plot is close to
linear and the best-fit regression line shown passes through the
origin. Hence, in this case, the RGO and NAOJ data are similar

Figure 2. Comparison of sunspot group number data from various observers. The time series in (a) have been scaled to the standard RGO data set ([NG]RGO, in black)
over 1920–1945 using linear regression: from Mount Wilson Observatory ([NG]MWO, in blue), from the Solar Observatory of the National Astronomical Observatory
of Japan ([NG]NAOJ, in green), and from the auto-scaled RGO photographic plates ([NG]RGO2, in red). (b) The same data series as in (a), scaled using a second-order
polynomial fit to [NG]RGO over 1920–1976. (c)–(e) Scatter plots and second-order polynomial fits for the interval 1920–1976 as a function of [NG]RGO for (c)
[NG]NAOJ, (d) [NG]MWO, and (e)[NG]RGO2.
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enough that proportionality does apply. For the MWO data, the
corresponding overall k′ value is 0.916, and the relationship has
become slightly nonlinear. The line is the best-fit second-order
polynomial. Note that the regression no longer passes through
the origin, but MWO is detecting spots at some of the times
when RGO is not, i.e., [NG]MWO > 0 when [NG]RGO = 0,
consistent with MWO being a higher-acuity observer than
RGO (see Lockwood et al. 2016a). This is even more apparent
for the rescaled RGO data, which find more groups than the
original scaling of the RGO data (overall k′= 0.882) because it
uses a less conservative definition of what constitutes a sunspot
group. Both the nonlinearity and the nonzero intercept are even
more pronounced in this case. Taking the second-order
polynomial scaling gives the variations shown in Figure 2(b).
It can be seen that allowing for the nonlinearity makes the
variations of all these data sets very similar to the original RGO
data. This highlights the importance of allowing for the
nonlinearity of the relationship of data from different acuity
observers. For weaker solar cycles, linearity is a good
approximation, but Figure 2 shows that, for example, the peak
of cycle 19 is, relatively, much greater for high-acuity
observers than for lower-acuity ones because of the nonlinear
effect.

However, it has been suggested that the RGO data suffer
from a data-quality problem before 1885 (Clette et al. 2015;
Cliver & Ling 2016): this cannot be verified or disproved in the
same manner because the photographic RGO plates before
1918 have been lost (thought to have been destroyed during
World War I). Because calibrations were daisy-chained by
Hoyt & Schatten (1998), such an error would influence all
earlier values of RG.

2.4. The Group Sunspot Number of Usoskin et al., RUEA

As discussed above, this reconstruction is the only one to
avoid using both daisy-chaining and regressions. Because the
standard used to calibrate all data is the RGO data for
1900–1976, and because the SOON data are added to the RGO
data using the intercalibration of Lockwood et al. (2014c),
RUEA is the same as RG after 1900. Note that RUEA, like RG, has
no correction for the Waldmeier discontinuity, nor should it as
it is not influenced by any of the factors that gave rise to that
putative discontinuity. The variation of RUEA is shown in
orange in Figure 1(c-i) and its deviation from the median Rmed

in Figure 1(c-ii).

2.5. The “Backbone” Group Sunspot Number, RBB

Another new group number reconstruction has recently been
published by Svalgaard & Schatten (2016) and covers the
interval from 1610 to the present day. This is termed the
“backbone” reconstruction RBB because the method used is to
combine data from various observers into a “backbone”
segment and then relate the backbones by regression of annual
means. Ostensibly this reduces the number of regressions, but,
in fact, because regressions (and/or ratios) are often used to
extend each backbone and give overlap with the next, this is
not actually the case. The authors claim to have avoided daisy-
chaining, but because there is no method presented to relate
early and modern data without relating both to data taken in the
interim, this is patently not the case. In constructing RBB, the
quality of data was assessed by its correlation to the key data
sequence on which each backbone is based; however,

correlation is an inappropriate metric in this context as high
correlation can persist even if there are relatively large
calibration drifts. Lockwood et al. (2016e) find that there is a
discontinuity in RBB at the Waldmeier discontinuity, implying
that the Zürich data, or Zürich procedures (or an overcorrection
for them), have somehow entered into the construction of RBB.
A particular concern about the regressions used in constructing
RBB is that not only is linearity assumed of the various group
number estimates assumed, but also proportionality is assumed.
Lockwood et al. (2016a) point out that there is no advantage to
these assumptions, and that they give unreliable regressions
(mainly because of non-normal error distributions). The
variation of RBB is shown in red in Figure 1(b-i) and its
deviation from the median Rmed in Figure 1(b-ii).

2.6. The “Corrected” Sunspot Number, RC

Lockwood et al. (2014c) generated a simple “corrected”
version of RISNv1 by using a correction for the Waldmeier
discontinuity of 11.6%, which they derived from two
independent statistical techniques using the RGO data. Clette
& Lefévre (2016) present reasons why this correction factor
may be too low, and this is discussed further in Section 3 of the
present paper. Lockwood et al. (2014c) also adopted the Leussu
et al. (2013) correction to the Wolf data and extended the series
back to before 1818 using a daisy-chained regression and
appending 1.3RG for 1610–1818, the factor 1.3 being derived
by a regression for 1818–1847. The variation of RC is shown in
blue in Figure 1(a-i) and its deviation from the median Rmed in
Figure 1(a-ii).

2.7. Comparison of Composites

Figure 1 allows comparison of these data series. (Note that
group numbers RBB and RUEA have been multiplied by 12.08,
as used to generate RG). The RC variation in Figure 1(a) is close
to median Rmed, and so the comparisons with Rmed in the other
panels happen to be roughly the same as comparisons with RC.
RBB (Figure 1(b)) is the most radically different of all the

composites, giving consistently larger values before 1947 and
consistently smaller ones after it. The fractional differences to
Rmed generally increase as one goes back in time. The changes
combine to make previous maxima in RBB much more similar
to the recent ones so that, whereas all other composites show a
fluctuating rise from the Maunder minimum to the recent grand
maximum, RBB shows three roughly equal such grand maxima
since the Maunder minimum. Furthermore, the variation in RBB

has a bistable appearance and so has implications for dynamo
models as it suggests that solar activity predominantly exists in
either the grand maximum state or the grand minimum state,
rather than varying continuously between the two. Lockwood
et al. (2016d) show that RBB becomes increasingly larger than
other solar–terrestrial indicators as one goes back in time, for
example, compared with the observed occurrence of terrestrial
aurora at lower magnetic latitudes. This is true at both sunspot
minimum and sunspot maximum. Physics-based comparisons
with cosmogenic isotopes 14C, 10Be, and 44Ti also all show that
RBB becomes increasingly too large as one goes back in time
(Asvestari et al. 2016). Of these tests, that against 44Ti
abundances is particularly telling because this isotope is
measured in meteorites and accumulates slowly as the
meteorite is processed on its journey to Earth through the
solar system. As a result, the observed 44Ti is an indicator of
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the time integral of solar modulation of the cosmic rays that
generate it and so is a sensitive indicator of the long-term
changes in solar activity.

