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investigated. It is suggested that hindcasts which exploit 
full knowledge of the forced trend due to increasing green-
house gases throughout the hindcast period can provide 
more robust estimates of model bias for the calibration of 
the empirical model in an operational setting. The two-tier 
system shows potential for improved real-time prediction, 
given the assumption that skilful predictions of large-scale 
modes of variability are available. The empirical model 
framework has been designed with enough flexibility to 
facilitate further developments, including the prediction of 
other surface variables and the ability to incorporate addi-
tional predictors within the model that are shown to con-
tribute significantly to variability at the local scale. It is 
also semi-operational in the sense that forecasts have been 
produced for the coming decade and can be updated when 
additional data becomes available.

Keywords Empirical modelling · Decadal prediction · 
Hindcast skill

1 Introduction

Near-term climate prediction, on seasonal to multi-dec-
adal timescales, has been widely recognised as an impor-
tant field in recent years (Smith et al. 2012; Kirtman et al. 
2013; Doblas-Reyes et al. 2013a; Meehl et al. 2014; Kirt-
man et al. 2014). In theory, good quality near-term regional 
scale forecasts, with reliable uncertainty estimates, have 
the potential to inform decisions and activities across sec-
tors that are susceptible to, and influenced by, climate 
variability and change. This in turn could benefit business, 
society and the environment (Soares and Dessai 2014). In 
recent years much progress has been made in the develop-
ment of seasonal-to-decadal prediction systems based on 

Abstract Empirical models, designed to predict surface 
variables over seasons to decades ahead, provide useful 
benchmarks for comparison against the performance of 
dynamical forecast systems; they may also be employable 
as predictive tools for use by climate services in their own 
right. A new global empirical decadal prediction system is 
presented, based on a multiple linear regression approach 
designed to produce probabilistic output for comparison 
against dynamical models. A global attribution is per-
formed initially to identify the important forcing and pre-
dictor components of the model . Ensemble hindcasts of 
surface air temperature anomaly fields are then generated, 
based on the forcings and predictors identified as impor-
tant, under a series of different prediction ‘modes’ and 
their performance is evaluated. The modes include a real-
time setting, a scenario in which future volcanic forcings 
are prescribed during the hindcasts, and an approach which 
exploits knowledge of the forced trend. A two-tier predic-
tion system, which uses knowledge of future sea surface 
temperatures in the Pacific and Atlantic Oceans, is also 
tested, but within a perfect knowledge framework. Each 
mode is designed to identify sources of predictability and 
uncertainty, as well as investigate different approaches to 
the design of decadal prediction systems for operational 
use. It is found that the empirical model shows skill above 
that of persistence hindcasts for annual means at lead times 
of up to 10 years ahead in all of the prediction modes 
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both dynamical and statistical models (Smith et al. 2007; 
Weisheimer et al. 2009; Meehl et al. 2010, 2014; van Old-
enborgh et al. 2012; Smith et al. 2012, 2013; Doblas-Reyes 
et al. 2013a, b; Ho et al. 2013b; Eden et al. 2015). Opera-
tional forecasting on seasonal timescales is now a regular 
activity across many forecast centres (Arribas et al. 2011; 
Stockdale et al. 2011; Saha et al. 2013). Challenges remain 
for decadal prediction, however, in terms of understanding 
sources and limits of predictability as well as quantifying 
forecast uncertainties (Meehl et al. 2009; Doblas-Reyes 
et al. 2013a; Weisheimer and Palmer 2014).

Seasonal-to-decadal prediction occupies an interme-
diate ground between weather forecasting and climate 
projection. It may be characterised as the combination of 
both an initial condition problem, in which uncertainties 
arise due to estimating the initial state of the atmosphere, 
ocean, cryosphere and land surface, and a boundary condi-
tion problem, which suffers from uncertainties in the forc-
ings and feedback processes that play a central role in con-
straining climate projections (Meehl et al. 2009). Figure 1 
illustrates this for surface air temperature forecasts at De 
Bilt, the Netherlands (52°N, 5°E) in terms of the correla-
tion coefficient between forecasts and observations at dif-
ferent time scales: averaged over the first N days, weeks, 
months and years of the forecasts, from 1-day weather 
forecasts to 10-year decadal forecasts. For comparison, the 
skill of a simple persistence forecast is also shown. Weather 
forecasts, which depend wholly on the initial state, far out-
perform persistence forecasts. At the other side of the spec-
trum, 10-year forecasts again show good skill in this meas-
ure due to the forced trend. Seasonal-to-decadal forecasts 
currently have much lower skill and often do not clearly 
outperform persistence. Delivering reliable predictions on 
these timescales is particularly challenging on regional 
scales because internal variability can be large relative to 
the effects of the initial conditions and signals of change 
(Hawkins and Sutton 2009).

Predictability on seasonal-to-decadal timescales is influ-
enced by components of the climate system that evolve 
at a slower rate than the atmosphere, such as in the ocean 
and land-surface, as well as by the interactions between 
them (Palmer and Hagedorn 2006; Boer 2011; Meehl et al. 
2009). The coupled ocean-atmosphere El-Niño Southern 
Oscillation (ENSO) phenomenon is a source of predictabil-
ity on seasonal timescales (Trenberth et al. 2000; Alexan-
der et al. 2002; van Oldenborgh et al. 2005a; Balmaseda 
et al. 2009; Weisheimer et al. 2009; Wu et al. 2009), and 
has been a large factor in the success of seasonal fore-
casting using both dynamical and statistical models (van 
Oldenborgh et al. 2005b; Coelho et al. 2006; Weisheimer 
et al. 2009; Wu et al. 2009). Multidecadal variations of sea 
surface temperatures (SSTs) in the North Atlantic, often 
referred to as the Atlantic Multidecadal Oscillation (AMO), 

as well as the interdecadal Pacific oscillation (IPO) (Power 
et al. 1999), are sources of potential skill for prediction on 
decadal timescales (Meehl et al. 2014).

In addition to variations of large-scale dynamical pro-
cesses such as ENSO and the AMO, evolution of the cli-
mate system on seasonal-to-decadal timescales can be con-
sidered as externally forced low frequency variability due 
to natural and anthropogenic forcing superimposed on the 
natural variability of the system (Smith et al. 2012; Meehl 
et al. 2014). As such, the development of dynamical sea-
sonal-to-decadal prediction systems has focused not only 
on simulating responses to external forcing factors, but also 
on initialisation of model simulations using observations. 
Initialised prediction has been relatively successful for sea-
sonal forecasting, however the advantages are less clear at 
longer lead times. As such decadal prediction using initial-
ised GCMs remains an experimental exercise, rather than 
an operational activity.

Model intercomparison projects such as ENSEMBLES 
(van der Linden and Mitchell 2009) and CMIP5 (Taylor 
et al. 2012) have advanced the science base for decadal 
prediction using dynamical models by defining frame-
works within which the skill and viability of different 
modelling, initialisation and calibration techniques could 
be assessed in a consistent way over a historical hindcast 

Fig. 1  Correlation of model forecasts and persistence with observa-
tions across time scales for temperatures at De Bilt, the Netherlands 
(52°N, 5°E). The temperature of the first N days, weeks, months and 
years, averaged from the analysis time to the indicated time on the 
x-axis, is verified against the observed temperature. The forecasts 
used are: 1–10 days: ensemble mean of the ECMWF ensemble pre-
diction system (Palmer et al. 1997) over 2010–2013, 1–3 weeks: 
KNMI monthly forecasts based on damped persistence from the 
ECMWF EPS for the first week over 2006–2013, 1–6 months: 
multi-model mean of the Demeter (Palmer et al. 2004) ECMWF, 
Met Office and Météo France seasonal hindcasts over 1959–2001, 
1–9 years: multi-model mean of the ENSEMBLES (van Oldenborgh 
et al. 2012) ECMWF, UKMO, Météo France and MPI-MET decadal 
hindcasts over 1960–2013. Observations are from the KNMI database
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period. Projects such as the Decadal Forecast Exchange 
(Smith et al. 2013) have enabled these decadal prediction 
frameworks to be further developed and tested in real-time. 
Challenges still remain, however, in terms of achieving 
consensus on the approach to decadal forecast calibration 
and evaluation given the relatively sparse and non-inde-
pendent nature of the forecast-observation archive (Godd-
ard et al. 2013). Furthermore, decadal prediction systems 
based on dynamical models currently suffer from relatively 
large errors in their representation of the mean climate and 
variability, even when their simulations are shown to cap-
ture long-term forced trends consistent with observations. 
The mechanisms underlying the decadal vacillations in the 
dynamical models also vary wildly from model to model 
(Branstator et al. 2012; Hazeleger et al. 2013; Sutton et al. 
2015).

An alternative to complex and computationally demand-
ing dynamical forecast models are empirical forecast 
approaches. Empirical models, which exploit known sta-
tistical relationships to represent physical mechanisms 
between the atmosphere and oceans, serve not only as use-
ful benchmarks for comparison against dynamical fore-
cast systems, but also offer potential as informative tools 
in their own right. Empirical methods have been success-
fully employed for forecasting on seasonal timescales (van 
den Dool 2007) and include simple approaches, such as 
persistence, as well as more sophisticated models that can 
be used for real-time prediction (Penland and Matrosova 
1998; van Oldenborgh et al. 2005b; Coelho et al. 2006; 
Eden et al. 2015). Similar approaches have been applied 
for decadal prediction, including simple analogue methods 
such as dynamic climatology (Suckling and Smith 2013), 
statistical methods aimed at estimating trends and variabil-
ity due to different components of the climate system (Lean 
and Rind 2008, 2009; Folland et al. 2013; Newman 2013), 
and methods for the prediction of SST patterns (Hawkins 
et al. 2011; Ho et al. 2013b).

