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Abstract

Background: Reported associations between Tumor Necrosis Factor-alpha (TNFA) and the postprandial
triacylglycerol (TAG) response have been inconsistent, which could be due to variations in the TNFA gene, meal fat
composition or participant’s body weight. Hence, we investigated the association of TNFA polymorphism
(−308G→ A) with body mass index (BMI) and postprandial lipaemia and also determined the impact of BMI on the
association of the polymorphism with postprandial lipaemia.

Methods: The study participants (n = 230) underwent a sequential meal postprandial study. Blood samples were taken
at regular intervals after a test breakfast (t = 0, 49 g fat) and lunch (t =330 min, 29 g fat) to measure fasting and
postprandial lipids, glucose and insulin. The Metabolic Challenge Study (MECHE) comprising 67 Irish participants who
underwent a 54 g fat oral lipid tolerance test was used as a replication cohort. The impact of genotype on postprandial
responses was determined using general linear model with adjustment for potential confounders.

Results: The -308G→ A polymorphism showed a significant association with BMI (P = 0.03) and fasting glucose
(P = 0.006), where the polymorphism explained 13 % of the variation in the fasting glucose. A 30 % higher incremental
area under the curve (IAUC) was observed for the postprandial TAG response in the GG homozygotes than A-allele
carriers (P = 0.004) and the genotype explained 19 % of the variation in the IAUC. There was a non-significant trend in
the impact of BMI on the association of the genotype with TAG IAUC (P = 0.09). These results were not statistically
significant in the MECHE cohort, which could be due to the differences in the sample size, meal composition, baseline
lipid profile, allelic diversity and postprandial characterisation of participants across the two cohorts.

Conclusions: Our findings suggest that TNFA -308G→ A polymorphism may be an important candidate for BMI,
fasting glucose and postprandial TAG response. Further studies are required to investigate the mechanistic effects of
the polymorphism on glucose and TAG metabolism, and determine whether BMI is an important variable which
should be considered in the design of future studies.

Trial registration: NCT01172951.
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Background
The magnitude and duration of the postprandial triacyl-
glycerol (TAG) response have been shown to be highly
variable between individuals due to genetic and dietary
factors [1]. Although multiple candidate genes in lipo-
protein metabolism pathways have been identified [2–4],
studies have indicated that genetic variants in tumor ne-
crosis factor-alpha (TNF-α), a cytokine released from
macrophages during inflammation, may also play an im-
portant role in modulating the lipid response to high-fat
meal ingestion [5, 6]. This is based on evidence, where
change in serum TAG was linked to change in TNF-α
after high-fat meal consumption [7]. Under post absorp-
tive conditions, the infusion of a relatively low dose of
TNF-α into healthy participants stimulated lipolysis and
altered liver fat metabolism [8]. These studies suggest
that TNFA could be an important candidate gene for
postprandial TAG metabolism.
The most widely studied single nucleotide polymorph-

ism (SNP) [−308 G→A (rs1800629)] in the promoter of
TNFA gene has been shown to alter its transcriptional
regulation and production [9]. Two studies have shown
an association between the TNFA -308G→A poly-
morphism and postprandial TAG [10, 11], while two
studies failed to show an effect [6, 12]. Furthermore,
TNF-α is expressed in adipocytes and correlates with the
degree of adiposity [13]. The effect of this SNP on lipid
and glucose metabolism has been proposed to be
dependent on body mass index (BMI) [14] and differ-
ences in BMI could be a reason for the discrepancy in
the study findings. Hence, in the present data analysis,
we examined the association of the TNFA -308G→A
SNP with BMI, fasting and postprandial lipid, non-
esterified fatty acid (NEFA), glucose and insulin after
consumption of sequential meals in 230 participants
(England) genotyped for the TNFA polymorphism. In
addition, we also examined the impact of BMI on the as-
sociation of the TNFA polymorphism with fasting and
postprandial lipid, glucose and insulin response to se-
quential meal ingestion. To confirm our findings, we
used an Irish postprandial study, Metabolic Challenge
Study (MECHE) [15], as a replication cohort.

