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Abstract

The Semantic Web was proposed as an extension of the traditional Web to give Web

data context and meaning by using the Resource Description Framework (RDF) data

model. The recent growth in the adoption of RDF in addition to the massive growth

of RDF data, have led numerous efforts to focus on the challenges of processing this

data. To this extent, many approaches have focused on vertical scalability by utilis-

ing powerful hardware, or horizontal scalability utilising always-on physical computer

clusters or peer to peer networks. However, these approaches utilise fixed and high

specification computer clusters that require considerable upfront and ongoing invest-

ments to deal with the data growth. In recent years cloud computing has seen wide

adoption due to its unique elasticity and utility billing features.

This thesis addresses some of the issues related to the processing of large RDF datasets

by utilising cloud computing. Initially, the thesis reviews the background literature

of related distributed RDF processing work and issues, in particular distributed rule-

based reasoning and dictionary encoding, followed by a review of the cloud computing

paradigm and related literature. Then, in order to fully utilise features that are spe-

cific to cloud computing such as elasticity, the thesis designs and fully implements

a Cloud-based Task Execution framework (CloudEx), a generic framework for effi-

ciently distributing and executing tasks on cloud environments. Subsequently, some

of the large-scale RDF processing issues are addressed by using the CloudEx frame-

ii



work to develop algorithms for processing RDF using cloud computing. These algo-

rithms perform efficient dictionary encoding and forward reasoning using cloud-based

columnar databases. The algorithms are collectively implemented as an Elastic Cost

Aware Reasoning Framework (ECARF), a cloud-based RDF triple store. This thesis

presents original results and findings that advance the state of the art of performing

distributed cloud-based RDF processing and forward reasoning.
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Chapter 1

Introduction

The World Wide Web is a collection of interlinked hypertext documents designed

primarily for humans to read, with search engines being used to crawl and index

these pages to provide search capability. However, this search is usually based on

keyword matching, rather than the meaning of the content. For example, searching

to get an intelligent answer to the question ”Does John work at iNetria?” would

simply return Web pages with text that matches the words in the question. There

is therefore, a need for a mechanism to formally express the meaning of data on the

Web, hence the Semantic Web was proposed [2]. In 2001, Berners-Lee et al. outlined

the vision of the Semantic Web as follows:

“The Semantic Web is not a separate Web but an extension of the

current one, in which information is given well-defined meaning, better

enabling computers and people to work in cooperation”

1.1 The Semantic Web

The Semantic Web was proposed as an extension of the traditional Web to give Web

data context and meaning (semantics). Consequently, intelligent software applications
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that can parse these semantics can be developed to assist humans with many tasks.

One of these tasks is question answering, to answer questions like the one posed

previously. A few other examples include semantic search, social discovery, content

enrichment and publishing, etc., to mention just a few. For the Semantic Web vision

to become a reality, the meaning of data must be expressed in a formal way. This

requires the definition of common vocabulary and formal semantics that both humans

and software applications can understand. Software applications can then understand

the meaning of this data and deduce new knowledge from it. Consider for example

the following statements available on the Web and represented in plain English:

• John is an employee

• John works at iNetria

• John’s full name is ”John Smith”

It is easy for humans to understand these statements and to deduce that the in-

dividual named John is a person working at a business named iNetria. A software

application, however, will not be able to deduce such implicit knowledge straightaway.

These statements need to be represented in a formal language that the application

understands. Additionally, the application needs to be supplied with a set of rules

on how to deduce that extra implicit knowledge. Another issue that might face such

an application is the context as to which John the user have in mind, there might be

many. To express such knowledge, the Resource Description Framework (RDF) [3]

data model can be used.

1.2 The Resource Description Framework

RDF provides a data model that can be used on the Web to add meaning to existing

data such that it can be understood by both software applications and humans. The

2
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RDF Schema (RDFS) [4], is a semantic extension of RDF that enables users to define

a group of related resources and the relationships between them. Information in

RDF is primarily represented using XML [5], however other compact and readable

representations also exist such as the Notation3 (N3) [6] syntax. Resources in RDF can

be identified by using Uniform Resource Identifiers (URIs), for example the individual

named John can be identified by using <http://inetria.org/directory/employee/

smithj>. To avoid using long URIs these are usually shortened using namespaces such

as employee:smithj.

To demonstrate these concepts, consider for example the plain English statements

presented previously, it can be said that the individual John is of type Employee and

the entity iNetria is of type Company. It can also be said that the relationship between

an Employee and a Company is represented through the works at relationship. These

statements of knowledge — usually known as triples — contain three parts, a subject,

predicate and an object and can be written as follows:

- employee:smithj rdf:type inetria:Employee

- business:inetria rdf:type inetria:Company

- employee:smithj inetria:works_at business:inetria

Usually, basic explicit knowledge about resources is encoded as RDF by humans then

software applications are used to deduce further implicit knowledge by using rule-

based reasoning. Rule-based reasoning requires that a set of rules — such as RDFS

entailment rules [7] — to be applied repeatedly to a set of statements to infer new

knowledge. For example, given the extra information that an Employee is a sub class

of Person an application can use rule-based reasoning to deduce that the employee

employee:smithj is actually of type Person. This knowledge may seem trivial to

humans, however for software applications inferring such knowledge requires compu-

3
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tational resources, with more statements and rules this task can become computa-

tionally difficult.

1.2.1 RDF Data on the Web

There is currently a great deal of community, organisations and governments1 effort

to provide RDF datasets on the Web covering a wide range of topics, such as gov-

ernment data, publications, life sciences, geographic, social web to mention just a

few. Additionally, ongoing effort is also focusing on connecting pieces of information

on the Semantic Web data, widely known as Linked Data2. As of 20143 this Linked

Data cloud spanned more than 1014 publicly available datasets. To give an indication

on the size of these datasets, which is usually measured in terms of the number of

statements (RDF triples) in each dataset, consider the DBpedia4 [8] dataset, which

is a collection structured data extracted from Wikipedia. This dataset contains more

than 3 billion statements covering 125 languages. Another example is the Linked Life

Data5 (LLD) that has 10 billion statements, providing a collection of biomedical data

such as genes, protein, disease, etc. . . .

1.2.2 Use Cases

Many applications use Semantic Web technologies in particular RDF to provide capa-

bilities such as semantic search, content aggregation and discovery. Perhaps some of

the notable usages of these technologies for content enrichment and publishing were

the BBC websites for both the 2010 World Cup [9] and 2012 Olympics [10]. Using

these technologies the BBC was able to automatically aggregate web pages that con-
1https://data.gov.uk/
2http://linkeddata.org/
3http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
4http://wiki.dbpedia.org/Datasets
5http://linkedlifedata.com/
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tain links to relevant resources with minimal human management. Such applications

usually utilise a special type of database for storing and managing RDF triples called

triple stores, which provide the ability to load, update and delete RDF statements.

Additionally, triple stores can perform forward rule-based reasoning to infer addi-

tional knowledge and support the query of the stored statements using the Protocol

and RDF Query Language (SPARQL) [11]. For applications to be able to process,

integrate or query large datasets such as DBpedia and Linked Life Data, high spec-

ification hardware and expensive software are usually required. To make the matter

worse, these datasets are constantly growing, forcing users to constantly upgrade their

software and hardware in order to keep up with the data growth.

1.3 The Growth to Big Data

Initially, RDF data was processed using centralised systems that run on a single com-

puter, however, due to the constant growth of the Semantic Web RDF data, this

data can now be described as Big Data [12]. To this extent, the Semantic Web Chal-

lenge [13] which is concerned with building end-user Semantic Web applications, was

formerly known as Billion Triples Challenge is now renamed to Big Data Challenge.

This data growth means that the average size of RDF datasets that an application

needs to process well exceeds a billion statements of knowledge. Therefore, the com-

putational processing power required to process these datasets — such as deducing

implicit knowledge through rule-based reasoning — far exceeds the capabilities of a

single computer. Consequently, commercially available large triple stores [14] have

focused on solutions that utilise high specifications hardware.

Moreover, recent research work on large scale RDF processing in general and RDFS

reasoning in particular, has moved from focusing on centralised algorithms to focusing

5
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on distributed and parallel algorithms. These algorithms utilise either peer-to-peer

networks using Distributed Hash Tables (DHT) [15, 16], or computer clusters using

MapReduce [17] and other programming models [18, 19, 20, 21]. Aforementioned

work has primarily focused on addressing the challenges of efficient data partitioning

and assimilation between the various computing resources, which in most cases, are

either part of an always-on computer cluster, or peer to peer network.

1.4 Challenges with Physical Computing

Some of the existing algorithms on large scale RDF processing utilise high specifi-

cations and dedicated computer clusters [19, 20, 21] that require large upfront in-

frastructure investments. These clusters usually contain a fixed number of always-on

computing resources that are billed for 24/7 regardless of utilisation. This presents

a number of challenges, for example, it is not possible to simply “switch off” these

resources when not needed and then switch them on when there is enough workload.

Besides, jobs executed on such clusters are constraint to the maximum number of

computing resources available, which means larger jobs utilising all available resources

will need to execute over longer time periods. Increasing the capacity of such clusters

requires further investment and effort to purchase, install and configure additional

computing resources.

Other algorithms that perform distributed RDF processing utilise computers in peer to

peer networks [15, 16], namely Distributed Hash Tables [22] (DHTs), in these settings

computing resources perform multiple tasks that are not related. In such heteroge-

neous computing environments, there are no performance or deadline guarantees to

any one particular task. Moreover, due to the shared nature of such environments, it

is difficult to measure the overall cost exclusively required to perform one particular

6
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task. In addition to the aforementioned challenges, the Semantic Web data is often

highly skewed which causes a number of workload partitioning strategies to suffer

from load balancing issues [19]. Furthermore, the continuous growth of the Semantic

Web data presents the challenges of storing both the explicit and the inferred data.

Some of the issues described in this section are inherit from the nature of physical

computing, cloud computing on the other hand is a promising computing paradigm

that can be utilised to address some of these issues.

1.5 The Potential of Cloud Computing

Traditional distributed or grid computing is based on fixed, physical and intercon-

nected servers hosted in data centres, cloud computing on the other hand is a com-

puting paradigm built on top of these servers. Public cloud computing provides a pool

of shared resources that can be rapidly acquired or released with minimal effort, ei-

ther manually or programmatically [23], a feature unique to cloud computing termed

Elasticity [24, 25, 26]. Elasticity is the ability to acquire computing resource with

varying configurations (e.g. number of CPU cores, RAM size, disk type) almost in-

stantly when needed and released instantly when not needed by using an Application

Programming Interface (API) exposed by the cloud provider. Public cloud providers,

most notably Amazon Web Services [27], Google Cloud Platform [28] and Microsoft

Azure [29], utilise their data centres to commercially offer on-demand computing re-

sources.

In addition to elasticity, the other key benefit of cloud computing is usage-based billing

so that consumers only pay for what they use, which is highly cost efficient compared

to a physical computer environment being billed even when the resources are not being

used. Cloud computing offers many other on demand services, such as low latency

7
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mass cloud storage capable of storing unlimited amounts of data and analytical big

data services. These big data services such as Amazon Redshift [30] and Google

BigQuery [31] provide a promising platform that is able to readily analyse web-scale

datasets in a few seconds. For example, it was shown that the algorithms behind

Google BigQuery are able to achieve a scan throughput of 100 billion records per

second on a shared cluster, which out performs MapReduce by an order of magnitude

[32]. Additionally, it was shown that using public clouds, users can scale to over 475

of computing nodes in less than 15 minutes [33].

1.6 Motivation

As noted in the previous section, the cloud computing paradigm provides a promising

approach for storing, managing and processing large RDF datasets. Furthermore,

cloud computing is both available and affordable to users and organisations, whereas,

dedicated physical computing clusters may not be practically available for everyone

to use due to the required upfront infrastructure investment and ongoing maintenance

cost. Currently end-user applications that process, use and query large datasets such

as DBpedia and Linked Life Data require high specification hardware to run com-

mercially available triple stores, requiring massive upfront infrastructure investments.

Utilising an approach based on cloud computing can play a step forward towards

making RDF processing available for mainstream use, without any expensive upfront

investment. Despite this, little research has been done to explore the use of cloud

computing for RDF processing, storage and performing RDFS rule-based reasoning.

It may be tempting to replicate approaches developed in physical computing on cloud

computing, such approaches are primarily centred on computing clusters with the

storage and processing contained therein. In doing so, it is very likely that such

8
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approaches will suffer from reduced performance due to the virtualisation nature of

cloud resources [20], which is yet another layer on top of the native computing re-

sources. Instead of such replication, this thesis utilises and introduces the notion

“cloud-first frameworks” to signify frameworks that are entirely cloud based, specifi-

cally designed from the ground-up for cloud computing and utilise cloud services such

as Infrastructure as a Service, cloud storage and Big Data services.

1.7 Research Aim and Questions

Based on the challenges and motivation noted in the previous sections, the aim of

this research is to develop and evaluate an elastic cloud-based triple store for RDF

processing in general and RDFS rule-based reasoning in particular. This aim has

resulted in a number research questions being asked, firstly, if the processing of RDF

is performed on cloud computing resources, can these resources be efficiently acquired

for task execution and released. Secondly, as noted earlier that RDF contains long

URIs which occupy storage space, network bandwidth and take longer to process. A

question worth asking is, can these URIs be compressed rapidly and efficiently by

using an efficient dictionary encoding. Finally, provided that cloud big data service

such as Google BigQuery provide analytical capabilities for massive datasets, can

these services be used to perform rule-based reasoning. These research questions can

be summarised as follows:

• Q1. How can a cloud-based system efficiently distribute and process tasks with

different computational requirements?

• Q2. How can an efficient dictionary that fits in-memory be created for encoding

RDF URIs from strings to integers?

9
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• Q3. How can cloud-based big data services such as Google BigQuery be used

to perform RDFS rule-based reasoning?

An overarching research question that encompasses all the above question is: can cloud

computing provide an efficient RDF triple store that provides storage, processing and

can perform RDFS rule-based reasoning?

1.7.1 Scope of Research

To provide answers to the research questions, this research is conducted over two

domains, RDF and cloud computing as shown in Figure 1.1. The research develops

a Cloud-based Task Execution framework (CloudEx), which is a generic cloud-first

framework for efficiently executing tasks on cloud environments. Subsequently, the

CloudEx framework is used to develop algorithms for providing an RDF triple store

on the cloud, these algorithms are collectively implemented as an Elastic Cost Aware

Reasoning Framework (ECARF). Both CloudEx and ECARF provide answers to the

research question mentioned in the previous section.

1.7.2 Impact of Research

This thesis presents original results and findings that advance the state of the art of

distributed cloud-based RDF processing and forward RDFS reasoning. The CloudEx

framework developed as part of this thesis enables users to run generic tasks with

different computational requirements on the cloud. Additionally, the ECARF triple

store described in this thesis makes it possible to commercially offer a pay-as-you-go

cloud hosted RDF triple store, by using a Triple store as a Service (TaaS) model

similar to Software as a Service. Furthermore, these approaches enable applications

to harness the powers of the Semantic Web and RDF without any upfront investment

10
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Physical Computing

RDF
Cloud 

ComputingECARF
CloudEx

This 
research

Figure 1.1: Research Context.

in expensive hardware or software. Some of the findings of this research have already

attracted a great deal of interest (more than 10,000 views over a few days) from the

technical community, in particular to potential savings with public clouds that charge

per-minutes versus the ones that charge per-hour6.

1.8 Technical Approach

To accomplish the aforementioned research aim and answer the research questions,

this research follows the general methodology of design science research as outlined by

[1] and summarised in Figure 1.2. As shown in the figure, the research is conducted

over five iterative phases and can be summarised as follows:

6http://omerio.com/2016/03/16/saving-hundreds-of-hours-with-google-compute-
engine-per-minute-billing/

11

http://omerio.com/2016/03/16/saving-hundreds-of-hours-with-google-compute-engine-per-minute-billing/
http://omerio.com/2016/03/16/saving-hundreds-of-hours-with-google-compute-engine-per-minute-billing/


Section 1.8 Page 12

Evaluation ConclusionDevelopmentSuggestionAwareness of Problem

Processing large RDF 
datasets require high 
specification hardware. 
Cloud computing can 
be used without 
upfront investment.

Literature Review 
(RDF & Cloud 
Computing)

Conceptual/ 
Theoretical Model 

Development

CloudEx 
prototype

Results & Analysis

Conclusion, 
Discussion and 

Write-up

CloudEx model

ECARF model

Experiments on 
Google Cloud 

Platform using real-
world and synthetic 

datasets

ECARF 
prototype

Cloud 
specific 
modelRDF 

specific 
model

Figure 1.2: Research Methodology and Phases.

1. Literature review:

• RDF literature - to review and identify the issues with approaches de-

veloped for distributed RDF processing and RDFS reasoning both in peer-

to-peer networks and computer clusters.

• Cloud computing literature - to review key services provided by public

cloud providers with a review of the Google Cloud Platform [28], addition-

ally, to survey and categorise related work on utilising cloud computing.

2. Conceptual / theoretical model development:

• CloudEx model - To design a generic cloud-based architecture for tasks

execution and workload partitioning on public clouds.

• ECARF model - To design algorithms based on CloudEx for cloud-based

RDF processing and performing RDFS forward reasoning using columnar

databases.

3. Prototype development: to develop both the CloudEx and ECARF prototypes.

12
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4. Evaluation:

• To run experiments on the Google Cloud Platform using both real-world

and synthetic datasets.

• To gather an analyse the results.

5. Conclusion: to discuss the finding, draw conclusions and suggest future work.

1.9 Contributions

The contributions of this thesis are summarised as follows:

• This thesis has designed, implemented and evaluated CloudEx, a generic cloud

based task execution framework that can be implemented on any public cloud.

It is shown that CloudEx can acquire computing resources with various configu-

rations to efficiently execute RDF tasks on the cloud, then release these resource

once the work is done. CloudEx has successfully utilised many cloud services

and acquired 1,086 computing resources with various specifications at a total

cost of $290.29. The CloudEx framework is implemented as a publicly available

open source framework7.

• This thesis has designed, implemented and evaluated a dictionary encoding algo-

rithm to generate an efficient dictionary for compressing RDF Uniform Resource

Identifiers (URIs) using cloud computing resources. It is shown that this ap-

proach generates an efficient dictionary that can readily fit in-memory during

the encoding and decoding process, which speeds up these processes consider-

ably in comparison with other work. Additionally, the dictionaries generated
7https://cloudex.io/
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using this approach are smaller than the ones created by other approaches that

utilise dedicated hardware.

• This thesis has presented an algorithm to perform RDF processing and RDFS

rule-based reasoning using distributed computing resources and big data ser-

vices, in particular Google BigQuery [31]. It is shown that this approach is

promising and provides the benefit of permanent storage for RDF datasets with

the potential to query and develop a full triple store capability on top of Big-

Query. In comparison, other related work output RDF datasets to files, with the

data yet to be imported into a permanent storage with triple store capability.

• The last two contributions are implemented as ECARF, a cloud based RDF

triple store with both processing and forward RDFS reasoning capabilities.

ECARF is implemented on the Google Cloud Platform as a publicly available

open source framework8. ECARF is the first to run RDFS reasoning entirely on

cloud computing, unlike other approaches that simply replicate physical com-

puting setup — such as MapReduce [20] — on the cloud, ECARF is entirely

based on cloud computing features and services.

1.10 Outline of the Thesis

The outline of this thesis is shown in Figure 1.3. The remainder of the thesis is organ-

ised as follows, Chapters 2 and 3 provide background literature review on the Resource

Description Framework and cloud computing respectively. Chapter 2 introduces the

key concepts of RDF, RDFS and other key definitions that are used throughout this

thesis. Additionally, the chapter provides a survey of related distributed RDF pro-

cessing work and issues, in particular around distributed RDFS reasoning. Chapter 3
8http://ecarf.io
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provides a review of the cloud computing paradigm including a high level overview of

public cloud deployments. The key cloud services utilised in this research are reviewed

with an introduction to the key Google Cloud Platform services. A background on

some of the related research and commercial work utilising cloud elasticity and utility

billing features is also provided. Chapter 4 introduces the design methodology used

in the model development for both the CloudEx framework and the ECARF triple

store.

Chapters 5, 6 and 7 present the original contributions and results of this thesis.

Chapter 5 fully introduces the architecture of the CloudEx framework and present

its various components. Subsequently, Chapter 6 presents a number of algorithms

for RDF processing and rule-based RDFS reasoning using the CloudEx framework.

These algorithms collectively define the ECARF RDF cloud-based triple store. Then,

Chapter 7 presents the results and discussions of the experimental evaluation of both

CloudEx and ECARF. Finally, Chapter 8 summarises the achievements of this thesis,

discusses open issues and presents possible future work.

15
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Literature Review

Chapter 1
Introduction

Original Contributions

Chapter 8
Conclusions

Chapter 4
Design Method

Chapter 2
Background on the Resource Description Framework

Conceptual Model Development

Chapter 3
The Cloud Computing Paradigm

Chapter 6
ECARF, Processing RDF on the Cloud

Results and Discussions

Chapter 7
Evaluation of Cloud Based RDF Processing

Chapter 5
CloudEx, a Cloud First Framework

Figure 1.3: Thesis Outline.
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Chapter 2

Background on the Resource

Description Framework

The Resource Description Framework in addition to cloud computing are central to

the work done in this research as was illustrated in Figure 1.1. More specifically,

the primary aim of this research is to develop and evaluate an RDF triple store for

RDF processing in general and RDFS rule-based reasoning in particular using cloud

computing. The focus on RDF is motivated by the recent growth in the adoption of

Semantic Web and RDF technologies, which is evident from efforts like Linked Data1

and Schema.org2. Linked Data focuses on connecting RDF data on the Web and

Schema.org focuses on providing common schemas for structured data on the Web

using RDF and other frameworks. Schema.org for example, is sponsored by major

search engines providers like Google, Microsoft and Yahoo to enable search engines

to intelligently understand the meaning of structured data on the Web.

Another motivation for this research is the explosive growth of RDF datasets on the

Web, which has also led to numerous other research and commercial efforts to effec-
1http://linkeddata.org/
2http://schema.org/
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tively process this data. With large RDF datasets of a billion and more statements,

efforts have focused on using distributed computing on dedicated computer clusters,

however this is not without challenges. For example, the challenges of dealing with

the ever increasing storage and processing requirements for such big data. Addition-

ally, most research effort on large scale distributed RDF reasoning does not provide a

mechanism to be able to query this data, which is a key requirement for applications

to make use and benefit from such data.

This chapter is the first of the literature review chapters and introduces the key

concepts of RDF that are used in this research to develop ECARF, furthermore, a

survey of related literature is also provided. Firstly, in Section 2.1, some of the RDF

key concepts and definitions used throughout this thesis are introduced, such as the

RDF Schema (RDFS) and RDFS reasoning. Additionally, the concept of ontology is

also introduced. Then in Section 2.2, a review of the literature covering the distributed

processing and management of RDF and RDFS is provided.

Section 2.3 reviews RDF data management efforts that utilise cloud computing, sub-

sequently in Section 2.4 a review of large scale RDF dictionary encoding literature is

provided. Followed by Section 2.5 that summarises the challenges facing large scale

RDF processing presented in this chapter. Finally, in Section 2.5, this chapter is

concluded with a summary of the issues and challenges with the approaches surveyed

herein.

2.1 Resource Description Framework

RDF [3] is recommended by the W3C for representing information about resources

in the World Wide Web. RDF is intended for use cases when information need to be

processed by and exchanged between applications rather than people. Information in

18
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RDF is primarily represented in XML, however other compact representations also

exist such as the Notation3 (N3) [6]. Resources in RDF can be identified by using

Uniform Resource Identifier (URI) references (URIrefs), for example:

<http://inetria.org/directory/employee/smithj>

As a convention, to avoid writing long URIrefs, they are shortened using namespaces

to replace the common part of the URI with a prefix. The previous example can

be written as employee:smithj by using the prefix employee: to replace the URI

<http://inetria.org/directory/employee/>.

Unknown resources or resources that do not need to be explicitly identified are called

blank nodes. Blank nodes are referenced using an identifier prefixed with an under-

score such as :nodeId. Constant values such as strings, dates or numbers are referred

to as literals. Information about a particular resource is represented in a statement,

called a triple, that has the format (subject, predicate, object) abbreviated as (s, p, o).

Subject represents a resource, either a URI or a blank node, predicate represents a

property linking a resource to an object, which could be another resource or literal.

More formally let there be pairwise disjoint infinite sets of URIrefs (U), blanks nodes

(B), and literals (L). An RDF triple is a tuple:

(s, p, o) ∈ (U ∪B)× (U)× (U ∪B ∪ L) (2.1)

A set of RDF triples is called an RDF graph (Figure 2.1 (a)), in which each triple

is represented as a node-arc-node link. The node (ellipse or rectangle) represents the

subject and object, the arc represents the predicate and is directed towards the object

node. RDF triples can be exchanged in a number of formats, primarily RDF/XML

[5] which is based on XML documents. Other formats include line based, plain text

encoding of RDF graphs such as N-Quads [34] and N-Triples [35], which are simplified
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subsets of N3. RDF defines a built-in vocabulary of URIrefs that have a special

meaning. For example, to indicate that a resource is an instance of a particular kind

or class, RDF defines the predicate http://www.w3.org/1999/02/22-rdf-syntax-

ns\#type, shortened as rdf:type.

Figure 2.1 shows a running example of a simple RDF dataset of employees and their

relationships. The RDF graph (Figure 2.1 (a)) shows URIrefs resources as ellipses

with text, blanks nodes as empty ellipses and literals as rectangles. The example uses

a number of well-known vocabularies such as RDF (rdf:), RDFS (rdfs:), which will

be explained in the next section and Friend of a Friend3 (foaf:). The example also

defines a custom vocabulary (inetria:), which is summarised in Figure 2.1 (c).

The RDF graph describes a number of resources, mainly an employee (employee:sm-

ithj) and his properties, such as name (foaf:name) and start date (inetria:start-

date), which are both literals. The example also describes properties that refer to

other resources rather than literals, such as manages (inetria:manages) and works

at (inetria:works at). The RDF triples in Figure 2.1 (c) and (d) are represented in

N-Triples format, with the long URI namespaces shortened with the prefixes shown

in Figure 2.1 (b) for readability.

2.1.1 RDF Schema

The RDF Schema (RDFS) [4] is a semantic extension of RDF for defining groups

of related resources and their relationships. RDFS provides a vocabulary of URIrefs

starting with http://www.w3.org/2000/01/rdf-schema\# and shortened as rdfs:.

RDFS URIrefs can be used to define a hierarchy of classes (e.g. rdfs:subClassOf), a

hierarchy of properties (e.g. rdfs:subPropertyOf) and how classes and properties are

intended to be used together (e.g. rdfs:range, rdfs:domain). As an example the
3http://www.foaf-project.org/
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statements in Figure 2.1 (c) describe that the class Employee (inetria:Employee) is

a subclass of Person (foaf:Person). The statements also describe that the property

works at (inetria:works at) connects instances of type inetria:Employee (subject)

to instances of type inetria:Company (object).

The Semantic Web aims to represent knowledge about resources in a machine read-

able format that automated agents can understand. Knowledge about a particular

domain of interest is described as an ontology, which is a machine readable specifi-

cation with a formally defined meaning [36]. An ontology enables different agents to

agree on a common understanding of certain terms, for example Person or Employee

in Figure 2.1. As noted, RDFS provides the capability to specify background knowl-

edge such as rdfs:subClassOf and rdfs:subPropertyOf about terms, this renders

RDFS a knowledge representation language or ontology language. Having said this,

RDFS has its limitations as an ontology language, for example it is not possible to

express negated statements [36]. The following section provides brief background on

the concept of ontologies and the more expressive Web Ontology Language (OWL)

[37].

2.1.2 The Semantic Web and Ontologies

In philosophy, an Ontology is a systematic account of Existence. In computer science,

Gruber [38] defines ontology as “an explicit specification of a conceptualisation” and

conceptualisation as an abstract view of the world represented for a particular pur-

pose. Guarino [39] on the other hand, argues that this definition of conceptualisation

relies on an extensional notion and alternatively suggests an intensional definition

of conceptualisation. Guarino defines conceptualisation as “an intensional semantic

structure that encodes the implicit rules constraining the structure of the a piece of

reality” and ontology as “a logical theory which gives an explicit, partial account of
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a conceptualisation”. In terms of the Semantic Web, an ontology is a collection of

definitions and concepts such that all the agents interpret the concepts with regard

to the same ontology and hence have a shared understanding of these concepts [40].

2.1.2.1 Description Logics

Existing work in the Artificial Intelligence community have explored the use of formal

ontologies in knowledge engineering [41, 42]. For the Semantic Web, a family of

knowledge representation languages known as Description Logics (DLs) [43, 44] are

used to formally represent the knowledge in ontologies [40]. In Description Logic

(DL) classes are called concepts, properties or predicates are called roles and objects

are called individuals. The building blocks of DL knowledge bases are called axioms,

these are logical statements relating to concepts or roles.

The expressivity of DL is represented as labels for example ALC (Attribute Language

with Complement) is a family of DL that supports all class expressions such as the

fact two classes are equivalent or an individual is a subset of particular class or the

fact that a role connects two expressions. For example, let A be an atomic class

name, R be an abstract role, > refer to a class that contains all objects (logical

equivalence of true), ⊥ refers to an empty class (logical equivalence of false), ¬ ∩ ∪

refer to class constructor axioms of negation, union and intersection respectively and

∀∃ the universal and existential quantifiers that refer to property restrictions. The

class expression C, D in ALC DL can be constructed as follows [36]:

Axiom ::= C ⊆ D|C(A)|R(A,A)

C,D ::= A|>|⊥|¬C|C ∩D|C ∪D|∀R.C|∃R.C

One of the most expressive DLs in the literature is SROIQ [46], which is a superset
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of ALC. Generally DL axioms can be divided into three categories [45]:

• Assertional or instance data (ABox), which captures knowledge about named

individuals i.e. concept assertion such as smithj ⊆ Employee, or role assertions

between named individuals such as worksAt(smithj, inetria).

• Terminological or schema data (TBox), which describe concepts relationships

such as concept inclusion for example Employee ⊆ Person or concept equiva-

lence for example Person ≡ Human.

• Relationship between Roles (RBox), which describe concepts such as role inclu-

sion and rule equivalence.

2.1.2.2 Web Ontology Language (OWL)

As discussed previously, as an ontology language RDFS expressivity is limited, for this

reason the W3C proposed the Web Ontology Language (OWL) [37, 50]. OWL has

two semantics, the RDF-based semantics and the direct semantics, which relate OWL

axioms to DL [52]. The first version of OWL, OWL 1 [37] has three sublanguages

OWL Full, OWL DL and OWL Lite. The computational complexity [47] for OWL

Lite is ExpTime, for OWL DL is NExpTime, and whilst both are decidable, OWL Full

is undecidable. These complexities have led many researchers to propose a subset of

OWL 1 that can be processed in Polynomial Time (PTime). For example the widely

used OWL Horst [48] semantics and Description Logic Programs (DLP) [49].

OWL 2 was proposed to address the computational complexity issues with OWL 1

sublanguages. The W3C proposed three profiles of OWL 2 that can be processed in

PTime, namely OWL EL, OWL RL and OWL QL [50]. OWL EL — which belongs to

the EL++ [51] family of DLs — is mainly used in biomedical ontologies with very large

number of TBox triples such as classes and/or properties. On the other hand, OWL
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RL is proposed as the preferred approach for representing Web ontologies that contain

very large of instance data (ABox). Finally OWL QL provides database applications

with an ontological data access layer [52].

2.1.3 RDFS Entailment Rules

RDF statements also have a formal meaning that determines the conclusions or en-

tailments a software application can draw from a particular RDF graph. The RDFS

entailment rules [7] can be applied repeatedly to a set of triples (graph) to infer new

triples. Other entailment rules related to OWL, include OWL Horst [48] and OWL

2 [50] semantics. The process of applying a set of rules repeatedly to a set of triples,

is known as forward chaining or reasoning and continues until no further new triples

are inferred, this process is also referred to as materialisation [36] in the literature.