Here, a new empirical model for predicting surface 
air temperatures over the globe is developed and evalu-
ated in terms of its hindcast skill. The model, based on 
a multiple linear regression approach similar to Lean 
and Rind (2008) and Eden et al. (2015), uses observed 
and projected global forcings based on well-understood 
physical relationships, as well as large-scale predictors 
that have been shown to represent aspects of local scale 
variability, for example ENSO. This approach is used to 
produce probabilistic hindcasts and predictions on time 
scales of 1 year to a decade ahead. Hindcasts covering 
the period 1960–2014 are generated in four different pre-
diction ‘modes’ and are evaluated in terms of both their 
deterministic and probabilistic skill. The definition of dif-
ferent prediction modes is designed to allow investigation 

of sources of potential skill and predictability within 
the model and offer the opportunity to test different 
approaches for the design of decadal prediction systems 
that would be too computationally expensive to do with 
dynamical models. The hindcast data and forecasts pro-
duced from the model are publicly available at: http://
dx.doi.org/10.17864/1947.39.

This paper is structured as follows: Sect. 2 describes 
the empirical model set up, the data used and sources of 
predictability, while Sect. 3 outlines each of the predic-
tion modes used and the approach for generating hind-
casts. Section 4 is dedicated to a discussion of deter-
ministic and probabilistic skill of the model in each of 
the prediction modes for global mean and regional sur-
face air temperature. Section 5 highlights some of the 
choices made when designing the prediction system for 
semi-operational use and presents forecasts of surface air 
temperature for the period 2016–2025. Section 6 summa-
rises the key findings and discusses directions for future 
efforts.

2  Empirical model design

The empirical model is based on a multiple linear regres-
sion approach that uses global forcings and large-scale sea 
surface temperature (SST) patterns as predictors for local 
(grid scale) annual mean surface air temperatures over the 
whole globe. The system has been designed with the flexi-
bility to facilitate future development, for the prediction of 
any number of variables, or the ability to incorporate addi-
tional components, such as regionally-varying forcings 
and variable-, season- and region-specific predictors. In 
practice, empirical methods are dependent on the quality 
and quantity of the input data (historical observations and 
future forcing scenarios), so the present study is focused 
on prediction of surface air temperature using global mean 
radiative forcings since there is a relative abundance of 
data with which to build and evaluate the system. Future 
work will focus on prediction of temperature and precipi-
tation at the regional scale in locations where long obser-
vational records exist and where strong teleconnections are 
shown to play a role in local scale variability. The predic-
tion system incorporates uncertainty information through 
the generation of ensembles (the methods for which are 
discussed in Sect. 3.5), which are output in a similar for-
mat to those of dynamical models in order to aid compari-
sons. The selection of forcings and predictors is based on 
physical principles and well-understood observed rela-
tionships to the fullest extent, yet is as simple as possible, 
using as few predictors as necessary to minimise the risk 
of overfitting.

http://dx.doi.org/10.17864/1947.39
http://dx.doi.org/10.17864/1947.39
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2.1  Data

For the purposes of model development and evaluation 
the target variable (predictand) that we focus on here is 
surface air temperature anomalies. The Cowtan and Way 
interpolated observational dataset (Cowtan and Way 2014) 
is chosen as it provides monthly mean coverage over the 
whole globe. This data is based on the HadCRUT4 ensem-
ble (Morice et al. 2012), which uses air temperatures over 
land and sea ice and sea surface temperatures over the 
open ocean. In the present study annual mean (January-
December) temperature anomalies, covering the period 
1900–2014 (with anomalies relative to a 1961–1990 base-
line), are used within the model. Data prior to 1900 (from 
1850) is available, however the uncertainties are larger, 
especially in the Southern hemisphere, so this data is only 
considered later to test the sensitivity of the model. The 
Cowtan and Way dataset includes an ensemble of observed 
historical values that represent uncertainties due to data 
coverage and due to the bias correction procedure (Cowtan 
and Way 2014), allowing investigation of these sources of 
uncertainty within the empirical model. The majority of 
results discussed here are, however, based on fitting the 
empirical model to the ensemble median of the dataset. The 
robustness of the model skill to other observational data-
sets has also been explored and shows broad consistency 
across locations of the globe that have ample station data 
coverage.

The empirical model uses several globally observed 
forcings and predictors, which are fitted on a gridpoint by 
gridpoint basis over the historical training period. In all 
forecasts predictive information is exploited from the exter-
nally forced variability associated with natural and anthro-
pogenic activity. This includes greenhouse gas (GHG) 
forcing, solar irradiance, volcanic aerosols and ‘other’ 
anthropogenic radiative forcings (OA). These forcings are 
prescribed in the model as global averages according to the 
CMIP5 historical scenario (up to 2005) and Representa-
tive Concentration Pathway (RCP) 4.5 (Meinshausen et al. 
2011; Thomson et al. 2011) for future projections (beyond 
2005), which are all given in units of W/m2 relative to a 
1750 baseline. The OA forcing component includes factors 
such as aerosols, ozone and land use changes and is sim-
ply the total radiative forcing prescribed by CMIP5 after 
removing the greenhouse gas, solar and volcanic forcing 
components. In Sect. 3 onwards the GHG and OA compo-
nents are combined to define a total anthropogenic forcing 
(AF) component. The sensitivity of the model skill and pre-
dictions is also examined using other RCP scenarios (see 
Sects. 4, 5).

An additional predictor included in the model is the 
large-scale ENSO mode of variability, which is prescribed 
according to the observed Niño3.4 index from the HadISST 

dataset (anomalies relative to a 1961–1990 baseline) 
(Rayner et al. 2003). The AMO and IPO modes of vari-
ability are also investigated as a potential source of model 
skill. In the present study all forcings are applied equally 
across the globe (i.e. as globally averaged forcing values, 
rather than spatially varying ones) and the ENSO, AMO 
and IPO predictors are also included across the whole 
globe, regardless of whether they are shown to provide a 
significant influence in a particular region. It may be the 
case that alternative or additional predictors provide bet-
ter descriptors for climates in specific regional locations, 
and their inclusion may lead to increased forecast skill in 
these regions. However, such possibilities are left for future 
investigation.

2.2  Identifying important predictors

Having identified a set of potential forcings and predictors 
to be included in the model based on physical principles 
(as described in Sect. 2.1), we consider the importance of 
the individual contributions to the simulated surface air 
temperature over the historical period 1900–2014. To jus-
tify the inclusion of each of the forcings and predictors for 
a given predictand a multivariate analysis is performed in 
order to understand the relative influence of each compo-
nent. For a predictor to be included in the model it must 
satisfy the following criteria: (1) Demonstrate a significant 
correlation with the predictand, (2) Increase the total frac-
tion of the variance explained by the model and (3). Its 
inclusion leads to minimal increases in the uncertainties 
of the individual parameters of the model. The approach 
adopted here assumes that each climate variable (the pre-
dictand) responds linearly, with some lag, to the various 
influences, which are analysed in terms of their individual 
contributions using a multiple linear regression analysis, 
which has the form:

where N is the number of predictors to be included in the 
model, αi are the regression coefficients that transform 
the predictors, Fi into their respective contributions to the 
modelled predictand, C is the constant term in the multi-
ple linear regression that relates predictors relative to some 
baseline period to the baseline period of the predictand and 
ε is the set of residuals of the fit. The lag ℓi between each 
predictor and the predictand is a free parameter within the 
model and is selected based on maximising the total frac-
tion of the variance explained by the model, while mini-
mising any increase in model parameter uncertainty. Iso-
lating and quantifying the changes arising from individual 
components forms the basis for understanding the physical 

(1)T(t) = C +

N
∑

i=1

(αiFi(t − ℓi))+ εi,
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factors that have governed past variability and change 
and provide a first step towards determining the predic-
tive potential of such an empirical approach, assuming the 
availability of plausible future scenarios for each of the sig-
nificant influences.

Figure 2 shows an analysis of the relative contributions 
of each of the forcings and predictors used to construct 
the model for annual global mean surface air tempera-
ture anomalies over the period 1900–2014. The tempera-
ture anomalies are constructed from global annual mean 
GHG forcing, solar irradiance, volcanic aerosol, plus other 
anthropogenic forcings, as well as ENSO (via the Niño3.4 
index). The GHG forcing is included with a 10 years lag 
as it was shown in Lean and Rind (2008) that most of the 
delay from emissions to temperature was due to ocean 
uptake. In this study a 10 years lag is also found to max-
imise the variance of the surface air temperature anomaly 
explained by the model, athough differences are small 
across the range of lags explored. The ENSO component 
is also included with a four month lag (i.e. a September-
August mean). The fitted model coefficients convert the 
individual components from their native units (W/m2 for 
the forcings and K for ENSO) to equivalent global annual 
mean surface air temperature anomalies relative to the 
baseline 1750 (once the constant term in the linear regres-
sion is removed from the model and the observed global 
surface temperature). Sections 2.2.1 and 2.2.2 explore the 
contributions of these components to global and regional 
surface air temperatures in more detail. Section 3 uses the 
approach described above to generate decadal hindcasts.

