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Regulatory authorities require that the sample size of a confirmatory trial is calculated prior to the start
of the trial. However, the sample size quite often depends on parameters that might not be known in
advance of the study. Misspecification of these parameters can lead to under- or overestimation of the
sample size. Both situations are unfavourable as the first one decreases the power and the latter one leads
to a waste of resources. Hence, designs have been suggested that allow a re-assessment of the sample size
in an ongoing trial. These methods usually focus on estimating the variance. However, for some methods
the performance depends not only on the variance but also on the correlation between measurements.
We develop and compare different methods for blinded estimation of the correlation coefficient that
are less likely to introduce operational bias when the blinding is maintained. Their performance with
respect to bias and standard error is compared to the unblinded estimator. We simulated two different
settings: one assuming that all group means are the same and one assuming that different groups have
different means. Simulation results show that the naı̈ve (one-sample) estimator is only slightly biased
and has a standard error comparable to that of the unblinded estimator. However, if the group means
differ, other estimators have better performance depending on the sample size per group and the number
of groups.

Keywords: Blinded; Correlation; Covariance; Estimation; Unblinded.

� Additional supporting information including source code to reproduce the results
may be found in the online version of this article at the publisher’s web-site

1 Introduction and motivation

The traditional approach to conducting a confirmatory clinical trial is to calculate a fixed sample size
in advance of the study. This sample size usually depends on a specified significance level and power but
also on other parameters such as variances, mean values, or response rates. While the significance level
and power are set by the researcher, the other parameters are usually estimates obtained from previous
trials. However, situations occur where these parameters cannot be estimated or can be estimated only
with considerable uncertainty at the planning stage of the trial. Designs allowing a re-assessment of
the initial sample size during an ongoing trial have become increasingly popular. Several approaches
to estimate the variance in an ongoing trial have been suggested and their performance has been
studied. One approach is the common pooled variance estimator that is often used for sample size
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2 C. U. Kunz et al.: Blinded versus unblinded interim correlation estimation

re-estimation (see, e.g. Wittes and Brittain, 1990; Birkett and Day, 1994; Coffey and Muller, 1999;
Denne and Jennison, 1999; Wittes et al., 1999; Zucker et al., 1999; Kieser and Friede, 2000; Coffey
and Muller, 2001; Miller, 2005). This estimator requires unblinding of the treatment group at the time
of the interim analysis. As blinding of patients, investigators and the trial team is important in clinical
trials to avoid bias (see, e.g. International Conference on Harmonisation of Technical Requirements
for Registration of Pharmaceuticals for Human Use (ICH), 1998), regulatory guidelines on adaptive
designs encourage the use of blinded methods (European Medicines Agency (EMEA) - Committee for
Medicinal Products for Human Use (CHMP), 2007; Food and Drug Administration (FDA), 2010). As
a consequence, estimators based on the blinded data set have been proposed. Bristol and Shurzinske
(2001) suggested the total variance or one-sample variance estimator that is unbiased if there are no
group differences but otherwise overestimates the within group variance. In order to reduce bias, Gould
and Shih (1992) and Zucker et al. (1999) proposed correction methods for the one-sample variance
estimator by subtracting a between-group variance term from the one-sample estimator based on an
assumed treatment effect. Xing and Ganju (2005) proposed an unbiased estimator based on the blinded
data that utilises information about the randomisation block size. They later extended their method to
the situation of covariates (Ganju and Xing, 2009). These blinded estimators were recently compared
with regard to bias and variance by Friede and Kieser (2013). A review of the various sample size
re-estimation procedures can be found in Friede and Kieser (2006).

In some cases the sample size required can depend on the correlation between different measurements
in addition to the variance. However, often there is very little information available on the correlation
at the planning stage of a clinical trial. Hence, investigators might want to estimate the correlation in
an ongoing trial.

In this paper, we develop and compare estimators for the covariance and the correlation based on
blinded data obtained at an interim analysis. The estimators are compared with respect to their bias
and their standard error.

In the remainder of this section we provide a brief overview of situations where the value of the
correlation is required and it might be beneficial to obtain an estimate of this based on interim data.
The rest of our paper is organised as follows: Section 2 introduces the notation used in the paper and
describes the different estimators we have considered. Our findings are summarised in Section 3 and
we close the paper with the discussion in Section 4.

1.1 Multiple primary endpoints

Offen et al. (2007) list some disorders for which regulatory agencies require a treatment to demonstrate
a statistically significant effect on multiple endpoints. Tests on each of these endpoints have to be
performed at the one-sided 2.5% significance level before the treatment’s effect can be accepted for
the particular disorder. The list includes common disorders like migraine but also comprises arthritis,
Alzheimer’s disease, depression, multiple sclerosis, psoriasis, and rare diseases such as lupus erythre-
matosus. They also show how the correlation between the primary endpoints can affect the power of
a trial in the case of “co-primary” endpoints, that is situations where statistical significance has to
be achieved for all primary endpoints under investigation. For example, even if only two endpoints
are considered the overall power decreases from 80% to 64% if the endpoints are independent (using
the intersection-union test approach). This would have to be compensated by a substantial increase
in sample size that is a drain on resources and might even be impossible in some settings such as rare
diseases. Based on the work of Offen et al., Chuang-Stein et al. (2007) propose a new method for
the same situation using a mixed frequentist and Bayesian approach. Although their method has a
smaller sample size than the intersection-union approach, it still depends on the correlation between
the endpoints. Furthermore, Lucadamo et al. (2012) study different solutions for estimating the power
of the intersection-union test. Another situation where the correlation between multiple primary end-
points is of concern is where the trial is deemed positive if a statistically significant result is obtained
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for at least one of the endpoints under consideration. Li and Mehrotra (2008), for example, develop a
method where the significance level for a second primary endpoint depends on the observed p-value
for the first one. Their approach also depends on the correlation between the endpoints.