The RUEA variation (Figure 1(c)) shows some differences, in
both senses, to Rmed. The original group number RG variation
(Figure 1(d)) is consistently lower than Rmed and is the lowest
of all the values in the earlier years. RISNv1 and RISNv2 are both
similar to Rmed, the major difference being the effect of
allowance (or lack of it) for the Waldmeier discontinuity, with
RISNv1 consistently above Rmed after 1947 (Figure 1(f)),
whereas RISNv2 is consistently smaller than Rmed in this interval
(Figure 1(e)).

3. THE WALDMEIER DISCONTINUITY

As discussed above, there is now considerable agreement
that the Waldmeier discontinuity is a real feature of RISNv1 and
that it requires correction in that data series. However, there has
been debate about how big that correction should be. The
smallest correction was derived by Friedli (2016), who finds a
correction of just 5%, which applies only to data from 1946 to
1980. The largest proposed correction was by Svalgaard
(2011), who argued that before 1945 sunspot numbers need to
be increased by a correction factor of 20%, but it is not clear
how this value was arrived at beyond visually inspecting a plot
of the temporal variation of the ratio RG/R (neglecting low
values of R below an arbitrarily chosen threshold), where RG

are the RGO group numbers, which were not influenced by
Waldmeier’s changes to procedures at the Zürich observatory.
This assumes that the correction required is purely multi-
plicative, such that before the discontinuity the corrected value
R′ = fRR (and Svalgaard’s estimate is fR= 1.2) is required to
make the pre-discontinuity values consistent with modern ones
(i.e., proportionality is assumed). Because the use of ratios
causes an asymmetric distribution of errors and omits sunspot
minimum values according to an arbitrarily chose threshold,
Lockwood et al. (2014c) devised two different methods to
quantify the discontinuity that give answers that agree very
closely, but uncertainties are smaller for the second (so it
provides the more stringent test). The first method studies the
effect of varying an imposed discontinuity correction factor fR
on the correlation between the sunspot data series tested R and
a number of corresponding test sequences (including the RGO
NG values). The second, more stringent test used fit residuals
when R is fitted to the same test data sequences: Lockwood
et al. (2014c) then studied the differences between the mean fit
residuals before and after the putative Waldmeier discontinuity
and quantified the probability of any one correction factor fR
with statistical tests. Because both the sample sizes and the
variances are not the same for the two data subsets (before and
after the putative discontinuity), these authors used Welch’s t-
test to evaluate the probability p values of the difference
between the mean fit residuals for before and after the putative
discontinuity. This two-sample t-test is a parametric test that
compares two independent data samples (Welch 1947). It was
not assumed that the two data samples are from populations
with equal variances, so the test statistic under the null
hypothesis has an approximate Student’s t-distribution with a
number of degrees of freedom given by Satterthwaite’s
approximation (Satterthwaite 1946). The distributions of
residuals were shown to be close to Gaussian, and so, as
expected, application of nonparametric tests (specifically, the
Mann–Whitney U [Wilcoxon] test of the medians and the

Kolmogorov–Smirnov test of the overall distributions) gave
very similar results. From this quantitative comparison with the
RGO RG data, and assuming proportionality, Lockwood et al.
(2014c) derived an 11.6% correction for RISNv1 with an
uncertainty range of 8.1%–14.8% at the 2σ level. The
probability of the correction needed being as large as 20%,
as advocated by Svalgaard (2011), was found to be 1.6 × 10−5.
Clette & Lefévre (2016) make the valid point that there are

other factors that may have influenced the correction factor
derived by Lockwood et al. (2014c). The first factor is a
putative drift in RGO NG values before 1885 (Cliver & Ling
2016), which is discussed further in Section 5.1 of this paper.
This is a relevant factor for the Lockwood et al. (2014c) paper
as they used all the RGO data (from 1875), but not for
Lockwood et al. (2016e) as they only used data for after 1932.
The second potential factor is the precise date of the
discontinuity, which is not known because Waldmeier’s
documentation is not clear when the changes were actually
implemented. As discussed by Friedli (2016), the weighting of
sunspot groups according to their size might have been
implemented (at least partly) by Wolfer and his successors in
the beginning of the twentieth century. Accordingly, some of
the change might be gradual and intermittent. Clette & Lefévre
(2016) make use of means of the ratio R/RG to define the date
of the discontinuity, something that was avoided by Lockwood
et al. (2014c) because the error in this ratio tends to infinity
when RG tends to zero and RG has a minimum in 1944–1945,
close to the putative discontinuity, and any changes would
naturally become more apparent as sunspots began to rise in the
next cycle. From the R/RG ratio, Clette & Lefévre (2016) place
the discontinuity in 1946, although they agree that there is
some documentary evidence that at least some of the new
procedures that are thought to be the cause of the discontinuity
were in use earlier than this date. Clette & Lefévre (2016)
analyze the effects of both the start date of the comparison and
the date of the discontinuity assumed for the RISNv1correction
derived by Lockwood et al. (2014c). They reproduced the
Lockwood et al. (2014c) values when using the same start and
discontinuity dates; however, they found that the correction
could be as large as 15.8% for other values of these dates,
which is closer to the 18% actually employed in generating
RISNv2. Clette & Lefévre (2016) also report on a study of the
inflation caused in a repeat analysis of modern data by adopting
Waldmeier’s procedures, compared to the results for prior
procedures. However, application of such factors assumes
knowledge about precisely what procedure was in use and
when, and assumes that there are no other factors. Also, this
analysis cannot be used outside the range of the test data as the
effect was found to vary nonlinearly with the level of solar
activity. Hence, calibration against other simultaneous data
remains the most satisfactory way to evaluate the discontinuity.
Lockwood et al. (2016e) removed any possibility that early

RGO data were having an effect by repeating the study using
only data from 1932 onward (a date chosen to match available
ionospheric data) and found a correction factor for RISNv1 of
13.6% using RGO data (and a well-defined value of 12.1%
using the ionospheric data). However, this analysis did not take
into account the potential effect of the date of the discontinuity.
At this point it should be noted that the analysis of Clette &

Lefévre (2016) applies to sunspot numbers and, as pointed out
by Lockwood et al. (2016e), the correction needed for the
group numbers generated by Zürich (as part of their derivation
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of sunspot numbers) will not be the same as that needed for
sunspot numbers and that no correction is needed for RGO, or
other non-Zürich group numbers. Note that over the twentieth
century there has been a drift in the lifetimes of spot groups,
giving an increase in the number of recurrent groups (groups
that are sufficiently long-lived to be seen for two or more
traversals of the solar disk as seen from Earth) (Henwood
et al. 2010). This has the potential to have influenced group
numbers derived using different classification schemes in
different ways.