2.2.1  Factors influencing global mean temperature

The model shown in Fig. 2 has a correlation of r = 0.95 
with the observed temperature timeseries. The combination 
of component influences accounts for 90 % of the variance 
in the dataset over the period 1900–2014. The lag one auto-
correlation of the model residuals is 0.57. These results are 
broadly consistent with Lean and Rind (2008), although 
small discrepancies occur due to a difference in the par-
ticular target and predictor datasets used for construction 
of the model, as well as the period over which the model 
is analysed. The GHG and other anthropogenic forcing 
(OA) components show correlations of rGHG = 0.91 and 
rOA = −0.82 with the temperature anomalies respectively, 
although it is noted that there is a large colinearity (0.93) 
between the components, which leads to large uncertain-
ties on the parameter values. Combining these components 
into a single anthropogenic forcing (AF) leads to a small 
increase in the total fraction of the variance explained by 
the model (91 %), as well as a small decrease (∼5–10 %) 
in the uncertainty on all model parameters. For the pur-
poses of analysing hindcast skill and generating forecasts 

these two components will therefore be combined in 
Sect. 3 and thereafter. It is nevertheless still interesting to 
consider their individual contributions to surface air tem-
perature variability. The solar, volcanic and ENSO compo-
nents are also shown to be significant sources of variance 
in the historical temperature record, so are also included 
in the ‘standard’ version model for the analysis of hindcast 
skill in Sect. 4. The addition of AMO and IPO indices as 
predictors are found to have a minimal impact on the frac-
tion of the variance of global mean temperature explained 
by the model, and generally increase the uncertainties on 
all the model parameters so are therefore excluded here. 
Their influence is however important for regional scale pre-
diction (see Sect. 4).

The model in Fig. 2 clearly follows the observed pattern 
of variability better over the latter half of the twentieth cen-
tury than over the first half. While the uncertainty range on 
the observations is generally larger in the earlier part of the 
period, the model still falls outside this uncertainty range 
on several occasions. The fitted model parameters have 
also been used to generate a backwards projection of global 
mean surface temperature over the period 1850–1900 to 
test the capability of the model to reproduce past observed 
temperatures given the known historical forcings (not 
shown). In this case the model was found to have a correla-
tion with global mean surface air temperature of r = 0.67 
over the period 1855–1900 (1855 coincides with the start 
date of the available observed Niño3.4 index), reflecting 
the larger uncertainties on the estimate of the global mean 
temperature and of the model fit before 1900.

Each of the forcing components in the model is pre-
scribed according to the CMIP5 historical observations 
relative to a 1750 pre-industrial baseline. The constant 
term in the multiple linear regression approach, found to 
be C = −0.47 ± 0.23 K, therefore provides an estimate of 
the total temperature change from the baseline period of 
the observations to the pre-industrial baseline. When sub-
tracted from the observations and model time series (as 
shown in the top panel of Fig. 2), the resulting temperature 
anomaly provides an estimate of the observed warming 
from the pre-industrial baseline in 1750, something which 
is not possible to derive from direct observations.

Similarly, the temperature change attributed to each of 
the individual influences can be estimated using a linear 
trend analysis. Figure 3 shows a quantification of these 
influences using an approach consistent with the IPCC 
AR5 [see figure TS.10 in Stocker et al. (2013)], based on 
a trend analysis over the period 1951–2010. The empiri-
cal model warms 0.78 ± 0.22 K from 1951 to 2010 (or 
0.77 ± 0.13 K if a combined AF component is used), 
which is larger than the observed warming from Cowtan 
and Way (2014) of 0.68 ± 0.02 K, but within the uncer-
tainty range of observed warming quoted by the IPCC of 
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Fig. 2  Top panel Annual mean (January–December) global surface 
air temperature anomaly reconstructed from the empirical model, 
compared against global mean Cowtan and Way interpolated Had-
CRUT4 observations (Cowtan and Way 2014). Bottom panels Each of 
the components contributing to temperature variability are shown in 
units of temperature change [K] determined from the multiple linear 

regression analysis. The model has a correlation of r = 0.95 with the 
observed temperature timeseries and the combination of component 
influences accounts for 90 % of the variance. Forward projections of 
each contribution to surface air temperature anomalies are shown in 
grey, using the RCP4.5 scenario for the period 2005–2025
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around 0.65 ± 0.15 K. Uncertainty on the observed trend 
in Fig. 3 is derived from the one-sigma uncertainty from 
the 100-member observational ensemble (Cowtan and Way 
2014). The GHG component contributes to a warming of 
0.89 ± 0.11 K, while the OA forcings contribute to a global 
cooling of −0.14 ± 0.10 K. Thus, the total anthropogenic 
forcing contributes to an overall warming of 0.75 ± 0.11 K 
(or 0.74 ± 0.03 K for the model using the combined AF 
forcing). Natural forcings contribute a small global warm-
ing component of 0.01 ±< 0.01 K, while internal variabil-
ity, defined as the difference in 60 years trends between 
observations and the model excluding the ENSO com-
ponent, is found to be −0.08 ± 0.02 K. A similar analy-
sis of internal variability trends over all possible 60 years 
periods within the historical record shows a range between 
−0.28 K and 0.26 K. The small cooling contribution from 
internal variability over the period 1951–2010 is therefore 
a temporary effect in this empirical model and implies that 
it may contribute a positive (warming) effect to global tem-
perature trends in future decades. These results are broadly 
consistent with the attributed global warming components 
quoted by Lean and Rind (2008), Stocker et al. (2013) 
and Johansson et al. (2015). The uncertainty ranges on the 
model components shown in Fig. 3 are derived from the 

one-sigma uncertainties on individual model parameters 
from the multiple linear regression and are the square root 
of the summed variance of the uncertainties in the case of 
combined forcing trends, having taken into account the 
covariance between the GHG and OA parameters. Cur-
rently, uncertainties on the forcings are not considered, 
however, sensitivity to the natural forcing component has 
been tested using radiative forcing data from Schmidt et al. 
(2014), which includes adjustments to volcanic aerosols 
and solar irradiance, as well as to GHGs over the period 
1985–2004 and includes updated observations from 2005–
2013. In general the model results are robust to these small 
adjustments in forcing, showing similar correlations and 
warming trends.

It is also possible to estimate the global climate sys-
tem’s temperature response to external radiative forcing in 
terms of the transient climate response (TCR) metric. To a 
first approximation TCR can be estimated from the GHG 
regression coefficient (αGHG = 0.49 ± 0.06K/Wm−2) 
and the forced response to a doubling of CO2 (3.7W/m2 ) 
(Boucher et al. 2001), which leads to a TCR range of 
1.55 K to 2.07 K. Such a range is consistent with the IPCC 
quoted 5–95 % TCR range of 1.5 K to 2.8 K and consistent 
with several studies based on estimates of TCR using the 
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Fig. 3  Modelled warming trends contributing to annual mean global 
surface air temperature anomalies over the period 1951–2010 due to 
individual influences and forcings. The uncertainty ranges on each 
model component are derived from the one-sigma uncertainties on 
the individual model parameters from the multiple linear regression. 
The uncertainty on warming trends from combined components is the 
square root of the sum of the individual variances from the one-sigma 
parameter uncertainties, having taken into accound any co-linearity 

between the model components. The observed annual mean global 
warming trend from the Cowtan and Way interpolated HadCRUT4 
dataset over the same period is shown as the left-hand bar for com-
parison, including an uncertainty estimate using the full ensemble. 
The global warming trend from the empirical model is consistent 
with the observed trend, and the modelled contributions from indi-
vidual components are consistent with figure TS.10 in the IPCC AR5 
(Stocker et al. 2013)
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recent observational period, which suggest that TCR may 
fall at the lower end of the IPCC quoted range (Otto et al. 
2013; Shindell 2014). However, unlike Shindell (2014), 
we find the aerosol (OA) component to have a lower effi-
cacy (defined as the ratio of the climate sensitivity param-
eter for a given forcing agent to the climate sensitivity for 
CO2 changes (Joshi et al. 2003; Hansen et al. 2005)) than 
that of CO2 (or more precisely GHG in this case) over 
the recent period, which has a regression coefficient of 
αOA = 0.30 ± 0.21K/Wm−2. However, the large uncer-
tainty associated with the OA component suggests that it 
is not possible to make robust statements about OA (and 
consequently GHG) in isolation.

