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A Method for Accurate Transmission Line
Impedance Parameter Estimation

Deborah Ritzmann, Student Member, IEEE, Paul S. Wright, William Holderbaum, Member, IEEE,
and Ben Potter, Member, IEEE

Abstract—Real-time estimation of power transmission line
impedance parameters has become possible with the availability
of synchronized phasor measurements of voltage and current.
If sufficiently accurate, the estimated parameter values are a
powerful tool for improving the performance of a range of power
system monitoring, protection and control applications, including
fault location and dynamic thermal line rating. The accuracy of
the parameter estimates can be reduced by unknown errors in
the synchronized phasors that are introduced in the measurement
process. In this paper, a method is proposed with the aim of
obtaining accurate estimates of potentially variable impedance
parameters, in the presence of systematic errors in voltage and
current measurements. The method is based on optimization to
identify correction constants for the phasors. A case study of
a simulated transmission line is presented to demonstrate the
effectiveness of the new method, which is better in comparison
with a previously proposed method. The results as well as limits
and potential extensions of the new method are discussed.

Index Terms—Accuracy, admittance measurement, impedance
measurement, optimization methods, parameter estimation, pha-
sor measurement unit, transmission line measurements

I. INTRODUCTION

CONTINUOUS electricity supply has become one of
the backbones of many economies worldwide. For this

reason, reliable and efficient operation of power networks is a
crucial challenge that needs to keep pace with their increas-
ingly complex nature. Reliability and efficiency are ensured
through careful monitoring, protection and control of power
systems, which requires a range of electrical measurements as
inputs. One of these inputs are the impedance parameters of
transmission lines; for example in current differential protec-
tion [1] and fault location [2].

Traditionally, parameters were calculated off-line using
handbook formulae based on tower geometry and conductor
properties [3], [4] or through fault record analysis [5]. These
methods are not able to track short-term changes in impedance
parameters, which may occur due to Joule heating and ambient
temperature variations. Nowadays it is possible to calculate
the impedance parameters of transmission lines on-line and
in real-time from synchronized phasor (synchrophasor) mea-
surements of voltage and current at both line ends. The
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synchrophasors are usually reported by Phasor Measurement
Units (PMUs) that are installed in substations [6].

Synchrophasor-based transmission line impedance determi-
nation has been investigated by many researchers since the
1990s. Early studies demonstrated the feasibility of the concept
and advantages over traditional methods [7]–[9]. The deter-
mined parameter values are only useful if they satisfy accuracy
requirements, which depend on the specific applications. For
fault location [2] and dynamic thermal line rating [10], it
is desirable to detect thermally induced variation of the line
resistance, which ranges from 1% to 20% [11].

Parameter accuracy may be expressed in terms of minimum
and maximum limits that are derived from the accuracy of the
synchrophasor measurements [1]. The accuracy of the reported
synchrophasors is influenced by the entire measurement chain.

PMUs themselves often exceed the requirements of 1%
Total Vector Error and 1 µs time-tagging to UTC, given in
IEEE Standard C37.118.1-2011 [12]; for instance, PMUs
with accuracies of ±0.03% in phasor magnitude and ±0.01�

in phase angle (±0.6 µs at 50Hz) have been manufactured
[13]. Hence, if only the accuracy of PMUs is considered,
uncertainties in impedance parameter estimates of less than
2% are possible [1].

It is important to recognize that additional systematic errors
of up to 1% in the magnitude and 1� in the phase angle of the
synchrophasors may be introduced by the remaining measure-
ment chain, as is recognized in IEEE Standard C37.242-2013
[14]. The remaining measurement chain includes instrument
transformers, cables, burdens and external time synchroniza-
tion equipment such as GPS antennae and connection cables.

Ideally, these errors should be characterized and corrected
before the impedance parameter estimation process. For ex-
ample, in addition to the nominal transformer ratios, trans-
former correction factors should be applied, and time-tagging
adjusted for delays in the synchronization signal. However,
the actual correction factors may differ from their values at
the time of characterization due to ageing or modification
of the instrumentation channel. Consequently, the measured
synchrophasors can be subject to unknown errors, which can
have an adverse impact on parameter estimation accuracy.

A number of approaches have been proposed to reduce
the impact of random errors in synchrophasor measurements
on impedance parameter determination: unbiased linear least
squares estimation [15], [16], non-linear least squares algo-
rithms [17]–[19], total least squares estimation [20] as well
as optimization procedures [7], [21]. On the other hand, the
impact and reduction of systematic errors in the synchrophasor
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Fig. 1. Nominal pi circuit diagram for a medium length transmission line.
It shows the lumped impedance and admittance components as well as the
sending and receiving end voltages and currents.

measurements with regards to impedance parameter estimation
has received less attention.