Lockwood et al. (2016c) have refined the fit-residual
comparison procedure yet further. They initially take all
available data between 1920 and 1976 (thereby avoiding any
effects of both the putative RGO calibration drift and the
Locarno error) but omit all data between 1943 and 1949, a 6 yr
interval centered on the optimum date for the discontinuity
found by Clette & Lefévre (2016). Assuming that the bulk of
the discontinuity lies within this 6 yr interval, its precise date is
no longer a factor. As also pointed out by Clette & Lefévre
(2016), the longer the intervals used in the test, the greater is
the chance that other errors and discontinuities in either the test
or the tested data become a factor. On the other hand, if the
intervals used are too short, then the uncertainties inherent in
the method (indeed, in all such comparison methods) get larger
because of the geophysical noise variability in the data series.
To find the optimum interval, Lockwood et al. (2016c) used a
basket of test data series and varied the duration of the “before”
and “after” intervals until the net uncertainty was minimized.
They also used second-order polynomial fits so that assump-
tions of both proportionality and linearity were avoided. The
analysis was repeated with third-order polynomial fits, but
some of the fit-residual Q–Q plots began to show non-Gaussian
distribution tails, and so these fits were not used further. To
reduce the number of variables in this parametric study,
Lockwood et al. (2016c) required the “before” interval and the
“after” intervals to be of the same duration. Minimum
uncertainty (i.e., optimum agreement between the results for
the various test data) was obtained using “before” and “after”
intervals that were 11 yr in duration, and hence the “before”
data were from 1932 to 1943 and the “after” data from 1949 to
1960. In addition, Lockwood et al. (2016c) did not assume that
the correction needed is just a multiplicative factor or even
linear but allowed for both a zero-level offset δ and nonlinearity
in R, as well as a sensitivity change (hence, they evaluate the
corrected series R′= fRR

n+ δ for a “before” interval that is
consistent with the “after” interval). Lockwood et al. (2016c)
used a wide variety of test data in addition to the RGO group
number [NG]RGO, namely, total sunspot area AG from the RGO
data set; the CaK index from the Mount Wilson spectro-
heliograms in the Ca II K ion line; the sunspot group number
from the Mount Wilson sunspot drawings, [NG]MWO; and the
ionospheric F2 region critical frequencies measured by the
Slough ionosonde, foF2. They tested all six of the sunspot
series discussed in the introduction using these five test series.
By multiplying the probability distribution functions for the
five tests together, Lockwood et al. (2016c) obtain the optimum
correction for each sunspot data series for around the
Waldmeier discontinuity, a procedure that has the advantage
of weighting the overall estimate according to how well
constrained each individual value is. Note that for all tested
series, the narrowest pdf (and hence the most well-defined
value, thereby automatically gaining most weighting) was the

RGO group numbers, but the optimum values for the other test
data series always agreed to within the ±2σ uncertainty band
for the RGO group number data. Lockwood et al. (2016c)
estimate the correction factors needed for the six composites
discussed here.
ForRISNv2 andRUEA (which equalsRG/12.08 over the interval

studied) it was found that the exponent n was near unity and the
offset δ was very small. Thus, the corrections required were
approximately linear. However, this was not found to be true for
RISNv1, RBB, and RC. To quantify the magnitude of the
discontinuity in each tested data sequence, Lockwood et al.
(2016c) evaluated the percentage change for the “before” interval
1932–1943 (approximately solar cycle 17). Note that, however,
in the case of RISNv1, RBB, and RC, the nonlinearity of the
correction required means that this percentage change cannot
simply be applied to all the prior solar cycles.
For (RG/12.08) and RUEA, Lockwood et al. (2016c) found

that the net correction required to the “before” interval is
+0.005% ± 0.05%. This is no more than a test of the procedure
as both (RG/12.08) and RUEA are the RGO group number data
for both the before and after intervals, which is the dominant
test series, and hence the correction factor should indeed be
zero. The uncertainty arises from the effect of the other test data
sets used, in addition to RGO group numbers, and the low
value of this uncertainty stresses the level of agreement
between the test data sets.
For RISNv1, Lockwood et al. (2016c) found that the net

correction required to the “before” interval is +12.3% ± 3.4%.
This is larger than the 11.9% used by Lockwood et al. (2014c)
but smaller than the 15.8% derived by Clette & Lefévre (2016);
however, it almost agrees with both to within the 2σ
uncertainties. The study also finds that the changes introduced
by Waldmeier had a somewhat nonlinear effect as the optimum
exponent n is 1.088.
The above correction to RISNv1 is significantly smaller than

the 18% used in the derivation of RISNv2. This is consistent with
the correction for RISNv2in the “before” interval found by
Lockwood et al. (2016c), which is −3.8% ± 2.9%. This is not
quite zero, to within the derived 2σ uncertainties. Hence, the
best estimate from this study is that RISNv2 is based on a slight
overcorrection for the Waldmeier discontinuity. Note, however,
that the nonlinearity of the discontinuity in RISNv1 (i.e., the fact
that different group number levels are affected differently,
making n different from unity) has been successfully removed
in RISNv2 as the optimum n in this case was found to be 0.997.
For RC, the correction for the “before” interval is +0.4% ±

3.0%. Note, however, that the nonlinearity inherent in
RISNv1was found to persist (n= 1.095), and the simple
corrections used in RC mean that it carries forward other errors
in RISNv1, such as the Locarno calibration drift. Hence,
although it matches cycle 17 slightly better than does RISNv2,
in several ways it is a less satisfactory correction.
For RBB, Lockwood et al. (2016c) found that the net

correction required to the “before” interval is −5.7% ± 2.2%,
i.e., there is, effectively, an overcorrection for the Waldmeier
discontinuity and by more than that for RISNv2. Furthermore,
the nonlinear behavior has not been removed (n= 1.093).

4. COMPARISON WITH OPEN SOLAR FLUX
RECONSTRUCTIONS

Observations of geomagnetic activity were first made in
1722 by George Graham in London. In 1798 Alexander von
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Humboldt made observations from a number of locations, work
that sparked the interest of his friend, Carl Friedrich Gauss,
who developed the first reliable and stable magnetometer and
so established the first magnetic observatory in Göttingen in
1832. Although we have fragments of data from before 1845,
Lockwood et al. (2013a, 2013b, 2014a, 2014b) considered that
only after this date can we compile (for the time being at least)
homogeneous and well-calibrated geomagnetic data sequences.
This is true both for hourly means of the field components and
for “range” indices, based on the range of variation of
components within 3 hr intervals.