At this point the closure of the RDF graph is reached under the RDFS semantics and

the reasoning process stops.

As an example the rules in Tables 2.1 and 2.2 have a body and a head. The forward

reasoning process will add the triple in the head column if the RDF graph contains

the triples in the body column, this added triple is usually referred to as an inferred

triple. A dataset that contains both the initial triples and all the possible inferred

triples is referred to as materialised dataset. Some of the rules might infer the same

knowledge as others resulting in duplicate statements being added to the RDF graph.

This forward reasoning process can be illustrated using the example in Figure 2.1. By

applying rule rdfs9 to the statements in Figure 2.1 (c) and (d), it can be seen that

following two statements match the rule’s body:

1. inetria:Employee rdfs:subClassOf foaf:Person

2. employee:smithj rdf:type inetria:Employee
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Table 2.1: Schema-Instance (SI) entailment rules of the ρdf fragment of RDFS, (sc
= subClassOf, sp = subPropertyOf, dom = domain)

RDFS
Name

Body HeadSchema Triple Instance Triple
rdfs2 ?p, rdfs:dom, ?c ?x, ?p, ?y ?x, rdf:type, ?c
rdfs3 ?p, rdfs:range, ?c ?x, ?p, ?y ?y, rdf:type, ?c
rdfs7 ?p1, rdfs:sp, ?p2 ?x, ?p1, ?y ?x, ?p2, ?y
rdfs9 ?c1, rdfs:sc, ?c2 ?x, rdf:type, ?c1 ?x, rdf:type, ?c2

Table 2.2: Schema entailment rules of the ρdf fragment of RDFS (sc = subClassOf,
sp = subPropertyOf )

RDFS
Name

Body HeadSchema Triple Schema Triple
rdfs5 ?p1, rdfs:sp, ?p2 ?p2, rdfs:sp, ?p3 ?p1, rdfs:sp, ?p3
rdfs11 ?c1, rdfs:sc, ?c2 ?c2, rdfs:sc, ?c3 ?c1, rdfs:sc, ?c3

The reasoning process will then add the triple in the rule’s head to the RDF graph,

which in this case is (employee:smithj rdf:type foaf:Person). If rule rdf3 is

applied to the same statements, it can be seen that the following two statements

match the rule’s body:

1. inetria:works at rdfs:range inetria:Company

2. employee:smithj inetria:works at business:inetria

The reasoning process will infer the following statement (business:inetria rdf:type

inetria:Company). Then by applying rule rdf9 to this inferred statement and the

following statement (inetria:Company rdfs:subClassOf foaf:Organization), a

new statement (business:inetria rdf:type foaf:Organization) can be inferred.

Once all the implicit knowledge in an RDF dataset has been inferred, the dataset can

be queried by using the Protocol and RDF Query Language (SPARQL) [11].

In addition to forward reasoning, backward reasoning or chaining can also be used to

infer new knowledge in RDF datasets. However, backward reasoning is only conducted

at query time rather than upfront as with forward reasoning. Forward reasoning has
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the advantage of fast queries as no reasoning is required at that point and all the

inferred triples are included in the dataset. The disadvantage with this approach is

when the knowledge base is updated regularly, in this case the closure needs to be

recomputed each time which can be computationally expensive. Backward reasoning

on the other hand, starts from the query then builds a knowledge graph for the answer,

the advantage of this approach is that the knowledge base can be updated at anytime,

the disadvantage is that query answering can take a long time as reasoning is done at

query time.

2.1.3.1 A Little Semantics Goes a Long Way

As seen from the previous examples new knowledge can be deduced through reasoning,

which means, it is not required to define all the implicit knowledge such as ”iNetria is

an Organisation” upfront. Basic facts can be represented then software applications

can be used to deduce further knowledge through reasoning. This feature is best

expressed by the so called Hendler Hypothesis [53] that:

”A little semantics goes a long way.”

2.1.4 Minimal and Efficient Subset of RDFS

Some of the RDF and RDFS entailment rules [7] serve the purpose of reasoning about

the structure of RDF itself rather than about the data it describes [54]. For example

single antecedent rules (rules with one triple in the body), container-management

properties and RDF axiomatic triples are usually ignored in other published work

[15, 16, 19, 55]. This is because they are easy to implement and are less frequently

used. A minimal and efficient fragment of the RDFS entailment rules known as the

ρdf fragment has been formalised in [54]. The work done in this thesis utilises this
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fragment as summarised in Tables 2.1 and 2.2. Below, some of the definitions that

will be used throughout the rest of this thesis are introduced:

Definition 2.1.1. A schema triple, is a triple that contains in its predicate one

of the RDFS vocabulary terms such as rdfs:SubClassOf, rdfs:SubPropertyOf,

rdfs:domain, rdfs:range, etc., Schema data is a set of schema triples such as the

triples shown in Figure 2.1 (c).

Definition 2.1.2. An instance triple, is a triple that is not a schema triple. In-

stance data is a set of instance triples such as the triples shown in Figure 2.1 (d).

Definition 2.1.3. A schema-instance (SI) rule, is a rule that contains in its

body one schema triple and one instance triple and contain in its head an instance

triple. The RDFS rules in Table 2.1 are SI rules.

Definition 2.1.4. A schema rule, is a rule that contains schema triples both in its

body and head. The RDFS rules in Table 2.2 are schema rules.

Definition 2.1.5. A term, refers to part of a triple such as the subject, the predicate

or the object.

2.1.5 RDF Triple Stores

RDF datasets in the form of triples are stored and managed in databases usually

referred to as triple stores. Triple stores are databases optimised for the storage,

processing and querying of triples with the ability to perform forward reasoning under

any of the aforementioned entailment rules. Moreover, these triple stores can also

support the querying of stored triples using the SPARQL query language. In addition

to reasoning and SPARQL support, these stores can also provide RDF management

capabilities such the ability to update the knowledge base by adding, modifying or
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removing triples. Commercial implementations of large triple stores [14] include,

BigOWLIM [56], Virtuoso [57], AllegroGraph and Oracle 11g [58].

2.2 Distributed Semantic Web Reasoning

The current explosive growth of Web data has subsequently led to similar growth

in the Semantic Web RDF data. Consequently, recent work on large scale RDFS

reasoning has primarily focused on distributed and parallel algorithms utilising peer

to peer networks and dedicated computing clusters. The following sections provide

a brief survey of related work in the distributed Semantic Web reasoning and data

management.

2.2.1 Peer to Peer Networks

Distributed RDF and OWL reasoning on Peer to Peer (P2P) networks has mainly

focused on the use of Distributed Hash Tables (DHT) [22, 59, 60]. DTHs provide

distributed storage capability for key-value pairs in P2P networks where each node is

responsible for a number of keys. The mapping between nodes and keys is done using a

standard hash function for both node IP addresses and keys. This mapping is usually

referred to as term based partitioning, because it is based on fixed mappings from

triple terms to nodes. For example a node would be responsible for any triples with

the predicate rdf:type, another node might be responsible for rdfs:subPropertyOf.

Each node keeps a lookup table for its successor node so when a request is received

for a key that is larger than the one handled by this node, it is forwarded to that

nearest successor. This process continues until the key reaches the node responsible

for it. Each node supports a Get(Key) and Put(Key, Value) operations on its own

database and lookup is performed in O(logN) where N is the number of nodes.
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2.2.1.1 Forward Reasoning on Top of DHTs

Fang et al. [15] presented a system called DORS for forward reasoning on a subset

of the OWL entailment rules. They compute the closure of the schema triples using

an off the shelf reasoner. The schema triples are then replicated across all the nodes

and each node performs reasoning on the instance triples assigned to it. Each node

stores these triples in a local relational database and forwards the generated triples

to other nodes. This process of triples exchange and reasoning continues until no

further triples are sent through the network. Result are reported for datasets of up

to 2 million triples of synthetic data using 32 nodes system, and showed scalability

problems due to excessive network traffic.

Similar work done by Kaoudi et al. [61, 16] performed forward reasoning on top of

DHTs using the ρdf fragment of RDFS. They show that forward reasoning on top of

DHTs results in excessive network traffic due to redundant triple generation. Their

approach also suffers from load balancing issues as some terms are more popular than

others. This results in extremely large workloads for some of the nodes compared to

others. Although DHTs provide a loosely coupled network where nodes and can join

and leave, the approaches summarised previously suffer from load balancing issues.

2.2.1.2 Alternatives to Term Based Partitioning

Kotoulas et al. [19] and Oren et al. [62] have shown that RDF datasets can exhibit a

high level of data skew due to the popularity of some terms such as rdf:type. This

leads to load balancing issues when fixed term partitioning is used as some nodes are

overloaded with work compared to others. Oren et al. [62] propose a divide-conquer-

swap algorithm called SpeedDate for getting similar terms to cluster around a region

of peers rather than at a particular peer. They use an in-memory implementation

which speeds up the reasoning process considerably and report results for up to 200M
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triples using 64 nodes. However, this approach does not provide a permanent storage

mechanism for the generated in-memory data. Also due to the nature of the algorithm

used the system has to be stopped manually when no new triples are generated.

Kulahcioglu and Bulut [55] propose a two-step method to provide a schema sensitive,

RDFS specific term-based partitioning. They show that, compared to standard term

partitioning, they can eliminate non productive partitions accounting up to 45% of

the dataset. They analyse each of the ρdf entailment rules and identify the term used

by the rule for reasoning. This approach avoids using popular terms such rdfs:type

for DHT partitioning if the term is not used in the reasoning process. Subsequently,

they implemented a forward reasoning approach [63] and evaluate it using up to 14M

triples. However, no details are provided on loading the data on the cluster and the

storage implications of larger datasets.

2.2.2 Grid and Parallel Computing

Work utilising dedicated computer clusters has mainly focused on large scale forward

reasoning over datasets that are 1 billion triples or more. In this section a brief review

of such related work is provided.

2.2.2.1 MapReduce Based Reasoning

Urbani et al. [64, 65, 20] have focused on utilising the MapReduce programming

model [17] for forward reasoning. They presented Web-scale inference under the

RDFS and OWL Horst [48] semantics by implementing a system called WebPIE on

top of the MapReduce Hadoop framework. They focus on achieving high throughput

by reporting the closure of a billion triples of real-world datasets and 100 billion triples

of synthetic LUBM [66] dataset. Their approach showed that high throughput can

be achieved by utilising only 16 nodes. However, they correlated the reduction of
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performance when increasing the number of nodes beyond 16 to platform overhead

related to the Hadoop framework.

For RDFS reasoning they find that a naive straightforward implementation suffers

from a number of issues including derivation of duplicates, the need for joins with

schema triples and fixed point iterations. They provide optimisations for these issues

by loading the schema triples in memory due to the low ratio between schema and

instance triples. Duplication is avoided by grouping triples by subject then executing

a join over a single group. Other optimisations are done for rules with two antecedents

which require a joint over parts of the data.

They address the issue of storing large amount of inferred data by using an upfront

dictionary encoding [67] based on MapReduce to reduce the data size as will be

discussed in Section 2.4. It is worth noting that although this MapReduce approach

has achieved very high throughput compared to other systems, it is not without

challenges. Performing rule based reasoning using map-reduce jobs require complex

and non trivial optimisations, which makes this approach difficult to extend to richer

logics such as OWL 2 RL. Additionally the output of this approach is stored in flat

files which adds another challenge to provide SPARQL query support.

2.2.2.2 Spark Based Reasoning

To address the issues with the MapReduce batch processing nature, Jagvaral and Park

[68] propose an approach based on Spark [69]. Spark is a cluster computing frame-

work that utilises parallel data structures where intermediate results can be stored

in memory or on disk. Additionally, Spark enables user to manage their workload

partitioning strategy in order to optimise the processing. They show that such an

approach is faster than MapReduce by using a cluster of 8 machines each with 8 cores

and 93GB of memory. However, no details are provided as to the preprocessing or
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the loading process required to get the data on the cluster or provision for long term

storage.

2.2.2.3 Authoritative Distributed Reasoning

Hogan et al. [70, 18] have focused on authoritative OWL reasoning over linked data

[71] crawled from the Web. They provide an incomplete OWL reasoning by selecting

a fragment of OWL then only considering ’authoritative sources’ to counteract what

they call ’ontology hijacking’. They use two scans over the data, the first scan to

separate and filter the schema triples from the instance triples. The schema data is

then stored in memory throughout the reasoning process due to its small size compared

to the instance data. From the sample data used, it was found that the size of the

schema data is less than 2% of the overall statements. The instance data is stored

on-disk and accessed through the second scan, during this stage they use on disk sorts

and file scans.

Hogan et al. also presented a template rule optimisation for distributed, rule-based

reasoning [18]. Instead of simply specifying a list of template rules, they use the

schema data to create a generic template rule function that encodes the schema triples

themselves into a set of new templated rules. This approach eliminates the need

to repeatedly access the schema pattern during the instance reasoning process. The

processing is distributed by using Java Remote Method Invocation (RMI) architecture

and flooding all nodes with the linear template rules. The only communications

required between the nodes is to aggregate the schema data and to created a shared

template rule index. They reason over 1.12 billion triples of linked data in 3.35 hours

using 8 nodes, inferring 1.58 billion triples.
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2.2.2.4 Embarrassingly Parallel Reasoning

Weaver and Hendler [21] presented an “embarrassingly parallel” algorithms for RDF

processing. An embarrassingly parallel [72] algorithm indicate that tasks can easily be

divided into independent processes which can be executed concurrently without any

dependencies or communication between these processes. In this work, two types of

supercomputers were used, one with four 16 core AMD Opteron 6272 processors and

512 GB of RAM and an IBM Blue Gene/Q4, each node has 16 cores at 1.6 GHz and

16 GB of RAM. The system used gigabit ethernet and InfiniBand [73] interconnect

and utilised a parallel file system. The data is preprocessed before hand by carrying

compression and dictionary encoding as will be discussed in Section 2.4.

For the reasoning process the they utilise up to 128 processes and replicate the schema

data on all of them then partition the instance data between the them to execute

independently. The reasoning process utilise a Message Passing Interface (MPI) ar-

chitecture and apply a number of rules in a particular order to derive new triples.

This process continues until no further data is inferred. They reported results on the

closure of up to 346 million triples of synthetic LUBM datasets in ≈ 291 seconds. One

of the disadvantages of their approach is that the results of each process are written to

separate files leading to duplicates. Additionally, similar to the approach mentioned

previously done by Urbani et al. [20], the output is stored in flat files which are yet

to be imported into a system that supports querying.

2.2.3 Centralised Systems

Systems based on a single high specification system include BigOWLIM [56], a pro-

prietary large triple store that support the full management of RDF, OWL Horst and

a subset of OWL 2 RL ontologies. When the data is loaded BigOWLIM performs
4http://www-03.ibm.com/systems/technicalcomputing/solutions/bluegene/
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rule based forward reasoning upfront, once reasoning is done the data is then stored

to provide SPARQL query support. In terms of scalability and resilience BigOWLIM

exhibits centralised architecture and vertical scalability. BigOWLIM provides a repli-

cation cluster with a number of master and slave nodes. In this architecture the

data is replicated across all the nodes and query answering is load balanced between

these nodes. The practical limit of BigOWLIM is around 20 billion statements on a

node with 64GB RAM, reported results include the reasoning over 12 billion triples

of synthetic data using such a node in around 290 hours.

2.3 RDF Data Management on the Cloud

Most of the Semantic Web work that utilises cloud computing services is related to

RDF data storage and management [74, 75] rather than performing forward reasoning.

Aranda-Andújar et al. have presented AMADA, a platform for storing RDF graphs

on the Amazon Web Services (AWS) [27] cloud. They utilised a number of AWS

services to index, store and query RDF data. Bugiotti et al. [76] have focused on

providing RDF data management in the AWS cloud by utilising SimpleDB [77], a

key-value store provided by AWS for small data items. They presented and assessed

a number of indexing strategies for their analytical cost models for RDF data stored

in SimpleDB for the purpose of providing query answering using out-of-the-box query

processor.

Stein and Zacharias [78] presented Stratustore, an RDF store based on the Amazon

cloud that stores and indexes triples in SimpleDB and integrates with Jena’s API
5 to provide SPARQL query support. They highlighted the limited expressiveness

of SimpleDB for this purpose and point to the need for more complex cloud based
5https://jena.apache.org/
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database services. Kritikos et al. [79] have presented a cloud based architecture

for the management of geospatial linked data. They utilised an approach based on

the autoscaling capabilities provided by Amazon Web Services to scale up virtual

machines running the Virtuoso [57] triple store, with the primary focus on providing

SPARQL endpoints.

2.4 RDF Data Compression

As noted in Section 2.1, RDF datasets are comprised of triples, each containing three

terms — subject, predicate and object — that are represented as strings. When

dealing with large datasets, these string representations occupy many bytes and take

a large amount of storage space, this is particularly true with datasets in N-Triple

format that have long URI references (URIrefs) or literals. Additionally, there is in-

creased network latencies when transferring such data over the network. Although

Gzip compression can be used to compress RDF dataset, it is difficult to parse and

process these datasets without decompressing them first, which imposes a computa-

tion overhead. There is, therefore, a need for a compression mechanism that maintain

the semantic of the data, consequently, many large scale reasoners such as BigOWLIM

[56] and WebPIE [20] adopt dictionary encoding. Dictionary encoding encodes each

of the unique URIs in RDF datasets using numerical identifiers such as integers that

only occupy 8 bytes each.

2.4.1 MapReduce-based Dictionary Encoding

In order to perform large scale reasoning, Urbani et al. adopt an upfront dictionary

encoding [67] based on MapReduce to reduce the data size. The creation of the

dictionary and the encoding of the data was distributed between a number of nodes
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running the Hadoop framework. Initially, the most popular terms are sampled and

encoded into a dictionary table, since these are small this dictionary held in main

memory in each of the nodes. The system then deconstructs the statements and

encode each of the terms whilst building up the dictionary table. To avoid clash of

IDs, each node assigns IDs from the range of numbers allocated to it. The first 4

bytes of the identifier are used to store the task identifier that processed the term and

the last 4 bytes are used as an incremental counter within the task.

A similar approach was adopted for decompression and experimented with a number

of settings such the popular-term cache. They report the compression of 1.1 billion

triples of the LUBM [66] dataset in 1 hour and 10 minutes, with a 1.9 GB dictionary.

Although this approach is scalable both in terms of input and computing nodes, the

generated dictionaries take more than an hour to build and are in most cases larger

than 1 GB of data. This is a challenge when considering loading the whole dictionary

in main memory and imposes an IO overhead as the dictionary file needs to searched

in-disk. These large dictionaries are due to the fact that no special considerations are

given to the common parts of the URIs such as namespaces, hence including these

namespaces numerous times in the dictionary.

2.4.2 Supercomputers-based Dictionary Encoding

Weaver and Hendler [21], use a parallel dictionary encoding approach on the IBM

Blue Gene/Q by utilising the IBM General Parallel File System (GPFS). Due to

disk quotas restrictions they perform LZO [80] compression on the datasets before

the dictionary encoding. LZO is a fast block compression algorithm that enables the

compressed data to be split into blocks. This feature is utilised such that processes

can directly operate on the compressed data blocks. Subsequently, the compressed

file blocks are partitioned equally between the processors, the processors collectively
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access the file and starts encoding the data. The encoded data is written in separate

output files, one for each processor, additionally, when encoding the data processors

communicate with each other using MPI to resolve the numeric identifier for each of

the terms. For the dictionary encoding of 1.3 billion triples of the LUBM dataset [81],

a reported total runtime of approximately 28 minutes by utilising 64 processors and

50 seconds when utilising 32,768 processors. Both reported runtimes exclude the time

required to perform the LZO compression on the datasets. The total size reported for

the dictionary is 23 GB and 29.8 GB for the encoded data.

2.4.3 DHT-based Dictionary Encoding

A dictionary encoding based on DHT network is presented by Kaoudi et al. [82] to

provide efficient encoding for SPARQL queries. In this approach the dictionary nu-

merical IDs are composed of two parts, the unique peer identifier and a local numerical

counter. When new triples are added to the network, they are encoded by the re-

ceiving peers and are resent through the network alongside their dictionary entry. As

was noted previously, this approach further exacerbates the network congestion issue

known with DHTs due to not only the traffic of the triples, but also their encoding.

2.4.4 Centralised Dictionary Encoding

A comparison of RDF compression approaches is provided by Fernández et al. [83].

They compare three approaches, mainly gzip compression, adjacent lists and dictio-

nary encoding. Adjacent lists concentrates the repeatability of some of the RDF

statements and achieves high compression rates when the data is further compressed

using gzip. They also show that datasets with a large number of URIs that are named

sequentially can result in a dictionary that is highly compressible. Additionally, it was

shown that dictionary encoding for literals can increase the triple representation spe-
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cially when the dataset contains a variety of literals, and hence conclude that literals

need finer approaches.

A dictionary approach for the compression of long URIRefs in RDF/XML documents

was presented by Lee et al. [84]. The compression is carried out in two stages, firstly

the namespace URIs in the document are dictionary encoded using numerical IDs,

then any of the URIRefs are encoded by using the URI ID as a reference. Then two

dictionaries are created, one for the URIs and another one for the URIRefs. The

encoded data is then compressed further by using an XML specific compressor. Al-

though this approach shows compression rates that are up to 39.5% better than Gzip,

it is primarily aimed at compacting RDF/XML documents rather than provided an

encoding that reduces both the size and enables the data to be processed in com-

pressed format.

2.5 The Challenges

As seen from the previous sections that large scale RDFS reasoning is mainly con-

cerned with the distribution of work amongst a number of nodes or processes. Some

of the challenges that existing work try to address are: 1. efficient strategy for work-

load distribution that deals with data skew and dependencies, 2. a shared storage to

accomodate existing and generated data, 3. dictionary encoding to reduce the size of

massive datasets.

Additionally, the majority of large scale distributed RDF processing and reason-

ing utilise high specifications and dedicated computer clusters [19, 20, 21] that re-

quire large upfront infrastructure investments. An additional restriction with the

approaches surveyed in this section related to the number of processing nodes being

used. The number of computing nodes is pre-setup with the required applications and
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is fixed throughout the reasoning processes. Most computing nodes that belong to

computing clusters also have more or less the same specifications in terms of memory

and CPU cores. With this physical computing settings it is difficult to dynamically

add or remove computing nodes whilst jobs are in progress. It is also difficult to have

computing resources with variable configurations such as memory and CPU cores

without expensive upfront infrastructure investments.

In the following sections the dictionary encoding, data storage and workload distri-

bution challenges are briefly discussed.

2.5.1 Dictionary Encoding

The RDF dictionary encoding approaches surveyed in this chapter mainly focused on

replacing the long URIRefs to integer identifiers with the aim to reduce the size of

the data. However, very minimal considerations are given to the size of the generated

dictionaries, which in most cases contain a large level of redundancy due to the shared

namespaces and URI path parts. This is clearly demonstrated with the large-scale

MapReduce dictionary compression [67], in which case, generated dictionaries are

larger than 1 GB for large datasets. Additional the approach followed by [81] uses

parallel computations to create the dictionary, which for LUBM was many times larger

at 23 GB. This means that the dictionary generation, data encoding and decoding

processes take longer to complete as these large dictionaries need to be accessed on

disk and can not be held in memory in their entirety.

2.5.2 Data Storage

Most of the distributed reasoning approaches discussed in this chapter require com-

munications between the various nodes to avoid duplication of data and effort. These

approaches utilise either, file based approach, local [70, 19] or distributed [20], or a
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Distributed Hash Table (DHT) approach [15, 16]. As storage capacity of large scale

inferred data usually exceeds the capacity of a single node’s hard disk, distributed

file storage is usually utilised. This storage needs to have sufficient disk space and

network bandwidth to ensure it does not become the bottleneck in the reasoning pro-

cess. Additionally, as the Semantic Web RDF data is growing continuously there is

an ongoing need to add additional storage capacity to existing solutions.

Storage on DHT approaches suffer from considerable network traffic when loading and

processing the data, specially in forward reasoning. In addition to this, since the data

is partitioned and distributed between the nodes, on a naive DHT implementation if

a node fails then the data stored on it is lost. This is not just specific to DHT, but is

also applicable to others such as MapReduce where the storage is distributed between

the processing nodes. Upfront investment in high bandwidth network infrastructure

and storage redundancy is usually required to counter these limitations. An additional

limitation with the distributed reasoning approaches discussed here is that they utilise

either file or memory based approaches, where the inferred data is yet to be imported

in a triple store so that the dataset can be queried.

2.5.3 Workload Distribution

Distributed forward reasoning requires a strategy for partitioning the work between

the processing nodes. One of the popular workload partitioning schemes used in

DHTs is term-based partitioning. Term-based partitioning is used for distributing the

workload not just for reasoning, but also for storage. It ensures that triples sharing a

term are located on the same node so inference can take place. As seen in the previous

sections that due to data skew, approaches based on term-based partitioning suffer

from load balancing issues and do not scale [19].

A number of approaches have been proposed in the literature [55, 19] to address these
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issues. In particular the schema sensitive, RDFS specific term partitioning suggested

by Kulahcioglu and Bulut [55] is promising due to the fact that it can eliminate the

non productive partitions when compared with fixed term partitioning. They propose

to create partitions not just for reasoning, but also for storage due to the distributed

nature of DHT storage. This thesis builds on this strategy to develop a mechanism

for workload partitioning for the reasoning process rather than both reasoning and

storage as will be discussed in Chapter 6.

2.6 Summary

This chapter has provided a background on the Resource Description Framework

(RDF) and RDF Schema (RDFS). The chapter also presented a review of the literature

covering work on distributed RDFS reasoning and RDF data compression. Due to the

massive growth of RDF data on the Web to billions of statements, these approaches

have primarily focused on using distributed computing for RDF processing, but this

is not without challenges. Challenges include data storage, workload distribution and

the restriction of fixed computation resources both in terms of number of nodes and

the specification of each node. Moreover, existing work on RDF dictionary encoding

for large datasets generates large dictionaries which results in a slow encoding and

decoding process.

To conclude, existing work on large scale reasoning on RDF Web data has highlighted

two important characteristics about this data: 1. the schema data represents only a

small fraction of the overall data [70] and can fit in memory during the reasoning

process, 2. the schema data should be treated differently to increase performance [85].

This thesis utilises both of these characteristics to address the challenges described in

this chapter. The following chapter (Chapter 3) reviews the literature concerning the
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cloud computing services that can be used to address the RDF processing challenges

presented here.
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Chapter 3

The Cloud Computing Paradigm

Chapter 2 has introduced the Resource Description Framework (RDF) and high-

lighted some of the issues currently facing large scale RDF processing. It was shown

that some of these issues are related to computing resources and storage constraints,

hence the aim of this research is to address these RDF issues by utilising cloud com-

puting (Figure 1.1). Cloud computing is a computing paradigm that runs on physical

hardware and enables users to acquire computing resources on-demand without any

upfront investments.

Cloud computing can provide substantial cost savings when compared to physical

computer environments that consume energy and incur cost even when the resources

are not being used. This is because the cost of running the underlying hardware is

managed by the cloud providers and users only pay for the resources they use. Publicly

available cloud computing services can be categorised under broad categories, despite

the fact that the underlying implementation differs from one provider to another. This

chapter provides a review of these services, introduces key concepts and definitions

that are utilised to design and develop the CloudEx framework.

The rest of this chapter is organised as follows, Section 3.1 provides a background on
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cloud computing definitions. Then, Section 3.2 presents an overview of public cloud

deployments and common concepts shared amongst public cloud providers. Followed

by Section 3.3, which explains at an abstract level the main cloud services utilised

in this research. Then, Section 3.4 provides an overview of the main Google Cloud

Platform services used in the CloudEx prototype development and evaluation phases

of the research. Subsequently, Section 3.5 categorises and provides a survey of related

cloud computing literature and introduces the cloud-first frameworks concept. Finally,

Section 3.6 concludes this chapter with a summary of the key concepts introduced

herein.

3.1 Background

Advances in the virtualisation of computing resources have led to the emergence of

the cloud computing paradigm. The National Institute of Standards and Technology

(NIST) provides the following definition for cloud computing [23]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-

demand network access to a shared pool of configurable computing re-

sources (e.g., networks, servers, storage, applications, and services) that

can be rapidly provisioned and released with minimal management effort

or service provider interaction.”

Cloud computing resources are deployed on top of physical hardware (servers, network

switches, storage appliances, etc.) hosted in data centres. Because the underlying

hardware is always on, it is possible to start and shutdown these virtual comput-

ing resources at any time. The ability to instantly provision or release computing

resources programmatically using an API is called elasticity [24, 25, 26]. Elasticity

45



Section 3.1 Page 46

enables a wide range of features, one of which is the ability to script virtual infras-

tructure deployments. Another feature is the ability to dynamically scale up and

down computing resources based on demand. Resources can be scaled horizontally by

adding more computing resources or to some extent vertically by utilising computing

resources with higher specification.

3.1.1 Cloud Service Models

Public cloud providers, most notably Amazon Web Services [27], Google Cloud Plat-

form [28] and Microsoft Azure [29], utilise their data centres to commercially offer

virtualised computing resources. Offered resources broadly fall into one of these ser-

vice models:

• Infrastructure as a Service (IaaS) such as compute, storage and network

resources.

• Platform as a Service (PaaS) such as databases, servers runtime and mes-

saging.

• Software as a Service (SaaS) such as collaboration and productivity suites.

3.1.2 Cloud Benefits

Consumers can benefit from using cloud computing in many ways, generally speaking

the benefits can be summarised as follows:

• On-demand services - Consumers can provision and scale computing re-

sources automatically when needed without any human interaction with the

cloud providers.
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• Pay per use computing - Consumers only pay for what they use, which is

highly cost efficient compared to a physical computing environment that is billed

24/7 even when the resources are not being fully utilised.

• No upfront infrastructure investment - With cloud Infrastructure as a Ser-

vice (IaaS), consumers can instantly acquire the required infrastructure without

any expensive upfront investment.

3.2 Public Cloud Deployment Overview

Cloud providers generally keep the details of their internal cloud implementation

as proprietary. Nonetheless, there are high level components that are common for

most cloud deployments as illustrated in Figure 3.1. Most cloud deployments are

organised into geographical regions so that resources are closer to consumers in each

region. These regional deployments also serve the purpose of compliance with local

or regional data and computer regulations. Each region is comprised of a number of

availability zones, each zone is usually a data centre with its own network connection

and power supply. Zones are used for increased availability so that major failures in

one zone do not impact other zones. Consumers can also deploy their resources in

multiple zones for added resilience and availability.

As shown in Figure 3.1 each data centre (zone) contains hardware such as servers,

network switches and storage appliances. Each of the physical servers, usually called

a host, has a hypervisor application which can create and run virtual machines on

the host. Widely used hypervisors for Linux based virtual machines include Xen [86]

and KVM [87]. A management component communicates with the hypervisors to

facilitate virtual machines scheduling and deployment on each host. If supported,

the management component can also facilitate the live migrations of a VM from one
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Figure 3.1: Cloud Deployment Overview.

host to another without disrupting the applications running on the VM. Additionally

shared storage is also used to store virtual machine images which specify the operating

system and applications that are deployed for each VM.

3.3 Cloud Services

Public cloud providers generally categorise their services under broad categories such

as compute, storage, databases, Big Data [12], network, etc. The compute category

is usually used to refer to services that can be used for computation, for example

virtual machines. Storage is used to refer to mass block storage and other types of

objects storage. Finally, big data or database categories are used to refer to services

that provide fully hosted relational database services, NoSQL or columnar databases

[88]. These services still fall under the broad classifications of IaaS, PaaS or SaaS,
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depending on the type the service and if it is considered Infrastructure, Platform or

Service related. Cloud providers expose authenticated APIs that users can use to

manage their cloud resources, the authentication mechanism used differs from one

cloud provider to another.

