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Abstract

We consider a particular instance of the truncated realizability problem on the
d−dimensional lattice. Namely, given two functions ρ1(i) and ρ2(i, j) non-negative
and symmetric on Zd, we ask whether they are the first two correlation functions of
a translation invariant point process. We provide an explicit construction of such a
realizing process for any d ≥ 2 when the radial distribution has a specific form. We
also derive from this construction a lower bound for the maximal realizable density
and compare it with the already known lower bounds.
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1 Introduction

Let d be a positive integer. Given a point process P = {Pi}i∈Zd on the d−dimensional
lattice, Pi ∈ {0, 1}, whose distribution is described by the probability measure µ, we
define the first and second order correlation function as follows{

ρ1(i) := 〈Pi〉
ρ2(i, j) := 〈PiPj〉 − ρ1(i)δ(i− j)

,

where i, j ∈ Zd, δ is the Dirac delta function and 〈·〉 denotes the expectation w.r.t. µ.
The truncated realizability problem addresses the inverse question. Namely, given

two functions ρ1(i) and ρ2(i, j) non-negative and symmetric for all i, j ∈ Zd, does there
exist a point process P for which these are the correspondent first and second order
correlation functions? Clearly, the truncated realizability problem can be posed for any
finite sequence of non-negative and symmetric functions (ρk(i1, i2, . . . , ik))nk=1. When the
question is asked for a given infinite sequence (ρk)k∈N, then the problem is addressed as
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Realizability problem on the d−dimensional lattice

full realizability problem (see e.g. [15, 16] for a systematic study of the full realizability
problem for point processes and [7, 8] for recent developments).

In the following we will consider the important special case of translation invariant
point processes, which actually contains all the essential difficulties of the problem. In
this case the realizability problem asks if, for given ρ ∈ R+ and g : Zd → R+ symmetric,
there exists a translation invariant point process such that its first two correlation
functions are given by {

ρ1(i) = ρ

ρ2(i, j) = ρ2g(i− j)
. (1.1)

If such a process exists, then it is said to be realizing and the pair (ρ, g) is called realizable
on Zd. Note that writing the second order correlation in this form is not an additional
restriction beyond the assumption of translation invariance. The function g is known in
classic fluid theory as radial distribution, [6].

The truncated realizability problem is in fact a longstanding problem in the classical
theory of fluids (see e.g. [5, 19, 20]), but it has been investigated in many other contexts
such as stochastic geometry [17], spatial statistics [3, 23], spatial ecology [18] and
neural spike trains [1, 9], just to name a few. In particular, Stillinger, Torquato et
al. developed fascinating applications in the study of heterogeneous materials and
mesoscopic structures based on the solvability of the truncated realizability problem (see
e.g. [4, 21, 22, 24, 25, 26]). A structural investigation of this problem was recently started
in [13], where the authors identify the realizability problem as a particular instance of
the infinite-dimensional truncated moment problem (see [2, 10, 11, 12, 14] for further
recent developments about the truncated realizability problem for point processes).
As far as we know, the only earlier reference about the truncated infinite-dimensional
moment problem is [28].

In this paper, we will show how to explicitly construct a point process on the
d−dimensional lattice with d ≥ 2 such that, for given α ≥ 0, (1.1) holds for certain
values of ρ and for g = g(α) defined as follows:

g(α)(x) :=


0 if x = 0

α if |x| = 1

1 if |x| > 1

. (1.2)

Explicit constructions of point processes realizing this lattice problem in the case d = 1

were provided in [12, Appendix 1]. Such a problem has been extensively studied for
the case α = 0 by Stillinger and Torquato in [21] (see also [4, 25]). The function g(0)

describes a model with on-site and nearest neighbour exclusion and with no correlation
for pairs of sites separated by two or more lattice spacings.

From [12, Section 1], we know that for a fixed α the set of realizable densities ρ is an
interval [0, ρ̄α(d)] with 0 < ρ̄α(d) ≤ 1. Moreover, in [12] the authors discuss:

(i) certain general methods which, when applied to (1.2), yield lower bounds for ρ̄α(d)

in any dimension d.

(ii) concrete upper and lower bounds for ρ̄α(1). In particular, the lower bounds improve
those obtained from the general methods (i).

