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ABSTRACT: Two chiral complexes (1-SDS and 1-SDBS) were
prepared via the ionic self-assembly of a chiral perylene diimide tecton
with oppositely charged surfactants. The effect of surfactant tail
architecture on the self-assembly properties and supramolecular
structure was investigated in detail using UV−vis, IR, circular
dichroism, light microscopy, X-ray diffraction studies, and electron
microscopy. The results obtained revealed the molecular chirality of
the parent perylene tecton could be translated into supramolecular
helical chirality of the resulting complexes via primary ionic
interactions through careful choice of solvent and concentration.
Differing solvent-dependent aggregation behavior was observed for
these complexes as a result of the different possible noncovalent
interactions via the surfactant alkyl tails. The results presented in this
study demonstrate that ionic self-assembly (ISA) is a facile strategy for the production of chiral supramolecular materials based
on perylene diimides. The structure−function relationship is easily explored here due to the wide selection and easy availability of
common surfactants.

■ INTRODUCTION

Hierarchical self-assembly of different components into func-
tional superstructures can be found throughout nature, for
example, in the formation of cell membranes from proteins,
lipids, and steroids, alpha helices and beta sheets as protein
secondary structures, as well as light-harvesting photosynthetic
systems.1,2 The preparation of synthetic nanostructured
hierarchical materials utilizing the self-assembly route has
generated much interest in recent years due to the relative
simplicity of this method versus traditional covalent synthe-
ses.3,4 When focusing on functionality in self-assembled
materials, organic π-conjugated materials are candidates of
particular interest due to their processability and desirable
optoelectronic properties associated with the aromatic
systems.5 Oligomers, polymers, and block copolymers are
well-studied materials in this sense, and many self-assembled
nanostructures including nanowires,6 nanoribbons,7 and nano-
tubes8,9 have been prepared and studied in detail.
Perylene diimides (PDIs) and their derivatives are a class of

π-conjugated dyes that have been widely investigated for the
preparation of functional self-assembled materials due to their
application as n-type semiconductors in organic electronic
devices and solar cells.10−12 Selective synthesis of PDI building
blocks can be used to tune properties such as solubility,
mesophase formation, absorption, and fluorescence quantum
yields.13−15 Strategies commonly employed to influence PDI

properties include variation of side chain length and number,
degree of branching, or the inclusion of different functional
groups.16,17

Substituent modulation is an effective means of controlling
the physical and chemical properties of PDIs due to the effect
of peripheral substituents on the molecular packing of the
central perylene unit.18−20 Specifically, modification of the
imide substituents can be used to incorporate additional
noncovalent interactions, thus influencing aggregation, self-
assembly, and consequent optoelectronic properties.21,22

The incorporation of chiral groups can be used to modify the
self-assembly of PDIs due to the additional ordering generated
by the spatially specific steric demands of the chiral group. The
molecular chirality of the chiral PDI subunits can be translated
into supramolecular architectures, resulting in helical supra-
molecular ordering.23−25 Biased helical superstructures have
been observed for chiral PDIs, the handedness of which can be
inverted by the variation of external stimuli such as solvent,
temperature, and concentration.26,27

Chiral PDIs typically self-assemble to form 1D helical
morphologies via rotational stacking of the central perylene
cores.28,29 Other structural motifs observed for self-assembled
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chiral PDIs include chiral pinwheels30 and spherical nanostruc-
tures.31,32 The most common strategy for the production of
chiral PDI materials is by the direct substitution of a chiral
group at the imide positions. Chiral moieties including alkyl
chains,33,34 sugars,35 and amino acids36−38 have been previously
used to prepare supramolecular materials with chiral ordering.
Another strategy for production of chiral PDI materials is by

hydrogen bonding of achiral PDIs to chiral molecules to give
chiral supramolecular self-assemblies.39−41 Chiral functional
groups such as urea, melamines,42,43 and oligo(p-
phenylenevinylene)s44 have been utilized for this purpose.
Although the use of hydrogen-bonding interactions has been
well documented for the formation of chiral self-assembled
materials based on PDIs, the use of ionic interactions is much
less common. Herein, we describe the use of ionic self-assembly
(ISA) for the production of helical chiral materials based on
PDIs.
ISA relies on the formation of ordered assemblies via the self-