2.2.2  Regional patterns of temperature change

Figure 4 shows regional patterns for the observed and mod-
elled trends (top panels) over the period 1951–2010, as 
well as contributions to the modelled trend from different 
forcing components of the model (middle panels). Esti-
mates of the contribution to the modelled trend from ENSO 
(bottom left panel) and other internal variability (bottom 
right panel) are also shown. The model, which is fitted 
independently at each grid point, shows similar patterns of 
warming to that of the observations, with the largest warm-
ing between 1951–2010 having occurred in the high lati-
tudes, over Asia and parts of Africa. The magnitude of the 
warming trends are shown to be slightly lower in the model 
over the Asia region than in the observations, but slightly 
larger over the Pacific and Atlantic Oceans. Stippling in 
the figures indicates regions where the uncertainties on the 
trend (calculated from combining the one-sigma uncertain-
ties from individual model parameters) is as large, or larger, 
in magnitude than the trend itself. The largest uncertainties 
are found in the high latitudes, typically in regions where 
the observed warming trends are already large. The second 
row in Fig. 4 shows temperature trends from the anthro-
pogenic (left) and natural (right) forcings respectively, 
and suggest that while anthropogenic forcings have had a 
warming effect over most of the globe, natural (combined 
solar and volcanic) forcings have contributed to a small 
cooling effect over many land regions (with the exception 
of Europe). The third row in Fig. 4 shows a further decom-
position of the anthropogenic component into GHG (left) 
and OA (right) forcing and they suggest while GHGs have 
contributed to a warming in the Northern hemisphere, OA 
has contributed to a cooling. The model indicates a cooling 
effect from GHGs in the Southern Ocean, which is consist-
ent with recent evidence of a cooling effect of the meltwa-
ter from the land ice (Bintanja et al. 2013). The model also 
suggests a warming effect from OA in the Southern Ocean, 
however observational data for this region over the early 
twentieth century is generally sparse and so comparisons 

should be treated with some caution. The bottom panels 
in Fig. 4 (note the different scale necessary to show these 
small contributions) illustrate the contribution to the sur-
face air temperature trend from the ENSO component (left) 
and from an estimate of the internal variability of the model 
(right). The internal variability trend is calculated as the 
difference between the observed timeseries and a model 
which has had the ENSO component removed. Defining 
internal variability in this way means that model deficiency 
is also included in this component. The estimated internal 
variability of the system is largest over the same regions 
exhibiting the largest overall trends, which may have impli-
cations for detecting significant signals of climate change 
from the noise. This model, however, considers the cool-
ing in the North Atlantic to be a decadal fluctuation of the 
AMO.

Figure 5 shows the total fraction of the variance of 
the observed surface air temperature anomaly explained 
by individual model components, as well as by the com-
bined components of the model (top left). The combina-
tion of components in the model explain at least 40 % of 
the observed temperature variance over a large fraction of 
the planet, and up to 90 % of the variance in the Indian 
Ocean region. The inclusion of each component in turn is 
shown to increase the overall correlation of the model with 
the observed surface air temperature anomalies, as well as 
increase the total variance explained by the model. Only 
global mean forcings are currently employed in the model, 
however, so further increases to the correlation of the 
model in some locations may arise from the inclusion of 
regionally-varying forcings. Furthermore, a version of the 
model was also generated that does not include the ENSO 
component (i.e. a model that includes only the external 
forcing components—not shown). Such a model could 
be considered as equivalent to a historical projection and 
similar to the uninitialised simulations that are often per-
formed alongside initialised simulations in decadal predic-
tion experiments. In this case the correlation of the unini-
tialised model with global mean surface air temperature 

Fig. 4  Modelled (top left) and observed (top right) warming trends 
in surface air temperature anomalies [K] over the period 1951–2010. 
Second row shows contributions to the modelled warming trend from 
anthropogenic (left) and natural (right) components, while the third 
row shows the GHG (left) and OA (right) components of the anthro-
pogenic warming trend. The bottom panels (note the different scale) 
show the warming trend contribution from ENSO (left) and an esti-
mate of the internal variability, defined here as the difference between 
the observed annual mean observed temperature anomalies and the 
modelled temperature anomalies without the ENSO component 
(right). Regions of stippling indicate locations where the one-sigma 
uncertainties in the trend due to model parameter uncertainty is as 
large, or larger than the magnitude of the trend. The modelled trends 
are similar to the observed patterns of warming, with the largest con-
tribution coming from the anthropogenic forcing component

▸
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anomalies is reduced to r = 0.93 (and 85 % of total vari-
ance is explained by the model). In general the patterns of 
temperature trends and variance explained from individual 
components are robust to different observed surface air 

temperature datasets (not shown), particularly in regions 
where observations are ample.

It is clearly shown that each of the components used 
to construct the empirical model have had at least some 
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influence on the trend and variability of surface air temper-
atures both globally and regionally over the twentieth cen-
tury. A common criticism of empirical systems, however, 
concerns their applicability in a future, perturbed, climate. 
Climate system nonlinearities have the potential to under-
mine predictions from empirical models if, for example, 
the relationships underpinning the statistical model do not 

remain stationary under climate change. This is a concern 
for long timescale prediction, but is less so over timescales 
of a decade or two. It has also previously been found that, 
within statistical uncertainties, no detectable changes have 
been seen in ENSO teleconnections over the last half of the 
century (Sterl et al. 2007), and similar results are expected 
in other teleconnection modes.

Fig. 5  Fraction of the variance of observed annual mean surface air 
temperature anomaly explained by the model by each component. 
The fraction of the total variance explained by the model (top left) 
and the ENSO component (top right) are shown, along with individ-
ual contributions from greenhouse gas forcings (GHG, middle left), 

other anthropogenic forcing (OA, middle right), solar irradiance (bot-
tom left) and volcanic aerosol (bottom right). The combination of 
model components explain at least 40 % of the variance over much of 
the globe, with up to 90 % of the variance explained by the model in 
regions such as the Indian Ocean
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3  Decadal hindcasts

Having explored the contributions of individual forcings 
and large-scale predictors to global and regional tempera-
ture variability, the question arises about how this knowl-
edge can be applied to the problem of prediction. The forc-
ings described in Sect. 2, along with an estimate of ENSO 
variability, are shown to explain a substantial fraction of the 
variance of global mean temperature, and are investigated 
in terms of decadal prediction skill in Sect. 4.1. This ‘stand-
ard’ version of the empirical model uses a single anthropo-
genic forcing (AF) component, which combines the GHG 
and OA forcing contributions, as well as solar irradiance 
and volcanic aerosol forcing, and also the ENSO predic-
tor. For regional prediction, however, additional modes are 
important and some of them, in particular AMO and IPO, 
are explored further in Sect. 4.2. The predictive capabilities 
of the empirical model for forecast lead times of 1–10 years 
is investigated in Sect. 4 within a hindcast framework simi-
lar to those carried out by the dynamical modelling centres 
participating in the ENSEMBLES and CMIP5 decadal pre-
diction experiments (van der Linden and Mitchell 2009; 
Taylor et al. 2012).

The empirical model is calibrated and evaluated based 
on a set of decadal hindcasts, starting each year, covering 
the period 1960–2014. The model coefficients are estab-
lished over a historical training period for each hindcast 
start date using the forcing components, with lags, out-
lined in Sect. 2, in which the combined AF component 
has a 10 years lag. The regression coefficients for the 
ENSO component (as well as the AMO and IPO compo-
nents explored in Sect. 4.2) are then estimated for lags 
of 1–10 years, corresponding to each annual lead time of 
the decadal prediction system. The training period for the 
model and the prescription of ‘future’ forcings and pre-
dictors in each hindcast are defined according to a series 
of different prediction ‘modes’. The investigation of skill 
under each of these prediction modes allows comparison 
between different experimental designs chosen for various 
decadal prediction experiments using dynamical models. It 
also allows an exploration of the sources of potential pre-
dictability and uncertainty, which in turn may aid future 
development, and in particular the experimental design, of 
operational decadal prediction systems.

A set of hindcasts with prediction lead times of 
1–10 years is generated, both for global mean surface air 
temperature anomalies, as well as for spatial maps over 
the full global domain. The hindcasts are launched every 
year over the hindcast period and each contain 51 ensemble 
members (generated as described in Sect. 3.5). The skill of 
these hindcasts has been investigated in four different pre-
diction ‘modes’, as described below.

3.1  ‘Real‑time’ mode

Hindcasts are generated using a causal approach in which 
the model parameters are estimated over a historical train-
ing period from 1900 up to the hindcast start date. All radi-
ative forcings are prescribed over the training period with 
a lag corresponding those described in Sect. 2, and ENSO 
is prescribed according to their observed value with a lag 
corresponding to the hindcast lead time. The volcanic aero-
sol component is then set to zero at the hindcast start date 
(i.e. no future information about volcanic aerosol forcing 
is assumed to be known), reflecting the set of observa-
tional data that would have been available for each hindcast 
were it produced in real-time. The 11-year solar cycle is 
also repeated from the previous cycle for the coming dec-
ade at each hindcast launch. The ENSO component is set 
to the observed Niño3.4 index value in the year before the 
hindcast start date and uses the regression coefficient cor-
responding to a lead-lag relationship that reflects the lead 
time of the hindcast. The anthropogenic forcing during 
each hindcast is prescribed according to the CMIP5 histori-
cal values or the RCP4.5 scenario. This approach is simi-
lar to the decadal prediction studies of Smith et al. (2007) 
using the DePreSys system based on the UK Met Office 
HadCM3 dynamical model. In their approach volcanic aer-
osols were prescribed at each hindcast start date and con-
tain an exponentially decaying component with a lifetime 
of 1 year. A damped volcanic forcing component was also 
tested in this study but was found to have little impact on 
the overall skill of the model.

Since this approach uses only information that would be 
available in an operational setting, the evaluation of these 
hindcasts provides an estimate of out-of-sample skill of the 
model.