Methods
Participants
The data analysis was performed using postprandial re-
sponses from 230 healthy participants (mean age of 52
(range 22–71) y and BMI 26.3 (range 19.6–31.9) kg/m2)
who had undergone the same sequential test meal proto-
col at the University of Reading, England, between 1997
and 2007, as previously described [16, 17]. The studies
were reviewed by the University of Reading Research
Ethics Committee and the West Berkshire Health
Authority Ethics Committees, and each volunteer gave
written informed consent before participating. All proto-
cols and procedures were performed according to the
Declaration of Helsinki.

Postprandial meal protocol
The participants underwent a novel sequential meal
protocol, as previously described [18]. Briefly, partici-
pants were asked to refrain from alcohol and strenuous
exercise on the day before the study visit and were pro-
vided with a low fat (<10 g fat) evening meal. After a
12 h overnight fasting, participants were cannulated and
a blood sample was taken to measure fasting levels of
lipids, glucose, NEFA and insulin. Following a test break-
fast (0 min) and lunch (330 min), blood samples were
taken at 60 min intervals until 480 min after the break-
fast meal. The nutritional composition of the breakfast
was 3.9 MJ energy, 111 g carbohydrate, 19 g protein and
49 g fat and the lunch was 2.3 MJ energy, 63 g carbohy-
drate, 15 g protein and 29 g fat. The type of fat contained
within the test meals was predominately saturated, with
29 g of saturated fatty acids (SFA) in the breakfast and
14 g of SFA in the lunch. No other food or drink except
water and decaffeinated sugar free drinks was allowed
during the study day.

Measurement of Clinical and biochemical parameters
The plasma lipid profile, glucose and insulin were mea-
sured as previously described [17]. All samples for each
individual were analysed within a single batch and the
inter-assay coefficient of variation for the assays were less
than 5 %. The homeostasis model assessment of insulin
resistance (HOMA-IR) was calculated using the fasting
glucose and insulin data [fasting insulin (pmol/l) x fasting
glucose (mmol/l)]/135] [19].

Genotyping
DNA was isolated from the buffy coat layer of 10 ml of
EDTA blood using the Qiagen DNA Blood Mini Kit
(Qiagen Ltd, Crawley, UK). The TNFA -308G→A
(rs1800629) polymorphism was genotyped using a
TaqMan SNP genotyping assay (Life Technologies). The
genotype distribution was in Hardy-Weinberg equilib-
rium (P = 0.46).

Replication cohort
Study participants
Sixty-seven participants were chosen from the Metabolic
Challenge Study (MECHE) that recruited healthy volun-
teers (N = 214, age 18–60)) at University College Dublin
(UCD), Ireland [15]. Ethical approval was obtained from
the Research Ethics Committees at UCD and St Vincent’s
University Hospital Dublin. All participants provided writ-
ten informed consent. MECHE was registered under
NCT01172951 at Clinicaltrials.gov.
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Postprandial meal protocol
The participants (44 men/23 women) underwent an oral
lipid tolerance test (OLTT) following a 12 h overnight
fast [20]. The OLTT consisted of 100 mL Calogen
(Nutricia, Ireland) combined with 50 mL Liquid Duocal
(SHS Nutrition, Netherlands) which contained 54 g fat
(7 g SFA, 31 g monounsaturated fatty acids, 16 g polyun-
saturated fatty acids) and 16 g carbohydrate (550 kcal).

Measurement of clinical and biochemical parameters
Clinical chemistry analysis was performed using a
RxDaytona™ chemical analyser autoanalyser (Randox La-
boratories, Crumlin, UK) and Randox reagents. The
plasma lipid profile, glucose and insulin were measured
as previously described [15].