One solution is to estimate individual correction factors
for both magnitude and phase angle of voltage and current
along with the parameters in an optimization procedure [21].
However, this approach makes use of a wide range of mea-
surements and assumes time-invariant impedance parameters.
Hence, there is a need to develop effective methods for the
reduction of the impact of systematic errors in synchrophasor
measurements on real-time impedance parameter estimation.

In a previous paper by the authors, a potential solution
for this problem has been proposed [22]. It consists of a
method that assumes linear variation of the impedance pa-
rameters over short periods of time. Correction constants for
the synchrophasors are identified by minimising the residuals
of a least squares fit of the calculated parameters to a linear
model. The method was shown to effectively reduce the
impact of systematic errors in voltage measurements of a short
transmission line, neglecting shunt admittance. But for longer
lines shunt admittance is significant as it causes the current to
vary along the line, and thus needs to be taken into account
in parameter calculations. Furthermore, systematic errors can
also occur in synchrophasor measurements of current. The aim
of this paper is to propose an extension of the method such
that it can effectively reduce the impact of systematic errors in
all synchrophasor measurements for the general transmission
line modelled by the lumped pi circuit, which has both series
impedance and shunt admittance.

The rest of the paper is structured as follows: in the next
section, models for the transmission line and systematic errors
are defined and the proposed method is presented. Thereafter, a
case study of a simulated line is considered and a comparison
with an existing linear least squares-based method is made.
The fourth section is a discussion of the case study results, as
well as strengths and limits of the proposed method. The final
section concludes the paper.

II. METHODS

A. Transmission Line Model

The nominal pi circuit, as shown in Fig. 1, is the stan-
dard model for the electrical parameters of a medium length
transmission line (80 km to 240 km) [3]. For medium length
lines, the effects of shunt admittance cannot be ignored, but

lumped components are still a good approximation for the
actual, distributed parameters [3].

The circuit consists of a series impedance component Z,
as well as shunt admittance Y , which is split into two equal
components at either end of the line, as shown in Fig. 1.
The series impedance Z has resistance R and inductance
L, while the shunt admittance Y consists of conductance G
and capacitance C. Conductance G is normally considered
negligible and omitted from the model; however, it is useful
for the consideration and correction of systematic errors as
will be shown in Section II-C. The measured currents and
voltages at either end of the line are modelled by V

s

, I
s

, V
r

, I
r

,
which are assumed to be phasors at the nominal power system
frequency f ; subscript s refers to sending and subscript r to
receiving end. By Kirchhoff’s Voltage and Current Laws, the
circuit equations are

V
s

= (I
s

� Y

2
V
s

)Z + V
r

(1)

I
s

= (V
s

+ V
r

)
Y

2
+ I

r

, (2)

where V
s

, I
s

, V
r

, I
r

, Z, Y 2 C, Z = R + jX , X = 2⇡fL,
Y = G+ jB, B = 2⇡fC and R,X,G,B,L,C, f 2 R>0. X
is the inductive reactance and B is the capacitive susceptance.

Substitution of (2) into (1) leads to the following formulae
for impedance Z and admittance Y :

Z =
V 2
s

� V 2
r

V
s

I
r

+ V
r

I
s

(3)

Y = 2
I
s

� I
r

V
s

+ V
r

. (4)

If a single set of synchronized measurements V
s

, I
s

, V
r

, I
r

is
available from a PMU or equivalent device, values of Z and
Y can be calculated; parameters R, X , G and B are obtained
from the real and imaginary parts of Z and Y, respectively.

B. Systematic Errors in the Synchrophasor Measurements

In this paper, systematic errors in the form of a proportional
error in the phasor magnitude and additive offset in the phase
angle are considered. Let Ṽ

s

be a synchrophasor measurement
of the sending end voltage V

s

with systematic errors a
s

in
magnitude and �

s

in phase angle. V
s

and Ṽ
s

are related by

V
s

= Ṽ
s

(1 + a
s

) exp(j�
s

), (5)

where Ṽ
s

2 C, a
s

,�
s

2 R. This structure is chosen in line with
transformer correction factors, which are the general model for
expressing errors caused by instrument transformers [23]. The
systematic errors are assumed to be constant, since in real-
time applications, the utilized voltage and current measure-
ments span only a limited part of the instrument ranges and
instrumentation channels are designed for long-term stability.