This section provides an overview of the concepts of commonly available cloud services

that are utilised in this thesis, namely virtual machines, cloud storage and Big Data

services.

3.3.1 Virtual Machines

Virtual Machines (VMs) are created from images (Figure 3.1) and run on physical

hosts by the hypervisor component. Unlike physical computers, VMs can be started

and terminated programmatically using APIs and are usually billed by the cloud

provider for hourly usage. Prominent cloud based compute services include Amazon

Elastic Compute Cloud (EC2) [89], Google Compute Engine (GCE) [90] and Microsoft

Azure Virtual Machines [91], all do provide APIs for the lifecycle management of cloud

VMs. When starting a VM, users must specify the VM image, the VM machine type

in terms of CPU cores and RAM, the type of disk storage to use and optionally the

network configurations. Some of these concepts are explained in the following sections.

3.3.1.1 VM Image

The VM image contains a boot loader, root file system, Operating System (OS) and

the software that will run on the VM. Cloud providers usually provide a set of publicly

available images for popular OS distributions, some are free to use and others incur

an additional fee depending on the OS license. It is possible to save the current state

of the VM’s root disk drive as an image. This image can then be used to start new

VMs that contain the same software and disk state as the original VM from which
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the image was taken. Users can utilise this feature to create their own private images

by using the cloud provider images as a starting point. Firstly the public image is

used to create a VM, then the OS and applications on the VM are customised and

finally a new image is created from the VM.

3.3.1.2 CPU Cores and RAM

Cloud providers specify a catalogue of VM types in terms of CPU Cores, RAM and

hourly cost that users can use to create their VMs. A VM CPU core, termed a virtual

core, is usually implemented as a single hardware hyper-thread on the physical CPU.

This is assuming that the physical CPU does support hyper-threading, which is true

for the Intel Sandy Bridge1, Ivy Bridge2 and Haswell3 Xeon processors. For example,

a physical CPU with 16 cores and two hyper-threads per core can support a VM with

up to 32 virtual cores. Similarly the amount of RAM that a VM can utilise must not

exceed the amount of RAM installed on the physical host.

3.3.1.3 Virtual Disk and Snapshots

VMs can use a local virtual storage on the physical host, but this storage is ephemeral

and all the data stored on it is lost when the VM is destroyed. Cloud deployments

provide persistent block storage that can be used to create VM disk volumes. These

disks can be mounted on VMs to provide storage that persists beyond the VMs life-

cycle, this is illustrated in Figure.3.1. It is also possible to take snapshots of a VM

disk for backup purposes, for example both GCE and EC2 provide the ability to cap-

ture incremental snapshots of VM disks. These snapshots are similar to incremental

backup in that each snapshot only captures the new changes since the last snapshot.
1http://ark.intel.com/products/codename/29900/Sandy-Bridge#@Server
2http://ark.intel.com/products/codename/29902/Ivy-Bridge#@Server
3http://ark.intel.com/products/codename/42174/Haswell#@Server
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3.3.1.4 VM Metadata

Once a VM is created and started, applications running on the VM can query a

metadata server for the configuration details of the VM. The details supplied by the

metadata server can include the VM type, image, disk and network configurations,

start time, IP address, hostname, etc. Users can also supply custom metadata in the

form of key-value pairs when creating a VM. These custom values can be read by

applications running on the VM in order to make decisions about their processing

or lifecycle. This feature can also be used to create similar VMs with applications

that use the user supplied metadata as input. For example, based on this metadata

applications can configure themselves differently or execute different tasks.

3.3.2 Cloud Storage

Cloud storage generally refers to object based storage rather than block storage used

for virtual machines disks. Cloud storage offers a viable replacement to in-premise

disk based storage because there are no theoretical constraints on the size of the data

that can be stored. Other features of cloud storage include high availability of stored

objects through replication, resumable file download/upload and APIs to manage the

stored data. Additionally, other data transfer services are also based on cloud storage

such as Content Delivery Network services (CDN) with the ability to stream data.

Users can utilise cloud storage for storing data that will be accessed from other ser-

vices hosted by the same cloud provider. The transfer of the data hosted in cloud

storage can directly benefit from the cloud provider’s fast internal network and re-

duced latencies. This is specially true when the data does not need to be transferred

over the Internet. Popular cloud storage services include Amazon Simple Storage

Service (S3) [92] and Google Cloud Storage [93]. Both cloud providers enable users
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to import the input for many of their other cloud services directly from their cloud

storage and save the output back to it.

3.3.3 Big Data Services

The constant growth of structured, semi structure and unstructured Web, scientific

and sensory data has resulted in the emerging concept of Big Data. Big Data is data

that is too big, too fast, or too hard [12] to process using traditional tools. Despite

the fact that the challenge of Big Data has been prevalent for the last few decades

[94], the rate of growth experienced today makes it hard to store, let alone analyse

this data. The seriousness of this is evident by the Big Data prominence in the

peak of the Gartner Technology Hype Cycle for 2013 [95]. The main driver behind

the hype surrounding Big Data is its potential value, which can enable organisations

and businesses to gain valuable insight, trends or business intelligence. For example,

the ability to analyse online advertising clickstreams or transactions history data can

highlight crucial information about consumer behaviours, hence enabling businesses

to tailor their offerings accordingly.

In response to consumer demands for Big Data services, cloud services such as Amazon

Redshift [30] and Google BigQuery [31] provide the ability to store, process and query

massive datasets. The two services have different models and are defined differently.

For example Amazon Redshift is defined as a “petabyte-scale data warehouse”, whilst

Google BigQuery is defined as “fully managed, NoOps, low cost analytics database”,

however both utilise columnar database technology [88]. Similarly, both provide SQL

like query languages and APIs for the execution of queries and the management of

data.

Columnar database systems, unlike traditional Relational Database Management Sys-

tems (RDBMS), store data in columns rather than rows. Columnar databases are able
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to achieve fast read capability compared to traditional RDBMS, because the values

belonging to the same column are stored in the same volume contiguously, tightly

packed and compressed [88]. Using this layout, queries scanning different columns

can run in parallel and utilise difference disk volumes and hence achieve better disk

I/O compared to traditional RDBMS. Different strategies can be adopted to paral-

lelise and aggregate queries that span more than one column. Unfortunately, this fast

read capability comes at the prices of slow or almost impossible update to existing

columnar data.

3.4 Google Cloud Platform

This section provides a brief review of the key Google Cloud Platform (GCP) ser-

vices used in the architecture described in this thesis. GCP is one of the prominent

commercial cloud platforms and is relatively new compared to AWS, with the first

compute service offered in 2013. Some of its major components include Google Com-

pute Engine, Google Cloud Storage and Google BigQuery. To run services on GCP

users need to create top level containers called projects. Authorisation for resources

access, usage quotas and billing for consumed resources are all defined per project.

GCP defines a number of regions and zones, for example a zone “europe-west1-b”

specifies zone “b” in the Western Europe Region, users needs to specify the zone on

which to deploy their resources.

3.4.1 Google Compute Engine

Google Compute Engine (GCE) provides the ability to create and manage Virtual

Machines (VMs), also known as instances, on the Google infrastructure. VMs are

defined under a project and are created in a particular zone that specifies which
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region and data centre to host the VM. At the time of writing (December 2015), GCE

provides a number of machine types for launching VMs in terms of CPU and RAM,

these are summarised as follows [96]:

• Standard machine types, include 6 different CPU and RAM configurations

ranging from 1 CPU core and 3.75GB of memory up to 32 CPU cores and 120GB

of memory.

• High-memory machine types, include 5 different CPU and RAM configura-

tions for application that require higher memory than CPU cores. The configu-

rations range from 2 CPU cores and 13GB of memory up to 32 CPU cores and

208GB of memory.

• High-CPU machine types, include 5 different CPU and RAM configurations

for application that require higher CPU cores than memory. The configurations

range from 2 CPU cores and 1.80GB of memory up to 32 CPU cores and 28.8GB

of memory.

3.4.1.1 Compute Engine Metadata

Each VM can query the GCE metadata server for information such as VM ID (in-

stance ID), hostname, custom metadata, and startup scripts. Startup scripts are

shell scripts that will be run automatically by the VM when it starts up, these are

particularly useful to pre-install any required software on the VM. GCE provides en-

hanced metadata support [97], compared to other prominent cloud providers. For

example, GCE provides the ability to update the metadata of a running VM at any

time. It also provides the ability for a VM to be notified when its metadata changes

by performing a hanging HTTP GET request. There is limited support for metadata

by other cloud providers, for example, at the time of writing Amazon Web Services
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provides the ability to set the metadata (User Data) for an instance at creation time

only, this can not be changed whilst the instance is running. Microsoft Azure on the

other hand only provides the ability to set custom tags in the form of key-value pairs

when the VM is created.

3.4.1.2 Compute Engine Pricing

GCE VMs are charged for the time they are running based on their CPU and memory

configurations. The VMs are charged a minimum of 10 minutes, after the first 10

minutes VMs are charged in 1 minute increments. Other charges include data transfers

to and from VMs, disk and images storage per month. Compute Engine VMs can be

authorised to interact with other Google Cloud Platform services by using OAuth24

open authentication standard. The cloud services that the VM can access need to be

specified when the VM is created. Once the VM is started it can query the metadata

server to obtain an OAuth2 token that can be used to authenticate API requests to

those services.

3.4.1.3 Compute Engine API

The following is a list of the Compute Engine API operations used in the architecture

developed in this thesis:

• Instances.insert, creates a VM under the specified project and zone.

• Instances.get, retrieves the details of a VM in the specified project and zone.

• Instances.delete, deletes the specified VM in the specified project and zone.

• Instances.setMetadata, sets the metadata for the specified instance to the

values provided in the request.
4http://oauth.net/2/
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In addition to these API operations, Compute Engine VMs can also read their own

metadata or request an OAuth2 token by requesting a particular metadata server

URL. VMs can perform a hanging HTTP GET requests to the metadata server such

that they can block and wait for metadata changes.

3.4.2 Google Cloud Storage

Cloud Storage is a cloud based service for storing data in the Google infrastructure.

Cloud Storage stores data in buckets, which are created under cloud projects and

can exist in a particular Region. Buckets reside in a single Google Cloud Platform

namespace and as such their names must be globally unique. Objects, which are

individual pieces of data, are stored in buckets and have two components, their data

and metadata. The object data is usually contained in a file, the metadata is key-value

pairs describing the object data. Data transferred to and from other services in the

Google Cloud Platform benefits from fast network access by using Google’s internal

network. Cloud Storage charges for data transfers and data storage per month [98].

3.4.2.1 Cloud Storage API

The following is a list of the Cloud Storage API operations used in architecture de-

veloped in this thesis:

• Objects.get, retrieves an object or its metadata from a Cloud Storage bucket.

• Objects.list, retrieves a list of objects from a particular Cloud Storage bucket,

this operation only retrieves the object metadata.

• Objects.insert, stores a new object and its metadata in Cloud Storage.

56



Section 3.4 Page 57

3.4.3 Google BigQuery

BigQuery is a cloud based service for the interactive analysis of massive datasets.

BigQuery is an external implementation [99] of Dremel [32], one of the core Google

technologies. Dremel technology is capable of running ad hoc queries, without an

index, on massive read-only datasets (over trillion rows) in seconds. Dremel achieves

this by combining columnar storage structure with multi-level execution trees. Multi-

level execution trees provide the ability to break down the query execution over a

number of levels of servers down to thousands of leaf servers. Then, each intermediate

server in the trees aggregates partial results on the way back up to the root server.

Work by Melnik et al. [32] has shown that most queries on this approach complete

within 10 seconds, they have also shown that this approach outperforms MapReduce

[17] on the same datasets by an order of magnitude.

BigQuery provides an append-only table structure for storing and analysing data, with

the ability to store output data from queries into new tables. The table structure is

defined using a schema enumerating the columns and their data types. Data can be

uploaded directly to BigQuery or through Google Cloud Storage in either JavaScript

Object Notation (JSON) or Comma Separated Values (CSV) formats. The data also

needs to be de-normalised into a single table for fast access [94]. BigQuery provides

a SQL like query languages and REST APIs for the execution of queries and the

management of data.

3.4.3.1 BigQuery SQL

BigQuery uses a variation of the standard SQL SELECT statement for its query

language [100]. Each SELECT statement performs a full column(s) scan. The basic

format of the SELECT query is summarised as follows:

SELECT expr1 [, expr2, ...]
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[FROM table\_name1 [, table\_name2, ...]]

[WHERE condition]

[ORDER BY field1 [DESC|ASC] [, ...]]

[LIMIT n];

The SELECT expression can contain literals, field (column) names and aggregate

functions. The FROM expression contains table names or a nested SELECT clauses.

The table name can contain a table decorator [101] (e.g. table name@<time>) with

an absolute or relative time in milliseconds. The decorator instructs BigQuery to

only scan a subset of the data that was available in the table during the time range

provided, for example table name@-3600000, only scans the snapshot of the table at

one hour ago. The WHERE clause can contain multiple conditions that make use of

comparison operators (e.g. =, !=, <, >, IN, BETWEEN, etc.) and can be joined by

AND and OR boolean operations. BigQuery imposes some restrictions on queries, for

example the maximum tables per query is limited to 1,000 and the maximum query

length can not exceed 256 KB.

3.4.3.2 BigQuery API

The following is a list of the BigQuery API operations used in architecture developed

in this thesis:

• Jobs.insert is used to create an asynchronous job, there are three types of jobs

Load, Query and Export. Load jobs are used to load data into a BigQuery table

either directly or through Cloud Storage. Data can be loaded into a new table

or appended to an existing table. Query jobs are used to run a query. Export

jobs are used to export query results to Cloud Storage files.

• Jobs.get, retrieves the status of a particular asynchronous job. A job status
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will indicate if the job is pending, running or done.

• Jobs.getQueryResults, retrieves the results of a query in pages, the maximum

page size is 100,000 records.

• Tabledata.insertAll, streams the data directly into BigQuery, the maximum

rate is 100,000 rows per second.

3.4.3.3 BigQuery pricing

BigQuery provides a number of free operations such as loading, exporting, browsing

and copying table data. Query operations are charged based on the size of the data

(rounded to the nearest Mbyte) in each column scanned as part of the query. For

example the query SELECT column1 FROM table WHERE column2 = value will scan

both column1 and column2 and the total charge is calculated based on the total size

of the data in each column. The size of the data stored in BigQuery columns depends

on the size of the column data type (e.g. String: 2 bytes + string size, Integer: 8

bytes, Float: 8 bytes, Boolean: 1 byte, Timestamp: 8 bytes or Record: 0 bytes + size

of contained fields) [102].

3.5 The Potential of Cloud Computing

Cloud computing has opened up a wide range of possibilities for both organisations

and the research community. Cloud computing features such as elasticity and utility

billing for computing resources have sparked numerous research efforts and commercial

offerings. The related literature surveyed in this section can be categorised into these

broad use cases:

• Migration to the cloud, the migration of, and interoperability between exist-
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ing physical computing clusters or grids and their applications over to the cloud

[33, 103, 104, 105, 106, 107, 108].

• Observing cost and time constraints, the auto scaling of resources and

scheduling of tasks or jobs to meet cost and time deadlines [109, 110, 111].

• Cloud-first frameworks, the creation of generic frameworks for data pro-

cessing, tasks execution, etc., that are entirely based on existing cloud services

[112, 113].

Other areas of research concerned with improving the cloud infrastructure and hyper-

visors are not directly related to the work done as part of this thesis. The following

sections provide a brief review of related work in each of these use cases, both in the

research and commercial fronts.

3.5.1 Migration to the Cloud

The large majority of work on cloud computing have been concerned with the migra-

tion of existing physical computing clusters or grids and their applications over to the

cloud. Additionally, the the scientific community have focused on assessing the suit-

ability of cloud computing for High Performance Computing (HPC) [103, 104, 105].

3.5.1.1 High Performance Computing

The research community demand for HPC has led cloud providers such as Amazon,

Google and Microsoft to provide support for HPC clusters on their platforms [114,

115, 116]. This is made possible due to improved virtualisation support both at the

hardware and software levels and high speed network connectivity protocols such as

InfiniBand [73]. For the past few years Amazon Web Services [117] has entered the

Top500 list [118] with a virtualised HPC cluster. The Top500 project is concerned
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with the 500 top performing HPC clusters around the world and uses the Linpack

benchmark [119] to compare performance. The AWS virtualised cluster comprised of

26, 496 cores has held a steady rank over the past few years, reaching 81.68% of its

theoretical peak performance.

Mauch et al. [104] have shown that the AWS virtualisation performance hit in a

single node operation is relatively bearable. However, in a cluster operation using the

standard Ethernet, the network latencies are the bottleneck. They show that using

high speed interconnect such as InfiniBand can reduce these latencies considerably.

3.5.1.2 Interoperability and Migration of Cluster Frameworks

Other work have focused on improving and extending existing cluster management

and job scheduling frameworks to enable migration and interoperability with the cloud

[106, 107, 108, 33]. This has mostly taken the form of extending and integrating with

existing cluster resource managers such as Torque5 and job schedulers such as Moab6

to be able to create cloud based elastic compute clusters.

A large scale elastic environment for scientific computing was presented by Marshall

et al. [33]. Their approach integrates with Torque and utilises an elastic resource

manager, which consists of three major components, a component to read submitted

jobs from a queue, a decision engine that responds to sensor information and a provi-

sioner that interacts with the Cloud provider APIs to launch, terminate and manage

instances. VMs are contextualised by exchanging the IP addresses and SSH keys of

other VMs in the cluster. The setting up of pre-requisite software on acquired VMs is

done using a system integration framework such as Chef7. They show that they are

able to scale to over 475 Amazon Web Services nodes within 15 minutes.
5http://www.adaptivecomputing.com/products/open-source/torque/
6http://www.adaptivecomputing.com/products/cloud-products/moab-cloud-suite/
7https://wiki.opscode.com/display/chef/Home
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An Elastic Cloud Computing Cluster (EC3) tool is developed by Caballer et al. [107].

EC3 creates elastic virtual clusters on top of a number of cloud providers (Amazon

EC2, OpenStack and OpenNebula) and integrates with existing resource management

systems. The clusters in EC3 are self managed with the ability to scale up or down

depending on a predefined policy. Their architecture consists of a launcher that

deploys a front-end VM on the cloud, this front-end VM manages the cluster and is

able to start, contextualise and stop the VMs in the cluster.

On the commercial front, cloud providers have provided services for managing the

deployments of virtualised infrastructure and existing frameworks such as MapReduce

on their cloud platforms. For example Amazon CloudFormation [120] and Google

Deployment Manager [121] provide users with the ability to define their infrastructure

resources deployment as a template detailing the number and specification of VMs and

their relationships. Moreover, services such as Amazon Elastic MapReduce [122] and

Google Cloud Dataproc [123] enable users to easily deploy and manage MapReduce

clusters on their respective compute services (EC2 and GCE).

3.5.2 Observing Cost and Time Constraints

Cloud computing gives users access to an unlimited number of resources subject to

physical resources constraints, however there is a cost element involved. Consequently,

the majority of research in this area investigated the ability to efficiently schedule

specific types of tasks and jobs to meet deadlines and budget constraints. Other

areas of research investigates the ability to autoscale cloud resources, mainly VMs to

meet specific budget and deadlines.

Grekioti and Shakhlevich [109] focused on revising classical bin-packing algorithms

[124, 125] for scheduling Bag-of-Tasks (independent tasks). They propose a new cost

optimisation algorithm by combining the existing successful algorithms and optimis-
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ing them for handling the computational cost factor. Similarly, [110] developed a

statistical cost optimisation approach for scheduling jobs with budget and time con-

straints between a number of cloud providers with different VM specifications and

pricing.

With regard to autoscaling of cloud resources, Mao et al. [111] have focused on cloud

autoscaling with budget constraints based on performance and cost. They treated the

VM acquisition plan as an optimisation problem and utilised integer programming

for solving it. In terms of performance their auto scaling approach enables cloud

applications to finish all submitted jobs by the required deadline by acquiring enough

VM instances. From a cost perspective they achieve cost reduction by acquiring the

appropriate VM instance types that incurs less cost and shut them down when they

approach full hour operation.

3.5.3 Cloud-First Frameworks

This thesis introduces the notion cloud-first frameworks to denote frameworks that

are entirely cloud based and utilise cloud services such as VMs, cloud storage and

Big Data services. Such frameworks address particular needs, for example Big Data

processing, and provide a Platform as a Service (PaaS) for users to deploy their own

applications on the cloud. On the commercial front, Google offers Cloud Dataflow

[112], a framework for developing data pipes to process, transform and aggregate

large datasets using other GCP services. Amazon on the other hand offers AWS Data

Pipelines [113] to process and move data between the different AWS services. Both

offerings are transparent to the user, with the cloud provider managing and scaling

the underlying infrastructure and users simply paying for using the service.
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3.6 Summary

This chapter has provided a review of the cloud computing paradigm including a

high level overview of public cloud deployments. The key cloud services utilised

in this research were reviewed and an introduction to the Google Cloud Platform

was provided. Moreover, this chapter provided a background on some of the related

research and commercial work utilising cloud elasticity and utility billing features.

Finally, this chapter presented a definition of cloud-first frameworks and explained

that they fully utilise cloud elasticity and utility billing. These frameworks utilise not

just VMs, but also other cloud services such as storage and Big Data services.

Cloud-first frameworks such as Google Cloud DataFlow and AWS Data Pipelines have

two disadvantages 1. they are based on a particular cloud platform and users can not

freely move their applications to another cloud provider without considerable changes,

2. the underlying cloud resources being used is not exposed to the user, hence users

are not able to specify the number or the specifications of resources to be used in

order to optimise their computational usage or reduce cost. The concepts reviewed in

this chapter are used in Chapter 5 to address these two disadvantages and to present

the architecture of a novel and generic cloud-first framework (CloudEx) that utilises

cloud VMs, cloud storage and Big Data services. The approach followed avoids the

so-called “lift-and-shift” model for migrating existing approaches to cloud computing,

instead this thesis presents a model that is entirely based on cloud computing. The

following chapter underpins the design methodology followed in order to develop the

CloudEx cloud-first framework and how this framework is then used to develop the

ECARF RDF triple store.
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Research Methodology

This chapter focuses on the research methodology followed in this research to answer

the research questions summarised in Chapter 1. More specifically, the primary focus

is on the Suggestion phase of the general methodology of design science research as

outlined by [1] (Figure 1.2). The following sections outline the approach followed

in order to produce novel designs for both the CloudEx framework and the ECARF

triple store.

The rest of this chapter is organised as follows. Section 4.1 provides a brief overview

of the methodology used in this research and how it was chosen. Subsequently, sec-

tion 4.2 outlines the high level design methodology used in order to address the issues

with distributed RDF processing. Then Section 4.3 introduces some of the key cloud

computing features that influenced the model development stage. Subsequently, Sec-

tion 4.4 summarises the design methodology used in this research in order to answer

the research questions, followed by Section 4.5 which summarises the prototype and

evaluation phases of the research. Finally, Section 4.6 concludes this chapter with a

summary of the design methodology adopted.
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4.1 Design Science Research Methodology

Generally research methodologies can be categorised into quantitative or qualitative,

however, sometimes a combined approach is followed. Quantitative research is pri-

marily concerned with numbers and aims to generate data that can be analysed to

draw firm conclusions. Examples of quantitative research include experimental re-

search, surveys and questionnaires, etc. On the other hand, qualitative research is

designed to help researchers understand some aspect of social life. Examples of this

type of research include action research, case studies, etc. In recent years the subject

of design science research has gained numerous interest from the information systems

community [126, 127]. Design science research changes the state-of-the-world through

the introduction of novel artefacts [1].

The primary aim of this research is to develop and evaluate a cloud-based triple store

for RDF processing, which requires an iterative process of proposing, designing and

evaluating artefacts against related work. Additionally, related work [81, 128, 129]

have successfully utilised similar techniques. Based on this, the design science research

methodology was chosen for this research, which further facilitates comparison with

the findings of related work. This methodology is outlined by Vaishnavi and Kuechler

[1] and shown in Figure 4.1. The effort carried out in this research is mapped to this

methodology in Figure 1.2. According to Vaishnavi and Kuechler, a typical research

effort under this methodology proceeds as follows:

• Awareness of Problem. Awareness of an interesting problem in a reference

discipline. The output of this phase is a research proposal.

• Suggestion. A creative process where new functionality is envisioned based on

novel configurations of existing or new elements. The output of this phase is a

tentative design.
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Figure 4.1: The general methodology of design science research (Source: Vaishnavi
and Kuechler [1])

• Development. The tentative design is further developed and implemented in

this phase. The output of this phase is an artefact.

• Evaluation. The artefact is evaluated in this phase according to criteria made

explicit in the proposal. The output of this phase is performance measures.

• Conclusion. This is the finale of a specific research effort, the results are

considered good enough and are rewritten up.

The following sections focus on the Suggestion phase of this methodology and sum-

marise the creative thought process used to envision new functionality.
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Figure 4.2: Proposed RDF Triple Store Design

4.2 Addressing RDF Processing Issues

A number of issues related to large-scale RDF processing have been identified during

the literature review phase of this research, which are summarised Chapter 2. It

was identified that the efficient processing and loading of big RDF data benefit from

an efficient dictionary implementation, which results in a small dictionary that can

readily fit in memory. The ability to hold the entire dictionary in memory is thought

to improve the loading times of RDF datasets considerably. Additionally, it was

thought that the ability to distribute the processing of these RDF datasets between a

large number of computing resources using an efficient workload partitioning strategy

will further speed up the processing. Moreover, to address the storage issues it was

identified that cloud storage can be used to separate the storage from the computing

nodes for both the the dataset files and the final triples. Finally, it was identified

that cloud-based big data services can be used for forward RDFS reasoning, storage

and query mechanism for both the original and inferred triples. The outcome of this
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analysis was the high level triple store design shown in Figure 4.2 and the formulation

of the following two research questions:

• Q2. How can an efficient dictionary that fits in-memory be created for encoding

RDF URIs from strings to integers?

• Q3. How can cloud-based big data services such as Google BigQuery be used

to perform RDFS rule-based reasoning?

4.3 Utilising Cloud Computing

Following the formulation of the aforementioned research questions related to RDF,

attention was given to the cloud computing paradigm. It was thought that running

an approach based on a fixed computing cluster on cloud computing is unlikely to

benefit from cloud elasticity. For example, setting up a MapReduce cluster on a cloud

environment to process RDF in an approach similar to [20], will hardly benefit from

any cloud specific features. The computing nodes in the cluster are likely to be of

the same specifications, preconfigure with the required software, and the number of

nodes fixed for the duration of job execution.

4.3.1 Cloud-First Design

The previously mentioned fixed cluster approach is not surprising, given that the

MapReduce programming model was first introduced in 2004, almost two years be-

fore Amazon Web Services introduced their first cloud IaaS offering (Amazon EC2).

With cloud computing there is the potential for computing nodes to be created dy-

namically, acquired when needed and released when not needed, not only this, but

these computing resources can have different CPU cores and memory configurations
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to cater for different job or task requirements. Rather than utilising programming

models that originated in physical computing settings, there is a need for a cloud-first

approach. As a result the following key research question related to cloud computing

was formulated:

• Q1. How can a cloud-based system efficiently distribute and process tasks with

different computational requirements?

4.3.2 Utilising Cloud Elasticity

When processing tasks on physical computing clusters the constraints are usually

related to the number of computing nodes and their specifications. With cloud com-

puting IaaS this is not an issue, the main constraint is related to cost rather than

the number of nodes or their specifications. Users can acquire any number of com-

puting nodes, subject to any restrictions imposed by the cloud provider. Users can

also choose the specifications of the computing nodes from an inventory of machine

types in terms of CPU cores and system memory. This flexibility enables users to

utilise a variety of machine types to address particular computational problems. For

example a memory intensive task can utilise a computing node with large system

memory. Additionally, such a node can utilise multiple CPU cores to provide a level

of parallelism by using multiple threads at the application level.

4.3.3 A Divide-Conquer Strategy

The ability to acquire computing resources with various configurations can greatly

benefit from dividing computational job into smaller chunks or tasks with each task

defining its computational requirements in terms of CPU cores and memory. Ulti-

mately, in such a setting users can acquire a different computing resource for each
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task as per its requirements. Consequently, the approach taken in this research is

to divide computational jobs into smaller tasks that are independent by following a

”divide-conquer” strategy. The workload for each task can be available as either files

in cloud storage or rows in cloud big data services. Using such an approach, process-

ing intensive tasks can be dealt with in an embarrassingly parallel fashion. Broadly

speaking, computational tasks can be categorised into the following three categories:

1. processing intensive tasks that can benefit from distribution between computing

nodes,

2. memory intensive tasks that require a large amount of system memory and

3. aggregation tasks that are neither processing nor memory intensive.

Using cloud elasticity the appropriate computing resources for the tasks in each cat-

egory can be acquired when needed and released once the processing is done.

4.4 Model Development

Although the model development stage of the Suggest phase started with the design

of one model, it became increasingly clear that there were parts concerned with tasks

execution on cloud computing and other parts concerned with RDF processing. This

realisation is depicted in Figure 4.3 which shows the conceptual model development

stage focusing on two models, CloudEx and ECARF. The approach followed was to

design any cloud specific task execution models as part of the CloudEx framework,

with the intention that this framework is generic and can be used to not only process

RDF, but any types of tasks using cloud computing. The CloudEx framework model

provided the ability for users to define their own tasks, hence this capability has been
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used to define tasks for the ECARF triple store model. Generic RDF processing

algorithms were designed as part of the ECARF model.

Furthermore, it was clear that the CloudEx framework is required to be abstract

and follows a high level design that is not specific to any particular cloud provider.

Subsequently, the model development for CloudEx was divided into two components,

a common abstract component and a cloud provider specific component as shown in

Figure 4.3. Additionally, a number of requirements have been formulated in order to

enable CloudEx to fully utilise cloud elasticity and services, which are summarised in

the next section.

4.4.1 CloudEx Framework Requirements

To fully utilise cloud elasticity and services the following requirements can be defined

for the CloudEx framework:

• Cloud-first framework - It is entirely based on cloud computing services such

as cloud IaaS, storage and databases. In this setting, resources can be acquired,

released and manipulated programmatically using an API. Data exchange be-

tween the various cloud services can also benefit form the cloud provider’s net-

work connectivity to reduce latency.

• Central orchestration - Central orchestration through a coordinator com-

puting node is needed to coordinate between the various computing resources,

manage workload distribution and to release resources when not needed to avoid

incurring unnecessary cost.

• Horizontal and vertical scalability - The framework enables both horizontal

and vertical scalability. Horizontal scalability is the ability to dynamic scale up
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Figure 4.3: Research Design Methodology

or down the number of computing resources during job execution. Vertical Scal-

ability is the ability to acquire computing resources with variable configurations

during job execution. These configurations include the number of CPU cores,

the amount of system memory and the size and type of disk.

• Embarrassingly parallel [72] processors - Computing nodes are only used

for processing, they do not store any data locally and do not exchange data with

each other by following an ”embarrassingly parallel” approach. This approach

ensures that nodes can be acquired and released like workers without any inter-

actions with other nodes, with the only interaction with the coordinator. This

is achieved by utilising shared cloud storage and moving some of the processing
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from computing nodes over to cloud specific services, such as big data services.

These requirements are the main principles behind the CloudEx framework and will

be discussed in detail in the next chapter.

4.5 Prototype Development and Evaluation

The overall phases of the research were outlined in Section 1.8 and summarised in

Figure 1.2. As was noted, the theoretical model development phase was followed by

the prototype development phase which focused on developing working prototypes of

both CloudEx and ECARF. Following from this stage experimental evaluation was

conducted using both large and small, real-world and synthetic dataset to gather

results, check feasibility and make improvements. The results were compared with

other related work, additionally, observations were made to identify any areas of the

system that were not performing well. Once those areas were identified, improvements

were made to the prototype and reflected back to the design, then the evaluation was

repeated again. This iterative process continued until it was concluded that the

performance of the model was acceptable and showed numerous improvements when

compared with related work. At this stage the results were analysed and conclusion

were drawn on the findings of the research followed by suggestions for future work.