Genotyping
DNA was isolated from the buffy coat layer of EDTA
blood using a Gentra Autopure LS robotic workstation
(Qiagen Ltd, Crawley, UK). The TNFA -308G→A
(rs1800629) polymorphism was genotyped by LGC Gen-
omics (www.lgcgenomics.com) using their proprietary
KASPar polymerase chain reaction technique. Genotype
distribution was in Hardy-Weinberg equilibrium (P < 0.05).

Statistical analysis
All statistical analyses were performed using SPSS software,
version 21. All biochemical outcomes were expressed as
means and SEM, checked for normality and transformed
where necessary. BMI cut-off <25 kg/m2 (normal weight)
and ≥25 kg/m2 (overweight/obese) was based on criteria
from the World Health Organization [21]. The total area
under the variable versus time curves (AUC) was calcu-
lated using the trapezium rule for postprandial TAG, glu-
cose and insulin for 0–480 min. Incremental AUC (IAUC,
0–480 min) was calculated as AUC minus the fasting con-
centration. NEFA AUC and IAUC responses were calcu-
lated from the time of suppression until the end of the
postprandial period (120–480 min). The impact of geno-
type on postprandial (AUC and IAUC) responses was de-
termined using general linear model with adjustment for
age, gender and BMI. The χ2 test was used to compare the
proportions of genotypes or alleles. Due to the small num-
ber of homozygotes (AA) in the postprandial cohorts, indi-
viduals homozygous (AA) and heterozygous (GA) for the
polymorphism were grouped together for statistical ana-
lyses. P ≤ 0.05 was considered statistically significant.

Results
Association of the TNFA -308G→ A polymorphism with
BMI and baseline biochemical parameters
There were significant associations of the TNFA -308G→
A polymorphism with BMI (P = 0.03) and fasting glucose
concentration (P = 0.006). There was also a significant
difference between the normal weight and overweight/
obese groups with respect to the TNFA -308G→A poly-
morphism (P = 0.001), where the proportion of over-
weight/obese individuals with GG genotypes (79 %) was
higher than that of the normal weight individuals with GG
genotypes (60 %). Given the significant difference between
the two BMI groups, sub-group analysis was per-
formed in the normal weight (n = 94) and overweight/
obese (N = 136) participants. The genetic effect on
fasting glucose was significant only in overweight/
obese group (P = 0.005), with 7.4 % higher concentra-
tion in GG genotype than A-allele carriers. The vari-
ation in fasting glucose that can be explained by this
SNP was 13 % in the overweight/obese group. The
baseline demographic and biochemical characteristics
of the participants stratified by genotypes in normal
weight (BMI < 25 kg/m2) and overweight/obese (BMI ≥
25 kg/m2) participants are presented in Table 1.
Association of the TNFA -308G→ A polymorphism with
postprandial biochemical parameters
Following the high-fat meals (breakfast and lunch), a sig-
nificant effect of this SNP was observed on the TAG
IAUC (P = 0.02) but not AUC (P = 0.15), where the GG
genotype group had 30 % higher TAG IAUC than A-
allele carriers (Fig. 1). The polymorphism explained 19 %
of the variation in the TAG IAUC. There was no differ-
ence in postprandial NEFA, glucose or insulin responses
observed between genotypes (Table 1). When stratified as
BMI <25 kg/m2 (normal weight) and ≥25 kg/m2 (over-
weight/obese), there was a trend in the association of the
SNP with TAG IAUC in the normal weight group but the
findings were not statistically significant (P = 0.09). Given
the previous gender-specific associations observed in this
postprandial study [18, 22], stratification by gender was
also performed and found that the genetic associations on
TAG IAUC were significant in men (GG, 439 ± 26 mmol/l
x 480 min, n = 92; GA+AA, 320 ± 30 mmol/l x 480 min,
n = 27; P = 0.03) but not in women (GG, 249 ± 19 mmol/l
x 480 min, n = 70; GA+AA, 194 ± 21 mmol/l x 480 min,
n = 37; P = 0.39).
Replication of the findings in the Irish cohort
There was no association of the TNFA -308G→A poly-
morphism with BMI (P = 0.58), fasting glucose concen-
tration (P = 0.46) and TAG IAUC (P = 0.72) (Table 2).
We also did not find any effect of BMI on the associ-
ation of the SNP with TAG IAUC (P = 0.54). Even
though the findings were not statistically significant in
the Irish cohort, in contrast to the UK cohort, the A
allele carriers (34 %) had a tendency for higher fasting
glucose and TAG IAUC, compared to GG homozygotes
(66 %) (Table 2).