On the basis of accuracy classes of instrument transformers
and previous characterization of instrumentation channels, the
errors are assumed to be less than 1% in magnitude and less
than 0.01 rad in phase angle [14]. Thus it is assumed that
|a

s

|, |�
s

| < 0.01 and the following small angle approximation
is made:

exp(j�
s

) ⇡ 1 + j�
s

. (6)
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Substituting (6) into (5) gives

V
s

= Ṽ
s

(1 + a
s

)(1 + j�
s

) = Ṽ
s

(1 + a
s

+ j�
s

+ ja
s

�
s

). (7)

The lower order term ja
s

�
s

will be omitted. Hence,

V
s

= Ṽ
s

(1 + a
s

+ j�
s

). (8)

Define the overall error �V
s

2 C in the synchrophasor
measurement Ṽ

s

as

�V
s

= V
s

� Ṽ
s

= (a
s

+ j�
s

)Ṽ
s

. (9)

Similarly, Ĩ
s

, Ṽ
r

, Ĩ
r

2 C are defined as synchrophasor mea-
surements that have systematic errors a

r

,�
r

, b
s

, ✓
s

, b
r

, ✓
r

such
that V

r

= Ṽ
r

(1+a
r

+j�
r

), I
s

= Ĩ
s

(1+b
s

+j✓
s

), I
r

= Ĩ
r

(1+
b
r

+ j✓
r

), and �I
s

, �V
r

, �I
r

2 C are overall errors defined as
�V

r

= (a
r

+ j�
r

)Ṽ
r

, �I
s

= (b
s

+ j✓
s

)Ĩ
s

, �I
r

= (b
r

+ j✓
r

)Ĩ
r

.
Suppose the values of a

s

,�
s

, a
r

,�
r

, b
s

, ✓
s

, b
r

, ✓
r

are un-
known. Then the impedance and admittance estimates from
synchrophasors with systematic errors are given by

Z̃ =
Ṽ
s

2 � Ṽ
r

2

Ṽ
s

Ĩ
r

+ Ṽ
r

Ĩ
s

(10)

Ỹ = 2
Ĩ
s

� Ĩ
r

Ṽ
s

+ Ṽ
r

, (11)

where Ṽ
s

, Ĩ
s

, Ṽ
r

, Ĩ
r

have been substituted into (3) and (4).
Z̃ and Ỹ deviate from Z and Y , respectively, and thus the
estimated parameters are in error. This loss of accuracy can be
reduced by estimating values of a

s

,�
s

, a
r

,�
r

, b
s

, ✓
s

, b
r

, ✓
r

to
correct the phasor measurements. The following observations
are used to simplify the problem:

• Since Z is proportional to (V 2
s

�V 2
r

), it is more sensitive
to a

s

,�
s

, a
r

,�
r

than to b
s

, ✓
s

, b
r

, ✓
r

and the error in Z
caused by a

s

,�
s

is approximately equal and opposite to
the error caused by a

r

,�
r

(see Appendix C).
• Since Y is proportional to (I

s

� I
r

), it is more sensitive
to b

s

, ✓
s

, b
r

, ✓
r

than to a
s

,�
s

, a
r

,�
r

and the error in Y
caused by b

s

, ✓
s

is approximately equal and opposite to
the error caused by b

r

, ✓
r

(see Appendix C).
Therefore it is assumed that error constants a

s

, a
r

,�
s

,�
r

can
be combined into ’net’ errors a,� in Ṽ

r

, where a = a
r

�
a
s

,� = �
r

� �
s

, |a|, |�| < 0.02. Similarly b
s

, ✓
s

, b
r

, ✓
r

are
combined into errors b, ✓ in Ĩ

r

, where b = b
r

� b
s

, ✓ = ✓
r

�
✓
s

, |b|, |✓| < 0.02.
In the next section a method for estimating values of a,�, b

and ✓ is presented.

C. Proposed Method for Identification of Correction Con-
stants

To reduce the deviations in estimated parameters Z̃ and Ỹ
due to systematic errors that were described in the previous
subsection, synchrophasor measurements should be corrected
before parameters estimates are calculated. A method has been
designed to identify such correction constants and is presented
in the following paragraphs.

The method assumes no knowledge of the true values of
impedance and admittance parameters. Instead, it is assumed

that the behaviour of the resistance and reactance is ap-
proximately linear over short periods relative to the thermal
time constant of overhead line conductors (5min to 20min
according to IEEE Standard 738-2012 [24]) because of slow
variation in the rate of change of resistance and reactance.
Conductance and susceptance are assumed to be constant.
Therefore the calculated parameters are fitted to linear models
with respect to time. Let the models for R,X,G,B be
f
R

, f
X

, f
G

, f
B

: R+ ! R, respectively, where

f
R

(t
i

) = q
R

t
i

+ r
R

(12)

f
X

(t
i

) = q
X

t
i

+ r
X

(13)

f
G

(t
i

) = r
G

(14)

f
B

(t
i

) = r
B

(15)

and q
R

, r
R

, q
X

, r
X

, r
G

, r
B

2 R are constants, which are
estimated in a least squares sense from a set of N 2 N
parameter values R

i

, X
i

, G
i

, B
i

2 R, calculated at time
instants t

i

, i = 1, . . . , N , with t
i

= i�t and �t 2 R the
constant time interval between synchrophasor measurements.
The time interval t

N

�t1 is a moving window that is chosen to
be less than the thermal time constant of the line. The details of
the estimation of q

R

, r
R

, q
X

, r
X

, r
G

, r
B

are given in Appendix
A.