4.6 Summary

This chapter underpins the design methodology followed in this thesis which is sum-

marised in Figure 4.3. The thought process behind the conceptual model development,

the key design decisions and the formulation of the research questions were also sum-

marised. The design methodology outlined in this chapter is used in Chapter 5 for
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the design of the CloudEx framework and in Chapter 6 for the design of the ECARF

triple store.
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Chapter 5

CloudEx, a Cloud First Framework

The cloud computing paradigm made it possible to build dynamic infrastructure that

is flexible and elastic, to utilise these features this research designs a Cloud-based

Task Execution framework (CloudEx). Chapter 4 outlined the design methodology

for this thesis and introduced the CloudEx framework and its requirements 4.4.1. This

chapter covers the first contribution of this thesis and presents the design of CloudEx

framework, which answers the following research question:

• Q1. How can a cloud-based system efficiently distribute and process tasks with

different computational requirements?

Chapter 3 introduced the various cloud computing concepts including the concept of

cloud-first framework, which fully utilise features specific to cloud computing. The

chapter presented a number of limitations related to cloud-first frameworks offered

by the cloud providers. Namely the difficulty to migrate from one cloud provider to

another and the fact that the user has no control on the underlying resources and hence

can not optimise their usage. This chapter addresses these challenges and presents a

number of generic and novel algorithms that can be used for workload partitioning and

distribution between a number of cloud VMs. The CloudEx framework designed and
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implemented in this chapter is provided as an open source framework1 that can be used

to efficiently execute jobs composed of tasks with different computational requirements

on cloud computing environments. The CloudEx framework is subsequently used in

Chapter 6 to design and implement the ECARF RDF triple store.

The rest of this chapter is organised as follows, a description of the high level archi-

tecture of CloudEx is provided in Section 5.1. Section 5.2 introduces the CloudEx

tasks input and output, then Section 5.3 introduces CloudEx workload partitioning

approach and presents a variation of the Bin Packing algorithm. CloudEx job defini-

tion is covered in Section 5.4, with Section 5.5 providing a detailed description of the

CloudEx job execution. Then, implementation is covered in Section 5.6 and finally

the chapter is concluded in Section 5.7 with a summary of the CloudEx framework.

5.1 High Level Architecture

CloudEx is an elastic cloud-first framework for distributed task execution on cloud

computing Infrastructure as a Service (IaaS). CloudEx provides generic mechanisms

for workload partitioning and distributed tasks execution using cloud Virtual Ma-

chines (VMs). The CloudEx high level architecture is shown in Figure 5.1, this ar-

chitecture is based on three major components, 1. Virtual Machines (VMs), 2. cloud

services including databases and storage and 3. the CloudEx framework components.

The architecture uses cloud services for shared storage and execution hence eliminat-

ing the need for VMs to communicate with each other. This embarrassingly parallel

approach ensures each VM can work independently of other VMs to avoid any over-

head with data exchange between them. A master VM (coordinator) is used for

coordinating a number of other processor VMs or processors for short. The coordi-
1http://cloudex.io
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Figure 5.1: CloudEx High Level Architecture.

nator is responsible for partitioning the workload for each task between a number

of processors. The coordinator is also responsible for controlling these processors by

issuing simple commands in the form of key/value pairs using the metadata server

(Figure 5.1).

5.1.1 Key CloudEx Definitions

Before continuing, this section introduces some of the key CloudEx definitions that

will be used throughout the rest of this thesis. Based on the requirement for CloudEx

to provide central orchestration (summarised in Section 4.4.1) cloud VMs are divided
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into two categories:

Definition 5.1.1. Coordinators (C), are long lived VMs that are left on continu-

ously, these nodes are required to stay alive for as long as the system is running. A

coordinator partitions workload using a workload allocation function f .

Definition 5.1.2. Processors (P), are short lived or ephemeral VMs that will be

started by a coordinator to perform particular tasks and then be terminated once the

tasks are done to avoid incurring unnecessary cost.

CloudEx work is divided into logical blocks of functionality that is implemented as

a subroutine in a computer program, each logical block is called a task, and can be

defined as follow:

Definition 5.1.3. Tasks (T), are user-defined subroutines that process a number

of workload items (files, database rows, etc.) and need to be executed in either a

coordinator or a number of processors.

Tasks that need to be executed by the coordinator are simply referred to as coordi-

nator tasks. Coordinator tasks are mainly responsible for aggregation activities and

are neither processing nor memory intensive, as mentioned in Section 4.3.2. Simi-

larly, tasks that need to be executed by processors are referred to as processor tasks.

Processor tasks are either processing or memory intensive and require processors to

be scaled horizontally or vertically depending on the nature of the task. The ability

to scale vertically is achieved by acquiring processors with higher CPU and Mem-

ory specifications rather than dynamically scaling up such resources on a particular

processor, which is currently a subject of research [130].

A computational job can be divided into CloudEx tasks that are executed separately

using a divide-conquer approach. The tasks to be executed by the CloudEx framework
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are grouped in a CloudEx job (j), which defines how to orchestrate and execute these

tasks.

Definition 5.1.4. Job (j), is a definition of CloudEx tasks and how they should be

executed. A job also defines some initial data in the form of key/value pairs to be used

as input to the task subroutines.

Each processor task has a workload partitioning function f which is used by the

coordinator to partition the workload for the task between a number of processors

and can be defined as follows:

Definition 5.1.5. Workload partitioning function (f), is the function (f : W → P )

that maps a set of workload items W to a set of processors P .

The CloudEx framework is implemented as an application component (Figure 5.1)

that is run on both the coordinator and processor. This application can be defined

as follows:

Definition 5.1.6. CloudEx (cx), is an application with a number of subroutines,

one for each task and runs on a coordinator or a processor. The application can read

and update the processor metadata.

All processors (P ) are created from the same VM image and hence contain the same

software. The CloudEx application cx is initially installed on the disk of a template

VM and saved as a VM image (vmi).

Definition 5.1.7. Image (vmi), is a VM image used to create all the processors.

This image contains a bootable root file system and the CloudEx application cx.

When a processor is created from the image vmi, the CloudEx application cx can do

the following based on the metadata supplied to the processor:
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• decide which task in cx to execute.

• set the task input from the metadata.

• retrieve the workload items assigned to this processor from cloud services (stor-

age, databases, etc.).

5.1.2 The Lifecycle of Coordinators and Processors

The general lifecycle of both the CloudEx coordinators and processors is shown in

Figure 5.2. Initially, the coordinator is started and provided with a job to execute.

The coordinator will loop through each of the tasks defined in the job, if the task is a

coordinator task then the coordinator will execute it. Otherwise for processor tasks,

the coordinator will partition the workload between a number of processors using the

workload allocation function f . The coordinator then, using image vmi, creates and

starts the required number of processors, providing each with metadata that contains

the name of the task to execute and its input data. At this point the coordinator

waits for all processors to finish executing the task.

Once a processor starts up, the application cx is run by default. Once running , cx

reads the processor’s metadata, based on this metadata it chooses a task to execute

and populate its input data. cx then updates the processor metadata status as BUSY.

When the task is run by the processor it can interact with the various cloud services

such as storage and databases to download and process the assigned workload. Once

the task is done it uploads its output, if any, to other cloud services. At this point cx

updates the processor metadata status as FREE. The processor then waits for further

metadata updates from the coordinator.

Once all the processors have updated their metadata status to FREE, the coordinator

checks if there are anymore tasks to execute. If all the tasks are done, the coordinator
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will terminate all the processors to avoid incurring unnecessary cost. If there are more

tasks to execute then the coordinator will continue to process them. The processors

are reused multiple times during job execution to run all the processor tasks. If

a particular task requires more processors than the ones already started then the

coordinator will start new ones.

5.1.3 The Tasks Flow

As mentioned in Definition 5.1.3, CloudEx tasks are user defined subroutines that

will be run by the CloudEx framework to handle particular workload or data. In

addition to distributing task execution between a number of processors, users can also

utilise various memory and CPU core configurations. For example, tasks can be made

multi-threaded to benefit from multiple CPU cores. This adds a level of parallelism

within each processor with the advantage of shared memory access between the various

threads. Moreover, tasks that are memory intensive can utilise one or more processors

with high memory configuration.

In their simplest terms, CloudEx tasks are defined in a job and executed serially in

the order they are defined as shown in Figure 5.3. Tasks such as Task1 and Taskn

are executed by the coordinator and hence do not require any distributed processing.

These coordinator tasks deal with simple processing and aggregation that is neither

computationally nor memory intensive.

Tasks that are computationally intensive such as Taskj shown in Figure 5.3, are

distributed between a number of processors. The number of processors used to execute

the task is determined by a workload allocation function f . f divides the workload

for the task depending on a number of parameters, one of which is the maximum

capacity of each processor as will be explained in Section 5.3. The coordinator will

delegate the processing of Taskj to the processors and waits for them to finish, once
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finished the coordinator then continues with other tasks in the job.

5.2 Dealing with Tasks Input and Output

CloudEx coordinator and processor tasks can accept input and provide output as

shown in Figure 5.4. Additionally, every processor task has a partitioning function

that can also accept input and provide output. CloudEx provides the ability for

users to define how the input for tasks and partitioning functions is populated. It

also provides the ability for users to set the output of some tasks and partitioning

functions as an input to others. This approach enables users to create a flow of tasks

that are dependent on the execution of others and collectively perform a particular

job.

5.2.1 The Job Context

Whilst executing a job, the coordinator maintains a job context, which is an in-memory

collection of key-value pairs. The job context, illustrated in Figure 5.4, plays a central

role in data sharing between the various tasks and partitioning functions. The coor-

Task1Job 

End 

Taskj

Taskn

Taskj

Taskj

Figure 5.3: CloudEx tasks flow.
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Figure 5.4: CloudEx tasks input and output.

dinator populates the input for tasks and partitioning functions from the job context.

Moreover the output of tasks and partitioning functions can also be saved back to it.

The coordinator tasks can directly accept input from and provide output to the job

context. Processor tasks can also accept input from the job context, however, this

input is sent remotely to the processors through the metadata server. Partitioning

functions for processor tasks are executed by the coordinator and hence have direct

access to the job context. Consequently, these functions can directly accept input

from and provide output to the job context. When defining tasks, values in the job

context can be referenced as input or output for the tasks, by simply referring to them

by their keys. This approach enables users to wire the output of some tasks as an

input to others to create dependencies as will be explained in the following section.
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5.2.2 Input and Output Resolution

When defining a CloudEx task, its input is defined as either constants or variable

names. These variables’ names are used as keys to lookup a value from the job

context. For example, if a task is defined to have the following key-value pairs as

input:

{threshold:50, domain:example.com, table:#key1, file:#key2}

and the job context contains the following key-value pairs:

{key1:sample-data, key2:data.txt, key3:some-value, key4...}

The coordinator will treat all the values as constants, except those prefixed with #,

those are treated as variables. In this example, the values for keys threshold and

domain are treated as constants. However, for the other two keys table and file,

the coordinator will remove # prefix and will then lookup key1 and key2 in the job

context. These will resolve to sample-data and data.txt respectively and the task

will be initialised with the following input data:

input = {threshold:50, domain:example.com, table:sample-data,

file:data.txt}

The same approach is applied to the input of partitioning functions attached to pro-

cessor tasks. Additionally, this approach is also used to resolve the input for processor

tasks. However, this input is not directly populated by the coordinator, instead it is

sent to the processor with the task metadata through the metadata server.

Output of coordinator tasks and partitioning functions can also be specified when

defining tasks. The approach for handling the task output is slightly different from

the approach described previously for input. For example, if a task has output keys
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defined as {key5, key6} and the following output is generated when the task finishes

executing:

output = {key5:value5, key6:value6, key7:...}

Then, only the key-values pairs for the two keys specified in the task definition are

added to the job context, i.e. {key5:value5, key6:value6}, the rest are ignored.

As mentioned previously this variable resolution and input binding approach using

the job context enables users to create dependencies between the various tasks. Ad-

ditionally, it enables users to create tasks that can dynamically determine and set the

computational requirements for upcoming tasks in the job.

5.2.3 Handling Input

Each task can be provided with input arguments, which are stored by the coordinator

the job context (discussed in Section 5.2.1). These arguments are provided to the

task before it starts executing. Coordinator tasks can be directly populated from the

job context as illustrated in Figure 5.4 for task T1.

The partitioning function for a particular processor task can also be provided with

input arguments from the job context. This is illustrated in Figure 5.4 for parti-

tioning function f2, attached to processor task T2. These arguments are used by the

partitioning function to partition the task workload between a number of processors.

Unlike coordinator and partitioning function input, which can be directly provided,

processor input is provided remotely as metadata input as illustrated in Figure 5.4

for task T2. The CloudEx application (cx) running on the processor receives requests

to execute tasks through the metadata server. cx will then initialise the task and use

the relevant metadata key-values pairs to provide the task with its input values.
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5.2.4 Handling Output

When finished executing, coordinator tasks can provide output as a collection of key-

value pairs, this is illustrated in Figure 5.4 for task T1. These key-values pairs are

added to the job context so they can be used as input to subsequent tasks. When a

task is defined the user specifies which key-values pairs from the task output are to

be added to the job context.

Partitioning functions for processor tasks can also provide an output to be added to

the job context, this is illustrated in Figure 5.4 for partitioning function f2. This

output takes the form of a list of items, the size of this list determines the number of

processors to use for the task execution. Each item in the list is then distributed as

task input to each one of the processors using the metadata server.

On the grounds that processor tasks are executed remotely in an embarrassingly par-

allel fashion, they can not directly provide output back to the coordinator. Therefore

CloudEx processor tasks do not provide any output arguments. When required to

provide output, these tasks save their output directly to one of the cloud services

(such as cloud storage), which can later on be accessed directly and aggregated by

using a coordinator task.

5.3 Partitioning the Workload

The CloudEx framework provides two mechanisms for users to specify how compu-

tationally intensive tasks can be distributed between a number of processors. The

number of processors to use for task execution can be determined by using one of

these mechanisms:

• a built-in partitioning function f based on a variation of the Bin Packing algo-

rithm [124, 125] or
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• a user-defined partitioning function.

The built-in partitioning function f is explained in detail in the following section.

5.3.1 Bin Packing Partitioning

CloudEx provides a built-in workload partitioning function f based on a variation

of the Bin Packing algorithm. This function is used to partition the task execution

between a number of processors or bins based on the sizes of the workload items W

as illustrated in Figure 5.5. Workload items W can be a collection of items which

can be resolved from the job context, for example a collection of file names with their

sizes. To use built-in function f , one of the following parameters must be provided:

• the number of bins (processors) N to use or

• the bin capacity C and optionally δ (where 0 ≤ δ < 1) which is the maximum

fraction of a bin that needs to be rounded up to a full bin.

The size of each workload item w (where w ∈ W ) is a key parameter that needs to be

quantified in order to use this approach. For example when processing text files the

size could be the total number of lines in each file or it might be the size of the file

itself. In particular problem areas, the key parameter used in load balancing might

already be known, if not then it can be determined by running experimentation on

the relevant data. In Chapter 7 experimentation is done to determine this parameter

for each of the tasks that process RDF datasets. CloudEx provides the ability for

current tasks to set the partitioning strategy for upcoming tasks dynamically during

job execution, enabling users to better adjust their workload partitioning depending

on certain outcomes.
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Figure 5.5: Bin packing workload partitioning.

5.3.1.1 Full Bin Strategy

CloudEx uses a Full Bin strategy where all items in W are sorted in decreasing order

based on their size as illustrated in Figure 5.5. Given that there are M items in

W , for each bin CloudEx iterates through all the items and find the ones that will

fully fill the bin up to capacity C. This strategy is not the most optimal in terms of

time complexity as it has O(N ∗M) complexity, compared to O(n log n) for other bin

packing strategies such as First Fit Decreasing and Best Fit Decreasing. However,

CloudEx is only dealing with at most a few hundred processors and a few thousand

items so the performance impact is negligible.

5.3.1.2 Calculating The Bin Capacity

Assuming there is a total of M workload items (w1, w2, · · · , wM) and each has a size

of (s1, s2, · · · , sM) with the largest item having a size of sK such that (0 < si ≤ sK)

these items are divided into N bins where the capacity of each bin is C. Two cases are
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dealt with, the first if the user specifies N , then C is determined as follows, rounding

up the results if necessary:

C = 1
N

M∑
i=1

si (5.1)

In this case the number of bins must be fixed, so each bin is filled up to the maximum

capacity C. After all the bins are filled any remaining items are equally spread between

the bins. This is achieved by sorting the bins in ascending order and the items in

descending order then placing the largest items into the smallest bins, this continues

until there are no further items to add.

5.3.1.3 Calculating The Number of Bins

The second case is when the user provides both C and δ, in this case N is determined

by first calculating the lower bound number of bins NL as follows:

NL = 1
C

M∑
i=1

si (5.2)

If NL has a fraction that is greater than δ then it is rounded up to the nearest integer

value. However, if this fraction is smaller than δ then it is discarded and the remaining

items after filling up all the bins are spread between the bins as explained previously.

If the user does not provide a value for C, or if the provided value is less than the

largest item sK , then the size of the largest item sK is used.

5.4 Defining Jobs

As mentioned previously the tasks, their input data and processing details for CloudEx

are specified using a job definition. The job definition consists of three main parts:
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1. Job Data, 2. Virtual Machine Configurations and 3. Tasks Definition. These parts

are shown in Figure 5.6 and explained in details in the following sections. An example

of a CloudEx job definition in JavaScript Object Notation (JSON) format is provided

in Appendix A.2.

5.4.1 Job Data

Job data is a collection of initial arbitrary key-value pairs that can be used as input

to the various tasks and partitioning functions. Values denote constants or names of

cloud services data containers such as tables or buckets; these values are constraint

to String and Numeric data types. When the job is executed, this initial data will be

added to the job context so that it can be referenced as input to any of the tasks or

partitioning functions.

5.4.2 Virtual Machine Configurations

Virtual Machine Configurations (abbreviated as VMConfig), is a collection of key-

value pairs detailing the attributes required for launching the VM. Keys identify com-

mon cloud parameters such as virtual machine type, disk type, etc. . . . Values provide

a specific identifier that relates to the cloud provider being used. The VMConfig is

used as the base virtual machine settings when creating CloudEx processors. The

following keys are used by CloudEx:

• Zone: The zone identifier in which the virtual machine should be deployed.

• VM image: The identifier of the virtual machine image vmi to use, which

contains the CloudEx application.

• VM type: the type of the virtual machine, the value is a cloud provider specific
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Figure 5.6: CloudEx job entities.

identifier that corresponds to a number of CPU cores and certain amount of main

memory.

• Network: the identifier of the networking configurations to use for the virtual

machine.

• Disk type: the type of disk to use, covering options such as magnetic, solid

state, ephemeral or persistent disk types.

• Startup script: a script to be executed once the virtual machine is started.

5.4.3 Tasks Definition

Tasks definition is a list of task configuration (abbreviated as TaskConfig) for the

individual tasks to be executed by CloudEx. Each TaskConfig provides details on how

to initialise and process the task. A TaskConfig provide details that are applicable
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to either processor tasks, coordinator tasks or both, these details are summarised as

follows:

• Task subroutine (both): a reference to the task subroutine to be executed

for the task.

• Input (both): the input data for the task specified as a collection of key-value

pairs. A value can either be a constant or a reference that will be resolved from

the job context.

• Target (both): indicate which component, coordinator or processor that exe-

cutes the task.

• Error action (both): an action to be taken if the task subroutine exits due

to an error. Two error actions are considered, to ignore the error and continue

executing other tasks in the job, or to terminate the job execution.

• Output (coordinator): the names of the output of the task subroutine. The

output of the task will be added to the job context using this name as the key

and the actual output as the value, as explained in Section 5.2.4.

• VMConfig (processor): optionally for processor tasks, a virtual machine

configuration (Section 5.4.2) can be specified for the execution of the task. This

configuration can be statically specified in the task definition or dynamically

specified during the job execution. If omitted the VMConfig provided as part

of the job definition will be used for processor tasks.

• Partitioning configuration (processor): the TaskConfig for all processor

tasks is required to have a partitioning configuration, abbreviated as Partition-

Config and discussed in the following section.
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5.4.3.1 Task Partitioning Configuration

The PartitionConfig (Figure 5.6) is required for all processor tasks and contains a

reference to the subroutine of partitioning function f and its input data, which can

be resolved from the job context. The PartitionConfig also includes output keys

to be used when adding the output of f to the job context (Section 5.2.4). This

PartitionConfig describes how the workload for the task can be distributed between

a number of processors. Partitioning and workload allocation was covered in more

details in Section 5.3.

5.5 CloudEx Job Execution in Detail

This section explains in detail the roles of the Coordinator and Processor in CloudEx

distributed job execution; a high level overview is provided in Figure 5.7.

5.5.1 Duties of the Coordinator

CloudEx job execution utilises a running Coordinator to sequentially process the tasks

defined in the job definition. The activities performed by a coordinator when supplied

with a job definition can be summarised as follows:

• Maintain a set of all active processors.

• Execute the coordinator tasks.

• Execute the partitioning function for processor tasks.

• Delegate processor tasks to the active processors, starting new processors when

needed.

• Once the job execution is completed, shutdown all the processors.
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The coordinator’s main algorithm is outlined in Algorithm 1, the processor’s main

algorithm is outlined in Algorithm 2. The processing for both the coordinator and

processors is visually illustrated in Figure 5.7. Initially only the coordinator is started,

then when supplied with a job definition, the coordinator adds the job data to the job

context. The coordinator then iterates through all the task configurations (TaskCon-

fig) in the job, running and delegating tasks as explained in the following section.

5.5.1.1 Running Coordinator Tasks

When a coordinator task T1 (Figure 5.7) is encountered the coordinator will lookup the

task subroutine. The coordinator then uses the Input keys provided in the TaskCon-

fig to lookup the input values from the job context, then supply them to the task

subroutine as explained in Section 5.2.2. The coordinator then runs the task, once

done, the output of the task is added to the job context. The total execution time for

task T1 is shown as t1 in Figure 5.7.

5.5.1.2 Running Processor Tasks

The execution for processor tasks is split between the coordinator and the processors

as evident from Algorithms 1 and 2. The coordinator is responsible for executing

the partitioning function, for example f2 in Figure 5.7, to determine the number

of processors to use for the task execution. The coordinator is also responsible for

populating the input data for the task (T2) from the job context and delegating the

task execution to the processors.

As previously mentioned, the metadata server is used as a mechanism to assign tasks

and their input data to the processors. An example of such metadata is shown in

Table. 5.1. If the number of processors required for the task execution exceeds the

number of active processors, the coordinator will start new ones as needed. Once the
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Algorithm 1 CloudEx Coordinator subroutine
1: procedure run(cs, j) . cs is the cloud service . j is the job to execute
2: P ← {} . P is a set of processors
3: ctx← {} . ctx is the job context
4: ctx.add(j.data)
5: tasksConfig ← j.getTasks()
6: for all tc ∈ tasksConfig do . tc is the task configuration
7: if tc.target = ”PROCESSOR” then . processor task
8: vmc← tc.vmConfig . vmc virtual machine configuration
9: f ← tc.partitionFunction

10: W ← f.partition(ctx) . W is the set of workload items
11: ctx.add(W )
12: Pnew ← {}
13: for all w ∈W do
14: m← getTaskMetadata(tc, ctx, w)
15: p← P.nextAvailableProcessor()
16: if p = null then
17: p← cs.startProcessor(vmc, m)
18: Pnew.add(p)
19: else
20: cs.updateProcessorMetadata(vmc, m)
21: end if
22: end for
23: if Pnew 6= ∅ then
24: P.add(Pnew)
25: end if
26: status← cs.waitForProcessors() . block and wait
27: else . coordinator task
28: t← getTask(tc, ctx) . t is the task to run with its input populated from ctx
29: o← t.run(c) . run the task, o is the output
30: ctx.add(o)
31: end if
32: end for
33: cs.shutdownProcessors(P )
34: end procedure
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task execution is delegated to the processors, the coordinator will wait for all of them

to complete before continuing with the job execution.

The total execution time for task T2 is shown as t2 in Figure 5.7. This includes the

time required by the coordinator to run function f2 and the total time taken by the

slowest processor to process the task. An example is shown in Figure 5.7, where

Processor 1 takes longer to process the task than Processor k. When a processor is

started for the first time, there is a slight delay before it is available to process any

tasks. This delay, termed acquisition time (taq), is the time required for the processor

to be created, started and for the CloudEx application cx to start.

Table 5.1: Example CloudEx processor task metadata
Key Value
cloudex-task-class LoadDataset
user-bucket dataset
user-files dataset file1.nt.gz,dataset file2.nt.gz,...
user-schema-terms schema terms.json
startup-script /home/cloudex/start cloudex.sh

5.5.1.3 Error Handling

The coordinator provides two options for handling errors thrown by task subroutines,

either to ignore these errors and continue execution or to halt execution and exits

providing an error to the user. The option to follow is specified by the user in the

TaskConfig for each task. The processor errors are conveyed to the coordinator using

the metadata, an example is provided in Table. 5.2

Table 5.2: Example CloudEx processor error metadata
Key Value
cloudex-status ERROR
cloudex-exception NetworkAccessError
cloudex-message No network access
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5.5.2 Elastic Processors

As previously discussed in Section 5.4.3, the TaskConfig for processor tasks can pro-

vide a VMConfig to use for the task execution. The VMConfig provided for a par-

ticular processor task can be different from the one provided at the job level. This

approach enables the execution of certain tasks in processors with different virtual

machine configurations, such as main memory and CPU. This is particularly useful

when dealing with tasks that are memory or both CPU and memory intensive. The

coordinator keeps a list of all active processors, their virtual machine configurations,

start time and accumulated cost. If a task requires a processor with particular VM-

Config that is different from the one provided at the job level, then the coordinator

will check the list of active processors for a VMConfig that matches the configuration

required for the task. If one is found then it is used, otherwise the coordinator will

start a new processor with the required VMConfig. The default action is to shut this

processor as soon as the task processing is done, unless the user specifies otherwise in

the TaskConfig. This is done to avoid incurring cost for expensive virtual machines

that have high memory or CPU cores.

In a push to achieve a high level of elasticity, not only can the VMConfig for a task be

specified statically, it can also be driven dynamically from the job context. For exam-

ple, for a particular processor task, the VMConfig can be specified as a job context key

reference that can be resolved by the coordinator at runtime e.g. #customVMConfig.

This is useful if a coordinator task is used to determine the computational capabilities

required for the next processor task. This coordinator task then outputs the VMConfig

which will be added to the job context e.g.: {customVMConfig: cup-32-mem-208}

where cup-32-mem-208 corresponds to a virtual machine with 32 CPU cores and 208

GB of system memory. The processor task is then delegated to the required number

of processors with these configurations.
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5.5.3 The Processor Duties

As mentioned previously, processors are short lived virtual machines that are started

to process tasks in a job and are shutdown once the job is done. The main processor

algorithm is outlined in Algorithm 2, the processor’s main subroutine loops indefinitely

waiting for tasks. Since processors are only started when a task needs executing, as

soon as the processor is started there will be a task metadata available, for example

T2 shown in Figure 5.7. An example of such metadata is shown in Table. 5.1.

Before running a task the processor updates its metadata with a special key-value pair

to indicate to the coordinator that it is busy e.g. {cloudex-status: BUSY}. Whilst

processing, the task subroutine can access the various cloud services to download,

process and upload assigned data. The task can also be implemented to use multiple

threads to utilise more than one CPU core.

Once the processing of the task is done, the processor updates its metadata to indicate

its availability for further work e.g. {cloudex-status: READY}. The processor

then blocks and waits for metadata updates from the coordinator for further tasks

to execute. This lifecycle continues until the processor is explicitly shutdown by the

coordinator as shown for task Tn in Figure 5.7.

5.5.3.1 Error Handling

The processor subroutine will capture all errors thrown by the task subroutines, stops

processing the task and updates its metadata changing its status to ERROR (Table.

5.2 ). The processor then blocks and waits for metadata updates from the coordinator.
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Algorithm 2 CloudEx Processor subroutine
1: procedure run(cs, m) . cs is the cloud service . m is the metadata for the processor
2: status← null
3: while true do . main loop
4: if status = null then
5: m.status← ”BUSY ”
6: cs.updateMetadata(m)
7: t← getTask(m) . t is the task to run, with its input populated from

metadata m
8: if task 6= null then
9: t.run(cs) . run the task

10: end if
11: m.clear()
12: m.status← ”READY ”
13: cs.updateMetadata(m)
14: end if
15: m← cs.waitForMetadataChange() . block and wait
16: status← m.status
17: end while
18: end procedure

Coordinator

cloudex-core

CloudService

cloudex-google

Processor
Google Cloud 
Platform APIs

User-Defined 
Task(s)

Task

User-Defined
Partitioning 
function(s)

PartitionFunction

Figure 5.8: CloudEx high level components.

5.6 Implementation

An implementation of the CloudEx framework was created using the Java program-

ming language. This implementation is open source and is publicly available2. The
2https://cloudex.io/
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current implementation of the CloudEx framework consists of the high level compo-

nents shown in Figure 5.8 and summarised as follows:

• cloudex-core: is the generic implementation of the processor and coordinator

algorithms and provides a Coordinator and Processor sub components.

• cloudex-google: is an implementation of the CloudService interface which is

specific to the Google Cloud Platform (GCE) [28].

• user-defined-tasks: is a component of all the user defined tasks subroutines

that the CloudEx framework needs to execute.

• user-defined-partitioning-functions: is a component of all the user defined

partitioning function subroutines that the user can reference when defining pro-

cessor tasks. CloudEx includes the built-in Bin Packing function explained in

Section 5.3.

5.6.1 cloudex-core Component

The cloudex-core component (Figure 5.8) provides generic implementation of the core

CloudEx building blocks described in this chapter. This implementation is generic

and can be used with any cloud services that provides APIs for creating and managing

virtual machines. This component requires a CloudService interface which provides

access to the underlying cloud provider services. The following are some of the key

operations required by this interface:

• init(): initialises the cloud service by performing any required authentication

with the cloud provider.

• getMetaData(): retrieves the metadata for the current VM or other VMs

started by the CloudEx framework.
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• updateMetaData(metaData): updates the metadata for the current VM or

other VMs started by the CloudEx framework.

• startInstance(vmConfig): starts one or more VM instances.

• shutdownInstance(vmConfig): shuts down one or more VM instances.

Other operations include common operations for accessing cloud based storage and

databases. The cloudex-core component also includes a Coordinator and Processor

sub components. The Coordinator sub component is run by the Coordinator VM and

the Processor is run by the Processor VM.

5.6.2 cloudex-google Component

The cloudex-google component is an implementation of the CloudService interface

required by the cloudex-core component. The cloudex-google component can interact

with the various GCE RESTful APIs. The choice to use GCE in this thesis is due

to their enhanced metadata support [97], as mentioned in Chapter 3. In order to

provide implementation for other cloud providers, the missing features need to be

supplimented, in particular metadata support, to match the functionality provided

by GCE. This can be implemented as a custom metadata server that runs in the

coordinator. The coordinator’s IP Address can be provided to the processors when

they are created.

5.6.3 User-Defined Tasks

The cloudex-core component provides a Task interface for user defined tasks. Users

implement this interface to create coordinator and processor task subroutines (Fig-

ure 5.8). These subroutines will automatically get an implementation of the CloudService
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injected at runtime, all input data will also be injected. The task interface has a run

method that will be run by the cloud-ex framework. In this method users can utilise

the CloudService to interact with the various cloud services that the framework has

authorisation to access. Tasks can also query the number of available CPU cores

and fork multiple threads accordingly to provide a level of parallelism within the task

execution.