http://www.lgcgenomics.com


Table 1 Fasting and postprandial metabolites and characteristics according to the TNFA-380G→ A polymorphism stratified by body
mass index in the UK postprandial cohort

Normal weight (BMI < 25 kg/m2) Overweight/obese (BMI≥ 25 kg/m2) P*

GG (N = 56) GA + AA (N = 38) Pa GG (N = 108) GA + AA (N = 28) Pa

Age (yrs) 51 ± 2 48 ± 2 0.16 54 ± 1 54 ± 2 0.96 0.09

Gender (men/women) 24/32 10/28 0.10 70/38 18/10 0.96 0.03

BMI (kg/m2)b 23.10 ± 0.20 23.20 ± 0.20 0.21 28.50 ± 0.20 28.00 ± 0.30 0.29 0.03

Fasting metabolitesa

TC (mmol/l) 5.46 + 0.13 5.30 ± 0.15 0.97 5.81 ± 0.10 5.85 ± 0.21 0.89 0.97

TAG (mmol/l) 1.27 ± 0.70 1.11 ± 0.07 0.43 1.81 ± 0.09 1.65 ± 0.11 0.36 0.23

HDL-c (mmol/l) 1.48 ± 0.05 1.56 ± 0.07 0.73 1.24 ± 0.04 1.31 ± 0.06 0.37 0.54

LDL-c (mmol/l) 3.39 ± 0.13 3.27 ± 0.15 0.79 3.76 ± 0.09 3.79 ± 0.20 0.89 0.81

Glucose (mmol/l) 4.98 ± 0.07 4.78 ± 0.06 0.31 5.37 ± 0.07 4.99 ± 0.09 0.007 0.006

Insulin (pmol/l)c 36.50 ± 3.70 32.00 ± 4.30 0.51 57.60 ± 3.80 49.20 ± 6.60 0.75 0.54

NEFA (μmol/l) 525 ± 30 493 ± 26 0.39 526 ± 17 494 ± 39 0.59 0.39

HOMA-IRc 1.40 ± 0.20 1.20 ± 0.20 0.43 2.40 ± 0.20 2.00 ± 0.30 0.62 0.44

Postprandial measuresa

TAG (mmol/l × 480 min)