The big advantage of geomagnetic observations is that they
are instrumental measurements that, unlike sunspot numbers
and sunspot group numbers, involve no subjective decisions by
the observer. Because they are closely related to sunspot
numbers, they offer a potential way to evaluate and check
sunspot number records (e.g., Svalgaard & Cliver 2007). The
method first used by Wolf was to look at the quiet-day diurnal
variation in geomagnetic activity, now understood to be due to
thermally driven thermospheric winds but varying mainly with
the ionospheric conductivity, and hence the ionizing EUV flux
from the Sun (Brekke et al. 1974). As the EUV flux has a close
correlation with sunspot numbers, this could provide a means
of calibration of sunspot numbers. However, the driving
thermospheric winds also vary with sunspot numbers, but with
a different dependence to the conductivities (e.g., Aruliah
et al. 1996), and also show long-term trends that are not of solar
origin (Bremer et al. 1997). In addition, the secular variation in
the geomagnetic field influences ionospheric conductivities and
hence the quiet-day magnetic variations (Cnossen & Richmond
2013; de Haro Barbas et al. 2013). These factors give
variability in the relationship between sunspots and the quiet-
day geomagnetic variation that is unknown, which, although
small, is still sufficient to make this calibration unreliable. For
example, Svalgaard & Cliver (2007) find that sunspot numbers
and the quiet-day geomagnetic variation have a correlation
coefficient of r = 0.985 with the international sunspot number
RISNv1, which leaves a 3% variation that is unexplained
(r2= 0.97)—in addition RISNv1 is now known to contain errors.
Tests show that even this very high r could disguise a drift in
RISNv1 of up to 0.1 yr−1, which would amount to 50% of the
mean value over the interval between 1750 and the present.
Hence, correlation is not an appropriate metric for assessing the
potential of a proxy data set to provide calibration.

An alternative opportunity to use geomagnetic data in this
context arises from the facts that the hourly mean data depend
primarily on the near-Earth interplanetary magnetic field (IMF)
and the range indices depend on both the IMF and the solar wind
speed (see discussion and explanation in Lockwood 2013). This
allows reconstruction of the “open solar flux” (OSF, also called
the “heliospheric source flux”; here we used the signed OSF,
denoted by FS) from combinations of hourly mean and range
geomagnetic data (Lockwood et al. 2014a). OSF provides a
good test for sunspot numbers because it is, like sunspot number,
a global indicator of solar magnetism, rather than a local
heliospheric parameter such as the near-Earth solar wind speed
and IMF (although, as discussed by Owens et al. (2016), there is
still a close relationship between sunspot number and near-Earth
interplanetary magnetic field). In addition, the variation of FS is
determined by a continuity equation in which the source term

has been expressed in terms of sunspot numbers by Solanki et al.
(2000), who used it to model the FS variation reconstructed from
the aa geomagnetic index by Lockwood et al. (1999). The model
has evolved subsequently for various applications with refine-
ments to both the production and loss rate formulations used
(Lockwood 2003; Owens & Crooker 2006, 2007; Schwadron
et al. 2010; Vieira & Solanki 2010; Owens & Lockwood 2012;
Goelzer et al. 2013; Lockwood & Owens 2014). A development
used here are cycle-dependent OSF loss rates: from theory and
observations of coronal inflows (Sheeley et al. 2001), loss rates
that depend on the tilt of the heliospheric current sheet (HCS)
were predicted by Owens et al. (2011). Owens & Lockwood
(2012) showed that the implied variation of the OSF loss rate
with the phase of the solar cycle arose naturally for the suggested
dependence of the OSF source on sunspot numbers and the
reconstructions of OSF from geomagnetic activity data.
In parallel to this modeling development, reconstructions of

OSF from geomagnetic activity indices have been refined (see
review by Lockwood 2013). The most sophisticated and robust
is that by Lockwood et al. (2014a), who used four pairings of
geomagnetic indices and Monte Carlo techniques to estimate
all uncertainties and combine the results from the four pairings.
Recent work reveals the great extent to which this gives
robustness against possible calibration errors in any one
geomagnetic data series (Lockwood et al. 2016b). This OSF
reconstruction allows for the effect of the solar wind speed on
the Parker spiral garden hose angle, and for the effect of
“folded flux” that threads the heliocentric sphere of radius
1 AU more than once, thereby making the flux through that
surface greater than the OSF by an amount termed the “excess
flux” (Lockwood & Owens 2009).
The OSF reconstruction from geomagnetic activity data is

also completely independent of the sunspot data. There is one
solar cycle for which this statement needs some clarification.
Lockwood et al. (2013a) used the early Helsinki geomagnetic
data to extend the reconstructions back to 1845, and Svalgaard
(2014) used sunspot numbers to identify a problem with the
calibration of the Helsinki data in the years 1866–1874.5 (much
of solar cycle 13). Lockwood et al. (2014b) reevaluated the
Helsinki data using simultaneous data from the nearby St-
Petersburg magnetometer and a study of the modern-day data
from the nearby Nurmijarvi station. The results confirm the
conclusion of Svalgaard (2014), but it is important to stress that
the correction of the Helsinki data for solar cycle 11 made by
Lockwood et al. (2014b), and subsequently used by Lockwood
et al. (2014a), was based entirely on magnetometer data and did
not use sunspot numbers, thereby maintaining the indepen-
dence of the two data sets. The geomagnetic OSF reconstruc-
tion provides a better test of sunspot numbers than the quiet-
day geomagnetic variation because the uncertainties in the
long-term drift in the relationship between the two are
understood and have been quantified.
The formulation of the OSF model used here was as follows.

As used by Owens & Crooker (2006), the OSF source term, S, is
assumed to follow the rate ofCoronalMassEjections (CMEs), on
average. The best fit between observed CME rate (e.g., Yashiro
et al. 2004) and R gives S = f (0.234 R0.540

–0.00153) Wb per
Carrington rotation, where f = 1012Wb is the average closed
flux carried by aCME (Lynch et al. 2005; Owens 2008). For each
sunspot record, the loss term, L, is computed by subtracting S
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from the rate of change of geomagnetic OSF estimates from 1845
to the present. For all sunspot records, the fractional L shows a
strong solar cycle variation, but remarkably little cycle-to-cycle
variation (Owens & Lockwood 2012), in close agreement with
the HCS tilt variation, as expected from theory (Sheeley
et al. 2001; Owens et al. 2011). From the full time series, we
calculate the average fractional L as a function of solar cycle
phase, which is used with S to compute sunspot-based estimates
ofOSF. The scatter between the sunspot- and geomagnetic-based
estimates ofOSF from1845 to the present are used to quantify the
uncertainty in the R-based estimate (i.e., the geomagnetic OSF
estimate is assumed to represent the ground truth).