Suppose that R
i

, X
i

, G
i

, B
i

are calculated from syn-
chrophasor measurements with systematic errors, then the
goodness of fit of f

R

, f
X

, f
G

, f
B

is reduced. To measure the
goodness of fit, the sum of the squared residual is calculated
as

S
R

=

NX

i=1

(R
i

� f
R

(t
i

))2, (16)

where S
R

2 R+. Equivalent expressions are assumed for
S
X

, S
B

, S
G

2 R+, in terms of X
i

, f
X

, G
i

, f
G

, B
i

, f
B

, re-
spectively. By minimizing S

R

, S
X

, S
G

and S
B

, correction
constants can be found that maximize the goodness of fit
of f

R

, f
X

, f
G

and f
B

, and thus result in impedance and
admittance parameter estimates that are more consistent with
the expected physical behaviour of the line over time.
S
R

and S
X

are sensitive to errors in Ṽ
s

and Ṽ
r

and can be
minimized by finding optimal values of correction constants
a,� for Ṽ

r

. Hence, optimization problem 1 is formulated:

minimize
a,�

g
Z

(a,�) = S
R

+ S
X

subject to |a| < 0.02, |�| < 0.02,
(17)

with initial values: a = 0,� = 0. The objective function
g
Z

: R2 ! R+ is evaluated using correction constants a,�
to recalculate the impedance parameters as follows:

Z
i

= R
i

+ jX
i

= Z̃
i

+
@Z

@V
r

���
Vr=Ṽri

�V
ri , (18)

where �V
ri = (a + j�)Ṽ

ri , and Z̃
i

is calculated using (10)
from synchrophasor measurements Ṽ

si , Ĩsi , Ṽri , Ĩri taken at
time t

i

. The first order Taylor approximation of Z is taken
because �V

ri is small and in this way Z
i

remains linear in
a,�. The partial derivative @Z

@Vr
is given in Appendix B. Once

R
i

and X
i

have been recalculated using (18), new values for
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q
R

, r
R

, q
X

, r
X

, r
G

, r
B

are estimated and S
R

as well as S
X

are updated to give a new value of g
Z

.
Similarly, S

G

and S
B

are sensitive to errors in Ĩ
s

and Ĩ
r

.
Optimization problem 2 is defined to identify optimal values
of correction constants b, ✓ 2 R for Ĩ

r

that minimize S
G

and
S
B

:
minimize

b,✓

g
Y

(b, ✓) = µ(S
G

+ S
B

)

subject to |b| < 0.02, |✓| < 0.02,
(19)

with initial values: b = 0, ✓ = 0. Since G and B are of
the order of 10�6 and 10�4, respectively, S

G

and S
B

can
become very small and factor µ is introduced to avoid bad
scaling. The objective function g

Y

: R2 ! R+ is evaluated
using correction constants b, ✓ to recalculate the admittance
parameters as follows:

Y
i

= G
i

+ jB
i

= Ỹ
i

+
@Y

@I
r

���
Ir= ˜

Iri

�I
ri , (20)

where �I
ri = (b+j✓)Ĩ

ri , and Ỹ
i

is calculated using (11) from
synchrophasor measurements Ṽ

si , Ĩsi , Ṽri , Ĩri taken at time t
i

.
The first order Taylor approximation of Y is taken because �I

r

is small and Y
i

remains linear in b, ✓. The partial derivative
@Y

@Ir
is given in Appendix B.

Both (17) and (19) are nonlinear constrained optimization
problems, for which minima can be obtained with a range of
algorithms. In this instance the interior-point method was cho-
sen [25]. g

Z

and g
Y

are convex and thus the local minima are
global in the feasible regions.The reason is that Z

i

and Y
i

are
linear in the respective correction constants and estimation of
q
R

, r
R

, q
X

, r
X

, r
G

, r
B

(see Appendix A) as well as evaluation
of g

Z

and g
Y

preserve convexity.
Fig. 2 shows a flow chart that summarizes the processes

of identifying correction constants and estimating values of
the line parameters. The final parameter estimates at a given
time t

N

are obtained by fitting functions f
R

, f
X

, f
B

to the
parameter values calculated from corrected measurements and
evaluating f

R

(t
N

), f
X

(t
N

), f
B

(t
N

). The aim of this step is
to give parameter estimates with reduced random variation,
which occurs in the individually calculated parameter values.

In the next section, the effectiveness of the proposed method
is demonstrated in a case study.

III. CASE STUDY

In this section, the specifications of the transmission line
simulation are given, and results of the application of the
proposed method as well as an existing linear least squares-
based method are presented.

A. Transmission Line Simulation

A single phase of the 400 kV, 102 km long transmission
line located between substations Grendon and Staythorpe,
East Midlands, England [26], was simulated in Matlab. The
nominal parameter values are R0 = 2.96⌦, X0 = 32.4⌦
and B0 = 3.69⇥ 10�4 S. The resistance was assumed to
vary sinusoidally within ±4% of the nominal value, which
corresponds to a change in line temperature of approximately
±10 �C over the period of the simulation.