AUC 885 ± 51 754 ± 44 0.42 1293 ± 55 1189 ± 78 0.31 0.15

IAUCd 284 ± 26 191 ± 21 0.09 396 ± 24 333 ± 29 0.12 0.02

NEFA (mmol/l × 300 min)e

AUC 147 ± 8 140 ± 7 0.35 157 ± 5 163 ± 7 0.29 0.92

IAUC 92 ± 6 70 ± 16 0.06 102 ± 3 110 ± 6 0.22 0.49

Glucose (mmol/l × 480 min)f

AUC 2943 ± 45 2740 ± 166 0.46 3176 ± 56 2968 ± 153 0.15 0.07

IAUC 564 ± 45 514 ± 55 0.82 590 ± 32 603 ± 60 1.00 0.93

Insulin (nmol/l × 480 min)g

AUC 99 ± 11 117 ± 9 0.37 141 ± 19 149 ± 30 0.28 0.33

IAUC 81 ± 9 99 ± 9 0.41 129 ± 17 122 ± 28 0.47 0.36

Values represent mean ± S.E. mean
As the AA homozygotes were rare (1.7 %), all analyses were conducted by comparing GG homozygotes A allele carriers (GA + AA)
Abbreviations: AUC, area under the curve, BMI body mass index, HDL-c high density lipoprotein cholesterol, HOMA-IR homeostasis model assessment of insulin
resistance, IAUC incremental area under the curve, LDL-c low density lipoprotein cholesterol, NEFA non-esterified fatty acids, TAG triacylglycerol, TC
total cholesterol
aAdjusted for age, gender, and body mass index
bAdjusted for age, and gender
cBMI < 25, GG (N = 34), A (N = 19); BMI ≥ 25, GG (N = 79), A (N = 19)
dBMI < 25, GG (N = 56), A (N = 37); BMI ≥ 25, GG (N = 106), A (N = 26)
eBMI < 25, GG (N = 36), A (N = 19); BMI ≥ 25, GG (N = 84), A (N = 21)
fBMI < 25, GG (N = 36), A (N = 20); BMI ≥ 25, GG (N = 86), A (N = 22)
gBMI < 25, GG (N = 15), A (N = 7); BMI ≥ 25, GG (N = 35), A (N = 10)
*P values for the difference in the clinical and biochemical parameters between the genotypes in the whole group
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Discussion
There are two important findings in this study. Firstly,
there is an independent association of TNFA -308G→A
polymorphism with BMI and fasting glucose concentra-
tion. Secondly, there was a genotype effect observed on
the TAG IAUC, with a higher response in the GG than
A allele carriers after the sequential meals.
Several polymorphisms have been identified in the

promoter region of the TNFA gene [23, 24]; however, to
date, −308G→A polymorphism (rs1800629) has been
the best characterized genetic variant in relation to
metabolic and cardiovascular disease outcomes [24–26].
The TNFA -308G→A polymorphism has been linked
with BMI and obesity [13, 27], where A allele carriers
have been shown to have higher BMI [27]. In contrast
but in line with a few studies [11, 28], we observed a
higher proportion of GG homozygotes in the over-
weight/obese than normal weight group, where they also
exhibited higher fasting glucose concentrations than the
A allele carriers. Our finding is biologically plausible



Fig. 1 Incremental triacylglycerol response (mmol/l) according to the TNFA −308 G/A polymorphism. Mean (SEM) for the incremental triacylglycerol
response (mmol/l) according to the TNFA −308 G/A polymorphism [GG genotype (N = 162), open squares and GA + AA genotype combination
(N = 64, open circles)] after consumption of a test breakfast (49 g fat) at 0 min and a test lunch (29 g fat) at 330 min. P value represents the difference
in the incremental triacylglycerol response between the genotypes (GG vs. GA + AA) of the TNFA −308 G/A polymorphism
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given that obese patients have been shown to have an
abnormal postprandial lipaemia response due to post-
prandial changes in endogenous lipoproteins as a result
of insulin resistance [29]. Hence, it is possible that GG
homozygotes with higher BMI and fasting glucose con-
centrations are likely to exhibit higher postprandial TAG
levels. BMI may therefore be an important variable that
determines the impact of this polymorphism on the
postprandial TAG response, and should be considered in
the design of future studies.
The impact of genotype on the incremental change in

TAG response to sequential meal ingestion showed a
non-significant trend in the normal weight participants,
which is interesting given the tendency for higher overall
fasting TAG and postprandial TAG responses in the
overweight/obese group. Calculation of TAG IAUC rep-
resents both the production and clearance of TAG-rich
lipoproteins (TRLs) from the circulation, two highly in-
sulin dependent processes also known to be modulated
by TNF-α. High levels of TNF-α have been shown to in-
hibit lipoprotein lipase activity in vitro [30] and enhance
the production of liver-derived TRL [31] and adiposity
has been reported to potentiate the effects of the TNFA
polymorphism on lipid metabolism and insulin resist-
ance. Defective insulin secretion and action can lead to
an exaggerated TAG response to a high fat meal, but we
only found a tendency for a higher HOMA-IR in the
overweight/obese group, with a lack of an effect of the
polymorphism on postprandial NEFA and glucose re-
sponses. It is therefore possible that higher background
circulating levels of TNF-α observed in obese individuals
[32] may have contributed to the higher fasting and
postprandial TAG response, and masked the subtle
effects of this polymorphism on TRL metabolism. How-
ever, TNF- α was not measured in the UK postprandial
cohort which makes it difficult to determine the mecha-
nisms underlying the difference in response between the
two genotype groups. Although the MECHE data
showed a tendency for higher TNF- α in the GG group,
this finding was not significant.
A few studies have examined the association between