5.6.4 User-Defined Partitioning Functions

In addition to the CloudEx provided partitioning function f , user can define their own

partitioning functions. The cloudex-core component provides a PartitionFunction

interface that users can implement with their own logic to partition the workload

between the various processors. The interface defines a setItems method, used to

set the workload items that need partitioning. It also defines a partition method

that will be called by the cloudex-core component to perform the actual partitioning.

This approach gives users the flexibility to indicate how each processor task should

be partitioned for distribution.

5.6.5 VM Image Setup

All CloudEx processors are initialised from the same Virtual Machine image vmi,

which contains the operating system (OS) and the software required to run the

CloudEx framework. In addition to the OS, the minimum required software is the

Java Virtual Machine (JVM) and the CloudEx framework. vmi is initially created

by starting a VM using one of the default images available from the cloud provider.

Then all the required software is installed, the VM is then shutdown and an image

is created from its disk and saved as vmi. Detailed instructions on how to setup

the Virtual Machine for CloudEx on the Google Cloud Platform are available on the
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CloudEx website3.

User defined tasks and partitioning functions can either be build as part of the image

or installed when the VM starts by using the Startup-Script mechanism (discussed

in Chapter. 3). Other software can also be installed using this mechanism, however

downloading and setting up software on startup will increase the VM acquisition time

taq (Section 5.5.1.2).

5.6.6 Running the Framework

The coordinator is the minimum component that needs to be running in order to

use the CloudEx framework. The coordinator can be a VM deployed on the cloud

provider IaaS or a physical computer, as long as the CloudEx framework has the

required credentials to authenticate with the cloud provider. To run the coordinator

two components are required, the JVM and the CloudEx framework. Users can utilise

and extend the CloudEx framework by import the framework libraries into their own

applications and frameworks.

5.7 Summary

This chapter have focused on the first contributions of this thesis to answer the re-

search question “Can a cloud-based system efficiently distribute and process tasks with

different computational requirements?”. The chapter introduced CloudEx, a generic

and open source cloud-first task execution framework that can be implemented on

any cloud provider IaaS. The algorithms presented for CloudEx, address the issues

highlighted in Chapter 3 with cloud-first frameworks. This is achieved by providing

generic mechanisms that are cloud provider independent for executing tasks on cloud
3http://cloudex.io
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environments. Additional components that enable CloudEx to work with a particular

cloud provider can be added, enabling users to easily move their applications from

one cloud provider to another. Moreover, a workload partitioning approach based on

the bin-packing algorithm is also introduced to efficiently distribute the processing of

tasks between a number of processors.

This chapter has outlined the various components of CloudEx including the coordina-

tor and processor virtual machines. An approach based on the bin-packing algorithm

was presented for workload partitioning between the various processors. Addition-

ally, CloudEx enables users to use a divide-conquer approach to divide their jobs in

multiple tasks and specify how these tasks should be executed. Users can specify not

only the number of required processors, but also their types in terms of CPU cores

and memory. An implementation for the Google Cloud Platform was also presented.

Chapters 6 builds on CloudEx and define the architecture of ECARF, a triple store

for RDF dataset processing and forward reasoning on the Cloud. Chapter 7 evaluates

this implementation in processing real-world problems such as RDF data processing.
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Chapter 6

ECARF, Processing RDF on the

Cloud

The explosive growth of RDF datasets to billions of statements have resulted in solu-

tions that utilise high specification hardware, which requires considerable upfront in-

vestments. Cloud computing on the other hand has motivated this research to develop

solutions that can efficiently process large datasets with billion of statements without

any upfront investment. In this regards, Chapter 5 introduced the first contribution

of this thesis and outlined the architecture of CloudEx, a cloud-first tasks execution

framework. This chapter continues the contribution of this thesis and describes the

design of an Elastic Cost Aware Reasoning Framework (ECARF), a cloud-based

RDF triple store implemented as CloudEx tasks. The algorithms described in this

chapter addresses the issues with large RDF processing outlined in Chapter 2, namely

dictionary encoding, data storage and workload partitioning. Additionally, these al-

gorithms provide answers to the following research questions:

• Q2. How can an efficient dictionary that fits in-memory be created for encoding

RDF URIs from strings to integers?
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Figure 6.1: ECARF High Level Activities

• Q3. How can cloud-based big data services such as Google BigQuery be used

to perform RDFS rule-based reasoning?

Some of the high level activities that can be performed with ECARF are illustrated

in Figure 6.1. The activities with solid border such as “Loading and Analysing”,

“Dictionary Encoding”, “Transforming” and “Rule-based Reasoning” are implemented

in this thesis. Other activities with dotted border such as “Managing” and “Query”

can be implemented to provide full triple store capability, though, these are left as

future work. ECARF algorithms that load, process, encode and reason on large RDF

datasets will enable applications to easily and efficiently utilise RDF technologies to

provide many features such as semantic search, content discovery, etc. . . .

The rest of this chapter is organised as follows, Section 6.1 provides an overview

of the ECARF triple store architecture, followed by Section 6.3 which explains the

distributed RDFS reasoning approach in details. Then, Section 6.2 presents the dic-

tionary encoding algorithms used by ECARF, followed by Section 6.4 which provides
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a detailed walkthrough the architecture. Finally, Section 6.5 concludes this chapter

with a summary of the key contributions of ECARF.

6.1 ECARF Overview

The ECARF high level architecture shown in Figure 6.2 is based on the CloudEx’s

cloudex-core and cloudex-google components. Both the coordinator and processors

virtual machines run the cloudex-core Coordinator and Processor components re-

spectively. These components use the cloudex-core’s CloudService component to

interact with other cloud services. ECARF defines a number of CloudEx jobs and

user defined tasks (Section 5.6.3) for RDF datasets processing. Furthermore, ECARF

extends the cloudex-core’s CloudService component with additional API wrappers

for the Google BigQuery. Similar to the CloudEx implementation, the ECARF im-

plementation is open source and is publicly1 available.

The ECARF architecture uses both Cloud Storage and BigQuery for shared storage

and BigQuery for execution, hence eliminating the need for processors to communicate

with each other. This embarrassingly parallel approach ensures each processor can

work independently of other processors to avoid any overhead with data exchange be-

tween them. A CloudEx coordinator component is used for partitioning the workload

between a number of processors using the CloudEx built-in Bin Packing partitioning

described in Section 5.3. Additionally, the coordinator assigns tasks and workload

items to the processors by using the metadata server as described in Section 5.2. The

following sections provide a brief overview of each of the activities explained in this

chapter.
1http://ecarf.io
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Figure 6.2: ECARF High Level Architecture

6.1.1 Distributed Processing

The input for ECARF is provided as compressed or uncompressed RDF dataset files

initially stored in Cloud Storage. The processing of these dataset files is distributed

between a number of processors. Each processor works independently to gather statis-

tics about the dataset such as counting the occurrences of particular terms, the results

of each processor are then aggregated by the coordinator. Additionally each processor

can extract certain statements or terms, or transform the dataset files assigned to it

into a different format, for instance the dataset files can be transformed from N-Triples

[35] to CSV format — which is supported by BigQuery — and stored back into Cloud

Storage. Whilst processing the dataset files, each processor can also perform encoding
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or compression on the dataset. The ability to efficiently distribute the processing of

RDF dataset files directly impacts the dictionary compression and forward reasoning

activities summarised in the next two sections.

6.1.2 Dictionary Encoding

As mentioned in Chapter 2, RDF datasets are comprised of triples, also known as

statements, each statement contains three terms — subject, predicate and object —

that are represented as strings. When dealing with large datasets, these string repre-

sentations take a large amount of storage space, this is particularly true with datasets

in N-Triple format that have long URI references (URIrefs) or literals (Section 2.1).

Additionally, there is increased network latencies when transferring such data over the

network. Although the algorithms presented in this chapter deal with datasets that

are binary compressed using Gzip, it is difficult to parse and process these datasets

without decompressing them first, which imposes a computation penalty. There is,

therefore, a need for a compression mechanism that maintain the semantic of the data,

which leads to the adoption of dictionary encoding.

During the distributed processing of the dataset files, all the unique terms — blank

nodes, literals or URIrefs — in the RDF statements are extracted. Consequently,

these unique terms are encoded using integer identifiers then a dictionary is built

with these identifiers alongside their relevant terms. By encoding the string data into

integers the storage size is reduced, consequently reducing the cost of storage and

processing of this data in BigQuery as explained in the next section.

6.1.3 Forward Reasoning

The objective of processing RDF datasets using ECARF is to be able to load such

datasets into BigQuery then perform distributed rule-based reasoning to infer all the
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explicit knowledge in the dataset. This rule-based reasoning is achieved by using a

combination of processors and BigQuery, which will be explained in Section 6.4. Ul-

timately, once the reasoning process is completed, the dataset is ready to be queried

using BigQuery queries, or SPARQL queries if implemented. However, before the

dataset is loaded into BigQuery, it needs to be transformed into a format that Big-

Query understands, such as JSON or CSV. Additionally, as BigQuery charges for

queries by the size and type of the scanned data, the cost of processing and storage is

reduced by encoding the data from string to integer values using dictionary encoding.

Moreover, to distribute the rule-based reasoning between a number processors the

dataset needs to be analysed upfront — as mentioned in Section 6.1.1 — to devise a

partitioning strategy for forward rule-based reasoning.

6.2 Dictionary Encoding

This section forms one of the contributions of the thesis and provides answers to

the research question “Can an efficient dictionary that fits in-memory be created for

encoding RDF URIs from strings to integers?”. The focus in this section is on creating

an efficient dictionary that can be held in memory, such a dictionary can speedup

the RDF dataset encoding and loading processes considerably, compared to other

approaches that generate large in-file dictionaries. Additionally, the ability to hold

the entire dictionary in memory makes it easy to update the dictionary after creation,

furthermore, applications can readily encode and decode the dataset queries. Most

importantly, dictionary encoding reduces the dataset size, subsequently reducing the

cost of the dataset storage and processing.

As noted in Section 3.4.3.3, that BigQuery charges for queries by the size of the

columns scanned. For example, the size of each cell in a column of type string will be
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2 bytes + the UTF-8 encoded string size, the scanned data size can amount to many

gigabytes and terabytes when dealing with massive datasets with long URIRefs. This

cost can rapidly be multiplied when issuing a large number of queries as part of the

distributed reasoning process that will be described in Section 6.3.

6.2.1 Reducing the Size of URIRefs

BigQuery supports 64-bit signed integers, with the most significant bit reserved as a

sign bit, the minimum number that can be stored is −263 and the maximum is 263 − 1.

To highlight the potential savings when converting URIs from strings to integers,

consider the following URIRefs from the running example presented in Figure 2.1:

1. http://www.w3.org/1999/02/22-rdf-syntax-ns#type

2. http://inetria.org/directory/schema#Employee

3. http://inetria.org/directory/schema#Company

4. http://inetria.org/directory/employee/smithj

5. http://inetria.org/directory/employee/doej

The aforementioned URIRefs contain on average 44 characters per URIRef, with UTF

8 encoding each character can consume from 1 to 4 bytes for storage. On average, this

equates to a minimum of 46 bytes for each URIRef, with integer encoding, only 8 bytes

are required to store each value, equating to a storage saving of at least 82%. With

this evident savings on both storage and cost, a straightforward dictionary encoding

approach similar to [67] can be employed. However, one of the major issues with

such approach due to redundancy, is the size of the dictionary, which prohibit in-

memory handling of the dictionary and instead resorts to in-file processing, resulting

in a considerable processing overhead.

This section proposes an efficient approach to reduce the size of the dictionary and

therefore be able to load it into memory to speedup the encoding process. It is worth
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Table 6.1: Encoded example of the first two rows in Table 6.3
Subject Predicate Object Object Literal

345 50 250 NULL
345 300 NULL ”John Smith”

noting that this approach does not compress literal values, according to Formula 2.1

a literal can not occur on the subject or predicate term and non of the BigQuery

reasoning queries apart from rule rdfs7 will retrieve literals, as will be explained in

Section 6.3.3. Additionally, by not encoding literals, the BigQuery string functions

can be used to search for particular text, this is not the case with URIRefs as they

are merely identifiers which are queried in their entirety. To store the encoded data, a

BigQuery triple table is used, an example is shown in Table 6.1. This table has three

columns predicate, subject and object of type integer, these will hold the encoded

values of the original URIRefs and blank nodes. A fourth column object literal of

type string is added to store any literals as they are, in which case the object column

will contain a NULL value.

6.2.2 Efficient URI Reference Compression

This section introduces an approach for compressing URIRef in NTriple documents

using integer values to build up an efficient (compact) dictionary. Consider for exam-

ple the URIRefs numbers 4 and 5 in the previous list, it can be seen that they both

share the http://inetria.org/directory/employee URI. In a large dataset, many

more terms will share similar URIs, which, in a straightforward dictionary encoding

the dictionary will contain the URI many times, thus inflating the dictionary with

redundancy. If each of the URIRefs are split into two parts, the first contains the

hostname and part of the path (e.g. inetria.org/directory/employee) and the

second contains the last part of the path (e.g. smithj and doej). The dictionary will
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only contain the following parts: inetria.org/directory/employee, smithj and

doej, instead of the full URIRefs in 4 and 5 in the previous list.

It can be seen that this approach can reduce the size of the dictionary, noting that

the scheme (e.g. http(s)://) and the NTriple angle brackets “〈” and “〉” have been

removed as these can be added later when decoding the data. URIRefs that belong

to the RDF, RDFS and OWL vocabulary such as item 1 in the previous list (http://

www.w3.org/1999/02/22-rdf-syntax-ns#type) are limited and are hence encoded

in their entirety — using a set of fixed integer values — without being split.

6.2.3 Encoding Terms

To reduce redundancy in the dictionary, the URIRefs can be split on a particular

location, this thesis uses the last path separator “/” as the standard approach, how-

ever, other strategies are evaluated in Chapter 7 as well. These can be summarised

as follows:

• Standard, the URIRefs are split on the last path separator “/”, this is the

default strategy.

• Hostname, the URIRefs are split on the first path separator “/” after the

hostname.

• Hostname + first path part (1stPP), the URIRefs are split on the second

path separator “/” after the hostname.

Using these split strategies means most encoded URIRefs will now have two parts,

both are encoded as integers. A question that begs asking, is how can these two

integer values stored together in one value that can be stored in a single BigQuery

column?, a novel approach is to use a “bitwise” pairing function [131]. Such a function
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http:// inetria.org/directory/employee / smithj

Scheme Last part of the path

10 = 0b 1 0 1 0 7 = 0b 0 1 1 1

110 = 0b  0  1  1  0  1  1  1  0 0 0 0

Interleaved bits Information bits

Encoded integer values

Final encoded integer value 880 = 0b01101110000

Figure 6.3: Dictionary Encoding Using Binary Interleaving

Table 6.2: Information Bits for URI Reference Compression
First bit - parts bit
(least significant bit)

0 URIRef has two parts (e.g. http://inetria.org/directory)

1
URIRef has one part
(e.g. http://inetria.org or blank node
:jA5492297)

Second bit - scheme
bit

0 Scheme is http
1 Scheme is https

Third bit - slash bit 0 URIRef does not have slash (/) at the end
(e.g. http://inetria.org)

1 URIRef has a slash at the end
(e.g. http://inetria.org/)
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is based on bit interleaving of two number so that they can be joined into one with

the reverse process extracting back the two numbers. Figure 6.3 shows an example

of encoding the URIRef http://inetria.org/directory/employee/smithj using

the dictionary encoding algorithm outlined here. As seen from the example, firstly

the scheme is removed, then the remaining part of the URIRef is split at the last

path separator. This results in two strings that are encoded using incremental integer

values (e.g. 10 and 7). These two values are then paired by interleaving their bits

resulting in the decimal number 110. Finally, three least significant information bits

(summarised in Table 6.2) are added to store information about the original URIRef,

resulting in a final encoded decimal of 880.

6.2.4 Decoding Terms

Pairing is only used when a term is a URIRef with more than one section. Terms

that do not contain multiple parts such as blank nodes are encoded into integer values

with the additional information bits added. When decoding integer values, firstly the

three least significant information bits are extracted, if the parts bit is 1 (Table 6.2),

then the integer value after removing these three bits can immediately be resolved

from the dictionary. If the parts bit is 0 then the integer values of the two parts

are unpaired by restoring their bits, the resultant values are then retrieved from the

dictionary and concatenated. The scheme bit determines if http or https should be

added to the decoded string, similarly, the slash bit is used to add a slash “/” to the

end of the URIRef. Finally the NTriple angle brackets “〈” and “〉” are added to the

URIRef to complete the term decoding.
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6.2.5 Storage Considerations

As noted earlier, BigQuery supports 64-bit signed integers, the minimum number that

can be stored is −263 and the maximum is 263 − 1. Moreover, three additional bits

are reserved for storing information regarding the encoded URIRef, this leaves the

user with a minimum and maximum between −260 and 260 − 1. For the dictionary

encoding approach, bit interleaving might be needed for encoding URIRefs that were

split into two parts. Bit interleaving will result in a number that contains the sum

of the bits in the two joined numbers, this mean, in order to ensure that the bit

interleaved numbers do not exceed the maximum of 260 − 1. Each of the joined parts

must be between −230 and 230 − 1, giving users the ability to encode string parts

using integer values that ranges from −1, 073, 741, 824 to 1, 073, 741, 823. With the

dictionary using both positive and negative integers within this range, this approach

can encode approximately 2.14 billion unique URI parts.

6.2.6 Dictionary Encoding Tasks

To perform the dictionary encoding algorithms outlined in the previous sections, the

following CloudEx tasks have been created and explained in the next sections:

• Extract Terms Task

• Assemble Dictionary Task

• Encode Data Task

6.2.6.1 Extract Terms Task

This task is distributed between a number of CloudEx processors to process the

dataset files and extract the URI parts from each file. This process will extract the

URIs and split them by using one of the split strategies outlined in Section 6.2.3. The
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extracted parts for each of the dataset files are compressed and saved in a separate

file and uploaded to Cloud Storage.

6.2.6.2 AssembleDictionaryTask

This task is run on a single processor with high memory configurations if required to

assemble the dictionary in memory. The files extracted as part of the previous step

are loaded and the terms are added to an in-memory dictionary hash table, assigning

each term a unique integer identifier. The identifiers are derived from an incremental

counter. This assembly process can be parallelized by using multiple threads to add

the parts from multiple files to the dictionary concurrently. Once the dictionary

assembly is completed, the dictionary is compressed, serialised to disk and uploaded

to Cloud Storage.

6.2.6.3 Encode Data Task

Similar to the first task, this task is distributed between a number CloudEx processors

to encode the dataset files. Each processor downloads the dictionary from Cloud

Storage and loads it in memory. For each file the URIs are extracted, split using one

of the split strategies, encoded and written to a compressed output file. The output

file is written in CSV format such that it can be imported to Google BigQuery. These

output files are then uploaded by each processor to Cloud Storage.

6.3 Distributed RDFS Reasoning

This section forms one of the contributions of the thesis and provides answers to the

research question “Can cloud-based big data services such as Google BigQuery be used

to perform RDFS rule-based reasoning?”. This section is focused on utilising big data
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columnar databases in general and Google BigQuery in particular to perform RDFS

rule-based reasoning. The use of big data databases to perform rule-based reasoning

utilises their analytical capabilities to rapidly query billions of statements. These

capabilities shift some of the processing from computing nodes over to the databases,

hence eliminating many challenges with workload distribution. Additionally, as the

original and inferred data is available in such a database it can be queried immediately.

This is an improvement over approaches that output the data in files that are yet to

be imported into a system that supports querying. The ability to perform forward

reasoning on large datasets with a billion or more statements on the cloud, enables

applications large and small to utilise RDF capabilities.

The primary objective of processing RDF datasets using ECARF is to load such

datasets into BigQuery, hence enabling users to query them. BigQuery utilises many

servers internally to parallelize query execution and results aggregation, a process

that is obscure to the end user. Unlike a traditional relational database, there are

no user generated indexes or any means of tuning this query execution. For this

reason, BigQuery is treated as a black box that can execute queries over massive

datasets in parallel and return their results in reasonable time (less than 10 seconds).

This section describes the approach used for performing forward RDFS reasoning by

utilising BigQuery and a number of processing nodes. Firstly this section explains how

rule based reasoning can be performed using BigQuery, then it outlines the strategy

used for distributing this reasoning between a number of processors.

6.3.1 Handling Schema Triples

As mentioned in Chapter 2, the schema data of the RDF datasets on the web repre-

sents only a small fraction of the overall data [70] and can easily fit in memory [85].

Therefore, the closure of the schema data is computed upfront either offline or using
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Table 6.3: Example Triple Table for the Instance Data in Figure 2.1(c)
Subject Predicate Object
employee:smithj rdf:type inetria:Employee
employee:smithj foaf:name ”John Smith”
employee:smithj inetria:manages employee:doej
employee:smithj inetria:works at business:inetria
employee:smithj inetria:start date ”2002-04-17”ˆˆxsd:date
employee:smithj inetria:drives :jA5492297
:jA5492297 inetria:make ”Ford”
:jA5492297 inetria:reg number ”ABC123”

employee:doej rdf:type inetria:Employee
employee:doej inetria:works at business:inetria
employee:doej foaf:name ”John Doe”

a coordinator task that applies the schema rules in Table 2.2. Consider for example

the schema triples shown in Figure 2.1(c), due to the small size of this data there is

no need to distribute its processing. Rules rdfs5 and rdfs11 can simply be applied

either offline by using off-the-shelf reasoner like Apache Jena2, or carried out using a

coordinator task.

6.3.2 Handling Instance Triples

In terms of instance triples they are loaded into a BigQuery table that called a triple

table, which has three columns subject, predicate and object, or with a fourth ob-

ject literal column if dictionary encoding is used (Section 6.2.2). An example of such

table is shown in Table 6.3 for the instance data presented in Figure 2.1(d). This

table can be queried using SQL-like queries in the following format:

SELECT [subject] [,predicate] [,object]

FROM triple_table WHERE [condition];
2https://jena.apache.org/

122

https://jena.apache.org/


Section 6.3 Page 123

6.3.3 Performing Forward Reasoning Using BigQuery

Once all the instance triples are loaded into the triple table, the forward rule-based

reasoning can be started by using the SI rules summarised in Table 2.1, namely rdfs2,

rdfs3, rdfs7 and rdfs9, all of which have two triples in the body, a schema triple and an

instance triple. Since all the schema triples are available in memory and the instance

triple are loaded in the triple table, for each rule the reasoning can be started from

the schema triples. This approach can iterate through the schema triples and for each

triple query the triple table for the instance triples terms that are needed to generate

the triple in the head of the rule.

This reasoning process can be explained by means of a worked example using the

dataset in Figure 2.1. Consider the following two schema triples, both share the

subject term inetria:works at:

inetria:works_at rdfs:domain inetria:Employee

inetria:works_at rdfs:range inetria:Company

For the first schema triple rule rdfs2 and for the second rule rdfs3 can be applied

respectively. If the second schema triple and rule rdfs3 are considered, to generate

the head of this rule in the form ?y rdf:type ?c, the triple table needs to be queried

for any instance triples in the form ?x inetria:works at ?y. Note, the variable

?p in the second part of the rule’s body is replaced with inetria:works at. Since

the head triple does not contain ?x, it is only needed to query for ?y to generate

a triple in the form ?y rdfs:type inetria:Company, with the variable ?c replaced

with inetria:Company. To query for the instance triples needed to generate the head

for rule rdfs3, the following query can be issued:

SELECT object FROM triple_table

WHERE predicate = ’inetria:works_at’;
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Table 6.4: BigQuery SQL-like queries for the SI rules reasoning, (sc = subClassOf,
sp = subPropertyOf, dom = domain)

Rule Body Select clause
Columns

Where clause
ConditionSchema Triple Instance Triple

rdfs2 ?p, rdfs:dom, ?c ?x, ?p, ?y subject predicate = ?p
rdfs3 ?p, rdfs:range, ?c ?x, ?p, ?y object predicate = ?p
rdfs7 ?p1, rdfs:sp, ?p2 ?x, ?p1, ?y subject, object predicate = ?p1

rdfs9 ?c1, rdfs:sc, ?c2 ?x, rdf:type, ?c1 subject predicate = rdf:type
and object = ?c1

This query returns business:inetria as the result, which can be verified from Table

6.3 that two of the triples have inetria:works at as a predicate. Note that this

query will return two similar results which when used will result in two duplicate

triples being generated. This duplicates issue has been extensively discussed in the

literature [18, 19, 20, 21], with some approaches eliminating duplicates before or after

being generated. Duplicates results in redundant data and hence extra storage space.

Chapter 7 evaluates a memory based approach to eliminating duplicates for small

datasets.

To return to the subject, from the returned query result the head of the rule can

be generated as business:inetria rdfs:type inetria:Company. This inferred

triple (new knowledge) is then inserted back into the triple table as explained in

Section 6.4.8. Now, if the first schema triple mentioned previously and rule rdfs2 are

considered, it is clear in this case the query should select ?x rather than ?y. Since

the two schema triples share the same subject, the reasoning process for these two

triples can be carried out together by combining their queries into one to avoid making

unnecessary queries, which in turn will reduce cost:

SELECT subject, object FROM triple_table

WHERE predicate = ’inetria:works_at’;
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6.3.3.1 The Relevant Term

If the other SI rules in Table 2.1 are inspected, it is clear that the same reasoning

approach presented here can be followed for the remaining rules. It is also apparent

that the subject term of the schema triples can be used in the WHERE clause of the

query as highlighted in Yellow in Table 6.4. This term is called the relevant term

because it drives the reasoning process and thereby if no instance triples are found

when querying by this term, no reasoning will take place. Consequently, if the instance

data is analysed upfront it can readily be determined which schema relevant terms will

drive inference and which will not. Additionally, the occurrences of instance triples for

each of the relevant terms can be counted, with this count then utilised to partition

the reasoning process between a number of processors. The following definitions can

be provided based on the approach described here which uses the relevant schema

terms to drive the reasoning process:

Definition 6.3.1. Relevant schema term, is the term in a schema triple that can

be used for the reasoning and partitioning strategy. For the rules considered in this

thesis (Table 2.1), this term is always the subject term.

Definition 6.3.2. Productive schema term, is a relevant term that will drive

inference. This means there are instance triples that contain this term and their data

will be returned when issuing the reasoning queries described in Section 6.3.3.

Definition 6.3.3. Productive instance triple, is a triple that will take part in the

reasoning process for one of the productive schema terms. Data for such triple will be

returned as part of the reasoning queries run against the triple table.

Definition 6.3.4. Selective term partitioning, is the name of the approach out-

lined here for partitioning the reasoning workload between a number of processors by
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using relevant schema terms, upfront analysis of the instance data and bin packing

algorithm.

6.3.3.2 Query Optimisation

Some of the SI rules in Table 2.1 require different data to generate the head, so the

SELECT clause may contain different columns as shown in Red in Table 6.4. Also, as

noted earlier, if all the schema triples that contain the relevant term as subject are

grouped together, the reasoning for them can be performed as a group by issuing a

single query to retrieve the data needed to generate the heads of the rules. For exam-

ple, if a term has both rdfs:domain and rdfs:range schema triples, one query can

be issued with a select clause of SELECT subject, object rather than two separate

queries to reason for both rules rdfs2 and rdfs3.

As noted in Section 3.4.3.3, the cost of using Google BigQuery is dependent on the

size of the scanned data, which in this case is the size of one or two columns for each of

the productive terms. For bigger datasets with many productive terms this approach

can be very costly and results in BigQuery scanning terabytes of data. Since the

maximum size of a BigQuery query is 256 KB (Section 3.4.3.1), an approach can be

utilised such that each processor joins all the queries for its productive schema terms

into one query, which will reduce the size of scanned data and consequently the cost.

However, with a single query it is required to select all the three columns subject,

predicate and object to be able to conduct the rule-based reasoning. This results in

more data to transfer from BigQuery to the processors, but with dictionary encoding

the size of this data is reduced considerably.
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6.3.3.3 Distributing the Reasoning Process

Based on the approach described in the previous section, the reasoning process can be

partitioned between multiple processors by assigning each one of them a number of

productive schema terms. Since the count of instance triples for each relevant term is

already known — by analysing the instance data upfront — this count can be used as

the basis for the workload partitioning strategy. The reasoning partitioning strategy

is based on assigning each processor a number of schema terms that amount to an

equal share of instance triples. Each processor then loads in memory the schema

triples related to the schema terms assigned to it and as described in this section,

uses the schema triples to query the triple table accordingly.

As it was noted in Section 6.1.3, the instance data needs to be pre-processed before

hand to convert it to CSV, a format that BigQuery supports. This pre-processing is

utilised to count the instance triples for each of the relevant terms, but before doing

so, the schema data needs to be analysed to extract the relevant terms. Both of these

approaches are explained in the following sections.

6.3.4 The Schema Terms Analysis Step

The first step towards partitioning the reasoning process is to analyse the schema

triples to extract the relevant terms. This only analyses the subject terms of the

schema triples that match the schema triple format of the SI rules’ bodies. More

specifically, any schema triples that have the following as predicate: rdfs:domain,

rdfs:range, rdfs:subPropertyOf and rdfs:subClassOf. As noted in the previous

section, the subject term of a schema triple is the minimum that is needed to query the

relevant instance triples data in the triple table. The schema triples are analysed by

a CloudEx coordinator task and grouped by their subject as illustrated in Algorithm
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Algorithm 3 Analyse the schema terms
1: procedure AnalyseSchemaTerms(T ) . T is a set of all schema triples
2: R← {} . The dictionary(map) of term:triples pairs
3: for all triple ∈ T do
4: predicate← triple.predicate
5: subject← triple.subject
6: if predicate ∈ {”dom”, ”range”, ”sc”, ”sp”} then
7: L← {triple}
8: if subject ∈ R.keys then
9: L← R.get(subject) ∪ L

10: end if
11: R.put(subject, L)
12: end if
13: end for
14: return R
15: end procedure

3. This grouping is done so that each processor can be given a list of schema terms

alongside their schema triples to be used for counting the relevant instance triples.

6.3.5 The Instance Triples Count Step

Once the relevant schema terms are extracted, the count step can be distributed

between a number of processors. Each processor uses the schema terms extracted by

the coordinator to analyse all the instance triples and count their occurrences for each

of the schema terms as illustrated in Algorithm 4. To be more specific, each processor

will only count the instance triples that contain the relevant term as a predicate or

object as highlighted in Yellow on the “Instance Triple” column in Table 6.4. At

the same time, the processors can extract the URI parts for the dictionary as was

explained in Section 6.2.

Once all the processors have finished analysing the data, the results from each are

merged by the coordinator to get an overall count of the instance triples for each of

the schema terms. This count is used later for partitioning the reasoning process as

will be discussed in Section 6.3.6. Any schema terms that do not have any instance
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Algorithm 4 Count the relevant instance triples
1: procedure CountInstanceTriples(T, S) . T is a set of allocated instance triples .

S is a set relevant schema terms
2: C ← {} . The dictionary(map) of term:count pairs
3: for all triple ∈ T do
4: for all term ∈ {triple.subject, triple.predicate, triple.object} do
5: if term ∈ S then
6: i← 1
7: if term ∈ C.keys then
8: i← C.get(term) + i
9: end if

10: C.put(term, i)
11: end if
12: end for
13: end for
14: return C
15: end procedure

triple count are not considered as they will not drive any inference.

6.3.6 Workload Partitioning

ECARF uses the CloudEx framework Bin Packing partitioning function explained

in Section 5.3. In order to use this partitioning approach the size of each workload

item needs to be quantified. For the approaches described in this chapter two cases

are considered, firstly when distributing the processing of the RDF dataset files and

secondly when distributing the reasoning process. For the first case either the size

of each file (compressed or uncompressed), or the number of statements in each file

can be used, however experimental evaluation is conducted in Chapter 7 to determine

this partitioning factor for each of the processing tasks. For the second case, when

distributing the reasoning process, the count of productive instance triples is used,

similarly the effectiveness of this strategy is evaluated in Chapter 7.
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Figure 6.4: ECARF Architecture Walkthrough

6.4 ECARF Architecture Walkthrough

This section provides a walkthrough the ECARF architecture shown in Figure 6.4.