Fig. 2. This flow chart illustrates how values for correction constants and
impedance parameters are estimated by the proposed method.
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Fig. 3. This graph shows the magnitude of the sending and receiving end
voltages over the period of the simulation.

The network at either end of the line was modelled by an
equivalent voltage source; Fig. 3 shows the root-mean-square
(rms) magnitude of the sending and receiving end voltages.
A variable load profile ranging from 15% to 100% of rated
current was assumed to occur over a seven hour period; rms
values of current magnitude are shown in Fig. 4. Synchronized
measurements of steady-state current and voltage phasors at
each line end were taken at time intervals of �t = 2min for
blocks of 10 s.
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Fig. 4. This graph shows the magnitude of the sending and receiving end
currents over the period of the simulation. Their difference is very small
compared to the absolute magnitudes.

In order to reflect the measurement uncertainty that would
be present in practice, the measurements were contaminated
with Gaussian noise of mean zero and standard deviations
of 0.03% and 0.04% in magnitudes of voltage and current,
respectively, and 0.3mrad in all phase angles.

Systematic errors in both sending and receiving end voltages
and currents as modelled in Section II-B were applied to all
synchrophasor measurements. The mean of the synchrophasors
was taken over each 10 s block to generate an individual set
of measurements every two minutes; in total there were 203
measurement sets. A moving window of N = 8 measurement
points, spanning 16min, was used to estimate the impedance
and admittance parameters of the line in real-time. Thus, 196
estimated values were computed for each of R,X and B.

In order to test the effectiveness of the method, different sets
of systematic errors were applied to the measurements. In each
case, the magnitude and phase errors were selected randomly
from a uniform distribution in the interval [�0.01, 0.01]. In
total, 100 000 cases were studied, giving sufficiently small
confidence intervals on the relevant metrics, which will be
defined in section III-C.

B. Existing Linear Least Squares Method

The proposed method was applied to identify correction
constants a,�, b, ✓ to improve the accuracy of the calculated Z
and Y values. For comparison, an existing linear least squares
(LS) method was also applied to each window to obtain
parameter estimates [15]. This method models the transmission
line as a general two-port network, in which voltages and
currents are related by

V
s

= A ⇤ V
r

+B ⇤ I
r

(21)

I
s

= C ⇤ V
r

+D ⇤ I
r

, (22)

where A,B,C,D 2 C are constants.For the eight measure-
ment sets in a given window, (21) was expanded into two
equations by taking the real and imaginary parts to give 16
real equations in total. The real and imaginary parts of A
and B were computed through unbiased linear least squares
estimation.

TABLE I
SYSTEMATIC ERRORS IN THE SYNCHROPHASOR MEASUREMENTS

Magnitude Phase Angle TVE
Ṽs as = 0.0008 �s = 0.0059 0.60%
Ṽr ar = �0.0021 �r = �0.0076 0.78%
Ĩs bs = �0.0016 ✓s = 0.0095 1.02%
Ĩr br = 0.0037 ✓r = �0.0034 0.38%

By assuming a pi circuit (Fig. 1) inside the two-port
network, constants A,B,C,D can be expressed in terms of
impedance Z and admittance Y :

A = 1 + Y Z/2 (23)

B = Z (24)

C = Y (1 + Y Z/4) (25)

D = 1 + Y Z/2. (26)

Z and Y are calculated from least squares estimates of A
and B using (23) and (24):

Z = B (27)

Y = 2(A� 1)/B. (28)

C. Metrics for Evaluation of Method Performance

Two metrics are used to evaluate the accuracy of the
impedance and admittance parameter estimates over the sim-
ulation period. The first is the rms error E�P

calculated over
all parameter estimates; it indicates how far the estimates are
from the true values.

Let the errors in the individual parameter estimates be
�P

i

= P
i

� P0, where P
i

refers to the parameter estimates
R

i

, X
i

, B
i

at each time instant t
i

, i = [1 . . . 196] and P0 to the
nominal parameter values R0, X0, B0. Then

E�P

=
1

P0

vuut 1

196

196X

i=1

�P 2
i

. (29)

The second metric is ⌃�P

, the standard deviation of the
parameter errors as a fraction of the nominal values. This
metric indicates the variability of the parameter error over the
simulation period. ⌃�P

is given by

⌃�P

=
1

P0

vuut 1

195

196X

i=1

(�P
i

� µ�P

)2, (30)

where µ�P

= 1/196⇤
P196

i=1 �P
i

is the mean parameter error.
E�P

and ⌃�P

are not defined for conductance G as its
nominal value is zero.