TNFA -308G→A polymorphism and postprandial lip-
aemia but findings have been inconsistent. In obese fam-
ilies, Wybranska et al., found men carrying the A allele
to have higher fasting glucose and postprandial TAG
and NEFA responses following an oral fat load whilst
women had higher HOMA-IR [10]. However, a lack of
an association between the polymorphism and postpran-
dial lipid responses have been reported after sequential
high fat meals in obese type 2 diabetic individuals [6]
and a single meal containing 65.5 g of dairy fat in off-
spring of patients diagnosed with cardiovascular disease
(CVD) [12]. Our findings are in accordance with a study
in CVD patients classified with the metabolic syndrome
(MetS), where GG homozygotes had a significantly
higher postprandial TAG response than A-allele carriers
after a single high fat meal (0.7 g fat/kg body weight
containing on average 62 g of fat) [11]. Unlike the study
of Gomez-Delgado et al. [11], we also observed a signifi-
cant effect of genotype on fasting glucose, with higher
levels in the GG than GA and AA groups combined.
Similar observations have been reported in the LIPGENE
cohort, with an increased risk of developing fasting
hyperglycaemia and MetS in GG homozygotes [33]. Dis-
agreement in the relationship between -308A and -308G
alleles and fasting glucose and lipid responses may



Table 2 Fasting and postprandial metabolites and characteristics according to the TNFA-380G→ A polymorphism stratified by body
mass index in the Metabolic Challenge Study (Replication cohort)

Normal weight (BMI <25 kg/m2) Overweight/obese (BMI≥ 25 kg/m2) P*

GG (N = 30) GA + AA (N = 15) Pa GG (N = 14) GA + AA (N = 8) Pa

Age 31 ± 2 27 ± 3 0.34 31 ± 2 35 ± 4 0.29 0.74

Gender (men/women) 8/22 8/7 0.08 10/4 4/4 0.32 0.38

BMI (kg/m2)b 22.70 ± 0.30 22.40 ± 0.50 0.52 26.80 ± 0.60 26.70 ± 0.50 0.85 0.58

Fasting metabolites

TC (mmol/l) 4.50 ± 0.20 4.30 ± 0.20 0.88 4.30 ± 0.20 5.10 ± 0.30 0.04 0.48

TAG (mmol/l) 0.94 ± 0.07 0.86 ± 0.05 0.48 1.18 ± 0.2 1.30 ± 0.20 0.72 0.97

Glucose (mmol/l) 5.01 ± 0.08 5.20 ± 0.10 0.26 5.30 ± 0.10 5.30 ± 0.08 0.93 0.46

HDL-c (mmol/l) 1.50 ± 0.07 1.40 ± 0.09 0.95 1.20 ± 0.08 1.40 ± 0.20 0.33 0.79

Insulin (pmol/l) 34.80 ± 0.60 36.10 ± 4.90 0.71 43.80 ± 5.60 50.70 ± 6.30 0.49 0.23

NEFA (μmol/l) 590 ± 50 590 ± 90 0.73 560 ± 29 550 ± 25 0.69 0.99

HOMA-IR 2.00 ± 0.20 2.10 ± 0.30 0.69 2.50 ± 0.40 2.80 ± 0.30 0.59 0.27

TNFA (pg/ml) 10.20 ± 4.50 4.30 ± 1.80 0.59 4.10 ± 0.40 4.70 ± 0.70 0.35 0.45

Postprandial TAG (mmol/l × 300 min)