Our d−dimensional construction combined with the one-dimensional lower bounds (ii)
provides a lower bound for ρ̄α(d) for any d ≥ 2 and any α ≥ 0. We will briefly compare this
with the lower bound obtained from the general methods (i). We also follow techniques
from [12] to get an upper bound for ρ̄α(d).
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Realizability problem on the d−dimensional lattice

2 An explicit realizing translation invariant point process on Zd

In the following, we explicitly construct a point process P = {Pi}i∈Zd on the
d−dimensional lattice with d ≥ 2 such that, for given α ≥ 0, the following hold for
certain values of ρ (depending on α and on d):

〈Pi〉 = ρ (2.1)

and

〈PiPj〉 =


ρ if i = j

αρ2 if |i− j| = 1

ρ2 if |i− j| > 1

, (2.2)

that is, the radial distribution is given by (1.2).

2.1 Construction in dimension 2

In order to build such a process on Z2 we start from a realizing one-dimensional
process achieving density γ. Namely, given α ≥ 0, we consider a point process {Ai}i∈Z,
Ai ∈ {0, 1}, defined on the one-dimensional lattice and such that for some γ > 0 we have

〈Ai〉 = γ,

and

〈AiAj〉 =


γ if i = j

αγ2 if |i− j| = 1

γ2 if |i− j| > 1

.

We denote a process of this kind by BPγ that stays for basic process with density γ. As
pointed out in the introduction, there exists a good number of constructions of realizing
processes in the one-dimensional case, see e.g. [12, Appendix 1]. The results in the
one-dimensional case relevant to our investigation (in particular the range where γ

can vary) are recalled in Section 3, which is devoted to the discussion of the maximal
realizable density in any dimension.

Let us define two processes B(1) =
{
B

(1)
i1,i2

}
(i1,i2)∈Z2

and B(2) =
{
B

(2)
i1,i2

}
(i1,i2)∈Z2

on

Z2 as follows. For a fixed i1 ∈ Z, the process
{
B

(1)
i1,i2

}
i2∈Z

is a BPγ in i2. For any

i1, j1 ∈ Z with i1 6= j1, the processes
{
B

(1)
i1,i2

}
i2∈Z

and
{
B

(1)
j1,j2

}
j2∈Z

are independent. In

particular, we have

〈B(1)
i1,i2

B
(1)
j1,j2
〉 =


γ2 if i1 6= j1
γ if i1 = j1 and i2 = j2
αγ2 if i1 = j1 and |i2 − j2| = 1

γ2 if i1 = j1 and |i2 − j2| > 1

. (2.3)

In other words, the process B(1) can be seen as a sequence of vertical BPγ’s independent
one from each other (see Figure 1 for an example).

Similarly, the process B(2) is defined as a sequence of horizontal BPγ’s independent
one from each other (see Figure 2 for an example), i.e.

〈B(2)
i1,i2

B
(2)
j1,j2
〉 =


γ2 if i2 6= j2
γ if i2 = j2 and i1 = j1
αγ2 if i2 = j2 and |i1 − j1| = 1

γ2 if i2 = j2 and |i1 − j1| > 1

. (2.4)
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Figure 1: Example of process B(1) (with α = 0)

Figure 2: Example of process B(2) (with α = 0)

Let us define now the process P = {Pi}i∈Z2 as

Pi1,i2 := B
(1)
i1,i2

B
(2)
i1,i2

,

(see Figure 3 for P constructed from the basic processes in Figures 1 and 2). Since the
processes B(1) and B(2) are independent, we get

〈Pi1,i2〉 = 〈B(1)
i1,i2

B
(2)
i1,i2
〉 = 〈B(1)

i1,i2
〉〈B(2)

i1,i2
〉 = γ · γ = γ2.

Hence, (2.1) holds for ρ = γ2. From the independence of B(1) and B(2), we also get

〈Pi1,i2Pj1,j2〉 = 〈B(1)
i1,i2

B
(2)
i1,i2

B
(1)
j1,j2

B
(2)
j1,j2
〉 = 〈B(1)

i1,i2
B

(1)
j1,j2
〉〈B(2)

i1,i2
B

(2)
j1,j2
〉. (2.5)

We can easily check, by using (2.3) and (2.4) in (2.5), that (2.2) holds for ρ = γ2. In fact,
we need to consider only the following four cases, because all the others are equivalent
to these ones by symmetry.

a) If i1 = j1 and i2 = j2 then
〈Pi1,i2Pj1,j2〉 = γ · γ = γ2.

b) If i1 = j1 and i2 6= j2 then

〈Pi1,i2Pj1,j2〉 = 〈B(1)
i1,i2

B
(1)
j1,j2
〉γ2.