D. Results

The results of the case study are presented in two parts: first,
one individual case with a specific set of systematic errors is
considered; then the aggregated results from 100 000 cases of
systematic errors are presented.
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Fig. 5. This plot shows the values of the identified correction constants over
time for the individual simulation case.
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Fig. 6. This plot shows the nominal and estimated values of resistance R
over time for the individual simulation case.
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Fig. 7. This plot shows the nominal and estimated values of reactance X
over time for the individual simulation case.

1) Individual Case: Table I lists the values of one set of
systematic errors that was applied to the voltage and current
phasors as well as the resulting Total Vector Errors (TVE). The
plot in Fig. 5 shows the values of the correction constants
that were identified using a moving window of N = 8
measurements as described in section II-C. It can be observed
that a ⇡ �0.003 ⇡ a

r

�a
s

(from Table I), which is consistent
with the assumption that a corrects the net error. Similar
observations can be made for �, b, ✓. Fig. 6 to Fig. 8 show
the final parameter estimates over the simulation period.

In Table II the root-mean-square and standard deviation of
the parameter errors are given. For R,X,B the rms error
of the proposed method is significantly smaller than for the
existing estimator. Similarly, the standard deviation of the error
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Fig. 8. This plot shows the nominal and estimated values of susceptance B
over time for the individual simulation case.

TABLE II
PARAMETER ERRORS FOR ONE INDIVIDUAL CASE

R X B

E� (%) PM1 3.51 0.111 1.11
LS2 11.9 0.212 38.7

⌃� (%) PM1 0.974 0.0855 1.09
LS2 2.85 0.111 20.8

1 Proposed Method
2 Least Squares Method

TABLE III
ERRORS IN RESISTANCE R FOR 100 000 CASES

Percentile
50th 75th 95th

E�R (%) PM1 6.35(10) 10.8(1) 16.7(1)
LS2 7.07(10) 11.4(1) 17.4(1)

⌃�R (%) PM1 0.925(1) 0.998(1) 1.20(1)
LS2 2.85(1) 2.86(1) 2.89(1)

1 Proposed Method
2 Least Squares Method

is lower, indicating less variability in the parameter estimates.

2) Large Number of Cases: Tables III to V summarize
the results from the simulation of 100 000 different cases of
systematic error sets. The 50th, 75th and 95th percentile of the
distributions of the root-mean-square and standard deviation of
parameter errors are listed to give an indication of the level
of accuracy and consistency of the applied methods. For each
percentile the 95% confidence interval is given in brackets. For
resistance R, the distributions of rms error occupy a similar
range for both the proposed and the existing method, with
the 95th percentile at 17%. However, the proposed method
yields significantly lower standard deviations of error at around
1%, whereas the existing method yields 2.9%. Both methods
produce lower errors in reactance X , with rms errors of the
order of 1% and standard deviation of error of approximately
0.1%. In contrast, for susceptance B the level of error differs
greatly between the methods. While the proposed method
gives rms errors of 1% to 2%, the existing method results
in rms errors of over 100%. The standard deviation of errors
is also an order of magnitude larger for the existing method.
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TABLE IV
ERRORS IN REACTANCE X FOR 100 000 CASES

Percentile
50th 75th 95th

E�X (%) PM1 0.581(10) 0.984(10) 1.52(1)
LS2 0.597(10) 1.01(1) 1.56(1)

⌃�X (%) PM1 0.0818(10) 0.0890(10) 0.108(1)
LS2 0.110(1) 0.111(1) 0.112(1)

1 Proposed Method
2 Least Squares Method

TABLE V
ERRORS IN SUSCEPTANCE B FOR 100 000 CASES

Percentile
50th 75th 95th

E�B (%) PM1 1.18(1) 1.39(1) 1.82(1)
LS2 99.8(10) 168(1) 261(1)

⌃�B (%) PM1 1.05(1) 1.06(1) 1.08(1)
LS2 21.6(1) 21.9(1) 22.4(1)

1 Proposed Method
2 Least Squares Method

IV. DISCUSSION

A. Comparison of Methods

Based on the results presented in the previous section, the
proposed method demonstrated equal or better performance
compared to the existing linear least squares-based method.

The linear least squares method finds an optimal estimate
for the parameters of a two-port network; these are then used
to calculate impedance and admittance parameters of the pi
line. The advantage of this approach over estimating the pi
line parameters directly, is that it makes use of redundant
measurements such that constant systematic errors, as mod-
elled in this paper, either cancel or only cause a constant
offset in the estimated parameters. However, the linear least
squares method also assumes constant parameters in time, and
even small variations over a moving window lead to variable
parameter errors. This robustness to systematic errors, yet
weak accuracy for variable parameters, explains the relatively
similar results in the accuracy of the resistance and reactance
parameters in the case study for both methods. Therefore
it may appear that there is no significant advantage in the
suggested method. However, one of the crucial differences
is that the proposed method has demonstrated approximately
50% less variability in the errors of resistance values. The
resistance is the parameter with the highest temperature sen-
sitivity, hence, it is desirable to monitor changes in its value.
This can be done to good accuracy even if there is a constant
error in the estimated values, however, the accuracy of the
estimated changes deteriorates quickly with increasing error
variability.