Figure 3 shows the OSF model results for the sunspot
number and sunspot group number sequences shown in
Figure 1, using the same colors. In each panel, the black line
is the geomagnetic reconstruction of Lockwood et al. (2014a),
with the ±1σ uncertainty band shown in gray. The colored line
is the best fit for the sunspot number/sunspot group number
used and the lightly colored area is the ±1σ uncertainty for that
fit. The darker colored region is where the two uncertainty
bands overlap. It can be seen that the model captures the main
features (the decadal-scale solar cycle variations and centen-
nial-scale drifts) very well for all of the input sunspot data
sequences. This shows that the model is not relying on a feature

Figure 3. Comparisons of the reconstruction by Lockwood et al. (2014d) of the signed open solar flux, FS, from four different pairings of geomagnetic activity indices
(in black, with its ±1σ uncertainty band shown in gray) and the modeled open solar flux using the model of Owens & Lockwood (2012) using the sunspot number
sequences shown in Figure 1 to quantify the emergence of open solar flux: for (a) RC (in blue), (b) RBB (in red), (c) RUEA (in orange), (d) RG (in green), (e) RISNv2 (in
purple), and (f) RISNv1 (in brown). The ±1σ uncertainty band in each modeled FS variation is shown in a lighter shade of the line color in each case, and the darker
shade shows the overlap of the uncertainty bands of the modeled and reconstructed FS.
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of any one of the sunspot number sequences. The one
exception to these statements is solar cycle 20, for which all
of the sunspot sequences fail to reproduce the flat-topped
appearance of the OSF variation. It is tempting to ascribe this to
an error in the geomagnetic OSF reconstruction; however, this
is not the case as solar cycle 20 is covered by in situ
interplanetary observations and these match the geomagnetic
reconstruction very well (Lockwood et al. 2014c). A possible
explanation may lie in the effect of the sunspot tilt angle, which
quantifies the difference in latitude of the two footpoints of the
associated bipolar magnetic region field loops. This influences
the speed with which they separate under differential rotation
and hence the upward evolution of the loop through the corona
(Mackay et al. 2002a, 2002b). Using a flux transport model
with solar-cycle averages of observed sunspot tilt angles,
Cameron et al. (2010) are able to reproduce the OSF in cycle
20 very well, and average tilt angles are considerably lower
during the exceptionally strong preceding cycle (number 19)
than for all other cycles. Because sunspot tilt angle data are
only available continuously after 1918, their potential effects
on the source rate S are not allowed for in the model used here.

Table 1 gives the fit parameters in each case: r is the
correlation coefficient, Sr is the significance of r (allowing for
the persistence in the data and comparing against the AR1
noise model), Δ is the rms difference between the recon-
structed and fitted OSF values, ΔP is the rms difference
between the reconstructed and fitted OSF values for 3 yr
intervals around the solar-cycle maxima in OSF (peaks), and
ΔT is the rms difference between the reconstructed and fitted
OSF values for 3 yr intervals around the solar-cycle minima in
OSF (troughs). There are no statistically significant differences
between these fits. The best fit, according to several metrics, is
for RISNv2, which shows an improvement over the fit for RISNv1

in all metrics. The group numbers do not fare quite as well,
which is to be expected as sunspot group number is unlikely to
be as good a proxy of total solar magnetic flux emergence
through the photosphere and coronal source surface as sunspot
numbers. Of these, the fits for RUEA and RBB are very slightly
better than that for RG. However, none of these differences are
significant at even the 1σ level. Looking closely at Figure 3,
some qualitative differences between the fits do become
apparent.

Figure 3(a) shows the results for RC (in blue). The modeled
and reconstructed OSF sequences are very similar except for
cycle 9 (the first one in the sequence), when the value derived
from RC is too low. As discussed below, this occurs for several
of the sunspot data sequences. A major success is that in
addition to the long-term variation, this fit matches the solar
cycle amplitudes, reaching down to the minima and up to the
maxima. There is no change detected across Waldmeier
discontinuity, which one might expect to see if the correction
used was grossly in error.

Figure 3(b) shows the results for RBB (in red). Again, this
yields a larger OSF in cycle 9, but elsewhere the fits are not as
close as for RC in that RBB shows a tendency to underestimate
solar cycle amplitudes and there is a strong suggestion of
overcorrection for the Waldmeier discontinuity, with peak
values being subsequently too low.
Figure 3(c) shows the results for RUEA (in orange). Unlike

RC and RBB, this reproduces the OSF variation in solar cycle 9
well; however, it does underestimate them in cycles 10 and 11,
and the amplitudes of cycles 14, 15, and 16 are very slightly
overestimated. Figure 3(d) shows the results for RG (in green),
which are very similar to those for RUEA.
Figure 3(e) shows the results for RISNv2 (in mauve). There

may be a slight tendency to underestimate peak values and
solar cycle amplitudes after the Waldmeier discontinuity, but it
is not as marked as for RBB.
Figure 3(f) shows the results for RISNv1 (in brown). There is a

marked tendency to overestimate cycle peaks after 1947,
consistent with the Waldmeier discontinuity. Note that the
tendency for overestimation of modern cycles using RISNv1 is
as great as the tendency for underestimation in the same cycles
for RBB.

5. OBSERVER SCALING FACTORS INHERENT
IN RECONSTRUCTIONS

The k′-factors at a given level of solar activity used in
generating group numbers are usually assigned to an observer
and assumed to stay constant over the duration of his/her
observing lifetime. However, a number of factors may vary on
a range of timescales for a given observer: these include
atmospheric conditions; local site conditions (for example, via
stray light); equipment used; the algorithms, metrics, and
procedures that the observer adopted to help make the
subjective decision as to what constitutes a sunspot group;
and even his/her eyesight. These factors can introduce long-
term drift, as well as year-to-year variability in the data from
each observer. We can assess the drifts and variability for each
observer that are required by each of the reconstructed group
number composites. We do this by studying the variations of
annual observer k′-factors, ¢ka = Rg/á ñNG , inherent in a generic
sunspot group number reconstruction Rg and where á ñNG is the
annual mean of the raw sunspot group number count by the
observer in question. In this section we consider the
implications of both RBB and RUEA for observers active in
the second half of the nineteenth century.
Figure 4 plots annual means of the group numbers RG/12.08