1.2 Multiple short-term surrogate endpoints

Other situations where the correlation between measurements can be of importance for the perfor-
mance of a method include the use of short-term (surrogate) secondary endpoints to inform decisions
in an ongoing trial. Galbraith and Marschner (2003) discuss interim analyses for clinical trials where
an endpoint is observed repeatedly during follow-up, with the last observation being considered the
primary endpoint. They show that the correlation between the measurements taken at different time
points can be exploited in order to increase the precision of the estimate of the primary endpoint
effect. Todd and Stallard (2005) describe a method for adaptive seamless phase II/III designs where
a secondary endpoint is incorporated into the trial design in order to select the most promising treat-
ment at an interim analysis (see also Stallard, 2010; Kunz et al., 2015). Furthermore, Kunz et al.
(2014) developed an approach to select the most promising treatment based on interim analysis data
incorporating a short-term endpoint. The last methods depend on the ability to obtain an unbiased
estimate of the correlation coefficient in an ongoing trial, often based on very little data.

2 Statistical methods

2.1 Notation

Let G ≥ 2 denote the number of arms within a multi-arm, randomised, controlled, double-blind trial
and let ng denote the number of patients in group g (g = 1 . . . G) for which data are available with

n = ∑G
g=1 ng. Furthermore, let G(i) denote a function indicating group membership for patient i, that

is with G(i) = g if patient i is in group g. Assume that in each of the G groups two measurements (xi
and yi) per patient are taken that follow a bivariate normal distribution with

(
Xi
Yi

)
∼ N

⎛
⎜⎝

(
μxG(i)

μyG(i)

)
,

⎛
⎜⎝

σ 2
xG(i)

ρσxG(i)
σyG(i)

ρσxG(i)
σyG(i)

σ 2
yG(i)

⎞
⎟⎠

⎞
⎟⎠ .

Note, that we assume the correlation to be independent of the group, that is the correlation between X
and Y is the same within each group g. Furthermore, while μxg

and μyg
denote the unknown population

parameters of group g, for some methods described below it is necessary to specify values for these
parameters that are assumed in order to estimate the covariance or correlation. Let μ̃xg

and μ̃yg
denote

these assumed values with μ̃xg
= μxg

+ δxg
, μ̃yg

= μyg
+ δyg

, μx = ∑G
g=1

ng

n μxg
, μy = ∑G

g=1
ng

n μyg
, δx =∑G

g=1
ng

n δxg
, δy = ∑G

g=1
ng

n δyg
, μ̃x = ∑G

g=1
ng

n μ̃xg
, and μ̃y = ∑G

g=1
ng

n μ̃yg
.

We mainly focus on block randomisation but also include results for simple randomisation (Altman
and Bland, 1999) for one blinded estimator. Let B(i) denote a function indicating block membership
for patient i, that is with B(i) = b if patient i is in group b.

2.2 Time of the analysis

In the following, we assume that the time of the analysis is fixed so that estimating the correlation
is always done after a fixed number of patients, n, is enrolled into the trial. In the case of block
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Table 1 Proposed estimators for the covariance.

Block randomisation
Unblinded

Pooled covpool = 1
n

∑G
g=1

ng

ng−1

(∑
i:G(i)=g(xi − x̄g)(yi − ȳg)

)
Blinded

Naı̈ve covnaı̈ve = 1
n−1

∑n
i=1(xi − x̄)(yi − ȳ)

Based on Xing and Ganju covXG = B
n(B−1)

∑B
b=1

( ∑
i:B(i)=b(xi − x̄)

)( ∑
i:B(i)=b(yi − ȳ)

)
Based on Zucker et al.

Using x̄, ȳ covZ1 = n−1
n covnaı̈ve − ∑G

g=1
ng

n μ̃xg
μ̃yg

+ x̄ȳ

Using μ̃x, μ̃y covZ2 = covnaı̈ve − ∑G
g=1

ng

n−1 μ̃xg
μ̃yg

+ n
n−1 μ̃xμ̃y

Simple randomisation
Blinded covsr = 1

n−1

∑n
i=1(xi − x̄)(yi − ȳ)

randomisation, the number of patients per group, ng, is also fixed. If simple randomisation is used only
the total number of patients, n, is fixed while ng can vary.

2.3 Estimation of the covariance

Our ultimate aim is to estimate the correlation ρ. However, we start by focusing on estimating the
covariance between X and Y . Table 1 lists the six different estimators we have investigated. In order to
calculate the pooled covariance covpool, we need to unblind the data. We then calculate the covariance
within each group and take a “weighted average” across the groups. If we do not unblind the data,
four different estimators for the covariance can be defined. The “naı̈ve” estimator covnaı̈ve is obtained
by calculating the covariance for the whole data set, that is treating the data as if they were obtained
from just one group. This method can always be applied, hence, we present results not only for block
randomisation but also for simple randomisation (covsr).