To better illustrate the overall architecture and interactions, numbered arrows are

used to indicate the sequence of steps and are referenced throughout the following

sections using round brackets (e.g. (1)). To load an RDF dataset into BigQuery and

perform forward RDFS reasoning, the user uploads the Gzip-compressed dataset files

into Cloud Storage (1). These files contain the instance triples of the dataset, the

schema triples are uploaded in a separate file (Section 6.3.1).

If the coordinator is not already running the user starts it using the Google Cloud
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Console3. Once started the coordinator is supplied with the name of the Cloud Storage

bucket containing the dataset, the name of the schema triples file and the BigQuery

table to use (2). The following sections explain in details the various tasks performed

by ECARF, which are also illustrated in Figures 6.5, 6.6 and 6.7 as CloudEx tasks

using the notation developed in Chapter 5.

6.4.1 The Schema Term Analysis Task

Initially the coordinator analyses the schema triples file and extracts all the relevant

schema terms as explained in Section 6.3.4 and illustrated in Algorithm 3. As noted

previously, for the RDF data on the Web the schema data is very small compared to

the overall data size (' 2%), hence the coordinator can readily process this data in

memory. The coordinator generates a map using the relevant terms as keys and a list

of the triples containing these terms as values. The coordinator then serialises this

map to a file and uploads it to Cloud Storage as illustrated in Figure 6.5.

6.4.2 Distributing the Count Task

After processing the schema, the coordinator lists the dataset files in the bucket (3)

and uses the task partitioning function to calculate the number of processors to use.

The weight of each file is set as the compressed size of the file. Based on the number of

bins N calculated by the task partitioning function (f1 in Figure 6.5), the coordinator

starts N processors by issuing Instances.insert Compute Engine API call (4). This

API call includes a reference to the previously created processor VM image I and

the initial metadata for each of the processors to perform the “instance triple count

/ extract dictionary parts” task. The provided metadata includes a list of files to

process, the names of the schema terms file, the bucket containing the dataset and a
3https://console.developers.google.com/
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Figure 6.5: ECARF Schema Terms Analysis and Distribute Count Tasks

startup script, an example is shown in Table 6.5.

Table 6.5: Sample ECARF instance triples count / extract dictionary parts task pro-
cessor metadata

Key Value
ecarf-task ExtractCountTerms2PartTask
ecarf-bucket dataset
ecarf-files dataset file1.nt.gz,dataset file2.nt.gz,...
ecarf-schema-terms schema terms.json
startup-script /home/ecarf/start ecarf.sh

6.4.3 The Instance Triple Count / Extract Dictionary Parts

Task

Compute Engine uses the predefined VM image I to create the processors (5), once

started each processor executes the startup script which starts the cloudex application.

A startup script is used to run the cloudex instead of hard-coding it in the VM image

I, which provides the flexibility of downloading an updated application or performing
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arbitrary operations when the processor starts up. When the cloudex application runs

it retrieves the instance metadata (6) then updates it to indicate that the processor

is busy (e.g. ecarf-status=BUSY) (7).

The “instance triple count and extract dictionary parts” task — illustrated in Figure

6.5 — downloads the schema terms file and the assigned instance triples files from

Cloud Storage (8) then loads the relevant schema terms in memory. It then processes

the instance triples files and extracts the dictionary URI parts as outlined in Sec-

tion 6.2.3, this is done whilst counting the instance triples for each of the relevant

schema terms as illustrated in Algorithm 4. The extracted URI parts for each of the

dataset are compressed in memory and written to output files, once done, the task up-

loads the output files with a file containing the summary of the total number of triples

for each of the schema terms to Cloud Storage (9). The cloudex application then up-

dates the metadata to indicate that the processor is free (e.g. ecarf-status=READY)

(10) and awaits for metadata changes.

6.4.4 Assemble Dictionary Task

As shown in Figure 6.6, the coordinator uses the task partitioning function for this

task (f2), which is hardcoded to use a single processor. Once the task is delegated to

the processor through the metadata server, it downloads the URI parts files generated

previously in Cloud Storage, then merges these parts into a dictionary as illustrated

in Figure 6.6. The keys for the dictionary are generated incrementally, but as noted

previously the keys for any of the RDF, RDFS and OWL vocabulary URIRefs are

set to prefixed values. Once the processor completes the dictionary generation pro-

cess, the dictionary is compressed in-memory, serialised to disk and then uploaded to

Cloud Storage. The processor then updates its metadata to indicate its availability,

subsequently the coordinator starts the next task discussed in the following section.
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Figure 6.6: ECARF Assemble Dictionary and Transform/Encode Data Tasks

6.4.5 Transform and Encode Data Tasks

The coordinator uses the task’s partitioning function (f3) to distribute its processing.

If the number of processors required exceeds the number of processors already running,

new processors are started to account for the difference. In order to encode the

data, the processors download the dictionary from Cloud Storage and load the entire

dictionary in main memory. The processors then process the dataset files, encoding

each of the terms and formatting the encoded terms as CSV before saving the results

to Gzip compressed files as illustrated in Figure 6.6. These files are uploaded to Cloud

Storage and when the process is completed each processor updates its metadata to

indicate its availability. The coordinator then starts the next task.

6.4.6 Aggregate Processors Results Task

The coordinator regularly checks the metadata of each processor by issuing Instances.get

Compute Engine API call (11). Once all the processors have completed processing
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Figure 6.7: ECARF Aggregate Results and Reason Tasks

and analysing the instance data, the coordinator downloads the summary files and

merges their results (13). These summary files contain the count of instance triples

for each of the relevant schema terms. Based on the total count for each term, the

coordinator uses the reason task partitioning function (f4 in Figure 6.7) to calculate

the number of processors to use for the distributed reasoning process. If the number of

processors required exceeds the number of processors already running, new processors

are started to account for the difference.

6.4.7 Load Files into BigQuery Task

For this task — illustrated in Figure 6.7 — the coordinator invokes Jobs.insert Big-

Query API to load into BigQuery the CSV dataset files generated by the processors

during the transform and encode data task. This API call provides the table name,

table schema and a list of the processed dataset files available in Cloud Storage. Sub-

sequently, BigQuery uploads all the processed CSV files into a new table (12). The
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coordinator then updates the metadata of each processor with the name of the Big-

Query table, the schema data file and the productive schema terms that the processor

should use for reasoning (14). The metadata server then notifies each processor of

these metadata changes (15), this is achieved by using a hanging HTTP GET as

described in Section 3.4.1.1.

6.4.8 The Forward Reasoning Task

When this task runs, it downloads the schema triples file from Cloud Storage (16) by

issuing a Objects.get Cloud Storage API call. Each processor then performs rule-based

reasoning by issuing a number of BigQuery queries using the Jobs.insert BigQuery

API operation (17). This process was explained in detail in Section 6.3.3 and illus-

trated in Algorithm 5. The queries run asynchronously and once done the processor

retrieves the results of the query if any (18). The processor then applies the rules in

Table 6.4 to infer new triples and uploads them to the the BigQuery table (19).

The processors then sleeps for a number of seconds before issuing the same queries

again using BigQuery table decorators (Section 3.4.3.1) to retrieve any of the inferred

triples that were inserted by other processors. If no new data is retrieved from the

BigQuery table after a number of retries then the reasoning process is complete and the

processor updates its metadata to indicate its availability (20). Once the coordinator

detects from the processors metadata (21) that they are available, it shuts them down

— by issuing a Compute Engine Instances.delete operation — to avoid incurring

unnecessary cost (22) as illustrated in Figure 6.7. This concludes the reasoning task,

both the original and inferred triples are now in a BigQuery table and can be queried

by executing BigQuery queries.
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Algorithm 5 Triple table reasoning over instance triples
1: procedure InferInstanceTriples(D). D - dictionary of schema term:triples pairs .

Build query dynamically
2: query ← ”SELECT subject, predicate, object FROM triple table WHERE ”
3: predicate← ”predicate IN ”
4: object← ”object IN ”
5: for all term ∈ D.keys do
6: triples← D.get(term)
7: for all triple ∈ triples do
8: if triple.predicate = ”sc” then
9: object← object + triple.subject

10: else
11: predicate← predicate + triple.subject
12: end if
13: end for
14: end for

. Retrieve results from table
15: db triples← queryTripleTable(query + predicate + object)

. Infer new triples
16: for all term ∈ D.keys do
17: triples← D.get(term)
18: for all triple ∈ triples do
19: for all db triple ∈ db triples do
20: Write fireSIRule(triple, db triple)
21: end for
22: end for
23: end for
24: end procedure

6.5 Summary

This chapter has addressed the issues outlined in Chapter 2 with distributed RDF

processing, namely dictionary encoding, data storage and workload partitioning. The

dictionary encoding algorithm addresses the issues with existing approaches by pro-

viding an efficient dictionary that can fit in memory to speed up the encoding process.

Additionally, the data storage issue is addressed by moving the storage from the pro-

cessors over to cloud services such as storage and big data. Furthermore, the workload

partitioning issue is addressed by using the CloudEx’s Bin Packing function and the

selective term partitioning strategy outlined in this chapter. This chapter has fo-
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cused on the remaining contributions of this thesis to answer the follow two research

questions:

• Can an efficient dictionary that fits in-memory be created for encoding RDF

URIs from strings to integers?

• Can cloud-based big data services such as Google BigQuery be used to perform

RDFS rule-based reasoning?

The chapter presented ECARF, a generic and extendible cloud based triple store for

RDFS processing built on top of the CloudEx framework. The first research question

was answered by presenting an algorithm for creating efficient dictionaries for RDF

datasets that can fit in memory. With the growing size of RDF dataset to billions of

statements, dictionary encoding is crucial to reduce the overall dataset size, and to

speed up its processing. Since this research is focused on using cloud computing, the

encoding also helps to compress the data and subsequently reduce the cost of storage

and processing.

The second research question was answered by implementing an algorithm that per-

forms forward RDFS reasoning using big data columnar databases in general and

Google BigQuery in particular. This algorithm utilises the analytical capabilities of

such databases to offload some of the processing from computing nodes, hence bene-

fiting form the extra processing power. This algorithm, alongside the aforementioned

dictionary algorithm and CloudEx features, provides a triple store solution that ap-

plications can use without the utilisation of high specification hardware. Moreover,

by using BigQuery for storing the processed RDF datasets, the data can immediately

be queried, which is an added advantage over solutions that output files as a result of

the forward reasoning process. The next chapter conducts experimental evaluation of

the algorithms presented in this chapter to measure their effectiveness.
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Chapter 7

Evaluation of Cloud Based RDF

Processing

The aim of this research is to develop and evaluate an elastic cloud-based RDF triple

store to process large RDF datasets. In order to efficiently utilise cloud computing

features and achieve this aim, Chapter 5 presented CloudEx, a generic cloud-first task

execution framework based on a divide-conquer approach. Subsequently, Chapter 6

introduced the ECARF triple store, which is a set of algorithms implemented as

CloudEx tasks and jobs to efficiently process RDF datasets on the cloud. Both of

these chapters have presented novel algorithms that form the contributions of this

thesis and answer the research questions.

This chapter evaluates these algorithms and the CloudEx framework within the scope

of distributed processing of RDF datasets on the Google Cloud Platform. This chap-

ter reports on the experiments conducted to evaluate the algorithms developed in

Chapters 5 and 6, the chapter also analyses and discusses the results and findings.

Additionally, where possible, this chapter provides comparison with other related ap-

proaches. Furthermore, as part of the evaluation phase, a number of optimisations
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have been made in order to reduce the cost and time of executing the algorithms

developed in this thesis. To this extent, the results related to these optimisations are

also reported and discussed.

The remainder of this chapter is organised as follows, Section 7.1 re-iterates the re-

search questions and how they relate to each of the evaluation areas. Followed by

Section 7.2 which explains the experimental setup such as implementation, datasets

and experiment parameters. Then Section 7.3 summarises the common evaluation

criteria used throughout the chapter, followed by Section 7.4 which presents the re-

sults and discussion concerned with the distributed processing of RDF in the cloud.

Subsequently, Section 7.5 evaluates the dictionary encoding approach and presents

the results and findings, followed by the evaluation of the forward rule-based reason-

ing algorithm using Google BigQuery in Section 7.6. Most importantly, feedback on

the viability of CloudEx is presented in Section 7.7. Finally, this chapter is concluded

in Section 7.8 with a summary of the key findings of the evaluation.

7.1 Research Questions

The evaluation presented in this chapter is centred around the three research ques-

tions and the contributions of this thesis. These can be categorised in terms of both

CloudEx and ECARF. For CloudEx the following research question and evaluation

areas are discussed in this chapter:

• Q1. How can a cloud-based system efficiently distribute and process tasks with

different computational requirements?. The CloudEx framework is evaluated in the

context of RDF processing and the two areas listed below (Dictionary encoding

and Forward reasoning). The key areas being evaluated are Distributed RDF

processing and CloudEx evaluation which are covered in Sections 7.4 and 7.7
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respectively. The Distributed RDF processing area focuses on evaluating the

framework’s ability to scale and distribute the processing of RDF dataset files.

Additionally, this area is a key area as it facilitates the processing of the datasets

using the other two areas listed below.

Additionally, the following ECARF related research questions and evaluation areas

are also discussed:

• Q2. How can an efficient dictionary that fits in-memory be created for encoding

RDF URIs from strings to integers?. The dictionary encoding algorithm developed

in this thesis is evaluated in terms of performance, memory usage and the size of

the generated dictionary. The key area being evaluated is Dictionary encoding

which is covered in Section 7.5.

• Q3. How can cloud-based big data services such as Google BigQuery be used to

perform RDFS rule-based reasoning?. The forward RDFS rule-based reasoning

using columnar databases is evaluated by utilising Google BigQuery. The key area

being evaluated is Forward reasoning which is covered in Section 7.6.

7.2 Experiements Setup

This section sets the scene for the evaluation methodology followed in this thesis,

firstly the implementation details of both CloudEx and ECARF are provided. Then,

the experimental platform setup is explained followed by a brief review of the datasets

used for the evaluation. Lastly, the evaluation criteria of the various aspects of

CloudEx and ECARF are explained.
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7.2.1 Implementation

The CloudEx implementation was explained in detail in Section 5.6, as it was noted,

the implementation is separated into two parts, a generic part and a cloud provider

specific part. Both parts are open source, publicly available1 and can be imported as

a Java ARchive (JAR) [132] library. For the work done in this thesis a Google Cloud

Platform (GCP) specific implementation was developed which utilises the following

GCP components:

• Google Compute Engine (GCE) for creating and managing processors,

• Google Cloud Storage (GCS) for storing RDF dataset files and as a shared

storage between the coordinator and processors, and

• Google BigQuery for providing fast SQL-like queries on the triple-table.

Additionally, a prototype for the ECARF framework was developed using the Java

programming language version 1.7. This prototype imports the CloudEx implemen-

tation as a library and defines a number of user-defined tasks (Section 5.6.3) for RDF

datasets processing, which are summarised in Appendix A.1. Some of these tasks,

mainly the ones executed by the processors are implemented in a multi-threaded

manner to benefit from multi-core virtual machine types. An end-to-end CloudEx

job was defined to execute these tasks, the JSON definition of this job is presented in

Appendix A.2. These tasks fall into one of the three areas mentioned previously and

evaluated in this chapter, namely distributed RDF processing, dictionary encoding

and forward reasoning.

Additionally, the NxParser [133] open source library was utilised to parse the datasets

that are in N-Triples format. Moreover, for the dictionary algorithms Java collection
1https://cloudex.io/
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structures such as HashSets and HashMaps are serialised directly to disk. In this

regards, the Kryo [134] Java serialisation library is utilised due to its improved per-

formance compared to the Java built-in serialisation support, as demonstrated by

the JVM serialisation benchmark report [135]. Furthermore, ECARF extends the

cloudex-core’s CloudService component with additional API wrappers for Google

BigQuery. Similar to the CloudEx implementation, the ECARF implementation is

open source and is publicly2 available.

7.2.2 Platform Setup

To conduct the experiments on the Google Cloud Platform (GCP), a new project was

created in the us-central1-a zone using the Google Cloud Console. Then, under this

project a new VM image (vmi) was created based on the Linux Debian 8.3 distribution,

which includes the prototype for the ECARF framework and the Java runtime as

explained in Section 5.6.5. Subsequently, the various Gzip-compressed datasets files

are uploaded into new Cloud Storage buckets (Section 3.4.2), one bucket for each of

the datasets. The coordinator is then started and provided with the filename of the

JSON definition of the job to execute, as summarised in Sections 5.6.6 and 6.4.

7.2.2.1 Virtual Machine and Disk Types

The configuration for each job, such as job data (Section 5.4.1) and virtual machine

configurations (Section 5.4.2), are controlled by changing the job JSON definition file.

This provides the flexibility of changing the experiment parameters without changing

the task classes that implement the algorithms being evaluated. For example, when

utilising a VM with high memory configurations, the Java memory available to the

ECARF prototype is changed using the startup script in the job JSON definition (as
2http://ecarf.io
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shown in Appendix A.2).

A range of GCE virtual machine types [96] have been utilised for the CloudEx pro-

cessors, primarily the standard and high-memory machine types (Section 3.4.1). This

chapter experiments with 1, 2, 4, 8 and 16 processors respectively and utilises VMs

with multiple cores up to 16 cores. The default machine type utilised is the n1-

standard-2 type, which has 2 virtual CPUs and 7.5 GB of memory. The evaluation

have experimented with both standard and Solid State Disks (SSD) with two sizes,

10 GB and 100 GB to determine their impact on the performance of the algorithms.

However, it was found that changing the disk type or size does not have any impact

on the performance of the algorithms, primarily due to all the algorithms either being

processor bound or network bound, in particular when downloading and uploading

files from and to Cloud Storage.

7.2.3 Results Gathering

As noted in Chapter 5, that CloudEx processors are ephemeral VMs which are deleted

once the job execution is done. To facilitate the results gathering from these processors

before they get deleted, a task DoUploadOutputLogTask has been created which is

run at the end of each job. This task uploads the processor’s log file to a Cloud

Storage bucket after prefixing it with the processor’s name. Each of the log files

contains detailed execution times and memory usage of each task or any particular

algorithm that is of interest to the evaluation. Initially, these logs files were parsed

manually to extract the needed data, however this task had become tedious specially

when using a large number of processors. For this reason a utility was developed to

automatically download all the log files from a particular Cloud Storage folder and

extract the relevant results in CSV format.
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Table 7.1: Evaluation Datasets
Dataset Raw

Size (GB)
Gzip

Size (GB) No. of Triples No. of
Files

Swetodblp 4.6 0.16 14,936,600 8
DBpedia 44.6 4.9 322,728,835 66
LUBM 196.6 6.8 1,092,030,000 45

7.2.4 Datasets

To evaluate the algorithms developed in this thesis, a mix of real-world and synthetic

datasets are utilised, these are summarised in Table 7.1. These datasets are publicly

available and have also been used in other related research, hence facilitating direct

comparison with other results where possible. It is worth noting that the datasets used

are in N-Triples [35] format. Datasets that are in RDF/XML format are converted to

N-Triples using Apache Jena command-line tools3 which can convert datasets to and

from a variety of formats. The following is a brief description of each of the datasets:

• SwetoDblp4 [136], is a collection of computer science bibliography data. This

dataset is relatively small and helps to evaluate the BigQuery forward reasoning

optimisations without incurring huge cost.

• DBpedia5 [8], is a collection of structured data extracted from Wikipedia, the

English version of the 3.9 DBpedia dataset has been used. This dataset contains

a variety of URIRefs and files of various sizes and compression ratios, some of

which contain huge amounts of text, more specifically the whole contents of

Wikipedia pages. This dataset is utilised to determine the partitioning parame-

ter for the distributed RDF processing and to evaluate the dictionary encoding

algorithm.
3https://jena.apache.org/documentation/io/rdf-output.html
4http://datahub.io/dataset/sweto-dblp
5http://wiki.dbpedia.org/Datasets
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• LUBM [66], is an artificial benchmark tool that can be used to generate an

arbitrary number of triples. The LUBM generator generates a university domain

dataset with a variable number of universities and their related entities. LUBM

8k (8000 universities) was generated. This dataset is contained in files of equal

sizes, contains uniform URIRefs and does not have long text like the DBpedia

dataset.

The schema data for all the datasets are provided in separate files, in effect, the closure

of the schema data is computed under the ρdf semantics (Section 2.1.4) using Jena.

The materialised schema data was then uploaded to the same Cloud Storage bucket

as the dataset. Each Cloud Storage bucket was created in the same region where the

Compute Engine VMs are launched, which according to the documentations, provides

the best file upload / download performance [137].

7.3 Common Evaluation Criteria

This section summarises the common evaluation criteria for the algorithms developed

in this thesis, in order to determine their feasibility and facilitate comparison with

other related work. Other specific evaluation criteria are summarised in their relevant

sections below — namely Sections 7.4, 7.5, 7.6 and 7.7 — for each of the three main

areas summarised in Section 7.1.

7.3.1 Runtime and Scalability

Runtime is one of the key aspects to measure when evaluating the algorithms devel-

oped in this research. Runtime is the total time taken to complete a particular job or

task that processes a particular input on a number of processors. The scalability of the

algorithms presented in this thesis is evaluated by changing the number of processors
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and measuring the resultant runtime. From these values, the speedup and efficiency

of the algorithms can be calculated. The speedup sn of an algorithm executed on n

processors is calculated by dividing the runtime t1 when using one processor by the

runtime tn when using n processors as follow:

sn = t1
tn

(7.1)

The efficiency en when using n processors is calculated as follows:

en = sn

n
= t1
tn × n

(7.2)

A linear speedup means that sn = n and en = 1 for all n.

7.3.2 Cost of Computing Resources

Cost is one of the key aspects with respect to using cloud computing resources. Con-

sumer can have access to a larger number of computing resources compared to physical

computing clusters with fixed resources. Having said this, many of the existing re-

search reports on runtime rather than cost, furthermore, the cost is likely to vary

between cloud providers. However, the evaluation measures and reports the cost in-

volved in executing the various RDF processing jobs, in order to use the cost alongside

the runtime as an indication of improvement when evaluating a number of approaches

for the same algorithm.

7.3.3 Multiple CPU Cores

Cloud computing enables the provision of virtual machines with multiple CPU cores,

additionally cloud providers maintain a CPU to memory ratio. Thus, when acquiring

a VM with a larger memory, it is likely that such VM will have more CPU cores than
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a VM with less memory. Consequently, the additional CPU cores can be utilised by

implementing the user-defined CloudEx tasks in a multi-threaded manner. Thereby

the evaluation also measures the impact on runtime and cost when utilising more

CPU cores.

7.3.4 Triples Throughput

The forward reasoning algorithm utilised, uses a number of rules to infer new knowl-

edge in the form of new statements or triples. The reasoning process will consume

a number of input triples and progress to infer new triples. Inline with other pub-

lished results [19, 64, 21], the rate at which the input triple are consumed per second

is measured by using a Ktps unit, to denote “thousand triples per second”. This is

calculated as:

throughput(Ktps) = input triples

runtime

7.4 Distributed RDF Processing

This section evaluates the ability to distribute the processing of RDF datasets between

a number of processors. Mainly, it evaluates the scalability of two processor tasks

ExtractCountTerms2PartTask and ProcessLoadTask (Appendix A.1). Despite the

fact that the AssembleDictionaryTask is executed between these two tasks, it is not a

distributed task, hence is executed in serial and is evaluated separately in Section 7.5.

Firstly, the DBpedia dataset is used to experiment with and report on the partitioning

factors that results in a balanced workload between the processors. Additionally, this

section reports on the runtime and scalability when processing the LUBM dataset

both on multiple processors (1 to 16) and on a single processor with multiple cores
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(up to 16). This section also evaluates the total time required to preprocess the

dataset files and load them into BigQuery ready for forward reasoning. This load

time is reported by a number of related work facilitating direct comparison. The

tasks required to preprocess and load the dataset into BigQuery include all the tasks

shown in the job definition in Appendix A.2 up to the LoadBigDataFilesTask task.

7.4.1 Partitioning Factor

As noted in Section 5.3.1, the CloudEx workload distribution approach is based on

the Bin Packing algorithm, for this reason it is needed to determine the partitioning

factors to use for each of the dataset files. These factors can be summarised as follows:

• File size, compressed and uncompressed.

• Number of triple statements in the file.

• Number of unique URI parts in the file that is extracted for the dictionary, this

is discussed in Section 7.5.

Figure 7.1, shows the runtime for 8 processors on the DBpedia dataset when using each

of the partitioning factors. The DBpedia dataset has been used for this evaluation

because the dataset has files with a wide range of sizes with varying contents and

compression ratios. For this reason, the dataset provides a worst case scenario for the

distributed processing when compared with more uniform datasets like Swetodblp

and LUBM.

7.4.1.1 ExtractCountTerms2PartTask

As seen in Figure 7.1(a), for this task the processors have different runtimes for all the

partitioning factors. This indicates that there are multiple factors affecting the load
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(a) ExtractCountTerms2PartTask
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(b) ProcessLoadTask

Figure 7.1: Partitioning factor on DBpedia using 8 n1-highmem-4 processors (4
cores, 26 GB RAM).

balancing between the processors. Despite this, it is clear that the number of URI

parts (Blue) provide the optimum partitioning strategy compared to the rest, because,

as noted in Section 5.1.3, the coordinator waits for all processors to finish before

proceeding. However, the number of URI parts is not known before the execution of

this task, because this task is responsible for extracting these parts. Consequently,

the number of URI parts can not be used as a partitioning factor. The second best

partitioning factor is the compressed file size shown in Orange, this factor is known

in advance and can be used to partition the workload for this task.
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The reason why the number of URIs parts strategy is not balanced between the pro-

cessors was investigated. It was found that the slowest processor p7 is assigned one

file that has the largest number of URI parts, clearly this can not be partitioned fur-

ther. This is one of the issues that faces CloudEx’s Bin Packing approach, particularly

when an item is excessively larger than others leading to load balancing issues when

assigned to a processor. On the other hand, the second slowest processor p6, although

assigned the lowest number of URI parts, it had the most number of files and hence

the majority of the time was spent on downloading these files. This further strength-

ens the fact that with diverse datasets like DBpedia, the workload partitioning for

this task needs to take into account more that one factor.

It is also worth noting that for datasets with a variety of URIRefs this task is memory

intensive due to the fact that a HashSet is kept in memory for each of the files.

Additionally, as the files are downloaded from Cloud Storage before being processed

the task is also bound by the time required to download these files.

7.4.1.2 ProcessLoadTask

Figure 7.1(b) shows the runtime for the ProcessLoadTask, as seen the compressed

size provides the optimum partitioning strategy compared to the rest. Additionally, in

contrast to ExtractCountTerms2PartTask, for this task the processors have runtimes

that are largely balanced. This is due to the fact that this task is multi-threaded

and CPU intensive, as each input file is decompressed on the fly then each triple

statement is encoded, compressed on the fly and written to an output file. In this

case a larger compressed file will take longer to process than a smaller one, hence the

compressed file size seems to be the best partitioning factor for this task. It is also

worth noting that the input files are available locally on disk from the execution of

the ExtractCountTerms2PartTask, once an input file is processed the output file is
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Table 7.2: Partitioning Factor runtime (seconds) comparison for DBpedia using 8
n1-highmem-4 processors.

ExtractCount
Terms2PartTask ProcessLoadTask

Part.
Factor Node Average STD. Average STD. Total

Size Coordinator 236 3 502 22 738Processor 132 40 345 77

Size (gzip) Coordinator 233 9 440 39 673Processor 133 50 354 41
No. of
statements

Coordinator 274 5 541 15 814Processor 139 57 331 83

URI Parts Coordinator 209 12 635 49 844Processor 137 25 339 145

uploaded to Cloud Storage.

7.4.1.3 Partitioning Factor Summary

Table 7.2 shows the average runtime in seconds for each of the two tasks evalu-

ated in this section both for the processors and coordinator. As discussed in the

previous two sections, the URIs parts factor provides the best partitioning strat-

egy for the ExtractCountTerms2PartTask. This is evident from Table 7.2 as it has

the lowest standard deviation between the processors average runtime, moreover, it

has the shortest runtime reported by the coordinator. On the other hand, for the

ProcessLoadTask, the compressed file size provides the best partitioning factor. Evi-

dently, it provides the shortest time reported by the coordinator and lowest standard

deviation compared to the other factors. As a whole, the compressed file strategy pro-

vides the best partitioning factor, mainly due to the fact that the ProcessLoadTask

has a longer runtime than the ExtractCountTerms2PartTask. Any optimisations on

the earlier task will result in a shorter runtime for the two tasks combined.
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7.4.2 Horizontal Scalability

This section evaluates the scalability of the ExtractCountTerms2PartTask and Pro-

cessLoadTask in terms of increasing the number of processor and measuring the

runtime, then the speedup and efficiency are calculated using Formulas 7.1 and 7.2.

For these experiments the LUBM dataset was used, which provides approximately

the same number of statements in each file. Therefore, the dataset files can be

divided equally between processors using the compressed file size as the partition-

ing factor. Table 7.3 shows the results of distributing the processing of the LUBM

dataset files between 1 to 16 processors. The table shows the average runtime for

the ExtractCountTerms2PartTask and ProcessLoadTask for both the coordinator

and the processors. Additionally, for the processors the table shows the speedup and

efficiency for both of the tasks in addition to the end to end runtime, speedup and

efficiency. The end to end runtime includes serial tasks such as the time to acquire the

processors — acquisition time taq (Section 5.5.1.2) — and the time required to assem-

ble the dictionary (AssembleDictionaryTask), which takes 35 seconds on average for

LUBM.

As can be seen from Table 7.3 and Figure 7.2, the runtime for the tasks shows almost

linear speedup in term of the processors runtime. The runtime reported by the coor-

dinator for each of the tasks includes a slight overhead to update the metadata for the

processors and waits for them to update their metadata to indicate their availability.

The average time required to update the metadata is between 4 to 6 seconds, and

the total metadata update time required for any of the task is on average 20 seconds.

This is the time needed for the coordinator to update the processor metadata, for

the processor to read and update its metadata before executing the task, then again

once the task is completed and finally the time needed for the coordinator to reads

the metadata.

154



Section 7.4 Page 155

Figure 7.2 shows that from the coordinator’s point of view there is a small improve-

ment of the overall runtime when increasing the processors from 8 to 16 when com-

pared to the runtime reported by the processors. As mentioned previously, this is

due to the processors coordination overhead due to the metadata updates, which be-

comes noticeable when distributing an input that is not proportionally large between

a large number of processors. Additionally, the end to end speedup is not linear as

it includes tasks that are executed serially as noted earlier, in addition to the added

overhead of the metadata updates throughout the tasks execution. Furthermore, the

acquisition time increases slightly when the number of processor increase, this is due

to the implementation nature of CloudEx, which will be discussed in Section 7.7.

7.4.3 Comparison of LUBM 8K Load

The LUBM dataset is used by many Semantic Web approaches to evaluate their RDF

processing algorithms such as loading, dictionary encoding and forward reasoning.

The loading time for LUBM 8K is commonly reported by related work, this is usually

the time taken to load and encode the dataset files ready for the forward reason-

ing process. For some approaches this is the time required to import the dataset

into a database. The load time reported in this section is based on two stages,

the first is the preprocessing done by the three tasks ExtractCountTerms2PartTask,

AssembleDictionaryTask and ProcessLoadTask. The second stage is the time taken

by BigQuery to load the dataset which is on average 4 minutes 26 seconds for LUBM

8K.

Table 7.4 provides a comparison of this approach with other related work that loads

LUBM 8k, apart from [81] that load LUBM 10k with only 200 M triples difference.