3.2  ‘Prescribed natural forcing’ mode

Volcanic aerosols are known to have an important impact 
on the climate system, particularly a few months after a 
large volcanic eruption in the tropics. Although volcanic 
eruptions cannot be predicted in advance it is still interest-
ing to consider the impact of known future volcanic aerosol 
forcings on the models ability to capture the observed vari-
ability of the system.

Hindcasts are generated using the causal approach as 
above. All other forcings and predictors are also prescribed 
in the same manner, but volcanic aerosols and the solar 
cycle are prescribed for each hindcast according to their 
historically observed values. This approach is often used 
by the dynamical modelling centres in decadal prediction 
experiments such as ENSEMBLES and CMIP5 (van der 
Linden and Mitchell 2009; Taylor et al. 2012). Although 
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such an approach uses information about the future that 
would not have been available in real time, it provides a 
useful estimate of the potential skill of the model, or more 
precisely an insight into the predictability of the response 
to volcanic forcing and other known important drivers of 
climate variability. It also allows investigation into the 
impact of initialisation through comparisons with free-run-
ning dynamical models that also include this information.

Even in this case, which only uses data prior to the start 
date of each hindcast to determine the model parameters, 
there is the potential to underestimate the level of skill that 
an operational forecast system may have, since the hind-
casts generated in a causal manner do not fully exploit pre-
dictability due to the forced trend in AF over the full period 
of the hindcast set.

3.3  ‘Exploiting the trend’ mode

In this prediction mode, the hindcasts are generated using 
model parameters that are determined over the full range 
of the historical data archive (1900–2014). That is, the 
training period for each hindcast is identical across all start 
dates, so that the model uses predictand and predictor infor-
mation which occurs after the start of the hindcast itself. 
This approach is designed to exploit maximum knowledge 
about each of the model components by using data from 
the future to compensate for the limited amount of data 
available to train the model during the earlier hindcasts. 
Approaches such as ‘Optimal Climate Normals’ (Huang 
et al. 1996) also attempt to exploit knowledge about forced 
trends by taking reference periods of the recent past, 
however for the model presented here the relatively short 
training period for the earlier hindcasts, combined with a 
change in trend between global AF forcing during the first 
and second halves of the twentieth century result in a dif-
ficulty in producing reliable estimates of the forced trend 
using only data prior to the hindcast start date. As a result, 
hindcasts are found to warm too quickly during these peri-
ods (not shown), leading to large forecast errors. While 
the ‘exploiting the trend’ approach to hindcast generation 
will undoubtedly produce overestimates of overall skill of 
the model hindcasts, it is useful in terms of gauging more 
robust estimates of model bias for the purposes of calibrat-
ing a forecast system which is to be used for operational 
decadal predictions.

Figure 6 shows a subset of the hindcasts (every fifth 
start date) produced in the ‘exploiting the trend’ mode for 
the global mean surface air temperature anomaly over the 
period 1960–2014. The observations are shown in black 
and the ensemble mean from every fifth hindcast start date 
is shown in blue. The 51 ensemble members are generated 
as described in Sect. 3.5. In general the observed tempera-
ture anomalies are captured well by the ensemble members 

and fall within the 5–95 % confidence intervals of the hind-
cast probabilities around 90 % of the time (as expected). 
The hindcasts themselves are bias corrected according to 
a lead-time dependent estimate of the mean forecast error 
over the full set of hindcasts using a leave-one-out cross-
validation methodology similar to that described in Suck-
ling and Smith (2013) and Goddard et al. (2013). Similar 
sets of hindcasts are generated and calibrated in each of 
the prediction modes discussed and their skill contrasted 
according to a variety of performance measures in Sect. 4.

3.4  ‘Two‑tier system’

Dynamical models are often shown to perform better at 
capturing the features of large-scale low frequency phe-
nomena in the oceans than local-scale variability of the 
coupled system (Smith et al. 2012; Meehl et al. 2014). 
The empirical model outlined in this paper is designed to 
exploit the observed statistical relationships between large-
scale drivers of variability and local patterns in surface 
variables, so if a dynamical model were capable of reli-
ably estimating future large-scale ocean patterns, such as 
ENSO or the AMO for example, then this knowledge could 
be incorporated into the empirical model with the aim of 
improving the skill of the prediction system. Such two-tier 
approaches have been employed within dynamical models 
in the past by using predicted SST as boundary conditions 
in atmospheric models (Deser and Phillips 2009; Hoerling 
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Fig. 6  Hindcasts of global (land and ocean) annual mean surface air 
temperature anomalies (relative to 1961–1990) covering the period 
1960–2014. Every fifth start date is shown for hindcasts generated 
in the ‘exploiting the trend’ prediction mode. Each hindcast contains 
51 ensemble members, generated from the residuals of the model fit 
over the training period and are bias corrected using a leave-one-out 
(i.e. leaving out one ten year period) cross-validation procedure. The 
5–95 % confidence intervals, shown as thin black lines, are calculated 
from the one-sigma uncertainties of individual model parameters. 
Observations are shown in black for comparison and the ensemble 
mean is shown in blue
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et al. 2011). An empirical two-tier approach is developed 
here and its potential skill investigated within a ‘perfect 
knowledge’ framework (i.e. without the need for assessing 
the skill of any particular dynamical model) using future 
information about the ENSO, AMO and IPO predictors to 
generate the hindcast set.

Hindcasts are generated in a similar manner to the 
‘exploiting the trend’ approach, however future information 
about the large-scale predictors, corresponding to the state 
of Pacific and Atlantic Ocean SSTs at each hindcast lead 
time, is included as a component of the model. In the per-
fect knowledge framework future knowledge about these 
components is taken from the historically observed values 
of the Niño3.4, AMO and IPO indices. If such an approach 
showed the potential to improve the skill of the empirical 
model then further investigation would be necessary to 
evaluate the skill of any dynamical (or statistical) predic-
tion system used, as well as the sensitivity of hindcast skill 
of the two-tier system to the inclusion of different predic-
tions of these large-scale modes of variability.

In an operational setting, future information about the 
predictors would have to be included from dynamical (or 
statistical) model predictions. The two-tier approach could 
further be extended to incorporate predictions of other 
large-scale mechanisms and drivers of local-scale vari-
ability in regions where strong teleconnections (and skill-
ful model predictions of the mechanisms themselves) 
have been demonstrated. Future development of such an 
approach will focus on the ability of such large-scale pre-
dictors to enhance the skill of the empirical model in spe-
cific regions using predictions from dynamical models.

3.5  Generating ensembles

A key component of the empirical prediction system is 
the provision of probabilistic output. Each of the hindcast 
experiments described above produces ensemble output 
containing 51 members. The ensemble size is comparable 
to that used by dynamical forecast centres who produce 
operational seasonal predictions (Molteni et al. 2011). It is, 
however, much larger than any of the current decadal pre-
diction experiments based on dynamical models, since they 
are computationally expensive to run.

There are several approaches to generating ensemble 
members from the multiple linear regression model, which 
is designed to find the single best combination of model 
components with some estimate of uncertainty on the fit. 
Each approach samples uncertainty in a different way, and 
allows uncertainty from different sources within the system 
to be explored.

The simplest approach, and the method used for the 
reporting of probabilistic skill throughout this paper, is 
to sample randomly from the residuals of the regression 

fit over the training period without replacement (allowing 
exploration of a wide variety of possible futures without 
replicating ensemble members). When considering spatial 
predictions, the residuals are sampled so that the ensemble 
members are spatially coherent, i.e. each ensemble member 
is generated by selecting a spatial map from the residuals, 
rather than independently selecting a residual at each loca-
tion over the globe.

An alternative approach to ensemble generation would 
involve sampling from the individual components of 
the model parameter uncertainties, taking into account 
the covariance between each of the parameters. Such an 
approach has not been adopted here since it is less straight-
forward to sample uncertainties in a spatially coherent way. 
Further developments in terms of ensemble generation in 
the model could also be developed to account for serial cor-
relation in the predictand and component timeseries. Such 
an approach may be important if considering the tempo-
ral dependence of individual model trajectories, however, 
may not be important in terms of statistical analyses based 
on the ensemble mean or probabilistic distributions that 
assume individual ensemble members are exchangeable 
and temporally independent. Generating temporally coher-
ent ensembles would also benefit from a larger historical 
data archive than the present study considers.

In addition, the Cowtan and Way interpolated surface 
air temperature observations (Cowtan and Way 2014) used 
here as the target predictand are available as a 100-member 
ensemble of historical trajectories. Each trajectory samples 
uncertainty in a way that is consistent with the available 
station data and bias correction procedure. The hindcast 
evaluation presented is based on fitting the empirical model 
to the ensemble median of this dataset. However, a further 
estimate of uncertainty has been calculated by fitting a 
model to each member of the full 100-member ensemble, 
and using the resulting ensemble of hindcasts to estimate 
model skill (see Sect. 4.1).

Finally, a further source of uncertainty regarding future 
predictions involves a lack of knowledge about the exter-
nally forced component of the climate system. Future forc-
ings are treated using RCP4.5 projections for anthropo-
genic forcings and solar radiation, but other scenarios could 
also be sampled (also see Sects. 4, 5 in the context of hind-
cast skill and forecast spread). However, over the timescale 
of a decade, uncertainties due to the magnitude of internal 
variability are likely to be larger than uncertainties in exter-
nal forcing (Hawkins and Sutton 2009).