organization of commonly available oppositely charged
chemical building blocks (or tectons) such as surfactants,
lipids, polyelectrolytes, and polypeptides.45 The initial driving
force for self-assembly is the establishment of primary ionic
interactions between the oppositely charged tectons to give
charge-neutralized complexes. These complexes can self-
assemble into structures of higher complexity via secondary
noncovalent interactions such as hydrogen bonding, π−π
interactions, and hydrophobic forces.46 Functional nano-
structured PDI materials have previously been prepared by
ISA utilizing combinations of charged PDIs and polyelec-
trolytes, metal phthalocyanines, or surfactants.47−49

Previously, we demonstrated that chiral PDI materials can be
prepared by the ISA of achiral perylene derivatives with
oppositely charged chiral surfactants.50,51 The chirality of the

surfactant was transferred to and expressed by the perylene
chromophore in the resulting materials; self-organization of the
complexes to form helical architectures occurred in both
solution and solid state.
In contrast to previous chiral materials synthesized utilizing

ISA, here for the first time, we aim to (1) investigate the effect
of incorporating the chiral moiety directly into the PDI building
block, and (2) explore the ability of the PDI tecton to express
chirality in the resulting ISA supramolecular structures coupled
through the ionic interactions. Detailed characterization of the
self-assembly behavior in both solution and solid state has been
carried out to determine the effect of chirality and surfactant
structure on the self-assembled structures of the resulting
materials.

■ EXPERIMENTAL SECTION
Materials. All chemicals were purchased from Aldrich and used as

received unless otherwise specified. Surfactants were used without
further purification. 1 (N,N′-bis(2-(trimethylammonium)-3-(phenyl)-
propyl)-perylene diimide) was synthesized using a published
procedure.24

Equipment. 1H and 13C NMR spectra were recorded on a JEOL
ECP(Eclipse) 400 spectrometer using the proton signal of TMS or the
deuterated solvent as internal standard. All samples were recorded at
20 °C. ESI−mass spectrometry analyses of the samples were
performed on a QStar XL Applied Biosystems spectrometer.

Circular dichroism (CD) measurements were obtained with a
JASCO-J815 spectropolarimeter. UV−vis data were recorded using a
PerkinElmer Lambda 35 UV−vis spectrometer in the range 200−800
nm. Fluorescence measurements were obtained using a Varian Cary
spectrophotometer at an excitation wavelength of 470 nm in the range
500−800 nm. Because of the high emission intensity of samples, slit
widths of 2.5 and 5 nm were used for EtOH and THF solutions,
respectively. All spectra were obtained at rt unless otherwise specified.

Scheme 1. Molecular Structures of the Parent Perylene Tecton 1 (N,N′-bis(2-(trimethylammonium)-3-(phenyl)propyl)-
perylene diimide) and the Complexes Synthesized by ISA of Chiral Building Block 1 with C12-Containing Surfactants SDBS and
SDS
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Standard 1 or 10 mm path quartz cuvettes were used depending on
sample concentration. For spectroscopic measurements in the solid
state, films were prepared by casting a THF or EtOH solution (1 ×
10−3 M) onto quartz slides, then allowing the solvent to evaporate in
air at rt. For electron microscopy measurements, samples were
prepared by casting THF or EtOH solution (7.4 × 10−4 M) onto the
sample substrate and allowing the solvent to evaporate in air at rt.
Polarized optical microscopy images were obtained using a Nikon

BX-50 microscope fitted with an Olympus C-5060 wide zoom digital
camera. XRD investigations of the complexes were performed on
beamline BM26B (DUBBLE) at the ERSF, Grenoble, France. SAXS
data were collected using a Pilatus 1 M detector. For WAXS, a Pilatus
300 K detector was used. The X-ray wavelength was 1.03 Å, and the
sample−detector distance was 2 m.
The procedures used for the preparation of the complexes are given

in the Supporting Information.