Therefore:
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• if i2 = j2 + 1 then 〈B(1)
i1,i2

B
(1)
j1,j2
〉 = αγ2 and so 〈Pi1,i2Pj1,j2〉 = αγ4

• if |i2 − j2| > 1 then 〈B(1)
i1,i2

B
(1)
j1,j2
〉 = γ2 and so 〈Pi1,i2Pj1,j2〉 = γ4.

c) If i1 = j1 + 1 and |i2 − j2| > 1 then

〈Pi1,i2Pj1,j2〉 = 〈B(1)
i1,i2

B
(1)
j1,j2
〉〈B(2)

i1,i2
B

(2)
j1,j2
〉 = γ4.

d) If |i1 − j1| > 1 and i2 6= j2 then

〈Pi1,i2Pj1,j2〉 = 〈B(1)
i1,i2

B
(1)
j1,j2
〉〈B(2)

i1,i2
B

(2)
j1,j2
〉 = γ4.

Figure 3: Process P constructed from the processes in Figure 1 and Figure 2

2.2 Construction in higher dimension

The construction presented in the previous subsection easily generalizes to any
dimension d>2 by defining Pi1,...,id:= B

(1)
i1,...,id

· · ·B(d)
i1,...,id

where, for any fixed i2, . . . , id∈Z,

{B(1)
i1,...,id

}i1∈Z is a BPγ in the variable i1 with density γ and similarly for the other

variables. Therefore, the point process P on Zd defined as above satisfies (2.1) and (2.2)
for ρ = γd.

3 Bounds for the maximal realizable density

In this section, we will discuss the problem of estimating the maximal realizable
density ρ̄α(d). In particular, we will show a general upper bound for any d ≥ 1 using the
technique introduced in [12] for d = 1. As for the lower bound, we will recall the results
in [12, Appendix 1] for the one-dimensional case and combine them with the explicit
construction proposed in Section 2 to produce a lower bound for ρ̄α(d) for any d ≥ 2. We
will compare this with the lower bound obtained by applying the general methods of [12]
to the case when the radial distribution is given by (1.2).

3.1 Upper bounds for ρ̄α(d)

For d ≥ 1 and α ≥ 0, the covariance matrix associated to a given pair (ρ, g(α))

realizable on Zd must be positive semidefinite. This is equivalent to the non-negativity of
the corresponding infinite volume structure function Ŝ on Rd (for more details see e.g.
[12, Section 2]):

Ŝ(k) := ρ+ ρ2
∑
x∈Zd

eik·x[g(α)(x)− 1] ≥ 0, ∀k ∈ Rd.

ECP 21 (2016), paper 45.
Page 5/9

http://www.imstat.org/ecp/

http://dx.doi.org/10.1214/16-ECP4620
http://www.imstat.org/ecp/


Realizability problem on the d−dimensional lattice

This leads to an explicit upper bound for the maximal realizable density ρ̄α(d). In fact, it
is easy to see that for any k := (k1, . . . , kd) ∈ Rd we get

Ŝ(k) = ρ− ρ2 + ρ2
∑

x∈Zd,|x|=1

eik·x(α− 1)

= ρ− ρ2 + ρ2(α− 1)

d∑
j=1

(eikj + e−ikj )

= ρ

1− ρ

1− 2(α− 1)

d∑
j=1

cos(kj)

 .
Then, using the non-negativity of Ŝ on Rd, we get that

ρ ≤ 1

fα(k1, . . . , kd)
, ∀ (k1, . . . , kd) ∈ Rd,

where fα(k1, . . . , kd) := 1− 2(α− 1)
∑d
j=1 cos(kj). The best upper bound is then obtained

for the points of Rd where fα attains the maximum. Hence, we have that

ρ̄α(d) ≤ 1

max
k∈Rd

fα(k)
=: RF (α, d).