The other estimators all require block randomisation. Xing and Ganju (2005) developed an estimator
for the variance of an endpoint in an ongoing blinded trial. Their estimator uses the enrollment order
of subjects and the randomisation block size to estimate the variance. We extend their method to allow
for estimation of the covariance (covXG) and different sample sizes, variances, and correlations within
each group. Zucker et al. (1999) also propose an estimator for the variance based on blinded data.
Their estimator incorporates assumptions about the differences in the means between the different
groups. Again, we extend their method to allow for estimation of the covariance and more than two
groups as well as different variances, sample sizes, and correlations within each group. We present
results for two different versions of this estimator: the first one (covZ1) is based on the estimated overall
means for the two endpoints x̄ and ȳ. The second one (covZ2) is based on the assumed overall means
for the two endpoints μ̃x and μ̃y.

3 Results

3.1 Analytical expressions for the expected values of estimators for the covariance

For the covariance, analytical expressions for the expected values of the estimators can be obtained.
Table 2 shows the expected values for the general case, allowing for different sample sizes, variances,
correlations, and means within each group.
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Table 2 Expected values of the estimators for the covariance.

Block randomisation
Unblinded

Pooled E [covpool] = ∑G
g=1

ng

n ρσxg
σyg

Blinded
Naı̈ve E [covnaı̈ve] = ∑G

g=1
ng

n ρσxg
σyg

+ n
n−1

( ∑G
g=1

ng

n μxg
μyg

− μxμy

)
Based on Xing and Ganju E [covXG] = ∑G

g=1
ng

n ρσxg
σyg

Based on Zucker et al.
Using x̄, ȳ E [covZ1] = ∑G

g=1
ng

n ρσxg
σyg

− ∑G
g=1

ng

n

(
μxg

δyg
+ μyg

δxg
+ δxg

δyg

)
Using μ̃x, μ̃y E [covZ2] = ∑G

g=1
ng

n ρσxg
σyg

− ∑G
g=1

ng

n−1

(
μxg

δyg
+ μyg

δxg
+ δxg

δyg

)
+ n

n−1 (μxδy + μyδx + δxδy)

Simple randomisation
Blinded E [covsr] = ∑G

g=1
ng

n ρσxg
σyg

+ ∑G
g=1

ng

n μxg
μyg

− μxμy

If we assume equal variances σ 2
xg

and σ 2
yg

within each group g, we see that only two estimators for the

covariance are unbiased: the pooled estimator covpool (based on the unblinded data) and the estimator
based on Xing and Ganju (covXG) as the expected value for both simplifies to ρσxσy with σx = σxg

and

σy = σyg
for g = 1 . . . G. With equal variances, the naı̈ve estimators covnaı̈ve and covsr are unbiased if

μxg
and μyg

are 0 for g = 1 . . . G. The estimators based on Zucker et al. are both unbiased if δxg
= 0

and δyg
= 0 for all g = 1 . . . G. However, the second estimator covZ2 is also unbiased if a much weaker

condition is fulfilled, that is as long as δxg
= δx and δyg

= δy for g = 1 . . . G holds true.

3.2 Application to real data example

Wilcock et al. (2000) report the outcome of a randomised controlled trial of galantamine in patients
with mild to moderate Alzheimer’s disease. Two different dose levels (24 and 32 mg) were tested against
placebo. The primary endpoint was the score on the 11 item cognitive subscale of the Alzheimer’s
disease assessment scale measured after 6 months. Wilkinson et al. (2001) also report the outcome of
a randomised trial of galantamine in patients with Alzheimer’s disease. However, they compared three
dose levels (18, 24 and 36 mg) to placebo. They used the same primary endpoint but measured after
12 weeks. Wilkinson et al. also report that an interim analysis was carried out after approximately 20
patients per group had completed assessment.

So, in total, there were four treatment groups (dose levels 18, 24, 32 and 36 mg) and the placebo
group and two different outcome measures. In such a situation, we might want to use an adaptive
seamless Phases II/III design with treatment selection at interim as described by, for example, Todd
and Stallard (2005). However, as the method depends on the correlation between the endpoints (see
Kunz et al., 2015), we might want to estimate the correlation within the ongoing trial.

Based on Wilcock et al. (2000) and Wilkinson et al. (2001), we simulated data for up to five groups.
For the 6-months endpoint, we used means of 27.1, 25.0, 24.7, 24.5 and 24.4. For the 12-weeks
endpoint, we used means of 29.2, 25.2, 24.8, 24.2 and 23.9. The standard deviation was set to 10 for all
groups. The sample size per group was set to either 6 or 24 and the correlation between the endpoint
varied between −0.9 and +0.9 in steps of 0.1. For δx and δy we used the values as shown in Table 3
under Example 2.

C© 2016 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Table 3 Parameter settings for the simulation study.