■ RESULTS AND DISCUSSION

Complexes were prepared by ionic self-assembly of perylene
diimide tecton 1 (N,N′-bis(2-(trimethylammonium)-3-
(phenyl)propyl)-perylene diimide), with anionic surfactants
SDS and SDBS (to give complexes 1-SDS and 1-SDBS,
respectively; see Scheme 1). These surfactants are structurally
related in that they both possess a single 12-carbon chain. SDS
and SDBS have similar headgroup size and composition, and
differ in the linker group between the headgroup and the C12
tail, with an aromatic unit for SDBS versus an O atom for SDS.
Complexation was carried out at elevated temperatures (65

°C) in aqueous solution as temperature-dependent UV−vis
studies on the precursor showed that little aggregation of the
PDI occurs at this temperature.24 Thus, preparation was carried
out with 1 in the molecularly dissolved state to facilitate
complete complexation.
The solubility properties of the resulting surfactant

complexes are markedly different from those of the charged
parent compound, 1. Whereas 1-SDS and 1-SDBS are highly
soluble and exhibit solvatochromism in common organic
solvents such as EtOH and THF, precursor 1 is very poorly
soluble in EtOH, and insoluble in THF, respectively.
Solution-State Aggregation Behavior. UV−Vis Inves-

tigations. PDIs are widely known to self-assemble and form
aggregates from very low concentrations in poor solvents. The
driving force for this low-concentration aggregation phenom-
enon is the establishment of favorable π−π interactions
between the central aromatic systems. The aggregation
geometry of perylenes can be modulated by variation of the
imide substituents (in this case, via ionic self-assembly), and
can be investigated by UV−vis spectral changes.52 UV−vis
absorption studies were carried out in THF and EtOH to
investigate the influence of differences in surfactant structure on
the aggregation properties of the complexes in solution.
Both complexes exhibit absorption bands in the 450−550 nm

range in EtOH, with distinct vibronic structure associated with
the π−π* transition observed.50 Absorption maxima occur at
similar values for both complexes at 534, 497, and 465 nm,
corresponding to the S0−0, S0−1, and S0−2 vibronic transitions,
respectively. The appearance of the spectra, that is, absorption
maxima of intensity pattern S0−0 > S0−1 > S0−2, is indicative of
perylene diimide chromophores in the monomeric state (Figure
1).34 The ratio of the intensity of the two lowest energy
transitions, S0−0 and S0−1, can be used to interpret the level of
aggregation of perylene chromophores in solution.53 For
aggregated perylene chromophores, typical values for the
absorption ratio A0−0/A0−1 are <0.7. Monomerically dissolved

PDIs exhibit normal Franck−Condon progression with a ratio
A0−0/A0−1 of ca. 1.6.

54

The absorption ratios obtained for 1-SDS and 1-SDBS
indicate that the complexes are nonaggregated at low
concentration in EtOH. It is likely that EtOH is a good solvent
for these complexes due to the hydrogen-bonding capability of
the carbonyl groups of the imide units and the oxygen-rich
headgroups of the surfactants (i.e., hydrogen-bonding accept-
ors).51 Although the decrease in the absorption ratios indicates
that the aggregation of the chromophores increases with
concentration (Table S1), the absorption maxima remained
constant over the concentration range assayed (1 × 10−5 to 1 ×
10−3 M). At lower concentration (1 × 10−6 M), 1-SDS exhibits
the highest tendency for aggregation, whereas the level of
aggregation for both complexes is comparable at higher
concentration (1 × 10−4 M). It could be expected that the
extra oxygen atom in 1-SDS would afford greater solubility in
EtOH due to greater capacity for hydrogen bonding; however,
it is possible that the absence of a bulky aromatic group in the
surfactant tails of 1-SDS gives rise to more efficient packing of
the PDI complexes, thus leading to increased aggregation.
Conversely, it is likely that favorable π−π interactions of the
aromatic ring of SDBS play a greater role with increasing
concentration, thus overcoming the steric crowding effects and
leading to levels of aggregation similar to those found for 1-
SDS.
In contrast to the bright orange colors of the solutions

dissolved in EtOH, deep purple solutions were obtained when
THF was used as solvent. For both complexes, the S0−1
transition now occurs with the highest intensity (Figure 2);
this pattern of absorption is consistent with perylene
chromophores in the aggregated state. When highly aggregated,
there are very strong ground-state interactions between the
molecules, and the Franck−Condon factors now favor the S0−1
excited vibronic state.55