In principle, other more advanced methods may be avail-
able for exploring and combining uncertainties from differ-
ent sources within the prediction model. The approach of 
selecting residuals has the advantage of being simple while 
at the same time accounting for many of the uncertainties 
discussed in an implicit way. Analysis of the ensemble 
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characteristics suggest that such an approach does not lead 
to any significant systematic over- or under-confidence 
within the hindcasts, particularly after any mean bias in the 
model is removed.

3.6  Bias correction

Dynamical models typically suffer from biases in their rep-
resentation of mean climate due to misrepresentations of 
the physical processes within the climate system and the 
nonlinear feedbacks between them. Such model biases are 
usually removed once raw ensembles of simulations are 
transformed into probabilistic forecast products. Several 
approaches exist to account for biases due to model error 
with the simplest approach [and the suggested approach in, 
for example Goddard et al. (2013)] being to apply a lead-
time dependent correction to the forecast variable, esti-
mated from the average error of the ensemble mean over 
a hindcast set under cross-validation. A similar approach 
is also adopted here to account for biases in the empirical 
model. More sophisticated methods for bias correction of 
initialised hindcasts include time-dependent methods (Kha-
rin et al. 2012; Fuc̆kar et al. 2014) and approaches that 
account for the rate of sampling of the internal variability 
(Hawkins et al. 2013) are not explored in the present study.

Biases in the empirical model arise due to a change in 
the quality and quantity of information available to train 
the model (which by definition is fit so that the mean resid-
ual, or bias, over the training period is zero) compared to 
generating the hindcasts. Biases also arise due to uncer-
tainties in determining model parameters using linear con-
straints based on relatively few data points. As expected, 
biases are larger in the hindcasts generated from the real-
time and prescribed natural forcings prediction modes 
(approximately 0.1–0.2 K for global mean temperature) 
than for hindcasts which exploit full knowledge of the AF 
trend and use perfect knowledge about future SSTs in the 
two-tier approach (approximately −0.01–0.04 K for the 
global mean). In general the biases grow as the lead time of 
the forecast increases. Once these mean biases are removed 
from each of the hindcasts, based on estimating the bias 
under cross-validation, their skill is assessed according to 
both deterministic and probabilistic measures.

4  Hindcast skill

Hindcast skill is evaluated as a function of lead time, both as 
annual means (Fig. 7) and as the more commonly quoted time 
aggregates, 2–5 and 6–9 years (Fig. 8) for the standard ver-
sion of the model (Sect. 4.1) and a version containing addi-
tional AMO and IPO predictors (Sect. 4.2). Skill is assessed 
according to both deterministic and probabilistic scores.

4.1  The standard model

Figure 7 shows skill of the hindcasts for global mean sur-
face air temperature anomalies in each of the four predic-
tion modes, which use the AF, solar irradiation and volcanic 
aerosol forcings, as well as the ENSO predictor within the 
model. The top panels show the correlation and root mean 
squared error (RMSE) of the ensemble mean for each set 
of hindcasts, as well as the skill of persistence hindcasts 
for comparison. All hindcasts from the empirical model are 
shown to perform better than persistence at all lead times 
and generally the skill of the model increases as extra infor-
mation is added beyond what would have been known in 
real-time. Prescribing volcanic aerosol forcings is shown 
to have a small impact on the overall level of skill in the 
model at all lead times. However, its impact on skill will be 
much larger in the years following any large eruption. The 
correlation and RMSE of the single best model and of the 
ensemble mean for each prediction mode are almost identi-
cal in this case (not shown), which is a reflection on the 
manner in which ensembles members are generated and the 
fact that there are enough of them to converge on a robust 
estimate of skill.

The bottom two panels in Fig. 7 show the probabilistic, 
proper skill scores Ignorance and the continuous ranked 
probability skill score (CRPSS). In this case the hindcast 
ensemble members are transformed into probabilistic distri-
butions through kernel dressing (Bröcker and Smith 2008) 
and the skill scores are assessed relative to reference hind-
casts of persistence. In the case of Ignorance, scores below 
zero indicate that the empirical model on average outper-
forms persistence (by the empirical model systematically 
placing more probability density on the outcome than per-
sistence does). Scores above zero for CRPSS indicate the 
degree to which the empirical model shows improvement 
over persistence, with scores of 1.0 indicating the empirical 
model to be a perfect forecast system. It is clearly shown 
that the empirical model is more skillful than persistence in 
all prediction modes. The vertical bars in the bottom panels 
of Fig. 7 show a 10–90 % bootstrap resampling range from 
the set of hindcast scores for each lead time with replace-
ment. In all cases the bootstrap bars indicate that the skill 
relative to persistence is statistically significant at the 10 % 
level (i.e. the scores do not cross zero).

For Ignorance (bottom left panel of Fig. 7), scores of 
∼0.6 indicate that hindcasts in the real-time and prescribed 
natural forcings mode typically place around 0.6 bits, or 
20.6 (that is around 50 %) more probability density on the 
observed outcome than the persistence hindcasts. The hind-
casts that exploit the trend place on average twice as much 
probability on the observed outcome than persistence. For 
CRPSS (bottom right panel of Fig. 7) the general conclu-
sions are the same, with the empirical model demonstrating 
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a 20–60 % improvement over persistence, depending on the 
hindcast lead time and prediction mode.

In Fig. 7, a lead time of zero indicates hindcasts based 
on training the model using all forcing and predictor 
information available at the time of the hindcast launch 
(i.e volcanic aerosol data is included and all predictor 
information on the hindcast start date is also included). 
Lead time one corresponds to a forecast at 1 year ahead, 
in which the ENSO predictor (and AMO, IPO predictors 
in Sect. 4.2) takes the observed value at lead time zero 
with a regression parameter that corresponds to a lead-
lag relationship with surface air temperature of 1 year, 
and so on. The fact that skill does not appear to dimin-
ish as lead time increases indicates that much of the skill 
in decadal predictions of global mean temperature comes 
from the forced trend component associated with AFs 
[see, for example van Oldenborgh et al. (2012)]. The pro-
portion of skill that comes from the large-scale modes of 
variability within the model has been tested by compar-
ing the skill of the model in each prediction mode to an 
equivalent version of the model that does not contain any 
ENSO component (i.e. an uninitialised model). In most 

cases a small but significant improvement (∼15–20 %) 
in skill is found by including the ENSO component for 
lead time zero (not shown), but any increase in skill is 
negligible after 1 year, reflecting the rapidly decreasing 
forecast skill of Pacific SSTs at increasing timescales. 
However, it is found that having perfect knowledge of 
Pacific SSTs during each hindcast increases the skill of 
the model significantly at all lead time (up to a 30 %, 
or ∼0.5 bit improvement) over an empirical model that 
includes no SST information, suggesting that any future 
information about the temperatures in the Pacific Ocean 
(or other large-scale patterns) could greatly improve the 
skill of a decadal prediction system based on a two-tier 
model described in Sect. 3.4.

A further test of probabilistic skill based directly on 
the raw ensemble can be examined through the dispersion 
characteristics of the hindcast ensemble members for each 
of the approaches discussed in Sect. 3.5. The ensemble dis-
persion (Ho et al. 2013a) is defined as:

(2)
d =

√

(

n+ 1

n

)

σ 2

R2
,

Fig. 7  Hindcast skill of the empirical model for annual (January–
December) global (land and ocean) mean surface air temperature 
in each of the four prediction modes as a function of lead time (in 
years). The top panels show the correlation (left) and RMSE (right) 
of the ensemble mean, while the bottom two panels show Ignorance 

(left) and CRPSS (right) of the ensemble relative to hindcasts of per-
sistence. Hindcasts generated in all prediction modes show significant 
skill above that of persistence and generally as information is added 
to the model (beyond what would have been known in real time) the 
skill of the model increases according to all skill measures



E. B. Suckling et al.

1 3

where n is the number of ensemble members in each hind-
cast, σ 2 is the mean variance across the ensemble over the 
full hindcast set and R2 is the mean squared error of the 

ensemble mean. Dispersion values with d < 1 indicate that 
the ensembles are systematically over-confident (or under-
dispersed) in their predictions, whereas d > 1 suggest that 

Fig. 8  Various measures of hindcast skill of the empirical model for 
annual mean surface air temperature anomalies for lead time 1 year 
(left panels), 2–5 years (middle panels) and 6–9 years (right panels). 
Hindcasts are generated annually over the period 1960–2014, con-
taining 51 ensemble members and are shown for the ‘exploiting the 
trend’ prediction mode. The correlation (top row) and RMSE (sec-
ond row) of the ensemble mean are shown, along with the ensem-

ble dispersion characteristics (third row) and Ignorance relative to 
persistence (bottom row). The stippling indicates locations that do 
not exhibit statistically significant skill at the 10 % level. Almost all 
locations over the globe are shown to outperform persistence (bottom 
panels) at all lead times, while strong correlations (top panels) with 
the observed temperatures are shown, particularly over land at all lead 
times, mainly due to the forced trend
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the prediction ensembles are systematically under-confi-
dent (or over-dispersed). It is found that selecting from the 
residuals of the model fit over the training period typically 
leads to hindcast ensembles for global mean temperature 
that are slightly over-confident in the real-time hindcast 
mode (d ≈ 0.85− 0.95) and slightly under-confident when 
using exploiting the trend mode (d ≈ 1.1− 1.3). Simi-
lar results are obtained if ensemble members are sampled 
directly from the combined uncertainties of the individual 
model parameters. However if an ensemble of models is 
generated using the uncertainty on the observations alone 
(i.e. using the ensemble of observations from the Cowtan 
and Way interpolated HadCRUT4 dataset) then the hind-
casts are shown to be over-confident in all hindcast modes 
(d ≈ 0.6, not shown).