Example 1 Example 2
g μx μy δx δy σx σy μx μy δx δy σx σy

1 0 0 0.1 0.5 1 1 0 0 0.1 0 1 1
2 0 0 0.1 0.5 1 1 0.25 0.25 0.1 −0.125 1 1
3 0 0 0.1 0.5 1 1 0.5 0.5 0.1 −0.25 1 1
4 0 0 0.1 0.5 1 1 0.75 0.75 0.1 −0.375 1 1
5 0 0 0.1 0.5 1 1 1 1 0.1 −0.5 1 1
ρ −0.8, 0, +0.8
G 2, 3, 5
ng 6, 24
B 2, 3, 6 (if ng=6) and 2, 3, 4, 6, 8, 12, 24 (if ng=24)

Figure 1 Mean (± s.e.) for the estimate of the correlation coefficient.

Figure 1 shows the results for the real data example. The two scatter plots show examples for how the
data might look at the time of the interim analysis. Different markers are used for the different groups.
Note that due to the relatively large standard deviation (compared to the relatively small difference
between the means) without the different markers, we would not be able to distinguish between the
different groups.

For a sample size of ng = 6, we see that all estimators yield a correlation estimate of about 0.8 except
for the estimator based on Xing and Ganju that yields an estimate of 0.76. The latter also has the
largest standard error (s.e. 0.22) while the other estimators have a standard error between 0.07 and
0.10.

For a sample size of ng = 24, the bias of the estimator based on Xing and Ganju gets smaller as
does the standard error. However, the standard error for this estimator is still larger than for the other
estimators we investigated.

C© 2016 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 00 (2016) 00 7

3.3 Simulation-based estimates for the expected values of estimators for the correlation
coefficient ρ

In order to obtain a better overview of the properties of the estimators, we simulated data for two
examples with different parameter settings that are given in Table 3. For the first example we assumed
that all groups have the same means μxg

and μyg
, which, without loss of generality, were both set to 0.

This setting reflects a scenario where the null hypothesis would be true. For the estimators based on the
work of Zucker et al. we assumed that δx = 0.1 and δy = 0.5 for all groups. For the second example, we
assumed different means and different δy for different groups. For both examples, data were simulated
for three different values of ρ, for three different values of G and for two different values of ng. All
variances are taken to be equal to 1. For the estimator based on Xing and Ganju, we also considered
different values for B depending on the sample size ng. For each scenario considered we simulated data
between 10,000 and 3,000,000 times (depending on how stable the results for the standard error were).

For each simulated dataset, we estimated the covariance and the variances using one of the methods
described above. Note that the variances are a special case of the covariance , that is in general
VAR[X ] = cov [X, X ]. Hence, the variances can be obtained using the estimators in Table 1 replacing
either y with x (to obtain the variance of X ) or x with y (to obtain the variance of Y ). We then
calculated the correlation r using r = ρ̂ = ˆcov/(σ̂xσ̂y).

Figure 2 shows the results for Example 1. Results for rZ1 were omitted in the figure as they were
often highly biased. They can still be found in Table A.1 in the Appendix. In the following we will only
discuss the results for the other estimators.

The left-hand side of the figure shows schematic examples of the scatter plots for the scenarios
considered. The right-hand side shows the results for the correlation estimators for different sample
sizes ng and different numbers of groups G. The upper panel shows the results for ρ = −0.8, the
middle panel shows the results for ρ = 0 and the bottom panel shows the results for ρ = +0.8. For
each method we present the mean and the standard error (s.e.). Overall, nearly all estimators are
unbiased except for the estimator based on Xing and Ganju. For a correlation of ρ = ±0.8, we obtain
rXG = ±0.6 if B = 2. The expected value of the estimator is not affected by the number of groups G
nor by the sample size ng. The only parameter that affects the results for this particular estimator is
the number of blocks B. If B = ng, the estimator is less biased and has a smaller standard error that
can be seen by comparing the results for ng = 6 with ng = 24. If ρ = ±0.8, ng = 6 and B = ng = 6,
the estimated correlation is rXG = ±0.76(s.e. ± 0.23) while if ng = 24 and B = ng = 24, the estimated
correlation is rXG = 0.79(s.e. ± 0.08). If ρ = 0, the estimator based on Xing and Ganju is unbiased
but still has the largest standard error irrespective of the sample sizes, the number of groups or the
number of blocks.

All other estimators lead to very similar results. In all cases the estimators are either unbiased or the
bias is very small compared to the standard error. The standard errors depend on the sample sizes and
the number of groups, with larger sample sizes and more groups leading to smaller standard errors. It
might be noteworthy that the standard error also depends on the correlation ρ, with ρ = 0 leading to
the largest standard error for all estimators.

The situation changes if the group means are different as can be seen from Figure 3 (again results
for rZ1 are omitted from the figure, but are included in the Appendix in Table A.2). Now, nearly all
estimators are biased except for the “pooled” one which requires unblinding. Largest bias occurs for
the naı̈ve estimator for ρ = −0.8, ng = 6 and G = 2. In this case, the average estimated correlation
is rnaı̈ve = −0.41 with a standard error of 0.23. While the bias gets smaller if the number of groups
increases, the sample size per group does not have much impact. For example, for ρ = −0.8 the
estimated correlation is −0.41 (−0.43) for G = 2 and ng = 6 (ng = 24), −0.53 (−0.54) for G = 3 and
ng = 6 (ng = 24) and −0.59 (−0.60) for G = 5 and ng = 6 (ng = 24). However, the standard error clearly
decreases for larger sample sizes and more groups. For example, for ρ = −0.8 the standard error is
0.23 for ng = 6 and G = 2, but only 0.05 for ng = 24 and G = 5.