By computing the maximum of fα over Rd, we get our upper bound

RF (α, d) =
1

1 + 2d|1− α|
. (3.1)

As mentioned above, this technique was employed in [12, Appendix 1] to get RF (α, 1).
Furthermore, the authors provided another upper bound RY (α, 1) in the one-dimensional
case by using the Yamada condition (see [27]). Note that{

RY (α, 1) = RF (α, 1), if α = 1
2 or α = k±1

2k , k ∈ N or α ≥ 1

RY (α, 1) < RF (α, 1) otherwise.

3.2 Lower bounds for ρ̄α(d)

Applying [12, Theorem 3.2] for g ≡ g(α) when 0 ≤ α < 1 and [12, Theorem 5.1] for
G2(x,y) = g(α)(y − x) for all x,y ∈ Zd such that x 6= y when α ≥ 1, we get that

ρ̄α(d) ≥ rA(α, d) :=

{ 1
e(2d+1−2dα) , if 0 ≤ α < 1,
1
α2d , if α ≥ 1.

(3.2)

For d = 1, this lower bound has been improved in [12, Appendix 1] by explicitly construct-
ing a translation invariant realizing process at some value of ρ and α. Let us summarize
in one formula the lower bounds coming from the two main constructions considered in
[12, Appendix 1]:

ρ̄α(1) ≥


1

(1+
√
1−α)2 , if 0 ≤ α < 1

2 ,
1

1+
√
2−2α , if 1

2 ≤ α ≤ 1,
1

2α−1 , if α ≥ 1.

(3.3)

In [2] a further explicit construction is provided for the case α = 0, which slightly
improves this lower bound to ρ̄0(1) > 0.265. In the same work also the upper bound is
improved to ρ̄0(1) < (326−

√
3115)/822 ≈ 0.3287. However, it remains an open problem

to reduce the gap between lower and upper bounds for ρ̄α(1) for any α ≥ 0.
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Exactly as in the one-dimensional case, also for d ≥ 2, one can try to obtain better
lower bounds than (3.2) by using explicit constructions. In the following, we will use the
construction we proposed in Section 2 combined with the one-dimensional lower bound
(3.3) to compute a new lower bound for ρ̄α(d), which we will briefly compare with (3.2).

If we apply the construction given for d ≥ 2 in Section 2 starting with a basic
process with density ρ̄α(1), then we get a point process on Zd which realizes the pair(
(ρ̄α(1))d, g(α)

)
for any α ≥ 0. This explicit construction guarantees that for any α ≥ 0,

ρ̄α(d) ≥ (ρ̄α(1))d.

Using the lower bounds (3.3) in the latter inequality, we directly have the following

ρ̄α(d) ≥ rC(α, d) :=


1

(1+
√
1−α)2d , if 0 ≤ α < 1

2 ,
1

(1+
√
2−2α)d , if 1

2 ≤ α ≤ 1,
1

(2α−1)d , if α ≥ 1.

(3.4)

Note that:

• if 0 ≤ α < 1
2 then rC(α, d) ≤ rA(α, d)

• if α ≥ 1 then rA(α, d) ≤ rC(α, d)

• if 1
2 ≤ α ≤ 1 then the relation between the two bounds depends on the dimension d.

Actually, for each d ≥ 2 there exists αC(d) ∈
[
1
2 , 1
]

such that rA(α, d) ≤ rC(α, d) for
any αC(d) ≤ α ≤ 1.

The comparison between the lower bounds rC(α, d) and rA(α, d) is illustrated in Figure 4
for d = 2, . . . , 6 and for 0 ≤ α < 1.

0 0.2 0.4 0.6 0.8 1
0

0,2

1/e

0,6

0,8

1

α

r C
(α

,d
)/

R
F
(α

,d
)

 

 

d=2
d=3
d=4
d=5
d=6

Figure 4: Comparison between the lower bounds rC(α, d) and rA(α, d) plotted relatively
to the upper bound RF (α, d) as functions of α with 0 ≤ α < 1. The coloured lines
correspond to rC(α,d)

RF (α,d) for d = 2, . . . , 6 and the dotted line to rA(α,d)
RF (α,d) for any d. For the

definitions of RF (α, d), rA(α, d), rC(α, d) see (3.1), (3.2), (3.4), respectively.
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