Figure 8 shows maps of hindcast skill for surface air 
temperature from the standard model at lead times of 1, 
2–5 and 6–9 years in the exploiting the trend mode. The 
top panels in Fig. 8 show the correlation of the model with 
observed surface air temperature anomalies for each lead 
time. Strong correlations are shown over land in many 
regions, particularly over parts of Asia and Africa, with 
correlations increasing to over 0.8 in many regions at lead 
times of 6–9 years, due to the forced trend component and 
the longer time averaging relative to the short decorrelation 
times. Stippling in the top panels indicates regions that are 
not statistically significant at the 10 % level. The second 
row in Fig. 8 shows the RMSE of the ensemble mean and 
indicates that model errors are largest at high latitudes and 
in the tropical Pacific at lead time one, although this error 
is removed once longer time averages are considered. In 
general the correlations and RMSEs are of a similar order 
of magnitude to those of recent decadal hindcasts from 
dynamical models and show similar spatial patterns of skill 
(van Oldenborgh et al. 2012; Shaffrey et al. 2016). More 
comprehensive comparisons between the empirical model 
and dynamical systems (or against benchmarks other than 
persistence) are beyond the scope of the current study.

The third row in Fig. 8 shows the dispersion character-
istics of the ensemble, as defined in Eq. 2. In general as 
lead time increases the ensemble becomes more under-
dispersive (over-confident), although at lead time 6–9 years 
there are still some regions which show the ensemble to be 
under-confident, particularly over the East Asia and North 
America regions. Finally, the bottom panels in Fig. 8 show 
the probabilistic Ignorance skill score for hindcasts from 
the empirical model relative to persistence. In almost all 
locations over the globe the empirical model is shown to be 
significantly more skillful than persistence At lead time one 
the empirical model consistently places ∼50 % (or ∼0.6 
bits) more probability density on the observed outcome 
than persistence forecasts do, while at longer lead times 
(and larger time aggregates) this grows up to 3 times more 

probability density in some locations, likely due to the 
forced trend component in the empirical model compared 
to persistence.

The levels of skill found in the empirical model are simi-
lar whether computing the global mean surface air tem-
perature from individual model temperatures across the 
globe, or whether fitting the model to global mean tempera-
ture directly (as expected under the application of a linear 
model), and the general conclusions are robust to alterna-
tive observational datasets and adjustments to the model 
training periods (not shown). The patterns of skill found 
in Fig. 8 are similar across all of the prediction modes 
investigated, but generally skill decreases as information is 
removed from the model, with hindcasts made in the real-
time mode still demonstrating significant skill compared 
to persistence (by up around 0.2 to 0.6 bits of additional 
information depending on the region). A small, but statisti-
cally significant (up to 5 %) decrease in skill is found at all 
lead times and in most locations if the ENSO component 
is removed from the model (i.e. equivalent to generating 
uninitialised historical projections).

4.2  Additional predictors

The skill of a set of hindcasts that also includes the AMO 
predictor (as well as hindcasts that include AMO and IPO 
predictors) is generated using exploiting the trend mode. 
The skill of the hindcasts which include AMO is also 
shown in Fig. 7 (light blue lines). The inclusion of the 
AMO predictor, or the IPO predictor, does not lead to any 
significant improvement in skill over the standard model 
(dark blue lines), which is perhaps not surprising for pre-
diction of global mean temperature. However these compo-
nents are expected to have larger impacts on regional scale 
prediction. The two-tier system (purple lines in Fig. 7), 
which includes perfect knowledge of SSTs in the ENSO 
region, as well as from AMO, shows improvement over all 
other modes and demonstrates a small improvement over a 
two-tier approach which only includes ENSO (not shown). 
This suggests there may be potential to increase the skill of 
an operational prediction system by incorporating predic-
tions of large-scale ocean patterns and their relationship to 
local-scale variability within the model. However, the per-
fect knowledge framework used here assumes perfect pre-
dictability of the state of the Pacific and Atlantic Oceans 
several years in advance and in reality the skill of any such 
system will depend also on the quality of these predicted 
large-scale patterns. The addition of the IPO component in 
the two-tier model, however, shows no significant improve-
ment over a model which includes the ENSO and AMO 
components (not shown).

Figure 9 shows the hindcast skill (in terms of Igno-
rance) for different versions of the model relative to the 
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standard version of the model in which hindcasts are 
generated in the exploiting the trend prediction mode. At 
lead times of 1 year (top panels) there is clearly a ben-
efit of including the AMO predictor for skill in the North 
Atlantic and Greenland region (left panels), which show 
improvements over the standard version of up to 0.2 bits 
(or an increase of around 15 % probability density being 
placed on the outcome compared to the standard model). 
Including the AMO predictor also leads to small but sta-
tistically significant improvements over some areas of the 
globe, particularly in the Pacific Ocean and over parts of 
Europe. At longer lead times (bottom panels) much of 
the improvement has diminished and there are even a few 
locations (parts of South America and Africa in the trop-
ics for example, and also in the Southern Ocean) that show 

a degradation of skill compared to the standard version of 
the model. The two-tier approach, which includes either an 
ENSO component only (middle panels) or SST informa-
tion from both the Pacific and Atlantic regions (i.e. includes 
ENSO and AMO—right panels), also clearly demonstrates 
the potential for significant improvements in model skill, 
particularly over North America and southern Africa. The 
level of improvement that could be gained is clearly con-
tingent on the predictability of SSTs at these timescales and 
the skill of any prediction system used within such a two-
tier approach. The potential improvements in skill over the 
standard model approach diminish as lead time increases, 
showing no improvement, or even a degradation of skill 
in much of the Southern hemisphere at lead times beyond 
1 year (middle and bottom panels).

Fig. 9  Improvements in skill (in terms of Ignorance) relative to 
the standard version of the empirical model as additional predictors 
are included within the model for hindcasts of annual mean sur-
face air temperature anomalies for lead times of 1 year (top panels), 
2–5 years (middle panels) and 6–9 years (bottom panels). The left-
hand panels show the standard version of the empirical model plus 
the inclusion of the AMO predictor, the middle column shows the 
two-tier model which uses observed values of the ENSO predictor 
thrughought the hindcasts, and the right-hand panels show the two-

tier model with the additional AMO predictor. Stippling indicates 
locations that do not exhibit statistically significant skill relative to 
the standard version of the model at the 10 % level. The inclusion 
of the AMO component leads to significant increases in skill in the 
North Atlantic region at 1 year ahead (with hindcasts placing around 
10 % more probability on the observed temperatures in this region 
than the standard model). This improvement diminishes at longer lead 
times, however. Significant improvements in skill are shown in many 
locations at all lead times for the two-tier models
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At lead time 6–9 (bottom panels), the diminished skill 
compared to lead time 2–5 in the standard + AMO case 
(left panel) is due to the decreasing skill of the relationship 
between the ENSO and AMO predictors with observed 
surface air temperatures at longer lead-lag times (since the 
model in the exploiting the trend prediction mode is gen-
erated from a single set of regression parameters across 
all hindcasts). In the two-tier approach (middle and right 
panels) the differences in skill between lead times 2–5 
and 6–9 are simply an effect of the differing start and end 
points of the verification period between the two lead times 
(since in this case the ENSO and AMO predictors are set to 
their observed values throughout the hindcasts). These dif-
ferences in skill between the two lead times highlight that 
there are sensitivities to particular verification events over 
the hindcast period and illustrate the importance of con-
sidering consistent verification periods when making like-
for-like skill comparisons between models (Hawkins et al. 
2013).

The IPO predictor also shows very small improvements 
in skill compared to a model that includes ENSO and AMO 
at lead times of 1 year (not shown), however, any improve-
ment in skill is small relative to the extra uncertainty intro-
duced on the individual model parameters. Furthermore, at 
longer lead times the inclusion of the IPO index within the 
model leads to a significant degradation of skill over much 
of the Southern hemisphere (by up to 0.25 bits in some 
locations) relative to the standard version of the model. 
These results suggest that large-scale predictors such as 
AMO and IPO should only be included within the model 
where they are shown to significantly improve skill for the 
specific variable, region and timescale of interest, as was 
done in Eden et al. (2015). For the purpose of prediction 
the standard version of the model is therefore employed in 
Sect. 5. A more comprehensive analysis of the benefits of 
including additional predictors within the empirical model 
for regional prediction is left for future work.