In field applications, the true value of the impedance and
admittance parameters can never be known; thus, the accuracy
of estimated parameters has to be assessed on their repeatabil-
ity and consistency with expected physical variations. Based
on these criteria, the proposed method has clear advantages
over other estimation techniques.

B. Requirements of the Proposed Method

While the proposed method has strong potential to improve
the accuracy of impedance parameter estimation, it also has
some limitations. The method relies on increased residuals that
are caused by systematic measurement errors to identify cor-
rection constants. In the case where the errors have the same
size at both line ends (a

s

= a
r

,�
s

= �
r

, b
s

= b
r

, ✓
s

= ✓
r

)
there would be no increase in residuals and hence the method
would not yield any improvement. However, in these cases the
error in the estimated parameters is constant and only of the
order of the systematic errors; therefore the overall effect is
small. Increased residuals only occur if there is variation in the
load of the transmission line, which is thus a requirement for
the method to identify correction constants. The required level
of load variation depends on the magnitude of the systematic
errors as well as the random noise in the synchrophasor
measurements. Measurement noise is in turn related to the
overall load level, as the noise increases towards the lower end
of instrument scales. A conservative estimate of the minimum
load variation would be 10% of maximum line loading.
Furthermore, the method assumes that over the time window
that spans the utilized measurements the parameters are either
constant or varying linearly. This implies that the minimum
load variation has to occur within this time, which is limited
by the thermal time constant. Depending on the load profile
of the transmission line, not all time windows may satisfy
these requirements; one possibility of overcoming this issue
is to reuse correction constants from previous time windows
with higher load variation. To summarize, the applicability
and effectiveness of the proposed method depends on the
specific circumstances of the transmission line operation and
measurement instruments as well as the accuracy requirement
for the estimated parameter values. Further work is needed to
better understand and predict the relationship between these
factors.

C. Limiting Assumptions

In presenting the new method in this paper, some assump-
tions have been made. Firstly, the method has been defined
on a single-phase transmission line model. Most transmission
lines in power networks have three phases, which couple and
thus require more complex models. In the case of identical
conductors and symmetric geometry, the method may be
applied to the positive sequence components, provided that
the behaviour of the systematic error can be modelled as a
proportional error in amplitude and additive in phase angle.
Further research is required to confirm whether the method can
be effective for various three-phase transmission line systems.

The systematic errors were assumed to be constant, directly
proportional in magnitude and additive in the phase angle.
The systematic errors may follow different, non-linear models.
Over small ranges, these variations may still be approximated
well by the error model in this paper. More work is required to
investigate if and how the method can be adapted to identify
correction constants for other models and if it can be used to
select the most appropriate error model.
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V. CONCLUSION

The contribution of this paper is in the field of accurate,
real-time synchrophasor-based transmission line impedance
parameter estimation.

A method was proposed for estimating the impedance pa-
rameters of medium-length transmission lines in the presence
of systematic errors in the utilized synchrophasor measure-
ments of voltage and current. The method assumes constant
or linearly changing parameters over short periods of time and
identifies correction constants through optimization.

The effectiveness of the proposed method was compared
with that of an existing linear least squares method in a
case study of a simulated transmission line. The results are
promising and suggest that the method has significant potential
to improve parameter estimation accuracy in practical field
applications. Limits of the method and future work have been
discussed.

Accurate, real-time synchrophasor-based transmission line
impedance parameter estimation is a powerful factor in im-
proving the performance of power system monitoring, protec-
tion and control applications and thus in creating more reliable
and resilient electricity networks.

APPENDIX A
ESTIMATION OF CONSTANTS IN LINEAR PARAMETER

FUNCTIONS

To estimate q
R

, r
R

from R
i

, i = [1, . . . , N ], vectors R 2
RN ,QR 2 R2 and matrix HZ 2 RN⇥2 are defined, where

R =
⇥
R1 . . . R

N

⇤T
,QR =


q
R

r
R

�
,HZ =


t1 . . . t

N

1 1 1

�T

.

The N-dimensional model R, based on the theoretical model
f
R

(t
i

) = q
R

t
i

+ r
R

, is given by the matrix equation

R = HZQR + ", (31)

where " = ["1, . . . , "N ]T are error terms. To satisfy the least
squares criterion, min

P
N

i=1 "
2
i

, QR is computed using

QR = (HT
ZHZ)

�1HT
ZR. (32)

In the same manner, q
X

, r
X

are calculated using vectors
X 2 RN ,X =

⇥
X1 . . . X

N

⇤T and QX 2 R2,QX =⇥
q
X

r
X

⇤T.
To estimate q

G

from G
i

, i = [1, . . . , N ] vectors G,HY 2
RN and QG 2 R are defined, where

G =
⇥
G1 . . . G

N

⇤T
,HY =

⇥
1 . . . 1

⇤T
,QG =

⇥
r
G

⇤
.