In THF, reduced UV−vis absorption intensity was observed
relative to the spectra obtained in EtOH. Broadening of the
peaks in the spectra occurs, indicative of increased excitonic
coupling of the chromophores in the aggregates.56 1-SDS and
1-SDBS exhibit a similar general absorption pattern with an
absorption maximum at 507 nm for the S0−1 transition. The

Figure 1. Concentration-dependent UV−vis absorption spectra for 1-
SDS in EtOH. Similar curves were obtained for 1-SDBS (see Figure
S1).
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absorption bands are also bathochromically shifted relative to
the equivalent transitions of the complexes dissolved in EtOH.
With increasing concentration, the intensity of the lower

energy S0−0 transition diminishes with respect to the S0−1
transition. The blue shift of the λmax absorption relative to the
monomeric state is characteristic of the formation of H-
aggregates in which the perylene units are stacked with cofacial
geometry.52 In addition to the blue shift of the absorption
maximum, a new absorption feature starts to form as a shoulder
initially at ca. 550 nm for 1-SDS, which is associated with the
increased aggregation of the perylene chromophores. At the
same time, the absorption peak at 530 nm begins to decrease in
intensity (Figure 2b, Figure S1b). The absorption ratios
measured in THF indicate that 1-SDBS is more highly
aggregated than 1-SDS at low concentration. The monomer
peak at 530 nm is absent for 1-SDBS, and the absorption
maximum for the S0−0 transition occurs at 549 nm throughout
the entire concentration range investigated (1 × 10−5 M to 1 ×
10−3 M). In contrast, this higher wavelength peak only becomes
more pronounced for 1-SDS at concentrations above 1 × 10−4

M.
According to the molecular exciton theory, the spectral

features for these complexes are dependent upon the angle of
the center-to-center vector of the transition dipole moments.57

The appearance of both red- and blue-shifted bands in the
spectra has previously been observed in other H-aggregated
PDI systems, and is likely due to rotational offset of the

transition dipoles of the stacked perylene cores as opposed to a
strictly parallel confirmation.56

Although THF is a good hydrogen-bond acceptor, the lack of
hydrogen-bond donors in this solvent reduces its ability to
solvate the PDI complexes. Hence, the central aromatic cores
have a higher preference for π−π stacking in THF as compared
to EtOH at the same concentrations (Table S2). The A0−0/
A0−1 ratios indicate that at both high and low concentrations, 1-
SDBS exhibits the highest tendency for aggregation.

Circular Dichroism Investigations. Circular dichroism (CD)
studies were carried out to investigate whether the chirality of
the designed and synthesized PDI tecton can be expressed in
the self-assembled structure of the supramolecular complexes.
CD measurements of the parent perylene tecton 1 in H2O at a
range of concentrations gave a bisignate absorption signal,
which varied from positive to negative with increasing
wavelength.4 This feature corresponds to an arrangement of
the transition dipoles of the perylene chromophores in a right-
handed helical fashion.26,50

The CD spectra of the complexes were measured in both
EtOH and THF. At low concentration, 1-SDBS exhibited weak
Cotton effects in EtOH (Figure 3b); the absorption observed
was positive only and thus clearly indicates the absence of
supramolecular chiral helical aggregates of the chromophore for
this complex in EtOH. The CD spectra obtained for 1-SDBS in
EtOH were in good agreement with UV−vis measurements,
which were characteristic of nonaggregated perylene diimide
chromophores in solution. Instead, it is likely that any

Figure 2. Concentration-dependent UV−vis absorption spectra for complexes in THF: (a) 1-SDS and (b) 1-SDBS.