Since their approach exhibits linear scalability in terms of input, the time required

to load LUBM 8k will be around 23 minutes. The approach developed in this thesis
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Table 7.4: LUBM dataset load runtime comparison
LUBM Work Load

(h:m:s) Hardware

8k - 1.1 B Bishop et al. [56] 14:00:00 4-core 2.93 GHz PC with
12 GB RAM

8k - 1.1 B Urbani et al. [67] 01:10:30 32 x 2-core 2.4 GHz 4 GB
RAM Hadoop cluster

8k - 1.1 B Kolovski et al. [138, 58] 00:28:11 64-core 3.0 GHz 512 GB RAM
SPARC Oracle RDBMS server

10k - 1.3 B Weaver. J [81] 00:27:11 64-core Opteron 512 GB RAM
supercomputer

8k - 1.1 B This approach 00:18:40 16 x n1-standard-2 2-core
7.5 GB RAM cloud VMs

loads the LUBM dataset in 18 minutes 40 seconds, this includes the time taken by

BigQuery to load the encoded dataset (on average 4 minutes and 26 seconds). It

is clear that this approach is able to load the dataset in less time without utilising

any powerful or dedicated hardware, in fact, given that the hourly cost of the n1-

standard-2 VM is $0.10, the total cost incurred by this approach to load the LUBM

dataset is 0.10
60 × 16× 18.68 = $0.50. As can be seen the approach presented in this

thesis provides a better load time with no upfront investment and on a pay-as-you-go

approach. This approach is able to provide a better load time by utilising an efficient

dictionary encoding process and splitting the load process into a number of optimised

serial and parallel tasks.

7.4.4 Vertical Scalability

Cloud VMs have a CPU cores to memory ratio, hence applications that have high

memory requirement can also benefit from the added CPU cores by utilising paral-

lel execution using multi-threading. This section reports on the performance gains

achieved when using multi-threaded tasks for the RDF dataset processing, namely

ExtractCountTerms2PartTask and ProcessLoadTask. Table 7.5 shows the runtime
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Table 7.5: LUBM 8K load runtime, speedup and efficiency on single 1n-standard-1 to
n1-standard-16 processor.

No.
of Cores

Memory
(GB)

End to
End (s) Speedup Efficiency

1 3.75 8589 1.00 1.00
2 7.5 6822 1.26 0.63
4 15 3903 2.20 0.55
8 30 2141 4.01 0.50
16 60 1474 5.83 0.36

and scalability results for the LUBM dataset when using one processor with variable

CPU cores, ranging from 1 to 16. As seen, by using multiple execution threads to

utilise the available CPU cores, a level of parallelism on a single processor can be

achieved. This is useful with tasks that require shared memory access such as the

AssembleDictionaryTask. Moreover, as evident from Table 7.5, adding more CPU

core, which in turns means more memory, improves the overall runtime. However,

the speedup is not linear due to many factors such as the contention of threads over

shared resources such as the network bandwidth and disk access.

7.5 Dictionary Encoding

The dictionary encoding is carried out in three steps, firstly the ExtractCountTerms-

2PartTask extracts all the URI parts for the dictionary keys, secondly the dictionary

is assembled using the AssembleDictionaryTask, thirdly the ProcessLoadTask uses

the dictionary to encode the dataset. The AssembleDictionaryTask is implemented

in a multi-threaded manner and is executed on one processor with a memory size

proportionate to the size of the extracted URI parts files. The dictionary assembly

evaluation uses all the three datasets summarised in Section 7.2.4 and experiments

with the three strategies presented in Section 6.2.3 for splitting the URIRefs into two

parts before encoding.
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The size of the dictionary is evaluated for each of these strategies, additionally, if

the dictionary assembly process is memory intensive this section also reports the

memory usage pattern. Moreover, this section shows the BigQuery savings achieved

by the dictionary encoding in terms of scanned data, which is the primary cost factor

when using BigQuery. Finally, the dataset compression rate and dictionary sizes

are evaluated against other large-scale distributed RDF dictionary encoding. The

compression rate is calculated similar to [67] as follows:

compressionRate = originalDatasetSize
gzippedEncodedDatasetSize+gzippedDictionarySize

7.5.1 URIRefs Split Strategy

Table 7.6 provides a comparison of the three URIRefs split strategies (summarised

in Section 6.2.3), additionally Figure 7.3 shows the size of the dictionary for each

of the three strategies. As can be seen, the Standard split strategy provides the

smallest dictionary for real-world datasets (Swetodblp, DBpedia) compared to the

other two split strategies and consequently requires the least memory usage (as evident

from the DBpedia dataset). In contrast, the Hostname strategy provides the best

dictionary size for the LUBM dataset, unsurprisingly, due to the uniformity of this

synthetic dataset. The Hostname strategy, which provides the largest dictionary for

both Swetodblp and DBpedia, seems to provide a very small dictionary for LUBM

of only 6 MB. This shows that each dataset has its own characteristics and the split

strategy that provides the smallest dictionary, can be different from one dataset to

another.

Additionally, as shown in Figure 7.3 the Standard split strategy provides the second

best dictionary size for LUBM at 314 MB. On the other hand, the Hostname +

1stPP is the worst strategy for LUBM, resulting in a very large dictionary with a size

of 6.1 GB. Although an n1-highmem-4 VM with 26 GB of memory was enough to
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Figure 7.3: Comparison of dictionary size (logscale) when using Standard, Hostname
+ first path part (1stPP) and Hostname split strategies.

assemble the DBpedia dictionary, the assembly of this large LUBM dictionary needed

an n1-highmem-8 VM with 52 GB of memory.

Despite the fact that VM specification — in terms of memory — were set manually

to assemble the dictionary for both DBpedia and the LUBM worst case (Hostname

+ 1stPP), the VM specification can be automatically set. As shown in Table 7.6, the

dictionary size is dependent on the number of dictionary keys, which in turn is pro-

portional to the sizes of the extract files generated by ExtractCountTerms2PartTask.

Based on these parameters, the memory requirements for the dictionary assembly can

be estimated before hand, although the efficiency of this estimation is likely to be

impacted by the fact that a number of URI parts can be repeated in many of the ex-

tract files. For example, the DBpedia extract files for the Standard strategy contain

165,119,090 URI parts of which only 53,551,014 are unique.

7.5.2 Dictionary Assembly Memory Footprint

In terms of the memory footprint of the AssembleDictionaryTask, the evaluation

has analysed the usage of the memory intensive dictionaries for both the DBpedia
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Dbpedia LUBM y = 4.042E6 * x - 2.131E6, r^2 = 0.99
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Figure 7.4: Dictionary assembly memory usage for DBpedia and LUBM datasets.

and LUBM datasets. As shown in Table 7.6, these include the three strategies for the

DBpedia dataset and the Hostname + 1stPP for strategy LUBM. The memory usage

patterns are shown in Figure 7.4 for both datasets with a regression line showing

the relationship between the number of dictionary keys and the dictionary assembly

memory usage.

It is worth noting that the maximum allocated Java Virtual Machine (JVM) memory

needs to be more than the memory requirements for the dictionary assembly. For

example for DBpedia dataset the dictionary required 12GB of memory, whilst the

maximum JVM memory in this case is set to 23GB and the actual VM has a maximum

of 26GB of main memory. For the LUBM worst case strategy (Hostname + 1stPP),

the dictionary memory usage is 31GB, whilst the JVM memory is set to 50GB on

a VM with 52GB of main memory. It was observed that if the dictionary assembly

uses most of the JVM memory, garbage collection occurs more frequently and the
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assembly process slows down considerably. Moreover, if the JVM is assigned more

memory than the system can accommodate this can result in the crash of the JVM.

From Figure 7.4 the memory usage for the dictionary assembly can be calculated

based on the number of dictionary keys using the linear regression formula shown

on the figure. For example, given that the maximum memory that can currently be

allocated to a VM on the Google Cloud Platform is 208GB (using an n1-highmem-32

VM), this dictionary encoding approach can readily assemble very large dictionaries

with more than 450 million keys.

7.5.3 BigQuery Scanned Bytes Improvements

The key motivation behind implementing the dictionary encoding process, is to reduce

the size of the total data scanned by BigQuery when conducting forward RDF reason-

ing and in turn reduce cost. Table 7.7 shows the dictionary encoding metrics such as

the original, encoded and gzip encoded data and dictionary sizes for the Swetodblp,

DBpedia and LUBM datasets. The “size in GB” column shows the original size of

the data which will be scanned by BigQuery, on the other hand, the “query scan in

GB” column shows the encoded size that will be scanned by BigQuery. As shown,

the dictionary compression achieves considerable improvements and subsequently Big-

Query cost reduction. The percentages of these improvements are 94.08%, 86.68% and

86.98% for the Swetodblp, DBpedia and LUMB datasets respectively.

7.5.4 Comparison of Dictionary Encoding

It was noted in Section 7.4.3 that the approach developed in this thesis outperforms

the results reported by [138, 56, 58, 67, 81] when loading the LUBM 8K datasets.

This is primarily due to the efficient dictionary encoding process, which means the

overall dataset load process takes less time as the dictionary can be held in its en-
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Table 7.8: Comparison of large scale RDF dictionary encoding.
Encoded Data

size (GB)
Dictionary
size (GB)

Work Dataset Size
(GB)

Comp.
rate Raw Comp. Raw Comp.

Urbani et al. [67] LUBM 8k 158.9 10.02 - 14 - 1.9
Weaver. J [81] LUBM 10k 224 - 29.8 - 23 -
This approach LUBM 8k 169.6 27.29 31.4 6.16 0.31 0.03

Urbani et al. [67] DBPedia
(110M) 17.4 7.33 - 1.4 - 1

This approach DBpedia
(322M) 47 8.72 13.8 4.48 1.72 0.91

tirety in memory. Table 7.8 provides a comparison of the LUBM 8K and DBpedia

datasets compression rate and dictionary sizes presented here against results reported

by [67, 81]. In terms of LUBM, the approach of this thesis provides the smallest

dictionary and achieves better compression rate. Additionally, for DBpedia dictio-

nary and compression rate reported in this section are better than those reported by

Urbani et al. [67], this is considering that this evaluation used a newer version of the

dataset which is three times larger than the version used by Urbani et al., despite

this, the compressed dictionary size reported here is smaller.

7.6 Forward Reasoning

This section evaluates the RDFS rule-based reasoning approach presented in Sec-

tion 6.3.3 by utilising Google BigQuery. Mainly, the evaluation is concerned with the

DoReasonTask processor task — summarised in Appendix A — by considering two

factors for the evaluation, firstly cost followed by runtime. BigQuery charges per the

size of data scanned, for larger datasets this cost can outweigh the cost of the virtual

machines used for the reasoning process. For this reason, this section reports on the

improvements achieved by a number of optimisations to reduce both the size of the
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data scanned by BigQuery and the time taken to retrieve the query results, which in

turns improves the overall runtime.

Initially, the Swetodblp dataset was used to report on the improvements achieved by

these optimisations. Then, forward reasoning is performed on both the DBpedia and

LUBM datasets by using a number of processors up to 16, additionally, the evaluation

also experiments with a single multi-core processor. When distributing the reasoning

process between a number of processors, the relevant term partitioning strategy is

used, consequently its effectiveness is also evaluated. For the experiments conducted

in this section, the evaluation reports the total reasoning time and the reasoning

throughput in terms of thousands triples consumed per second (Ktps) as explained

in Section 7.3.4. Both the runtime and the Ktps are used to compare the results

presented here with other related work.

7.6.1 Forward Reasoning Optimisations

BigQuery is the biggest cost factor in the evaluation presented here, this is because

if individual queries are issued for each of the productive terms, each query either

scans one or two columns for each of the productive terms. For a bigger dataset like

DBpedia — where there are 1802 productive terms — this approach could be very

costly. For example, issuing 1802 term queries for DBpedia will scan almost 79 TB

of data, which amounts to almost $395!. To avoid incurring massive costs the small

Swetodblp dataset has been utilised to experiment with a number of approaches in

order to reduce the BigQuery cost and the data download times. These approaches

can be summarised as follows:

1. Multiple Queries: this approach issues an individual query for each of the

productive schema terms.
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2. Single Query (SQ): this approach issues a single query for all the productive

schema terms per processor.

3. SQ Encoded: this approach builds further on the Single Query approach and

uses encoded data as per the dictionary encoding approach.

4. SQ Encoded + Load Export: this approach builds on the previous approach

and instead of retrieving the data from BigQuery in batches, the data is exported

in a single export. Since the DoReasonTask is multi-threaded, the number of

files created in the export are based on the number of CPU cores in each of the

VMs to facilitate the parallel processing of these files.

5. Duplicates Removed: this approach builds on the previous approach and

removes the duplicates by utilising an in-memory cache that efficiently stores

generated triples so that they are not created again during the reasoning process.

The results for these five approaches are shown in Table 7.9 and Figure 7.5. The results

show the number of BigQuery scanned bytes, the data download times from BigQuery,

the total reason task time, the number of inferred triples and the cost in USD. As can

be seen from table that the Multiple Queries approach scans 127 GB (130,959 MB)

of data and takes 240 seconds to download the data to the processor. Whereas, the

Single Query approach only scans 4.78 GB of data, but the data download takes 645

seconds which is around 6 minutes more than the Multiple Queries approach. This

increase in the download time is due to the size of the downloaded data, because all

the queries are joined, the algorithm can no longer just select the subject or both the

subject and object columns (Table 6.4) as was the case with the multiple queries. A

single query needs to select all the three columns subject, predicate and object to be

able to conduct the rule-based reasoning, hence resulting in more data to transfer,

longer download and reasoning times.
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Table 7.9: BigQuery reasoning improvements comparison for Swetodblp.
Multiple
Queries

Single
Query
(SQ)

SQ
Enc.

SQ Enc. +
Load

Export

Duplicates
Removed

Scanned bytes (MB) 130,959 4,895 568 568 371
Data download time (s) 240 645 426 176 125
Total reason time (s) 756 1085 653 399 392
Inferred Triples 16,964,056 18,032,561 12,590,818 12,590,818 3,951,230
Cost (USD) 0.660 0.054 0.021 0.014 0.013

Scanned bytes (MB) Data download time (s) Total reason time (s)

Multiple Queries Single Query
(SQ)

SQ Encoded SQ Encoded
Load Export

Duplicates
Removed

100

1000

10000

100000

Figure 7.5: BigQuery reasoning improvements comparison for SwetoDblp.

With the SQ Encoded approach it can be seen that the scanned bytes, the download

times and the total reasoning times are improved and are better than the previous

two approaches. However, it was noticed in this case that using the API to retrieve

the query results in batches from BigQuery, takes on average 4 seconds for every

100,000 rows, which results in longer download times for large results. Consequently,

the evaluation tried to export the query results to Cloud Storage and then downloads

the results files to the processor from Cloud Storage. This SQ Encoded + Load Export

further achieves better download and reasoning times than the previous strategies as

shown in both Table 7.9 and Figure 7.5.

Finally, as seen from Table 7.9 that inferred triples contain many duplicates that
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varies between the approaches. For this reason the evaluation has experimented with

an in-memory cache to store the triples that have already been inferred to avoid in-

ferring them again. This approach is possible due to the small size of the Swetodblp

dataset, but is prohibitive for larger datasets like DBpedia and LUBM due to their size

and the inability to hold all the inferred triples in memory. The Duplicates Removed

approach reduces the number of inferred triples considerably, since no duplicates are

generated and consequently reduces the query results and the download times. Al-

though the duplicates issue with larger datasets are not addressed in this thesis, these

result clearly indicate that dataset can benefit considerably from removing duplicates

generated during the reasoning process.

7.6.2 Results of Performing Forward Reasoning

Following on from the improvements discussed in the previous section, the evaluation

has utilised the SQ Encoded + Load Export approach and ran forward reasoning

experiments on both the DBpedia and LUBM datasets. This is achieved by using

a number of processors up to 16, additionally, the evaluation experimented with a

single multi-core processor. Tables 7.10 and 7.11 show the results of executing the

DoReasonTask on 1, 2, 4, 8 and 16 processors for the LUBM and DBpedia datasets

respectively. Figure 7.7 shows some of these results, in particular the reason task

runtime, the number of BigQuery scanned bytes and the overall cost of the forward

reasoning process. The results of running the reasoning process on a single multi-

core processor are shown in Table 7.12 for both the LUBM and DBpedia datasets.

Finally, Figure 7.6 shows the BigQuery import and export times versus the number

of retrieved and inserted rows respectively. In the following sections these results are

analysed and discussed.
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Export Time y = 2.415E-6 * x + 91.497, r^2 = 0.747
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(a) BigQuery export time

Import Time y = 1.168E-7 * x + 77.106, r^2 = 0.029
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(b) BigQuery import time

Figure 7.6: BigQuery export and import times vs. retrieved / inserted rows for the
DBpedia and LUBM datasets.
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Figure 7.7: Reason task time (mins), BigQuery scanned bytes (GB) and Cost (USD
cent) for forward reasoning on DBpedia and LUBM using BigQuery.

7.6.3 Runtime, Load Balancing and Cost

As seen from Tables 7.10 and 7.11, the reasoning for DBpedia takes longer than LUBM

when using four or more processors. This is due to the fact that DBpedia has a larger
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number of productive schema terms in comparison with LUBM and hence involves

more reasoning cycles. On the other hand, the overall runtime generally improves with

increasing the number of processors, with the exception of the DBpedia dataset when

using 8 processors as shown in Table 7.11, which is primarily due to the BigQuery

import taking longer than average (600 seconds) to insert the data. This shows that

although the processor reason runtime is reduced with adding more processors, the

overall runtime is dependent on the time taken by BigQuery for the export and import

of data. Additionally, the overall runtime is impacted by the load balancing of the

reasoning process between the of processors. This load balancing issue is evident from

the runtime standard deviation which indicates that some processors take longer than

others.

7.6.3.1 Load Balancing

The load balancing is impacted by two factors, firstly the BigQuery import and export

times, since the BigQuery import or export for one of the processors can take longer

than others. Secondly, it was found that although the relevant term partitioning

strategy can be used to equally partition the reasoning for the first cycle, it does not

necessarily provide equal partitions for the subsequent cycles. This is because newly

inferred data can result in some productive schema terms with small number of initial

productive instance triples to have a large amount of productive instance triples on

subsequent reasoning cycles. Primarily due to the fact that the output of some of

the rules in Table 6.4 provide input to other rules. So the load balancing strategy for

reasoning needs to consider these relations as done in [139].
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7.6.3.2 Cost of Performing Forward Reasoning

In terms of cost, Figure 7.7 shows the overall runtime in minutes, the cost in USD

cents and the scanned BigQuery data in Gigabytes. The cost is specifically shown

in USD cents and the runtime in minutes to highlight the fact that the cost climbs

rapidly with increasing the number of processors due to the increase in the BigQuery

scanned data by each processor. This is because each processor will issue a query

with all the productive terms assigned to it and such queries will carryout a full

scan of the BigQuery table. Since the DoReasonTask is multi-threaded, in order to

reduce cost the evaluation has experimented with a single multi-core processor for

the reasoning process as summarised in Table 7.12. As shown this approach provides

a cost effective option in terms of BigQuery scanned data, however, as the size of

the data exported in a single export is very large, the bulk of the reasoning process

time is spent on exporting the data. Moreover, the evaluation did not notice any

improvements between using 8 cores or 16 cores VMs, however an 8 cores VM provides

better results than a 4 cores VM.

7.6.4 BigQuery Data Import and Export

Importing and exporting data into and from BigQuery are free operations that run

asynchronously without any guarantee on how long the operations take. Figure 7.6

shows the BigQuery import and export times versus the number of retrieved and

inserted rows respectively for both the DBpedia and LUBM datasets. As seen, when

exporting a large number of rows in one operation, the export can take variable time

ranging from 600 seconds to 2000 seconds. Moreover, importing a small number of

rows into BigQuery can occasionally take a proportionally long time compared with

the normal export times. For example, as shown in Figure 7.6(b) this can take more
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than 600 seconds to complete, whereas the majority of the import for smaller rows is

completed within 200 seconds.

7.6.5 Comparison of Forward RDFS Reasoning Throughput

In terms of reasoning throughput, both Tables 7.10 and 7.11 report on the processor

reasoning throughput and the overall reasoning throughput for the LUBM and DBpe-

dia datasets respectively. The processor reason throughput reports the time required

by the processor exclusively to infer new triples. The end to end reason throughput

is based on the total runtime for the DoReasonTask as reported by the coordinator,

which includes a number of inference cycles, the time required to run queries and to

import and export the BigQuery results. To return to the subject of the processor

reason time, it can be seen that the reported throughput is very hight compared to

the end to end throughput, primarily due to the fact that the remainder of the time

is spent in importing and exporting data into and from BigQuery.

Table 7.13 provides comparison of the reasoning throughput reported by other large

scale distributed reasoning based on dedicated hardware. As can be seen for the

LUBM dataset the approach proposed in this thesis provides a throughput of 1,024

which in slightly below the results reported by others. However, these approaches

[128, 139, 21] utilise a file based approach, where the inferred files are yet to be

imported in a triple store so that the data can be queried. Kotoulas, et al. [19] on

the other hand, utilise a memory based approach without any indication on long term

storage or query support for the inferred data. Although, the approach developed

in this thesis takes slightly longer to complete the reasoning process, the trade-off

is that the inferred data is uploaded to BigQuery and can immediately be queried,

hence enabling a full triple store capability. In contrast to [19, 128, 139, 21], where a

higher throughput is reported, but the data is yet to be imported into a system that
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Table 7.13: Comparison of Forward RDFS Reasoning
Work Dataset Throughput

Ktps Setup

Weaver. J [21] LUBM 1,185 128 processors on supercomputer
Urbani. J [128] LUBM 1,931 32 nodes Hadoop cluster
This Approach LUBM 1,024 16 cloud VMs
Kotoulas et al. [19] Real-world 450 64 nodes cluster
Urbani et al. [139] Real-world 252 32 nodes Hadoop cluster
This Approach DBpedia 255 16 cloud VMs

enables the data to be queried.

Additionally, the approach presented in this thesis also outperforms DHT based ap-

proaches, for example, [16] approach was not able to deal with more than 10K triples

in forward reasoning mode, whilst [15] reports the closure of only 2M triples in 28 min-

utes on a 32 nodes system. To conclude, the forward reasoning approach developed

in this thesis provides a promising mechanism for utilising cloud virtual machines and

columnar databases like BigQuery to not only carryout forward reasoning, but to also

provide storage and triple store capabilities.

7.6.6 Forward Reasoning Conclusion

To summarise, the BigQuery forward reasoning approach developed in this thesis

is viable and provides promising results when compared with other related work.

However, this approach is impacted by the BigQuery variable import and export

times. Having said this, at the time of writing Google has announced a new BigQuery

mechanism called Poseidon6, which is claimed to improve export and import times

by 5x, this can considerably improve the forward reasoning.

Additionally, load balancing the reasoning process using the selective term strategy

needs fine tuning to cater for reasoning cycles 2 to n. Moreover, the inferred duplicates
6https://cloudplatform.googleblog.com/2016/03/Google-takes-Cloud-Machine-

Learning-service-mainstream.html
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triples do also impact the reasoning process and generate unnecessary traffic between

the processors and BigQuery, hence addressing this issue will improve the reasoning

process considerably. Finally, it was observed that the data export and import from

BigQuery in the form of files downloaded and uploaded to Cloud Storage is currently

done sequentially rather in parallel. Downloading and uploading files in parallel from

and to Cloud Storage during the reasoning process will save on average 5 minutes for

both the DBpedia and LUBM datasets.

7.7 CloudEx Evaluation

In the context of this thesis the CloudEx framework is evaluated by utilising it for the

processing of RDF, including dictionary encoding, loading and forward reasoning. As

noted in Chapter 3, cloud computing charges consumer for the resources they use, in

this regards the Google Cloud Platform enables users to export detailed usage reports

of the various cloud services. Using these reports it was found that over the duration

of this research the CloudEx framework has acquired 1,086 virtual machines7 for

RDF processing. With the availability of detailed billing reports for the various cloud

services used, it was also possible to calculate the overall cost of the experimentation

phase, which was found to be exactly $290.29.

7.7.1 CloudEx Improvements

The CloudEx framework successfully acquired and sent instructions to processors

using the Google Compute Engine APIs, the number of acquired processors ranges

from 1 to 16 with various memory and CPU cores configurations. As was noted

in Section 7.4.2 the metadata mechanism used by CloudEx requires on average 20
7http://omerio.com/2016/03/16/saving-hundreds-of-hours-with-google-compute-

engine-per-minute-billing/
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seconds to send instructions to processors due to the time required to invoke the

Compute Engine metadata API. However, as CloudEx invokes this APIs serially, the

latencies of sending instructions to the processors increases with increasing the number

of processors. Consequently, adding improvements to invoke the metadata API in

parallel for all the processors will ensure that the time required to send instructions

to the processors remains constant regardless of the number of processors. Similarly,

as was noted in Section 7.6.6, the time required to download and upload files to Cloud

Storage can be improved considerably by processing these files in parallel rather than

serially.

7.7.2 Cloud Platform Observations

It was found that the average acquisition time taq taken to acquire CloudEx processors

is 85 seconds. This is the time taken for the processor to be created, started and runs

the CloudEx application. Additionally, the average network bandwidth between the

processors and Cloud Storage was measured when downloading the DBPedia dataset

files from Cloud Storage to the processors VMs. The average observed bandwidth

was 375 Mbit/s and the maximum observed bandwidth was 554 Mbit/s. It was also

noted that files larger than 150 MB achieve a better bandwidth than smaller files.

7.7.3 Cost Considerations

One of the additional considerations when utilising cloud computing is cost, therefore,

linear speedup enables CloudEx to utilise more processors to reduce the runtime but

at the same time keep the cost fixed. For example, if the hourly cost of a VM is c and

a task takes t hours to execute on one VM, the total cost is c× t. From Formula 7.2,

a linear speedup means that the task execution time on n VMs is t
n
, consequently the

total cost in this case is c× n× t
n

= c× t. The cost is the same as when using one
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VM, but the task is done n times quicker. Consequently, the primary focus of the

RDF distributed processing employed in this chapter was on optimising the various

tasks to provide linear or close to linear scalability.

In addition to the VM hourly pricing, cloud providers specify other cost items related

to storage, data transfers, etc., but in terms of CloudEx processing, the bulk of the

cost is usually related to the VMs and BigQuery. Other costs such as storage and

network transfers are negligible in comparison. As it was noted in Section 3.4.1.2,

the Google Cloud Platform charges for VMs per minute with a 10 minutes minimum

charge. This means if the overall runtime of the CloudEx processors is less than 10

minutes, even if the coordinator shuts them down before the end of the 10 minutes

there will still be a charge for 10 minutes. This will be exacerbated with other cloud

providers that charge for VMs per hour basis rather than per minute, in which case

there need to be the ability to only shutdown CloudEx processors after a full hour of

operation. Using the usage reports for the experimentation work done in this chapter,

it was found that using CloudEx with a cloud provider that charges per hour — such

as Amazon Web Services — will result in additional 697 virtual machine hours being

billed. So per-minute billing for cloud virtual machines have saved this research 697

hours8.

7.8 Summary

This chapter provided experimental evaluation of the ECARF algorithms outlined in

Chapter 6, which uses the CloudEx framework (presented in Chapter 5) to execute

tasks and jobs on the Google Cloud Platform. The evaluation presented in this chapter

has utilised both large and small, real-world and synthetic datasets to evaluate the
8http://omerio.com/2016/03/16/saving-hundreds-of-hours-with-google-compute-

engine-per-minute-billing/#Appreciating_the_Saved_Hours
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contributions of this thesis. The evaluation also reported on a number of optimisations

that have been made to improve the algorithms developed in this thesis. Where

possible, comparison with other work was also provided to highlight the feasibility

and effectiveness of these algorithms. The evaluation has focused on the following

four areas shown with their relevant research questions (summarised in Section 7.1)

in order to evaluate the contributions of this thesis:

• Distributed RDF processing (Q1, Q2), presented in Section 7.4.

• Dictionary encoding (Q2), presented in Section 7.5.

• Forward reasoning (Q3), presented in Section 7.6.

• CloudEx evaluation (Q1), presented in Section 7.7.

In this chapter it was shown that the algorithms and designs that form the contri-

butions of this thesis are feasible and effective and in many instances, with only 16

cloud virtual machines, outperform other related approaches that are based on large

clusters based on dedicated hardware. The following chapter concludes this thesis,

summarises the work that has been done and suggests further work.
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Conclusions

The Semantic Web which was proposed as an extension to the traditional Web,

promised to revolutionise the way applications deal with Web data. With the Se-

mantic Web applications can be more intelligent and relevant to user requirements

by providing relevant contents based on context. Not only this, but such applications

can also provide intelligent answers based on the meaning of data, not just based on

textual matches. However, the explosive growth of data on the Web has resulted in a

similar growth in the Semantic Web RDF data, to the extent that typical applications

now need to deal with billions of RDF statements. Existing approaches have focused

on distributed processing using dedicated hardware and computer clusters. These

approaches need to constantly deal with the increasing size of RDF data by acquiring

more storage and computing hardware. Having said this, little research has focused

on the cloud computing paradigm.

This thesis has utilised cloud computing to address some of the issues facing large scale

RDF processing. The aim of this research is to address the constant growth of this

RDF data by developing a solution that is able to scale based on cloud computing

resources. More specifically the aim is to develop and evaluate an elastic cloud-
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based triple store for RDF processing in general and RDFS rule-based reasoning in

particular. As a result the following research questions were formulated:

• Q1. How can a cloud-based system efficiently distribute and process tasks with

different computational requirements?

• Q2. How can an efficient dictionary that fits in-memory be created for encoding

RDF URIs from strings to integers?

• Q3. How can cloud-based big data services such as Google BigQuery be used

for RDFS rule-based reasoning?

This thesis has answered these questions by providing a number of contributions

which can be summarised as the design and implementation of the Cloud-based Task

Execution framework (CloudEx) and the Elastic Cost Aware Reasoning Framework

(ECARF) triple store. CloudEx, is a cloud-first framework for tasks execution using

cloud computing services, on the other hand ECARF is a cloud-based triple store

for RDF processing and rule-based reasoning. The thesis has also introduced the

notion cloud-first frameworks to denote frameworks that are entirely cloud based and

utilise cloud features, such as elasticity, and services, such as virtual machines, cloud

storage and big data services. Unlike physical computing, when considering cloud

computing users can acquire any number of computational resource — subject to the

cloud provider usage limits — but at a cost. Henceforth, the main requirements for

utilising cloud computing is to optimise resource usage to reduce both the cost and

runtime.

This final chapter concludes the thesis by presenting a summary of the contributions

both in the research and practical fields. Additionally, the chapter discusses open

issues and outlines possible future work. The following sections summarise each of
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the research questions and outline the contributions developed as part of this thesis

in order to answer these questions.

8.1 The CloudEx Framework Contributions

This section summarises the contributions related to the CloudEx framework that

provided the answer to this research question:

• Q1. How can a cloud-based system efficiently distribute and process tasks with

different computational requirements?

8.1.1 Summary of CloudEx

CloudEx is a generic cloud based task execution framework that can be implemented

on any public cloud provider that offers virtual machines service. CloudEx enables

users to use a divide-conquer approach to break down their jobs to a sequence of

tasks, some to be run in serial and others in parallel. For the later users specify a

partitioning function to be used to distribute the task execution between a number of

ephemeral virtual machines. Not only this, but users can also define the computational

requirements for these parallel tasks in terms of CPU cores and memory. CloudEx

provides a workload partitioning algorithm based on a variation of the Bin Packing

algorithm [124, 125] that users can use to distribute the processing of tasks. CloudEx

enables users to dynamically adjust virtual machine specification and partitioning

functions for upcoming tasks in a job based on the outcome of previous tasks by

using feedback. The key points to note about CloudEx:

• It is a cloud-first framework which is entirely based on cloud computing features,

such that resources can be acquired, released and manipulated programmatically

using an API.
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• Central orchestration using a coordinator is used to coordinate between the vari-

ous computing resources, manage workload distribution and to release resources

when not needed.