C© 2016 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Figure 2 Mean (± s.e.) for the estimate of the correlation coefficient for Example 1.

C© 2016 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Figure 3 Mean (± s.e.) for the estimate of the correlation coefficient for Example 2.

C© 2016 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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The estimator based on the work of Xing and Ganju is less biased than the naı̈ve estimator. However,
especially if data for only two blocks is available, the standard error is very large. For ρ = ±0.8 we
obtain a standard error of about 0.80 and for ρ = 0 we get 1. Hence, if we calculate a 95% confidence
interval it would actually span the entire range of possible values for ρ from −1 to 1. Results for this
estimator improve when B = ng. However, large standard errors can still occur.

The estimator based on the work by Zucker et al. is also biased, even if δx and δy are 0, that is,
even if we guess the true population means correctly, we still under- or overestimate the correlation.
For example, for ng = 6 and G = 2, we get rZ2 = −0.88 (for ρ = −0.8), rZ2 = −0.08 (for ρ = 0), and
rZ2 = 0.76 (for ρ = +0.8). While results improve for larger sample sizes and more groups, the estimator
still depends on δx and δy, that is on the ability to correctly “guess” the differences between the group
means. It also should be noted that for n6 = 6 and G = 2, the standard error of the estimators based
on the work of Zucker at al. can be quite substantial and sometimes even larger than the one for the
estimator based on Xing and Ganju for B = 2. Further results for other scenarios can be found in the
online Supporting Information.

4 Discussion

In this paper, we have considered a number of estimators for the correlation coefficient based on
blinded and unblinded data to inform interim decisions in flexible designs and have compared their
performance. We have mainly focused on block randomisation and blinded estimators.

Unsurprisingly, the unblinded estimator is only slightly biased and tends to have the smallest
standard error in all investigated settings. However, it requires unblinding, whereas maintaining the
blind is considered to be one of the most important techniques (together with randomisation) to
eliminate or minimise bias (International Conference on Harmonisation of Technical Requirements
for Registration of Pharmaceuticals for Human Use (ICH), 1998).

Under the null hypothesis, the naı̈ve estimator performs best out of all estimators based on blinded
data. Furthermore, it requires no assumptions and no information other than the data for the two
variables under consideration. Yet, its performance is similar to the unblinded estimator for this
scenario. However, under the alternative, the bias of this estimator can be substantial.

The estimator based on the work by Xing and Ganju gives an unbiased estimate for the covariance
but not for the correlation, especially when only a small number of blocks is available. It also has a large
standard error which can be so large that a 95% confidence interval spans the entire range of possible
values for the correlation. While increasing the number of blocks leads to a better performance, that
is smaller bias and smaller standard error, it also means that the block length is shorter. However, a
small block length is undesirable as, for example, Miller et al. (2009) have pointed out. Furthermore,
van der Meulen (2005) shows that is possible to get some “eyesight” about the treatment effect with
reasonable precision especially when a small block length is used.

The estimator based on the work of Zucker et al. shows a similar performance to the naı̈ve estimator
under the null hypothesis, that is the estimator is unbiased and has a similar standard error. However,
under the alternative hypothesis, although the bias is smaller than the bias for the naı̈ve estimator,
it can still be noticeably biased. This is especially the case if the assumptions about the differences
between the true group means are incorrect. However, if the sample sizes within the groups or the
number of groups is not too small, the estimator leads to only slightly biased results with a standard
error comparable to the one of the unblinded pooled estimator.

Overall, no estimator dominates the others uniformly. Under the null hypothesis, or under alterna-
tives reasonably close to the null hypothesis, use of the naı̈ve estimator is clearly recommended as it
requires no additional information and its performance is nearly the same as the unblinded estimator.
Under the alternative, the use of the estimator based on the work of Xing and Ganju performs best
if sample sizes per group are small, only very few groups are available, and the block length used for
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the block randomisation is short. Otherwise the estimator based on the work of Zucker et al. can be
considered if reasonably accurate estimates for the group means exist.
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Appendix

Tables A.1 and A.2 give a detailed summary of the simulation results for Examples 1 and 2 introduced
in Section 3.3 above, respectively, and correspond to results shown in Figures 2 and 3. The tables give
the mean (and standard errors) for the different correlation estimates considered, including those for
rZ1 that were omitted from the figures.