The N-dimensional model G, based on the theoretical model
f
G

(t
i

) = r
G

, is given by

G = HYQG + ", (33)

where " = ["1, . . . , "N ]T are error terms. To satisfy the least
squares criterion, min

P
N

i=1 "
2
i

, QG is computed by

QG = (HT
YHY)�1HT

YG. (34)

In the same manner, r
B

is calculated using vector B 2
RN ,B =

⇥
B1 . . . B

N

⇤T and QB 2 R,QB =
⇥
r
B

⇤
.

APPENDIX B
PARTIAL DERIVATIVES OF Z AND Y

Let V
s

, I
s

, V
r

, I
r

2 C,⌦ = C4 \ {V
s

I
r

+ V
r

I
s

= 0} ,� =
C4\{V

s

+ V
r

= 0}. Define complex functions Z : ⌦ ! C, Y :
� ! C, where

Z = (V 2
s

� V 2
r

)/(V
s

I
r

+ V
r

I
s

) (35)

Y = 2(I
s

� I
r

)(V
s

+ V
r

). (36)

Rewrite Z as Z = h1/h2 and Y as Y = h3/h4, where
h1 : C2 ! C, h2 : ⌦ ! C, h3 : C2 ! C, h4 : C2 \
{V

s

+ V
r

= 0} ! C,

h1 = V 2
s

� V 2
r

, h2 = V
s

I
r

+ V
r

I
s

(37)

h3 = 2(I
s

� I
r

), h4 = V
s

+ V
r

. (38)

Since h1, h2, h3, h4 are complex polynomials, Z and Y are
rational functions. By the differentiability of complex polyno-
mials and the quotient rule, Z and Y are differentiable at all
points in ⌦ and �, respectively. The partial derivatives of Z
with respect to V

s

and V
r

are

@Z

@V
s

=
2V

s

V
s

I
r

+ V
r

I
s

� (V 2
s

� V 2
r

)I
r

(V
s

I
r

+ V
r

I
s

)2

@Z

@V
r

=
�2V

r

V
s

I
r

+ V
r

I
s

� (V 2
s

� V 2
r

)I
s

(V
s

I
r

+ V
r

I
s

)2
.

(39)

The partial derivatives of Y with respect to I
s

and I
r

are
@Y

@I
s

=
2

V
s

+ V
r

,
@Y

@I
r

= � 2

V
s

+ V
r

. (40)

APPENDIX C
APPROXIMATION: ERRORS AT ONE LINE END

To a first order linear approximation, the change in Z caused
by changes in V

s

and V
r

is given by

�Z =
@Z

@V
s

�V
s

+
@Z

@V
r

�V
r

=
2(V

s

�V
s

� V
r

�V
r

)

V
s

I
r

+ V
r

I
s

� (V 2
s

� V 2
r

)(I
r

�V
s

+ I
s

�V
r

)

(V
s

I
r

+ V
r

I
s

)2
,

(41)

where results from Appendix B have been used. Let the
relative change in Z be

�Z =
�Z

Z
=

2(V
s

�V
s

� V
r

�V
r

)

V 2
s

� V 2
r

� I
r

�V
s

+ I
s

�V
r

V
s

I
r

+ V
r

I
s

. (42)

Suppose errors are modelled at both line ends by �V
s

= (a
s

+
j�

s

)Ṽ
s

and �V
r

= (a
r

+ j�
r

)Ṽ
r

. Then the relative change
around Ṽ

s

, Ṽ
r

is

�Z
exact

=
2((a

s

+ j�
s

)Ṽ
s

2 � (a
r

+ j�
r

)Ṽ
r

2
)

Ṽ
s

2 � Ṽ
r

2 , (43)

where only the first, dominant term is considered. Now sup-
pose all errors are modelled to be in Ṽ

r

, such that �V
s

=
0, �V

r

= (a + j�)Ṽ
r

where a = a
r

� a
s

,� = �
r

� �
s

. Then
the relative error becomes

�Z
app

=
�2(a

r

� a
s

+ j�
r

� j�
s

)Ṽ
r

2

Ṽ
s

2 � Ṽ
r

2 . (44)
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The difference between the exact and approximate relative
error is

�Z
exact

��Z
app

=
2(a

s

+ j�
s

)(Ṽ
s

2 � Ṽ
r

2
)

Ṽ
s

2 � Ṽ
r

2 = 2(a
s

+ j�
s

).

(45)
Hence, by modelling all error to be in Ṽ

r

, an approximation
of 2(a

s

+ j�
s

) is made in the relative error of the impedance,
which is constant and of a lower order than the overall error
�Z

exact

. Using an equivalent expression for �Y , a similar
argument can be produced for modelling all errors in current
in Ĩ

r

.
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