(in green—note that the normalizing factor in Equation (2) has
been canceled), RBB (in red), and RUEA (in orange). The black
line is the “Schwabe backbone,” RBBS, generated by Svalgaard
& Schatten (2016), which they multiply by 1.48 to obtain RBB,
that being the factor that they derive from linear regression
(assuming proportionality) between their Schwabe and Wolfer

Table 1
Comparison of Metrics for the Fits Shown in Figure 3

Parameter RC RBB RUEA RG RISNv2 RISNv1

r 0.9091 0.9086 0.8959 0.8785 0.9116 0.9034
Sr(%) 99.9986 99.9995 99.9991 99.9933 99.9995 99.9979
Δ (1015 Wb) 0.0350 0.0310 0.0315 0.0399 0.0308 0.0364
ΔP (1015 Wb) 0.0483 0.0351 0.0547 0.0541 0.0356 0.0472
ΔT (1015 Wb) 0.0547 0.0508 0.0569 0.0559 0.0556 0.0610
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backbones over 1861−1883. It can be seen that there is a
significant difference between RBB and RUEA before 1885 and
that this is mainly explained by this calibration of the two
backbones because RBBS = RBB/1.48 (in black) is very similar
indeed to RUEA (in orange). An additional factor is a putative
drift in the RGO group number data calibration, which has been
proposed by Cliver & Ling (2016) to be present. The factors
combine to make RBB considerably larger than both RUEA and
RG/12.08, and they are investigated in this section.

5.1. The Drift in Early RGO Data

The top panels of Figure 5 show the annual ¢ka -factors for
various observers that are inherent in (a) RBB and (b) RUEA.
Ideally, each observer would not vary in data quality and give
¢ka points that lie along horizontal lines (i.e., ¢ka is a constant, k′,

at all times). Noise (interannual variability) can be averaged out
by taking a mean for that observer over several years (i.e.,
k′=á ¢ñka ), but trends in ¢ka mean either that the observer’s data
quality changed over time or that the reconstructed group
number used to compute ¢ka is in error. This is significant
because if several observers’ ¢ka values show the same trend,
the common denominator is the reconstructed group number,
which would then be inferred to be in error. Figure 5 shows that
both RBB and RUEA give observers’ ¢ka values that reveal, in
general, both year-to-year variability and longer-term drifts.

At sunspot minima (the joins between gray and white
vertical bands in Figure 5), large values of ¢ka are often seen.
This means that the reconstructed composite is not reaching
down to as low minimum values as the observations and is a
consequence of the asymmetric uncertainties in taking ratios

that become large at sunspot minimum. This occurs for RUEA

around 1890 (the minimum between solar cycles 12 and 13)
and for both RBB and RUEA around 1879 (the minimum
between solar cycles 11 and 12). This does not mean that the
reconstructions are incorrect at these minima, but a low-acuity
observer could be observing proportionally fewer spot groups
at sunspot minimum, as discussed by Lockwood et al. (2016a).
Indeed, the realization by Wolf (1873) that k- and k′-factors
depend on the level of solar activity tell us that we should, in
general, expect this behavior.
Looking at the averages of ¢ka for either reconstruction, it is

clear that the observers have considerably different k′-factors.
We here normalize the ¢ka values by dividing by the mean for a
reference period. To avoid the effect of the large asymmetric
errors at sunspot minimum, we here use the interval 1883–1888
for that reference period, which spans the approximate date of
1885 for the putative discontinuity in the RGO data, as defined
by Cliver & Ling (2016). The black dots show the results for all
data excepting the RGO data; the yellow dots show the RGO
data. The red histogram gives the mean for all the black dots
(i.e., excluding the RGO data). Using RBB, the calibration drift
noted by Cliver & Ling (2016) is seen as the increasing
difference between the red histogram and the yellow dots as we
look further back in time. Both the red histogram and the
yellow dots show greater variability for RUEA than for RBB, but
no great importance should be placed on this as it relates to
very small differences at sunspot minimum. However, it is
significant that the RGO data and the mean of the other data
have very similar variations after about 1885, except that in
both the lower panels of Figure 5 we seen that the RGO data
are a bit lower than the mean of the observers’ data for

Figure 4. Variations in annual means in and between the intervals covered by the Schwabe and Wolfer data. The green lines show the Hoyt & Schatten (1998) group
number, RG; the red line is the “backbone” reconstruction of Svalgaard & Schatten (2016), RBB; the orange line is the group number reconstruction of Usoskin et al.
(2016), RUEA; the black line is the “Schwabe backbone” generated by Svalgaard & Schatten (2016), RBBS, which they multiply by 1.48 to obtain RBB, that being the
factor that they derived from linear regression (assuming proportionality) of the Schwabe and Wolfer backbones over 1861–1883. Gray and white vertical bands
define, respectively, odd- and even-numbered sunspot cycles. Panel (a) covers the interval 1800–1920, and panel (b) shows 1874–1920 in greater detail.

12

The Astrophysical Journal, 824:54 (17pp), 2016 June 10 Lockwood et al.



1892–1895 (inclusive). Cliver & Ling (2016) state that the
onset of the discontinuity in the RGO data (as we go back in
time) is about 1885, but Figure 5 shows that RGO values
remain close to the mean of the available observers for 1882-
1885 and only are too small for 1875–1881. Even then, the
1881 value is not significantly low (it is within the spread of
other observers), and the 1879 and 1880 values are at sunspot
minimum and so are exaggerated by taking ratios. Hence, we
agree with the conclusion of Cliver & Ling (2016) that the
earliest RGO data are too low; however, the problem is largely
confined to the first 3 yr of the data series (1875–1877,
inclusive) in the declining phase of solar cycle 11. We also note
that a second period, not mentioned by Cliver and Ling, when
the RGO values are systematically too low compared to other
observers, exists in the years 1892–1895. Looking at the mean
values given by the red histograms, for RBB they increase
slightly but systematically with decreasing time from unity in
1882 to 1.1 in 1874. Thus, although the drift in RGO
calibration appears to be real, it is exaggerated in comparisons
with RBB by a ≈10% drift in RBB, relative to the mean of the
basket of available observers. Looking at the green, red, and
blue points in the top panel of Figure 5(a), at this time we can

see that this drift is also revealed by comparison with the data
from Wolfer, Wolf, and Schmidt (respectively) but not in the
data from Moncalieri and Tacchini (black and light gray dots,
respectively, which remain at a near constant ¢ka ) and the Spörer
data (in orange, for which ¢ka actually varies in the opposite
sense). In the corresponding figure for RUEA (Figure 5(b)) all
these data series remain more constant and the 1875–1878
values are within the range of variations seen in previous years,
and this is even true for the Spörer data, except for the year
1876. The increase in RBB, relative to the average of a basket of
observers, in the first few years of the RGO data is critical to
the RBB data series because of the daisy-chaining method used:
before 1883 is the overlap period used to calibrate the Schwabe
and Wolfer backbones, which means that this drift affects all
previous data. Note that no RGO data for before 1900 were
used in the construction of RUEA.