Table A.1 Simulation results for different scenarios under H0 (Example 1).

ng = 6 ng = 24
G = 2 G = 3 G = 5 G = 2 G = 3 G = 5

rsr −0.79 (0.13) −0.79 (0.10) −0.79 (0.07) −0.80 (0.05) −0.80 (0.04) −0.80 (0.03)
rpool −0.78 (0.14) −0.79 (0.10) −0.79 (0.08) −0.80 (0.05) −0.80 (0.04) −0.80 (0.03)

ρ = −0.8 rnaı̈ve −0.79 (0.13) −0.79 (0.10) −0.80 (0.07) −0.80 (0.05) −0.80 (0.04) −0.80 (0.03)
rXG,B=2 −0.60 (0.80) −0.58 (0.81) −0.58 (0.82) −0.60 (0.80) −0.58 (0.81) −0.59 (0.81)
rXG,B=ng

−0.76 (0.23) −0.76 (0.23) −0.77 (0.22) −0.79 (0.08) −0.79 (0.08) −0.79 (0.08)

rZ1,δ=0 −0.79 (0.12) −0.79 (0.09) −0.80 (0.07) −0.80 (0.05) −0.80 (0.04) −0.80 (0.03)
rZ2,δ=0 −0.79 (0.13) −0.79 (0.10) −0.80 (0.07) −0.80 (0.05) −0.80 (0.04) −0.80 (0.03)
rZ1,δ �=0 −1.03 (0.20) −1.02 (0.18) −1.00 (0.07) −0.99 (0.05) −0.99 (0.04) −0.99 (0.03)
rZ2,δ �=0 −0.79 (0.13) −0.79 (0.10) −0.80 (0.07) −0.80 (0.05) −0.80 (0.04) −0.80 (0.03)
rsr 0.00 (0.30) −0.00 (0.24) 0.00 (0.19) 0.00 (0.15) 0.00 (0.12) 0.00 (0.09)
rpool −0.01 (0.32) 0.01 (0.26) −0.00 (0.20) −0.00 (0.15) 0.00 (0.12) −0.00 (0.09)

ρ = 0 rnaı̈ve −0.01 (0.30) 0.01 (0.24) −0.00 (0.19) −0.00 (0.15) 0.00 (0.12) −0.00 (0.09)
rXG,B=2 0.01 (1.00) 0.00 (1.00) 0.00 (1.00) 0.01 (1.00) 0.01 (1.00) −0.02 (1.00)
rXG,B=ng

−0.00 (0.45) 0.01 (0.45) 0.00 (0.45) −0.00 (0.21) −0.00 (0.21) −0.00 (0.21)

rZ1,δ=0 −0.01 (0.29) 0.01 (0.24) −0.00 (0.18) −0.00 (0.15) −0.00 (0.12) −0.00 (0.09)
rZ2,δ=0 −0.01 (0.30) 0.01 (0.24) −0.00 (0.19) −0.00 (0.15) −0.00 (0.12) −0.00 (0.09)
rZ1,δ �=0 −0.08 (0.36) −0.06 (0.29) −0.07 (0.22) −0.06 (0.17) −0.06 (0.14) −0.06 (0.11)
rZ2,δ �=0 −0.01 (0.30) 0.01 (0.24) −0.00 (0.19) −0.00 (0.15) −0.00 (0.12) −0.00 (0.09)
rsr 0.78 (0.13) 0.79 (0.10) 0.79 (0.07) 0.80 (0.05) 0.80 (0.04) 0.80 (0.03)
rpool 0.78 (0.13) 0.79 (0.10) 0.79 (0.08) 0.80 (0.06) 0.80 (0.04) 0.80 (0.03)

ρ = +0.8 rnaı̈ve 0.78 (0.13) 0.79 (0.10) 0.79 (0.07) 0.80 (0.05) 0.80 (0.04) 0.80 (0.03)
rXG,B=2 0.59 (0.81) 0.60 (0.80) 0.58 (0.82) 0.58 (0.81) 0.59 (0.81) 0.59 (0.81)
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Table A.1 Continued

ng = 6 ng = 24
G = 2 G = 3 G = 5 G = 2 G = 3 G = 5

rXG,B=ng
0.77 (0.22) 0.77 (0.22) 0.76 (0.23) 0.79 (0.08) 0.79 (0.08) 0.79 (0.08)

rZ1,δ=0 0.79 (0.12) 0.79 (0.09) 0.79 (0.07) 0.80 (0.05) 0.80 (0.04) 0.80 (0.03)
rZ2,δ=0 0.78 (0.13) 0.79 (0.10) 0.79 (0.07) 0.80 (0.05) 0.80 (0.04) 0.80 (0.03)
rZ1,δ �=0 0.88 (0.23) 0.88 (0.11) 0.87 (0.07) 0.87 (0.06) 0.87 (0.05) 0.87 (0.03)
rZ2,δ �=0 0.78 (0.13) 0.79 (0.10) 0.79 (0.07) 0.80 (0.05) 0.80 (0.04) 0.80 (0.03)

Notes aNumber in brackets give standard errors

Table A.2 Simulation results for different scenarios under H1 (Example 2).

ng = 6 ng = 24
G = 2 G = 3 G = 5 G = 2 G = 3 G = 5

rsr −0.42 (0.23) −0.53 (0.17) −0.59 (0.12) −0.43 (0.10) −0.54 (0.08) −0.60 (0.06)
rpool −0.79 (0.14) −0.79 (0.10) −0.79 (0.08) −0.80 (0.06) −0.80 (0.04) −0.80 (0.03)

ρ = −0.8 rnaı̈ve −0.39 (0.23) −0.51 (0.17) −0.59 (0.11) −0.43 (0.10) −0.54 (0.08) −0.60 (0.05)
rXG,B=2 −0.59 (0.81) −0.59 (0.81) −0.59 (0.81) −0.60 (0.80) −0.59 (0.81) −0.59 (0.81)
rXG,B=ng