• Computing nodes started by the coordinator — called processors — are only

used for processing and treated as ephemeral, such that once the processing is

done these resources are shutdown. Additionally these processors do not store

any data locally and do not exchange data with each other by following an

”embarrassingly parallel” approach.

8.1.2 Effectiveness and Feasibility

In this thesis the CloudEx framework was evaluated in the context of the distributed

processing of RDF and proven to be viable, demonstrating its ability to acquire from

1 to 16 processors with various memory and CPU configurations. Additionally, it

was shown that the CloudEx bin packing partitioning algorithm provides a flexible

mechanism for distributing task execution between multiple processors. More impor-

tantly, over the duration of the evaluation phase, the CloudEx framework was able to

acquire 1,086 virtual machines to process RDF at an overall cost of $290.29. Proving

that CloudEx provides a viable and efficient mechanism to acquire cloud based com-

putational resource when needed and released once the processing is done to avoid

incurring unnecessary cost.

8.2 The ECARF Triple Store Contributions

This section summarises the contributions related to the ECARF triple store that

provided the answers to these research questions:
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• Q2. How can an efficient dictionary that fits in-memory be created for encoding

RDF URIs from strings to integers?

• Q3. How can cloud-based big data services such as Google BigQuery be used

to perform RDFS rule-based reasoning?

The ECARF distributed RDF processing algorithms were evaluated in this thesis, with

particular focus on the partitioning factor for each of the algorithms when processing

real-world datasets. In this regards, it was shown that the load algorithms exhibit

linear scalability for the LUBM dataset and outperforms other reported results on

dedicated hardware. This is primarily due to a combination of using the CloudEx’s

workload partitioning algorithm, its ability to acquire VMs with various configurations

and the efficient dictionary encoding summarised below.

8.2.1 Summary of Dictionary Encoding

This thesis has designed and implemented a cloud-based algorithm for generating an

efficient dictionary for RDF URIs compression and decompression using dictionary

encoding to encode values from strings to integers. The redundancy in the generated

dictionary is removed by ensuring that common parts of the RDF URIs are encoded

separately. The two URI parts are then joined into one number by using a “bitwise”

pairing function [131]. The optimal size of the dictionary helps to hold it in memory by

utilising high memory cloud virtual machines, hence speeding up the dataset encoding

process considerably. Although dictionary encoding is a common place in Semantic

Web reasoners the approach described here is entirely cloud-based and focuses on the

size of generated dictionary by using a pairing function to encode URI parts.
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8.2.2 Effectiveness of Dictionary Encoding

The ECARF dictionary encoding was shown to outperform other reported work, both

in terms of the size of the produced dictionary and the overall compression rate of the

encoded datasets. The ECARF dictionary encoding algorithm was shown to be the

primary factor behind the ECARF efficient RDF datasets load due the efficient size

of the dictionary produced. This facilitates the in-memory handling of the dictionary

and hence provide better performance than in-file based approaches.

8.2.3 Summary of Forward Reasoning

This thesis has presented a number of algorithms for RDF processing and RDFS

rule-based reasoning using a number of computing nodes and columnar databases

[88], in particular Google BigQuery [31]. This approach distributes the reasoning

process using a selective term strategy, then each node retrieves the data required to

generate the inferred statements using SQL like queries, generates the inferred data

and updates the columnar storage accordingly. In the context of distributed RDFS

rule-based reasoning, this thesis defined a selective term partitioning strategy for

partitioning the reasoning workload between a number of processors. This strategy

builds on the partitioning strategies developed for DHTs based algorithms [55] and

the following:

• The use of the Bin Packing algorithm to ensure that all processors have an

approximately equal workload.

• The ability to pre-process and analyse the RDF data upfront enables the gather

of details that facilitates strategy such the productive instance triples count.

• The removal of the data storage from the processors to cloud-based storage and
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columnar databases alleviate the processors from the storage challenges as a

result of the data skew.

8.2.4 Effectiveness of Forward Reasoning

Based on the evaluation presented in this thesis, it was shown that the ECARF for-

ward reasoning algorithm based on Google BigQuery provide a viable approach when

compared with other related work. The algorithm provides the benefit of permanent

storage for RDF datasets with the potential to query and develop a full triple store

capability on top of BigQuery. It was shown that the reasoning algorithm provides a

very high reasoning throughput per processor, but with a reduced overall throughput

when considering the time taken by BigQuery. This is primarily due to the import

and export time taken by BigQuery and the fact that the selective term partitioning

strategy does not provide an optimal partitioning approach after the first reasoning

cycle. However, this reduced end to end throughput provides the benefit of perma-

nent storage for the dataset with the potential to query and develop a full triple store

capability on top of BigQuery. In comparison, other related work report a slightly

higher reasoning throughput on approaches that are either in-memory or file based,

with the data yet to be imported into a permanent storage with triple store capability.

8.3 Open Source Contributions and Impact

The CloudEx framework architecture and algorithms are implemented as a pub-

licly available open source framework1. Additionally, ECARF is implemented on the

Google Cloud Platform as a publicly available open source framework2. ECARF is

the first to run RDFS reasoning entirely on cloud computing, unlike other approaches
1https://cloudex.io/
2http://ecarf.io
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that simply replicate physical computing setup — such as MapReduce [20] — on the

cloud, ECARF is entirely based on cloud computing features and services and can

immediately be utilised by any applications that require triple store capabilities with-

out any upfront investment in hardware or software licences. Some of the findings of

this research have already attracted a great deal of interest (more than 10,000 views

over a few days) from the technical community, in particular to potential savings with

public clouds that charge per-minutes versus the ones that charge per-hour3.

8.4 Future work

This section outlines possible future directions for the work carried out in this research

alongside any open issues with the approaches presented.

8.4.1 CloudEx Improvements

A number of CloudEx improvements have been summarised in Section 7.7.1, mainly

so that the coordinator can issue metadata updates in parallel rather than serially.

This approach ensures that the VM acquisition time is constant regardless of the

number of processors. Additionally, it was shown that the CloudEx implementation

for the Google Cloud Platform can benefit from implementing parallel handling for

uploading and downloading files to and from Cloud Storage. Furthermore, this thesis

has evaluated CloudEx in the context of processing RDF datasets, yet, future work

can evaluate CloudEx in other contexts and potentially provide comparison with other

frameworks such a MapReduce. The following sections suggest further improvements

to ensure CloudEx is a production ready and resilient framework.
3http://omerio.com/2016/03/16/saving-hundreds-of-hours-with-google-compute-

engine-per-minute-billing/
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8.4.1.1 Resilience

The current implementation of CloudEx does not provide any coordinator resilience,

future work is needed to provide resilience for the coordinator and job persistence

in a database. In this case, a backup coordinator can be used to carry on with the

job execution if the main coordinator fails. There is also a need for retrying failed

processors rather than terminating the whole job with an error status.

8.4.1.2 Autoscaling of Resources

One of the key improvements to consider is the ability to autoscale the processors

vertically or horizontally based on time deadlines and budget constraints when dis-

tributing the workload between processors. This can involve the acquisition of a

variable number of virtual machine with either lower or higher specification, or a

mix, to meet particular time deadlines or budget constraints. In this regards, us-

ing CloudEx with cloud providers that charge per hour for virtual machines presents

its own challenges because Google Cloud Platform charges for resources per minute.

Subsequently, implementation for other providers needs to cache processors for a full

hour before shutting them down.

8.4.1.3 Implementation for Other Clouds

Another improvement is to provide implementation for other prominent cloud providers

such as Amazon Web Services and Microsoft Azure. One of the challenges of using

cloud computing is that internal implementation varies between one cloud provider

to another. Having said this, the results reported in this thesis are specific to the

Google Cloud Platform and it will be interesting, once the CloudEx implementation

for other platforms is developed, to run experiments on other public clouds and com-

pare their results. Another avenue for future work is to utilise Container technology,
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commonly known as Docker4, in creating CloudEx processors rather than virtual ma-

chines. Containers utilise operating system level virtualisation and have the potential

of improved performance compared to full virtualisation as in virtual machine. This

is specially true if containers are run directly on top of the physical host’s operating

system.

8.4.2 ECARF Improvements

A number of improvements have been suggested in Chapter 7 in relation to the algo-

rithms implemented as part of ECARF, namely the dictionary encoding and forward

reasoning using Google BigQuery. The dictionary encoding improvements include the

ability to automatically acquire a VM with sufficient memory to assemble the dictio-

nary. Moreover, in terms of the forward reasoning algorithm, the ability to download

and upload the BigQuery data files in parallel will speed up the reasoning process by

up to 4 minutes. Furthermore, the relevant term partition strategy for the reasoning

process requires further improvements to ensure it can provide load balancing on all

reasoning cycles, and not just for the first one. The following sections suggest further

improvements to ECARF to ensure it can provide full triple store capability.

8.4.2.1 Triple Store Capability

The rule-based reasoning supported by ECARF can be extended to cover richer se-

mantics such as the OWL Horst [48] and OWL 2 [52] rulesets. Moreover, additional

activities such data management and query support can be added to ECARF to

provide full triple store capability. Data management provide the ability to create,

update and delete statements on the dataset, on the other hand, query support pro-

vides SPARQL [11] support on top of Google BigQuery. Furthermore, the dictionary
4https://www.docker.com/
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encoding algorithm can further remove any redundancy in the dictionary by analysing

the frequency of certain URI sections. Then, instead of always splitting these URIRef

at the last slash, they could be split at a variable location to minimise any redundancy.

8.4.2.2 Redundant Triples

The approach presented in this thesis for forward reasoning does not eliminate re-

dundant rdf:type instance triples, which are mainly generated due to many of the

rdfs:domain and rdfs:subClassOf schema triples sharing the same object. For exam-

ple, applying the SI rules in Table 6.4 to the following instance triples: T(s1 p1

o1), T(s1 p2 o2) and schema triples: T(p1 rdfs:domain o3), T(p2 rdfs:domain o3)

respectively, will generate two duplicate T(s1 rdf:type o3) triples.

Several approaches have been proposed to either eliminate duplicate triples after

they are generated [19], or to avoid generating them in the first place [20]. Since

in this thesis processors do not communicate with each other, an effective approach

is to avoid generating redundant triples. By grouping together the rdfs:domain and

rdfs:subClassOf schema triples that share the same object, one query can be issued

that has an OR condition in the where clause and when the results are retrieved the al-

gorithm simply does not generate duplicate triples. For the example triples presented

earlier, such query will be in the form “SELECT subject FROM Triple WHERE pred-

icate = p1 or p2 ”. This approach will also require the schema triples that share the

same object to be assigned to the same processor, so the impact of this on the selective

term partitioning outlined in this thesis will need to be assessed as well.
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[52] M Krötzsch. OWL 2 Profiles: An introduction to lightweight ontology lan-

guages. Reasoning Web. Semantic Technologies for Advanced Query Answering,

7487:112–183, 2012.

[53] J Hendler. On beyond ontology, in keynote talk, second international semantic

web conference. http://www.cs.rpi.edu/˜hendler/LittleSemanticsWeb.

html, 2003. [Online; accessed 13-December-2015].
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Appendix A

ECARF Tasks And Job Definition

This Appendix contains a description of all the ECARF tasks and the end-to-end job

definition JSON for these tasks.

A.1 ECARF Tasks

ECARF tasks are summarised in Table A.1, the table gives the task name and in-

dicates if they are executed by the coordinator or processor. Additionally, the table

indicates which of the tasks uses multiple threads internally, finally, the number of

VMs used to execute the task is also provided. A brief description is provided for

each of these tasks as follows:

ExtractSchemaTermTask: Load the schema file and extract the relevant terms.

CreateFileItemsTask: List the dataset files in the Cloud Storage folder and create

partitions based on the number of processors. These partitions are added to the

job context.

DummyProcessorTask: An empty task used to measure the time required to start

the processors.
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Table A.1: ECARF Tasks Summary

Task Executed By Multi-
threaded

Num.
of VMs

ExtractSchemaTermTask Coordinator N 1
CreateFileItemsTask Coordinator N 1
DummyProcessorTask Processor N n
ExtractCountTerms2PartTask Processor Y n
CombineTermStatsTask Coordinator N 1
AssembleDictionaryTask Processor Y 1
ProcessLoadTask Processor Y n
LoadBigDataFilesTask Coordinator N 1
LoadEncodedTermStatsTask Coordinator N 1
DoReasonTask9 Processor Y n

DoUploadOutputLogTask Coordinator
Processor N n

ExtractCountTerms2PartTask: Each processor counts the instance triples for

the relevant schema terms and extracts the URI parts for the dictionary. These

are serialised into files and uploaded to Cloud Storage alongside a file that

contains the count of instance triples.

CombineTermStatsTask: The coordinator combines the count files generated by

the various processors into a TermStats file and uploads it Cloud Storage.

AssembleDictionaryTask: The processor downloads all the serialised URI parts

from Cloud Storage and assembles the dictionary. The dictionary is then seri-

alised to disk and uploaded to Cloud Storage. This task also encodes the schema

and the TermStats files and uploads them to Cloud Storage.

ProcessLoadTask: Based on the file partitions created by the CreateFileItemsTask,

each processor is assigned a number of files and download the dictionary from

Cloud Storage. Each file is then encoded and serialised as CSV and uploaded

to Cloud Storage.
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LoadBigDataFilesTask: The coordinator loads all the CSV files created by the

processors into a BigQuery table.

LoadEncodedTermStatsTask: The coordinator loads the encoded TermStats file

from Cloud Storage and sets the encoded terms and their count on the job

context.

DoReasonTask9: Each processor does forward reasoning using the relevant schema

terms assigned to it.

DoUploadOutputLogTask: A generic task used to upload the output logs of a

coordinator or a processor to Cloud Storage.

A.2 ECARF End-to-End Job Definition

The ECARF end-to-end job definition JSON is provided below. The job data is

changed according to each of the datasets being processed.

{
” id ” : ” eca r f−forward−reasoning−lubm” ,
” d e s c r i p t i o n ” : ”Forward reason ing on the LUBM data s e t s

↪→ us ing d i c t i o n a r y compress ion and 16 p r o c e s s o r s ” ,
” data ” : {

” sourceBucket ” : ” lubm3” ,
” bucket ” : ”lubm−f u l l r u n−16n” ,
” schema” : ” univ−bench.nt ” ,
” t ab l e ” : ” lubm tables . lubm16n ” ,
” t e rmSta t sF i l e ” : ” t e r m s t a t s . j s o n ” ,
” encodedSchemaFile ” : ” univ−bench encoded.csv ” ,
” encodedTermStatsFi le ” : ” t e r m s t a t s e n c o d e d . j s o n ” ,
” d i c t i o n a r y F i l e ” : ” l ub m d i c t i o n a r y . k r y o . g z ” ,
” countOnly ” : ”false” ,
” encode ” : ”true” ,
” jobId ” : ” run1 ” ,
” s p l i t L o c a t i o n ” : ”−1” ,
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” numberOfProcessors ” : 16
} ,
”vmConfig” : {

” zoneId ” : ”us−cent ra l1−a” ,
” imageId ” : ” eca r f−1000/ g l o b a l / images / eca r f−debian−8−

↪→ j e s s i e−v20160219−8” ,
”vmType” : ”n1−highmem−4” ,
” networkId ” : ” d e f a u l t ” ,
” diskType ” : ”pd−standard ” ,
” d i s k S i z e ” : 100 ,
” s t a r t u p S c r i p t ” : ” su − omerio −c ’ cd /home/ omerio / e c a r f /

↪→ eca r f−evm && export VM XMS=\”−Xms512m\” VMXMX=\”−
↪→ Xmx23g\” && mvn −q exec : exec 2>&1 & e x i t 0 ’ e x i t 0”
↪→ ,

” co s t ” : 0.252 ,
”minUsage” : 600

} ,
” ta sk s ” : [
{

” id ” : ”schema−term−extract−task ” ,
” d e s c r i p t i o n ” : ”Load the schema and e x t r a c t the

↪→ r e l e v a n t the r e l e v a n t terms ” ,
” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . c o o r d i n a t o r .

↪→ ExtractSchemaTermTask” ,
” input ” : {

” sourceBucket ” : ”#sourceBucket ” ,
” bucket ” : ”#bucket ” ,
” schemaFile ” : ”#schema”

} ,
” output ” : [

” schemaTermsFile ”
] ,
” t a r g e t ” : ”COORDINATOR” ,
” e r ro rAct i on ” : ”EXIT”

} ,
{

” id ” : ” p a r t i t i o n−load−task ” ,
” d e s c r i p t i o n ” : ”Find a l l the f i l e s in the c loud bucket

↪→ and add them to a l i s t o f i tems ” ,
” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . c o o r d i n a t o r .

↪→ CreateFi le ItemsTask ” ,
” input ” : {

” bucket ” : ”#sourceBucket ”
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} ,
” output ” : [

” f i l e I t e m s ”
] ,
” t a r g e t ” : ”COORDINATOR” ,
” e r ro rAct i on ” : ”EXIT”

} ,
{

” id ” : ” s t a r t−proce s so r s−task ” ,
” d e s c r i p t i o n ” : ”A dummy task to s t a r t a l l the

↪→ p r o c e s s o r s be f o r e hand” ,
” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . p r o c e s s o r .

↪→ DummyProcessorTask” ,
” t a r g e t ” : ”PROCESSOR” ,
” e r ro rAct i on ” : ”EXIT” ,
” p a r t i t i o n i n g ” : {

” type ” : ”COUNT” ,
” countRef ” : ”#numberOfProcessors ”

}
} ,
{

” id ” : ” ext ract−count−terms−task ” ,
” d e s c r i p t i o n ” : ” Extract a l l the d i c t i o n a r y par t s and

↪→ count the r e l e v a n t schema terms ” ,
” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . p r o c e s s o r .

↪→ analyze.ExtractCountTerms2PartTask ” ,
” input ” : {

” sourceBucket ” : ”#sourceBucket ” ,
” bucket ” : ”#bucket ” ,
” schemaTermsFile ” : ”#schemaTermsFile ” ,
” s p l i t L o c a t i o n ” : ”#s p l i t L o c a t i o n ” ,
” f i l e s ” : ”#f i l e P a r t i t i o n s ”

} ,
” t a r g e t ” : ”PROCESSOR” ,
” e r ro rAct i on ” : ”EXIT” ,
” p a r t i t i o n i n g ” : {

” type ” : ”FUNCTION” ,
” functionName ” : ” BinPack ingPart i t ion ” ,
” input ” : {

” items ” : ”#f i l e I t e m s ” ,
”numberOfBins” : ”#numberOfProcessors ”

} ,
” output ” : ” f i l e P a r t i t i o n s ”
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}
} ,
{

” id ” : ”term−s ta t s−task ” ,
” d e s c r i p t i o n ” : ”Read and j o i n up the term s t a t s

↪→ generated by the var i ous p r o c e s s o r s ” ,
” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . c o o r d i n a t o r .

↪→ CombineTermStatsTask” ,
” input ” : {

” p r o c e s s o r s ” : ”#p r o c e s s o r s ” ,
” bucket ” : ”#bucket ” ,
” t e rmSta t sF i l e ” : ”#te rmSta t sF i l e ”

} ,
” output ” : [

” termItems ”
] ,
” t a r g e t ” : ”COORDINATOR” ,
” e r ro rAct i on ” : ”EXIT”

} ,
{

” id ” : ” assemble−d i c t i onary−task ” ,
” d e s c r i p t i o n ” : ” Assemble the terms d i c t i o n a r y ” ,
” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . p r o c e s s o r .

↪→ dic t ionary .AssembleDict ionaryTask ” ,
” input ” : {

” bucket ” : ”#bucket ” ,
” targetBucket ” : ”#bucket ” ,
” schemaBucket ” : ”#sourceBucket ” ,
” schemaFile ” : ”#schema” ,
” t e rmSta t sF i l e ” : ”#te rmSta t sF i l e ” ,
” encodedSchemaFile ” : ”#encodedSchemaFile ” ,
” encodedTermStatsFi le ” : ”#encodedTermStatsFi le ” ,
” d i c t i o n a r y F i l e ” : ”#d i c t i o n a r y F i l e ”

} ,
” t a r g e t ” : ”PROCESSOR” ,
” e r ro rAct i on ” : ”EXIT” ,
” p a r t i t i o n i n g ” : {

” type ” : ”COUNT” ,
” count ” : 1

}
} ,
{

” id ” : ” process−load−task ” ,
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” d e s c r i p t i o n ” : ”Each proc e s s o r encodes and conver t s the
↪→ f i l e s a s s i gned to i t to CSV” ,

” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . p r o c e s s o r .
↪→ ProcessLoadTask ” ,

” input ” : {
” sourceBucket ” : ”#sourceBucket ” ,
” bucket ” : ”#bucket ” ,
” countOnly ” : ”#countOnly ” ,
” encode ” : ”#encode ” ,
” d i c t i o n a r y F i l e ” : ”#d i c t i o n a r y F i l e ” ,
” schemaTermsFile ” : ”#schemaTermsFile ” ,
” f i l e s ” : ”#f i l e P a r t i t i o n s ”

} ,
” t a r g e t ” : ”PROCESSOR” ,
” e r ro rAct i on ” : ”EXIT” ,
” p a r t i t i o n i n g ” : {

” type ” : ”FUNCTION” ,
” functionName ” : ” BinPack ingPart i t ion ” ,
” input ” : {

” items ” : ”#f i l e I t e m s ” ,
”numberOfBins” : ”#numberOfProcessors ”

} ,
” output ” : ” f i l e P a r t i t i o n s ”

}
} ,
{

” id ” : ” big−data−load−task ” ,
” d e s c r i p t i o n ” : ”Load a l l the f i l e s proce s sed by the

↪→ p r o c e s s o r s i n to BigQuery” ,
” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . c o o r d i n a t o r .

↪→ LoadBigDataFilesTask ” ,
” input ” : {

” tab l e ” : ”#tab l e ” ,
” bucket ” : ”#bucket ” ,
” encode ” : ”#encode ”

} ,
” t a r g e t ” : ”COORDINATOR” ,
” e r ro rAct i on ” : ”EXIT”

} ,
{

” id ” : ” encoded−term−s ta t s−load−task ” ,
” d e s c r i p t i o n ” : ”Load the encoded terms s t a t s in to the

↪→ job context ” ,
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” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . c o o r d i n a t o r .
↪→ LoadEncodedTermStatsTask” ,

” input ” : {
” bucket ” : ”#bucket ” ,
” encodedTermStatsFi le ” : ”#encodedTermStatsFi le ”

} ,
” output ” : [

” termItems ”
] ,
” t a r g e t ” : ”COORDINATOR” ,
” e r ro rAct i on ” : ”EXIT”

} ,
{

” id ” : ” process−reason−task ” ,
” d e s c r i p t i o n ” : ” D i s t r i b u t e the reason task between the

↪→ var i ous proce s so r s , each p ro c e s s o r then reasons
↪→ over the terms as s i gned to i t ” ,

” className ” : ”
↪→ i o . e c a r f . c o r e . c l o u d . t a s k . p r o c e s s o r . r e a s o n .
↪→ phase2.DoReasonTask9 ” ,

” input ” : {
” bucket ” : ”#bucket ” ,
” t ab l e ” : ”#tab l e ” ,
” schemaFile ” : ”#encodedSchemaFile ” ,
” terms ” : ”#te rmPar t i t i on s ”

} ,
” t a r g e t ” : ”PROCESSOR” ,
” e r ro rAct i on ” : ”CONTINUE” ,
” p a r t i t i o n i n g ” : {

” type ” : ”FUNCTION” ,
” functionName ” : ” BinPack ingPart i t ion1 ” ,
” input ” : {

” items ” : ”#termItems ” ,
”numberOfBins” : ”#numberOfProcessors ”

} ,
” output ” : ” t e rmPar t i t i on s ”

}
} ,
{

” id ” : ” proces sor−do−upload−l ogs−task ” ,
” d e s c r i p t i o n ” : ” D i s t r i b u t e the uploading o f l o g s task

↪→ between the var i ous proce s so r s , each p ro c e s s o r
↪→ then uploads i t s own l o g s to c loud s to rage ” ,
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” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . c o m m o n .
↪→ DoUploadOutputLogTask” ,

” input ” : {
” bucket ” : ”#bucket ” ,
” jobId ” : ”#jobId ”

} ,
” t a r g e t ” : ”PROCESSOR” ,
” e r ro rAct i on ” : ”CONTINUE” ,
” p a r t i t i o n i n g ” : {

” type ” : ”ITEMS” ,
” input ” : {

” items ” : ”#p r o c e s s o r s ”
}

}
} ,
{

” id ” : ” coord inator−do−upload−l ogs−task ” ,
” d e s c r i p t i o n ” : ”The coo rd ina to r to upload i t s own l o g s

↪→ to c loud s to rage ” ,
” className ” : ” i o . e c a r f . c o r e . c l o u d . t a s k . c o m m o n .

↪→ DoUploadOutputLogTask” ,
” input ” : {

” bucket ” : ”#bucket ” ,
” jobId ” : ”#jobId ”

} ,
” t a r g e t ” : ”COORDINATOR” ,
” e r ro rAct i on ” : ”CONTINUE”

}
]

}
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Appendix B

CloudEx and ECARF Source Code

The CloudEx and ECARF Java source code can be found in the accompanying CD

or at http://cloudex.io and http://ecarf.io.

216

http://cloudex.io
http://ecarf.io

	Abstract
	Declaration
	Dedication
	Acknowledgments
	Research Outcome
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	The Semantic Web
	The Resource Description Framework
	RDF Data on the Web
	Use Cases

	The Growth to Big Data
	Challenges with Physical Computing
	The Potential of Cloud Computing
	Motivation
	Research Aim and Questions
	Scope of Research
	Impact of Research

	Technical Approach
	Contributions
	Outline of the Thesis

	Background on the Resource Description Framework
	Resource Description Framework
	RDF Schema
	The Semantic Web and Ontologies
	Description Logics
	Web Ontology Language (OWL)

	RDFS Entailment Rules
	A Little Semantics Goes a Long Way

	Minimal and Efficient Subset of RDFS
	RDF Triple Stores

	Distributed Semantic Web Reasoning
	Peer to Peer Networks
	Forward Reasoning on Top of DHTs
	Alternatives to Term Based Partitioning

	Grid and Parallel Computing
	MapReduce Based Reasoning
	Spark Based Reasoning
	Authoritative Distributed Reasoning
	Embarrassingly Parallel Reasoning

	Centralised Systems

	RDF Data Management on the Cloud
	RDF Data Compression
	MapReduce-based Dictionary Encoding
	Supercomputers-based Dictionary Encoding
	DHT-based Dictionary Encoding
	Centralised Dictionary Encoding

	The Challenges
	Dictionary Encoding
	Data Storage
	Workload Distribution

	Summary

	The Cloud Computing Paradigm
	Background
	Cloud Service Models
	Cloud Benefits

	Public Cloud Deployment Overview
	Cloud Services
	Virtual Machines
	VM Image
	CPU Cores and RAM
	Virtual Disk and Snapshots
	VM Metadata

	Cloud Storage
	Big Data Services

	Google Cloud Platform
	Google Compute Engine
	Compute Engine Metadata
	Compute Engine Pricing
	Compute Engine API

	Google Cloud Storage
	Cloud Storage API

	Google BigQuery
	BigQuery SQL
	BigQuery API
	BigQuery pricing


	The Potential of Cloud Computing
	Migration to the Cloud
	High Performance Computing
	Interoperability and Migration of Cluster Frameworks

	Observing Cost and Time Constraints
	Cloud-First Frameworks

	Summary

	Research Methodology
	Design Science Research Methodology
	Addressing RDF Processing Issues
	Utilising Cloud Computing
	Cloud-First Design
	Utilising Cloud Elasticity
	A Divide-Conquer Strategy

	Model Development
	CloudEx Framework Requirements

	Prototype Development and Evaluation
	Summary

	CloudEx, a Cloud First Framework
	High Level Architecture
	Key CloudEx Definitions
	The Lifecycle of Coordinators and Processors
	The Tasks Flow

	Dealing with Tasks Input and Output
	The Job Context
	Input and Output Resolution
	Handling Input
	Handling Output

	Partitioning the Workload
	Bin Packing Partitioning
	Full Bin Strategy
	Calculating The Bin Capacity
	Calculating The Number of Bins


	Defining Jobs
	Job Data
	Virtual Machine Configurations
	Tasks Definition
	Task Partitioning Configuration


	CloudEx Job Execution in Detail
	Duties of the Coordinator
	Running Coordinator Tasks
	Running Processor Tasks
	Error Handling

	Elastic Processors
	The Processor Duties
	Error Handling


	Implementation
	cloudex-core Component
	cloudex-google Component
	User-Defined Tasks
	User-Defined Partitioning Functions
	VM Image Setup
	Running the Framework

	Summary

	ECARF, Processing RDF on the Cloud
	ECARF Overview
	Distributed Processing
	Dictionary Encoding
	Forward Reasoning

	Dictionary Encoding
	Reducing the Size of URIRefs
	Efficient URI Reference Compression
	Encoding Terms
	Decoding Terms
	Storage Considerations
	Dictionary Encoding Tasks
	Extract Terms Task
	AssembleDictionaryTask
	Encode Data Task


	Distributed RDFS Reasoning
	Handling Schema Triples
	Handling Instance Triples
	Performing Forward Reasoning Using BigQuery
	The Relevant Term
	Query Optimisation
	Distributing the Reasoning Process

	The Schema Terms Analysis Step
	The Instance Triples Count Step
	Workload Partitioning

	ECARF Architecture Walkthrough
	The Schema Term Analysis Task
	Distributing the Count Task
	The Instance Triple Count / Extract Dictionary Parts Task
	Assemble Dictionary Task
	Transform and Encode Data Tasks
	Aggregate Processors Results Task
	Load Files into BigQuery Task
	The Forward Reasoning Task

	Summary

	Evaluation of Cloud Based RDF Processing
	Research Questions
	Experiements Setup
	Implementation
	Platform Setup
	Virtual Machine and Disk Types

	Results Gathering
	Datasets

	Common Evaluation Criteria
	Runtime and Scalability
	Cost of Computing Resources
	Multiple CPU Cores
	Triples Throughput

	Distributed RDF Processing
	Partitioning Factor
	ExtractCountTerms2PartTask
	ProcessLoadTask
	Partitioning Factor Summary

	Horizontal Scalability
	Comparison of LUBM 8K Load
	Vertical Scalability

	Dictionary Encoding
	URIRefs Split Strategy
	Dictionary Assembly Memory Footprint
	BigQuery Scanned Bytes Improvements
	Comparison of Dictionary Encoding

	Forward Reasoning
	Forward Reasoning Optimisations
	Results of Performing Forward Reasoning
	Runtime, Load Balancing and Cost
	Load Balancing
	Cost of Performing Forward Reasoning

	BigQuery Data Import and Export
	Comparison of Forward RDFS Reasoning Throughput
	Forward Reasoning Conclusion

	CloudEx Evaluation
	CloudEx Improvements
	Cloud Platform Observations
	Cost Considerations

	Summary

	Conclusions
	The CloudEx Framework Contributions
	Summary of CloudEx
	Effectiveness and Feasibility

	The ECARF Triple Store Contributions
	Summary of Dictionary Encoding
	Effectiveness of Dictionary Encoding
	Summary of Forward Reasoning
	Effectiveness of Forward Reasoning

	Open Source Contributions and Impact
	Future work
	CloudEx Improvements
	Resilience
	Autoscaling of Resources
	Implementation for Other Clouds

	ECARF Improvements
	Triple Store Capability
	Redundant Triples



	References
	Appendices
	Appendix ECARF Tasks And Job Definition
	ECARF Tasks
	ECARF End-to-End Job Definition

	Appendix CloudEx and ECARF Source Code