5  Forecast for 2016–2025

The analysis of hindcast skill in the empirical model has 
identified sources of predictability from different com-
ponents, as well as provided useful insight into which 
approaches to experimental design might be most appropri-
ate for real-time prediction. These approaches have been 
applied to produce forward forecasts of surface air tem-
perature anomalies (relative to 1961–1990) over the globe 
for the period 2016–2025. Figures 10 and 11 show these 
forecasts for a lead time of 1 year, i.e. 2016 (Fig. 10) and 
for time aggregated lead times of up to 10 years (Fig. 11). 
The forecast is generated in a similar manner as described 
in Sect. 3.1 using the standard version of the model, with 

projected AF forcings prescribed according to RCP4.5, vol-
canic aerosol set to zero at the forecast launch and ENSO 
taking the observed Niño3.4 value in 2015 (with a four 
month lag), using regression parameters that correspond to 
the lead-time of the forecast (i.e. using the relevant lead-
lag relationships). The empirical model is trained over 
the period 1900–2014 and ensembles are generated from 
the residuals of the model fit, with a lead-time dependent 
bias correction applied based on an estimate of the mean 
forecast error over the hindcast period in the exploiting the 
trend prediction mode.

Figure 10 shows the ensemble mean prediction (top left), 
the standard deviation across the 51-member ensemble (top 
right) and a subset of ensemble members (chosen to reflect 
the range of spatial patterns predicted by the model—mid-
dle and bottom panels) for 2016. Temperature anomalies 
are generally predicted to be warmer than the 1961–1990 
baseline period over much of the globe, particularly in 
Northern latitudes and over the African and Asian conti-
nents, with anomalies above 1.6 K in some regions. Despite 
the ensemble mean showing a warming over much of the 
Northern hemisphere, there is diversity across the ensemble 
members in terms of their predicted spatial patterns. The 
standard deviation across the ensemble members ranges 
from 0.1 K up to 0.5 K in some regions. A small number of 
ensemble members even predict cooler temperature anoma-
lies relative to the 1961–1990 baseline in some regions 
(e.g. a cooling of ∼1.4 K over Eastern Europe, Asia, or 
in the Southern and Pacific Oceans, as shown in the mid-
dle panels of Fig. 10). However the majority of ensemble 
members show a warming over much of the globe for 2016.

Globally, temperature anomalies are predicted to be 
0.71 ± 0.12 K (1σ ‘likely’ range) above the 1961–1990 
baseline in 2016 (observed anomaly ranges across a vari-
ety of datasets for 2014 and 2015 are 0.57–0.62 and 0.74–
0.77 K respectively), rising to 0.88 ± 0.13 K in 2025 (not 
shown). Similar results are obtained based on fitting the 
empirical model to a variety of different global mean sur-
face temperature datasets, including HadCRUT4 (Morice 
et al. 2012), the Berkeley Earth Surface Temperature data-
set, BEST, (Rohde et al. 2013), the GISS Surface Tem-
perature Analysis, GISTEMP (Hansen et al. 2010) and 
NOAA/NCDC (Smith et al. 2008), which are all found 
to have similar correlation and RMSE scores across their 
hindcast sets. Ensemble mean predictions based on each 
of these observational time series range from 0.62 K to 
0.72 K above a 1961–1990 baseline for 2016 and 0.83 K to 
0.89 K for 2025. The predicted temperature trend over the 
10 years period 2016–2025 is 0.17 ± 0.11 K. Furthermore, 
hindcasts and forecasts have also been examined using 
other forcing scenarios, specifically RCP2.6 and RCP8.5 
(Meinshausen et al. 2011). Once again the hindcasts show 
similar levels of skill across the different scenarios. Over 
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the coming decade predictions based on the RCP2.6 sce-
nario predict the largest warming by 2025, with a global 
mean temperature anomaly of 0.90 ± 0.13 K relative to 
1961–1900, compared to 0.89 ± 0.13 K for RCP8.5. These 
results are consistent with predictions from dynamical 
models, which suggest that the larger warming in RCP2.6 

compared to RCP8.5 is due to the effects of less negative 
aerosol forcing adding to the global temperature response 
over the near-term (Chalmers et al. 2012).

Figure 11 shows the ensemble mean (left panels) and 
standard deviation (right panels) of the predicted regional 
patterns for the empirical model at lead times of 2–5 years 

Fig. 10  Predictions of surface air temperature anomalies (relative 
to 1960–1990) for the year 2016 (January–December mean) from 
the empirical model. The top left panel shows the ensemble mean of 
the 51-member ensemble and the top right panel shows the stand-
ard deviation across the ensemble members. The bottom four panels 
show a subset of the individual ensemble members, selected ran-

domly. The full ensemble is generated by sampling from residuals of 
the empirical model fit over the period 1900–2014 without replace-
ment. Each ensemble member is bias corrected using an estimate of 
the mean forecast error from the set of hindcasts produced using the 
‘exploiting the trend’ approach
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(i.e. 2017–2020—top panels), 6–9 years (i.e 2021–2024—
middle panels) and 1–10 years (i.e. 2016–2025—bottom 
panels) ahead. The ensemble variance is naturally sup-
pressed as longer time aggregates are taken, while the 
ensemble mean patterns are similar across all time scales, 
predicting a warming above the 1961–1990 baseline 

period of over 1.6 K over land across most of the Northern 
hemisphere by the end of 2025. Only a few small regions, 
including in the North Atlantic, over South America and in 
the Southern Ocean show a predicted relative cooling in 
the ensemble mean over the coming decade, which is con-
sistent with similar forecasts based on dynamical models 

Fig. 11  Empirical predictions of annual mean surface air tempera-
ture anomalies (relative to 1961–1990) for the period 2016–2025. The 
left-hand panels show the ensemble mean from 51 ensemble mem-
bers and the right-hand panels show the standard deviation across the 
ensemble. Prediction lead times of 2–5 years (top panels), 6–9 years 
(middle panels) and 1–10 years (bottom panels) are shown. The larg-

est warming is predicted to be over land, particularly in teh Northern 
Hemisphere, although these regions are also associated with the larg-
est ensemble spread. Only a few regions, such as in the North Atlan-
tic and in the Southern Ocean are predicted to cool compared to the 
1961–1990 baseline
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(Hermanson et al. 2014). In the Southern Ocean region, 
however, where the predicted cooling is largest, the data 
available to train the model contains larger uncertainties 
due to a relative lack of observations.

Such predictions of surface temperature warming over 
the next decade have important implications for adaptation 
planning and risk management decisions in the near term. 
However, the quantitative output from any single model 
should be taken with caution. While operational decadal 
forecasting is still in its infancy, the ability to compare pre-
dictions from a variety of empirical and dynamical mod-
els in real time is potentially beneficial, not only in terms 
of understanding the range of predicted climates over the 
coming years, but also in terms of analysing methodologies 
and approaches to real-time prediction. As such, a similar 
set of empirical forecasts to those presented here for sur-
face air temperature anomalies, over the period 2015–2024, 
have contributed to the Decadal Forecast Exchange project 
(Smith et al. 2013), alongside those from dynamical mod-
elling centres across the world. Further developments to 
the empirical forecast system will aim at expanding that 
range of variables that are predicted and by the model, 
thus allowing further comparisons against predictions from 
dynamical models, as well as additional contributions to 
decadal prediction projects, such as the Decadal Forecast 
Exchange.

6  Conclusions

A new global empirical decadal prediction system for 
surface air temperature has been presented, based on a 
multiple linear regression approach using observed and 
projected global forcings, as well as ENSO and other large-
scale modes of variability as predictors. Ensembles of hind-
casts covering the period 1960–2014 were generated under 
a series of different prediction modes and predictability and 
skill of the model were evaluated according to both deter-
ministic and probabilistic metrics. The model was shown 
to be significantly more skillful than persistence at all lead 
times, up to 10 years ahead, for all prediction modes. Small 
improvements in skill are found at all lead times once 
future volcanic forcings are prescribed in the hindcasts and 
it is suggested that hindcasts which exploit knowledge of 
the forced trend throughout the hindcast period can provide 
more robust estimates of model bias for the calibration of 
the empirical model in an operational setting. Although 
there is some sensitivity to the datasets, training period and 
future scenarios employed, it is possible to draw robust 
conclusions about the skill within the empirical prediction 
system. A two-tier system shows potential for improved 
real-time prediction, given the assumption that skillful 
forecasts of the large-scale modes of local-scale variability, 

such as ENSO and AMO, are available. However, the 
two-tier model investigated here only considers Pacific 
and Atlantic Ocean SSTs as important predictors and 
does so under the assumption of perfect knowledge about 
the future, so additional work is needed to investigate the 
viability of such an approach to decadal prediction given a 
more realistic analysis of predictability and forecast skill of 
the mechanisms themselves.

The empirical model has been designed with the flexibil-
ity to facilitate further developments, including the predic-
tion of other surface variables, improved ensemble genera-
tion methodologies and the ability to incorporate additional 
predictors within the model. It is also semi-operational in 
the sense that forecasts have been produced for the com-
ing decade and have contributed to the Decadal Forecast 
Exchange project. The hindcast data and forecasts produced 
from the model are also publicly available at: http://dx.doi.
org/10.17864/1947.39. However, at present only glob-
ally averaged annual mean forcings are included within 
the model in all locations over the globe. The inclusion of 
regionally-varying forcings may lead to improvements in 
skill. Furthermore, the inclusion of additional predictors that 
describe decadal-scale variability, and that are specific to 
the predictand variable, region and season of interest, may 
improve such an operational empirical system beyond the 
present study. Such developments will be explored in future.
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