−0.77 (0.23) −0.77 (0.22) −0.76 (0.23) −0.79 (0.08) −0.79 (0.08) −0.79 (0.08)

rZ1,δ=0 −0.98 (1.72) −0.87 (0.33) −0.83 (0.17) −0.82 (0.14) −0.81 (0.10) −0.81 (0.07)
rZ2,δ=0 −0.87 (0.47) −0.82 (0.17) −0.81 (0.11) −0.81 (0.10) −0.80 (0.07) −0.80 (0.05)
rZ1,δ �=0 −0.56 (0.53) −0.59 (0.30) −0.61 (0.19) −0.53 (0.13) −0.57 (0.10) −0.60 (0.07)
rZ2,δ �=0 −0.62 (0.29) −0.67 (0.17) −0.70 (0.11) −0.62 (0.10) −0.67 (0.07) −0.70 (0.05)
rsr 0.20 (0.29) 0.14 (0.24) 0.11 (0.18) 0.20 (0.14) 0.14 (0.11) 0.11 (0.09)
rpool 0.00 (0.32) 0.00 (0.26) 0.00 (0.20) 0.00 (0.15) 0.00 (0.12) −0.00 (0.09)

ρ = 0 rnaı̈ve 0.22 (0.28) 0.15 (0.24) 0.11 (0.18) 0.20 (0.14) 0.15 (00.11) 0.11 (0.09)
rXG,B=2 0.02 (1.00) 0.01 (1.00) 0.00 (1.00) 0.01 (1.00) −0.01 (1.00) −0.01 (1.00)
rXG,B=ng

0.00 (0.45) −0.01 (0.45) 0.01 (0.45) 0.00 (0.21) 0.00 (0.21) −0.00 (0.21)

rZ1,δ=0 −0.13 (1.03) −0.07 (0.46) −0.03 (0.26) −0.02 (0.22) −0.01 (0.16) −0.01 (0.12)
rZ2,δ=0 −0.07 (0.55) −0.03 (0.30) −0.01 (0.21) −0.01 (0.18) −0.00 (0.14) −0.00 (0.10)
rZ1,δ �=0 0.18 (0.59) 0.15 (0.32) 0.14 (0.23) 0.20 (0.18) 0.17 (0.14) 0.15 (0.11)
rZ2,δ �=0 0.10 (0.38) 0.07 (0.27) 0.06 (0.20) 0.11 (0.16) 0.08 (0.13) 0.06 (0.10)
rsr 0.83 (0.10) 0.82 (0.08) 0.82 (0.06) 0.84 (0.04) 0.83 (0.04) 0.82 (0.03)
rpool 0.78 (0.14) 0.79 (0.11) 0.79 (0.08) 0.80 (0.06) 0.80 (0.04) 0.80 (0.03)

ρ = +0.8 rnaı̈ve 0.83 (0.10) 0.82 (0.08) 0.82 (0.06) 0.84 (0.04) 0.83 (0.04) 0.82 (0.03)
rXG,B=2 0.59 (0.81) 0.58 (0.82) 0.61 (0.79) 0.59 (0.82) 0.59 (0.80) 0.59 (0.81)
rXG,B=ng

0.76 (0.23) 0.77 (0.22) 0.76 (0.23) 0.80 (0.08) 0.79 (0.08) 0.79 (0.08)

rZ1,δ=0 0.71 (0.89) 0.76 (0.23) 0.79 (0.10) 0.79 (0.08) 0.79 (0.06) 0.80 (0.04)
rZ2,δ=0 0.75 (0.41) 0.78 (0.12) 0.79 (0.08) 0.79 (0.07) 0.80 (0.05) 0.80 (0.04)
rZ1,δ �=0 0.98 (0.67) 0.93 (0.13) 0.91 (0.07) 0.93 (0.05) 0.91 (0.04) 0.90 (0.03)
rZ2,δ �=0 0.85 (0.18) 0.82 (0.10) 0.82 (0.07) 0.85 (0.05) 0.83 (0.04) 0.82 (0.03)

Notes aNumbers in brackets give standard errors.

C© 2016 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal 00 (2016) 00 13

References

Altman, D. and Bland, J. (1999). How to randomise. British Medical Journal 319, 703–704.
Birkett, M. and Day, S. (1994). Internal pilot studies for estimating sample size. Statistics in Medicine 13, 2455–

2463.
Bristol, D. and Shurzinske, L. (2001). Blinded sample size adjustment. Drug Information Journal 35, 1123–1130.
Chuang-Stein, C., Stryszak, P., Dmitrienko, A., and Offen, W. (2007). Challenge of multiple co-primary endpoints:

a new approach. Statistics in Medicine 26, 1181–1192.
Coffey, C. and Muller, K. (1999). Exact test size and power of a Gaussian error linear model for an internal pilot

study. Statistics in Medicine 18, 1199–1214.
Coffey, C. and Muller, K. (2001). Controlling test size while gaining the benefits of an internal pilot design.

Biometrics 57, 625–631.
Denne, J. and Jennison, C. (1999). Estimating the sample size for a t-test using an internal pilot. Statistics in

Medicine 18, 1575–1585.
European Medicines Agency (EMEA) - Committee for Medicinal Products for Human Use (CHMP) (2007).