AUC 176 ± 31 170 ± 41 0.74 184 ± 50 192 ± 66 0.78 0.99

IAUC 81 ± 15 84 ± 23 0.87 63 ± 26 81 ± 28 0.54 0.72

Postprandial NEFA (mmol/l × 180 min)

AUC 39 ± 7 36 ± 8 0.73 26 ± 7 32 ± 10 0.58 0.96

IAUC 14 ± 3 12 ± 4 0.44 6 ± 2 3 ± 5 0.18 0.65

Postprandial Glucose (mmol/l × 300 min)

AUC 483 ± 75 485 ± 108 0.89 468 ± 108 442 ± 713 0.95 0.98

IAUC −23 ± 9 −31 ± 12 0.47 −72 ± 36 −9 ± 6 0.21 0.34

Postprandial Insulin (pmol/l × 300 min)

AUC 4209 ± 806 4223 ± 1035 0.71 6257 ± 2368 5382 ± 1792 0.73 0.82

IAUC 986 ± 340 313 ± 465 0.11 2417 ± 1695 1063 ± 597 0.46 0.28

Values represent mean ± S.E. mean
As there was only one participant with AA homozygous genotype, all analyses were conducted by comparing GG homozygotes and A allele carriers (GA + AA)
Abbreviations: AUC area under the curve, IAUC, incremental area under the curve, BMI body mass index, TAG triacylglycerol, TC total cholesterol, HDL-c high
density lipoprotein cholesterol
aAdjusted for age, gender, and BMI, wherever appropriate
bAdjusted for age, and gender
*P values for the difference in the clinical and biochemical parameters between the genotypes in the whole group
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reflect the study populations (type 2 diabetic, obese,
MetS and familial history of CVD) since expression of
the biochemical phenotype of this polymorphism has
been proposed to be dependent on the presence of other
CVD risk factors [6]. This may explain the similarity of
our findings with the Spanish study since 53 % of men in
our cohort could be classified with the MetS [16]. In
addition, the differences in the allelic effects could be due
to the variations in the genotype frequencies across the
European cohorts as shown by dbSNP (http://www.ncbi.
nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1800629). Hence,
it is possible that the same allelic effect seen in the
Spanish study [11] but not seen in the Polish study
[10] could be due to differences in the linkage dis-
equilibrium map across European populations.
A limitation of our study is the inability to replicate
our findings in a suitable large postprandial cohort. Al-
though we used the Irish postprandial study (MECHE)
[15] as a replication cohort, we were unable to replicate
the findings due to several reasons. Whilst the two pop-
ulations were examined for impact of TNFA -308G→A
polymorphism on postprandial lipaemia, there may have
been other genetic variations [34] which could have an
impact, but were not controlled for in this analysis. Fur-
thermore, the replication cohort underwent an OLTT
which did not follow the same post-prandial meal com-
position as that of the UK postprandial cohort and
hence could have had different consequences on the pa-
rameters considered. Also, we cannot rule out the fact
that our findings in the UK postprandial cohort could be

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1800629
http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=1800629
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a chance finding due to small sample size (n = 67). How-
ever, this is unlikely given the previous link between the
TNFA -308G→A polymorphism and BMI [35, 36], fast-
ing glucose [37] and postprandial lipaemia [10, 11]. An-
other limitation is the difference in the proportion of
men and women in each of the genotype groups within
the BMI sub-groups but to account for this the general
linear model was adjusted for gender and age in all of
the analyses. Also, the gender- specific association of the
SNP with postprandial TAG in our cohort confirms our
previous findings in men [17].

Conclusions
Our findings indicate that the TNFA -308G→A poly-
morphism is independently associated with BMI, fasting
glucose concentration and incremental postprandial TAG
response to sequential meal ingestion. Further studies are
warranted to investigate the mechanisms underlying the
effect of the TNFA polymorphism on glucose and TAG
metabolism, and determine whether BMI is an important
variable which should be considered in the design of
future studies.
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