5.2. Intercalibration of the Data of Schwabe and Wolfer

A key intercalibration for daisy-chained composites (i.e., all
but RUEA) within the interval studied here is that between the
data of Schwabe and Wolfer, as these data form key parts of all

Figure 5. Analysis of the variations of annual group number observer factors, ¢ka , for various observers making observations in the interval covered by the nineteenth-
century RGO data: (a) for RBB (i.e., ¢ka = RBB/á ñNG , where á ñNG is the annual mean of the sunspot group counts recorded by each observer); (b) for RUEA (i.e.,
¢ka = RUEA/á ñNG ). Observers are: (orange) Spörer; (red) Wolf (using the small telescope); (blue) Schmidt; (gray) Tacchini; (pink) Weber; (green) Wolfer; (mauve)

Rico; (black)Moncalieri ; (brown)Merino; (olive) Konkoly; (white) Dawson; (yellow) RGO; and (cyan)Winkler. The lower panels show the ¢ka values normalized by
dividing by their average values over a reference period of 1883–1888: the yellow dots are for the RGO data, and the red histogram shows the mean of all normalized
values, excluding the RGO data. The vertical dashed line is 1885 when Cliver & Ling (2016) infer a discontinuity in the RGO data.
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constructions of a centennial-scale sunspot activity index. The
Schwabe data cover 1826–1867, whereas the Wolfer data cover
1878–1928. In the construction of RBB, the Schwabe data are
extended to later times, and the Wolfer data extended to earlier
times, using data from other observers to generate the
“Schwabe backbone” and “Wolfer backbone,” respectively.
Note that the same data are used to extend both backbones. The
Schwabe backbone is then recalibrated to the Wolfer backbone
using linear regression (also assuming proportionality) over the
interval 1861–1883.

Part (b) of Figure 4 shows the interval 1874–1920 in more
detail. This includes the interval 1874–1885 for which the
RGO data calibration has been questioned (Cliver & Ling
2016), and which, as discussed above, has an effect on the
calibration of all data for earlier times if daisy-chaining is
employed. Before 1900, the Usoskin et al. (2016) reconstruc-
tion RUEA does not use the RGO data, and for the interval over
which the RGO calibration has been questioned, RUEA includes
the data recorded by Wolfer (1876–1928), Winkler
(1882–1910), Tacchini (1871–1900), Leppig (1867–1881),
Spörer (1861–1893), Weber (1859–1883), and Wolf
(1848–1893). It is important to remember that all of these data
have been calibrated, independently of each other, using the
active-day fraction method and comparing against RGO data
for after 1900. Figure 4(b) shows that despite adding all these
data, for 1874–1900, RG (i.e., the RGO group number data;
green line) and RUEA (orange line) remain very similar indeed.

Figure 6 is in the same format as Figure 5, but studies the
join between the Schwabe and the Wolfer data. The observers
shown are all those used in the construction of RBB that
produced data that spanned 1872, which is in the center of the
gap between the Schwabe and Wolfer data sets. Hence, these
are the observations (and the only observations) used to extend
to the two backbones and hence intercalibrate the Schwabe and
Wolfer data in the construction of RBB. Those observers were
Spörer (shown in orange), Wolf (using the small telescope;
shown in red), Schmidt (blue), Tacchini (gray), Leppig
(mauve), Weber (pink), Howlet (cyan), and Meyer (brown).
The Schwabe data are shown in yellow and the Wolfer data in
green. In order to visually highlight the variation of the
¢ka -factors for each observer, a second-order polynomial was

fitted for each observer to help identify trends while
suppressing the year-to-year variability.

Considering RBB, the top panel of Figure 6(a) shows that
RBB predicts that the ¢ka -factor for Wolf’s small telescope data
drifted down with time very slightly throughout the interval in
which he took such measurements (red line); this implies that
his measurements got slightly more accurate over time. This is
somewhat surprising as k- and k′-factors for Wolf have
generally been thought to increase due to his deteriorating
eyesight, which is also found in the study by Friedli (2016) (see
his Figure 10). For Spörer (orange) and Schmidt (blue) the
¢ka -factor initially fell but then rose again (implying that these

observers initially grew in acuity but later grew less able to
detect spot groups): for the intercalibration interval of
1861–1883, the ¢ka values for Spörer are almost constant,
whereas they rise consistently with time for Schmidt; for
Tacchini (gray) the ¢ka are constant, but these data only cover
the second half of the calibration interval; for Leppig (mauve)
¢ka fell rapidly with time, but these data only cover the middle

of the calibration interval; for Weber (pink) it was initially
constant but then rose rapidly; for Howlet (cyan) ¢ka initially fell

very rapidly but then leveled off; and for Meyer (brown) ¢ka fell
rapidly, but these data only cover the first half of the calibration
interval. Thus, the results of intercalibration of Wolfer and
Schwabe will depend critically on the observer used to pass on
the calibration. The data of Spörer and Schmidt argue that the
data of Schwabe (up to 1867) are correctly joined to those of
Wolfer (after 1878) in RBB, whereas the data of Wolf argue that
in RBB the Schwabe data have been inflated somewhat and the
data of Leppig, Howlet, and Meyer argue that they are inflated
by a large factor. On the other hand, the data of Weber argue
that they have not been inflated enough.
To take an average of these results, the bottom panel of

Figure 6(a) shows the average variation as a red histogram,
generated in the same way as for the bottom panels of Figure 5.
The reference period used to normalize the ¢ka values is
1868–1876, which avoids sunspot minimum years for the
reasons described above.
The same procedure was applied to RUEA, and the results are

shown in Figure 6(b). The ¢ka values are all smaller, and so
RUEA is calling for less adjustment of the observers’ raw data
than does RBB. The pattern of drifts is similar (because RUEA

and RBB are so highly correlated). We here highlight not so
much the average result but the diversity of the results
depending on what weight one gives to the different observers.
The main point we are making is that daisy-chaining by
regression is an inherently unsatisfactory approach and is
greatly influenced by a number of subjective decisions about
which data to use and over which intervals. This confirms the
concerns listed in the introduction. We also note that this
calibration interval is actually relatively well populated with
data compared to earlier ones.
That having been said, Figure 6(a) does provide some