CHMP reflection paper on methodological issues in confirmatory clinical trials planned with an adaptive
design. (Accessed July 13, 2012).

Food and Drug Administration (FDA) (2010). Guidance for industry - adaptive design clinical trials for drugs
and biologics. (Accessed July 13, 2012).

Friede, T. and Kieser, M. (2006). Sample size recalculation in internal pilot study designs: a review. Biometrical
Journal 48, 537–555.

Friede, T. and Kieser, M. (2013). Blinded sample size re-estimation in superiority and noninferiority trials: bias
versus variance in variance estimation. Pharmaceutical Statistics 12, 141–146.

Galbraith, S. and Marschner, I. C. (2003). Interim analysis of continuous long-term endpoints in clinical trials
with longitudinal outcomes. Statistics in Medicine 22, 1787–1805.

Ganju, J. and Xing, B. (2009). Re-estimating the sample size of an on-going blinded trial based on the method of
randomization block sums. Statistics in Medicine 28, 24–38.

Gould, A. and Shih, W. (1992). Sample size re-estimation without unblinding for normally distributed outcomes
with unknown variance. Communications in Statistics Theory and Methods 21, 2833–2853.

International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for
Human Use (ICH) (1998). ICH Hamonised Tripartite Guideline: Statistical Principles for Clinical Trials E9.
(Accessed September 06, 2010).

Kieser, M. and Friede, T. (2000). Re-calculating the sample size in internal pilot study designs with control of the
type I error rate. Statistics in Medicine 19, 901–911.

Kunz, C., Friede, T., Parsons, N., Todd, S., and Stallard, N. (2014). Data-driven treatment selection for seamless
phase II/III trials incorporating early-outcome data. Pharmaceutical Statistics 13, 238–246.

Kunz, C. U., Friede, T., Parsons, N., Todd, S., and Stallard, N. (2015). A comparison of methods for treatment
selection in seamless phase II/III clinical trials incorporating information on short-term endpoints. Journal
of Biopharmaceutical Statistics 25, 170–189.

Li, J. D. and Mehrotra, D. V. (2008). An efficient method for accommodating potentially underpowered primary
endpoints. Statistics in Medicine 27, 5377–5391.

Lucadamo, A., Accoto, N., and De Martini, D. (2012). Power estimation for multiple co-primary endpoints: a
comparison among conservative solutions. Italian Journal of Public Health 9, 1–14.

Miller, F. (2005). Variance estimation in clinical studies with interim sample size reestimation. Biometrics 61,
355–361.

Miller, F., Friede, T., and Kieser, M. (2009). Blinded assessment of treatment effects utilizing information about
the randomization block length. Statistics in Medicine 28, 1690–1706.

Offen, W., Chuang-Stein, C., Dmitrienko, A., Littman, G., Maca, J., Meyerson, L., Muirhead, R., Stryszak, P.,
Baddy, A., Chen, K., Copley-Merriman, K., Dere, W., Givens, S., Hall, D., Henry, D., Jackson, J. D., Krishen,
A., Liu, T., Ryder, S., Sankoh, A. J., Wang, J., and Yeh, C.-H. (2007). Multiple co-primary endpoints: medical
and statistical solutions: a report from the multiple endpoints expert team of the pharmaceutical research
and manufacturers of america. Drug Information Journal 41, 31–46.

Stallard, N. (2010). A confirmatory seamless phase II/III clinical trial design incorporating short-term endpoint
information. Statistics in Medicine 29, 959–971.

C© 2016 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



14 C. U. Kunz et al.: Blinded versus unblinded interim correlation estimation

Todd, S. and Stallard, N. (2005). A new clinical trial design combining phases II and III: Sequential designs with
treatment selection and a change of endpoint. Drug Information Journal 39, 109–118.

van der Meulen, E. A. (2005). Are we really that blind? Journal of Biopharmaceutical Statistics 15, 479–489.
Wilcock, G. K., Lilienfeld, S., Gaens, E., and on behalf of the Galantamine International-1 Study Group (2000).

Efficacy and safety of galantamine in patients with mild to moderate alzheimer’s disease: multicentre ran-
domised controlled trial. BMJ 321, 1–7.

Wilkinson, D., Murray, J., and in collaboration with the Galantamine Research Group, (2001). Galantamine:
a randomized, double-blind, dose comparisonin patients with alzheimer’s disease. International Journal of
Geriatric Psychiatry 16, 852–857.

Wittes, J. and Brittain, E. (1990). The role of internal pilot studies in increasing the efficiency of clinical trials.
Statistics in Medicine 9, 65–72.

Wittes, J., Schabenberger, O., Zucker, D., Brittain, E., and Proschan, M. (1999). Internal pilot studies I: type I
error rate of the naive t-test. Statistics in Medicine 18, 3481–3491.

Xing, B. and Ganju, J. (2005). A method to estimate the variance of an endpoint from an on-going blinded trial.
Statistics in Medicine 24, 1807–1814.

Zucker, D., Wittes, J., Schabenberger, O., and Brittan, E. (1999). Internal pilot studies II: comparison of various
procedures. Statistics in Medicine 18, 3493–3509.

C© 2016 The Authors. Biometrical Journal Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com