evidence that RBB has been inflated going backward in time
across this join, as Lockwood et al. (2016a) predicted it would
be by the use of nonrobust regression procedures and, in
particular, the assumption that the data series are proportional.
The bottom panel of Figure 6(a) shows that the mean of the
basket of available observations (the red histogram) displays a
rise across the calibration interval. (The horizontal blue line is
unity.) On the other hand, although RUEA does show the large
deviations that are to be expected at solar minimum, it gives
normalized ¢ka values that return to unity, showing no drift
across the intercalibration interval. To illustrate the effects of
this, the Schwabe and Wolfer data have been matched to the ¢ka
for RBB by normalizing such that the means are the same over
their period of overlap with the red histogram. The results are
shown by the yellow and green dots in the bottom panel of
Figure 6(a). It can be see that a clear jump is introduced by the
intercalibration and that this is of order 20%. This would argue
that the factor of 1.48 used by Svalgaard & Schatten (2016) in
constructing RBB is 20% too large and should be nearer 1.2;
however, this value is only indicative, and we do not advocate
its use because the individual observers give widely differing
values. The more important point is that this value can be
altered by any one of several subjective decisions about which
data to use and how to carry out the intercalibration, making the
intercalibration unreliable.

6. DISCUSSION AND CONCLUSIONS

We find that proportionality of annual means of the results of
different sunspot observers is generally invalid and that
assuming it causes considerable errors in the long-term
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variations of sunspot data composites. This is a particular
problem when daisy-chaining of calibrations is used as errors
accumulate over the interval.

Our analysis of the join between the Schwabe and Wolfer
data sunspot series shows that the uncertainties in daisy-
chaining calibrations are large and demonstrates how much the
answer depends on which data are used to make such a join.
This example, which is well populated with data compared to
earlier backbone joins in RBB, demonstrates just how unreliable
daisy-chaining of calibrations is. The concern highlighted here
relates to the quality and variability of the data used to pass the
calibration from one data series to the next. In addition to this,
the analysis of Lockwood et al. (2016a) shows that great care
needs to be taken to ensure that linear regressions are not
giving misleading results because the data are violating the
assumptions of the techniques used. Lastly, Lockwood et al.
(2016a) and Usoskin et al. (2016) also show that the practice of
assuming proportionality, and sometimes even linearity,
between data series (and hence using ratios of sunspot
numbers) is also a cause of serious error.

Opportunities for quality control of sunspot composites are
very limited because if data are good enough to form a test, the
scarcity of reliable data means that we always would want to
include them in the composite. Thus, we have to use quality
assurance, which means that we always rigorously stick to best
practices and expunge all broad-brush dismissals as “small” of
the effect of any one assumption or approximation. Errors in
any intercalibration (whether they are inside a data “backbone”
or between them) will compound over time if daisy-chaining is
used. For this reason we strongly recommend avoiding both
daisy-chaining and regression procedures and that the long-
term variations in any data composite compiled using either
technique–or, worse still, both–should not be trusted. The only
published composite that uses neither daisy-chaining nor
regression, nor assumes proportionality (or even linearity)
between the results of different observers, is RUEA by Usoskin
et al. (2016). However, we note that the result of another daisy-
chain-free method by Friedli (2016), which is yet to be
published, agrees very well with RUEA. This is not to say that
the RUEA reconstruction has been refined to its optimum

Figure 6. Same as Figure 5, but for all observations used to join the Schwabe and Wolfer backbones: (a) for RBB (i.e., ¢ka = RBB/〈NG〉, where á ñNG is the annual mean
of the sunspot group counts recorded by each observer); (b) for RUEA (i.e., ¢ka = RUEA/á ñNG ). Observers are: (orange) Spörer; (red) Wolf (using the small telescope);
(blue) Schmidt; (gray) Tacchini; (mauve) Leppig; (pink) Weber; (cyan) Howlet; (brown) Meyer; (yellow) Schwabe; and (green) Wolfer. In addition to the annual ¢ka
values, the upper panels here show second-order polynomial fits to the points for each observer to demonstrate the variations. The vertical dashed lines delineate the
interval over which the Schwabe and Wolfer backbones were correlated in the daisy-chaining used to generate RBB. The lower panels show the ¢ka values normalized
by dividing by their average values over a reference period of 1868–1876. The red histogram shows the mean of all normalized values. In the lower panel of (a), the
yellow and green dots are the data of Schwabe and Wolfer, intercalibrated using the red histogram. Note that the data shown here were used to intercalibrate the data of
Schwabe and Wolfer in the construction of RBB but were not used for that intercalibration in the generation of RUEA.
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possible form. For example, RUEA, like other composites,
currently assumes that observers maintained a constant k′-factor
(at a given R) over the period for which they made
observations. This assumption has to be made for daisy-
chaining but does not have to be made when every data
segment is calibrated by reference to a single standard data set
and interval, as is the case for RUEA. However, if the observers’
data are subdivided into too many short segments, the
calibration of each will become poorer because the statistics
are poorer. We recommend that, as in the analysis of
Lockwood et al. (2016c), the duration of the intervals used
could be iterated until the optimum compromise is achieved.

Lastly, we need to dispel some misconceptions about any
relationship of all the sunspot number reconstructions dis-
cussed here to terrestrial climate change. This stems from a
press release issued by the International Astronomical Union
(IAU) when the backbone group sunspot number was first
published (IAU 2015). This suggested that the lack of gradual
change in solar activity in the backbone reconstruction argued
against long-term solar change as a major cause of terrestrial
climate change–a somewhat bizarre conclusion because there
are many, and very much more compelling, scientific
arguments behind the scientific consensus that only a minor
part of current climate change can be attributed to solar change
(IPCC 2013). We stress that our concerns about the backbone
reconstruction are because it uses unsound procedures and
assumptions in its construction, that it fails to match other solar
data series or terrestrial indicators of solar activity, that it
requires unlikely drifts in the average of the calibration k′-
factors for historic observers, and that it does not agree with the
statistics of observers’ active-day fractions. The evidence is that
the issues discussed in the present paper do not impinge in any
way on humankind’s understanding of terrestrial climate
change. We refer the reader to reviews of the effects of solar
activity on global and regional climates by Gray et al. (2010)
and Lockwood (2012) and the contribution of Working Group
1 to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC 2013). There is growing
evidence for, and understanding of, some solar-induced
regional climate changes (which almost completely cancel on
a global scale), induced by jet stream modulation in winter by
changes to stratospheric heating gradients (Lockwood 2012;
Ineson et al. 2015; Maycock et al. 2015), but many studies have
found that solar effects on global mean temperature are very
small (e.g., Jones et al. 2012), and in this context, the difference
between the backbone and any other sunspot reconstruction is
minimal and of little consequence (Kopp et al. 2016).
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