Figure 3. Concentration-dependent CD spectra in EtOH: (a) for 1-SDS and (b) 1-SDBS (1 × 10−5, 1 × 10−4 M were measured using a 10 mm
path; 1 × 10−3 M was measured using a 1 mm path).
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aggregates formed by 1-SDBS are transient and disordered,
hence giving rise to the weak Cotton effects in the CD spectra.
For 1-SDS, different absorption behavior is observed in the

CD spectrum in EtOH as compared to 1-SDBS (Figure 3a and
b, respectively). The spectra reveal a weakly bisignate Cotton
effect is induced in the 1-SDS perylene chromophore in EtOH
at low concentration (1 × 10−5 M). UV−vis measurements
indicated that 1-SDS is more aggregated relative to 1-SDBS at
low concentration in EtOH (see Table S1); the appearance of a
bisignate Cotton effect for 1-SDS at low concentration follows
this trend and reflects the greater ability of this complex to self-
assemble into helical architectures at low concentration in
EtOH versus 1-SDBS.
The absorption ratios from the UV−vis spectra in EtOH

indicated that the level of aggregation increases with increased
concentration for both complexes. For 1-SDBS, the transition
from disordered chiral aggregates to right-handed helical
aggregates occurs upon increasing concentration, as evidenced
by the appearance of a characteristic bisignate signal by CD at 1
× 10−3 M (Figure 3b). For 1-SDS, the intensity of the bisignate
Cotton effect increases with concentration, clearly indicating
right-handed helical architectures for this complex throughout
the concentration range assayed.
In THF, the aggregation of the complexes is more enhanced

and the CD signals observed are of greater intensity in
comparison to those obtained in EtOH at the same
concentrations. Clearly resolved bisignate Cotton effects
occur throughout the entire concentration range assayed in

THF (1 × 10−5 to 1 × 10−3 M) for both 1-SDS and 1-SDBS
(Figure 4a and b, respectively). The CD signal measured for 1-
SDBS is of greater intensity as compared to 1-SDS in THF, and
confirms the increased tendency for aggregation in this system
(as was also found by UV−vis spectroscopy). The positive sign
of the couplet in the CD spectra obtained in THF for both
complexes indicates that the perylene chromophore is oriented
in a right-handed helical fashion in the self-assembled structures
formed.

Fluorescence Investigations. As changes in the aggregation
of the chromophores can influence their emission spectra,
concentration-dependent fluorescent measurements were car-
ried out in both THF and EtOH to further characterize the
aggregation behavior in these solvents.
Photoluminescence spectra obtained in EtOH exhibited well-

defined vibronic structure for both complexes. At each
concentration assayed, the fluorescence spectrum is approx-
imately a mirror image of the absorption spectrum (Figure 5a).
The pattern of emission in EtOH for each complex is almost
identical with λmax values occurring at 545 and 580 nm and a
relatively small Stokes shift of 10 nm. Upon increasing the
concentration, very little change occurs in the spectral features
for both complexes. The spectra obtained for 1-SDS and 1-
SDBS are characteristic of PDI systems in which little
aggregation is occurring and the PDI is predominantly in the
monomeric form (see Figure 5b as an example).
Photoluminescence spectra obtained in THF indicated lower

emission intensity for the complexes relative to measurements

Figure 4. Concentration-dependent CD spectra in THF for (a) 1-SDS and (b) 1-SDBS.

Figure 5. Mirror UV−vis (right axis) and fluorescence spectrum (left axis) in EtOH of (a) 1-SDBS, c = 3 × 10−5 M. (b) Concentration-dependent
fluorescence spectra in EtOH for 1-SDS, excitation wavelength = 470 nm, slit width 2.5 nm.
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obtained in EtOH. 1-SDS exhibited greater emission intensity
at low concentration versus 1-SDBS, likely due to the reduced
aggregation of the latter complex as was already indicated by
the UV−vis measurements in THF. Emission bands were
observed in the 500−650 nm range for both complexes, with
emission maxima at 525 and 559 nm. Similar spectral patterns
were obtained for both complexes at low concentration (1 ×
10−5 to 3 × 10−5 M), in which the emission intensity increases
with concentration until a threshold value is reached (3 × 10−5

M in both cases, see below); further increases above this
threshold concentration led to fluorescence quenching.
Although this threshold concentration occurs at 3 × 10−5 M
for both complexes, different patterns of fluorescence
quenching are observed above the threshold for each complex.
For 1-SDS, the fluorescence intensity of the lowest wavelength
emission band remains virtually constant between 3 × 10−5 and
1 × 10−4 M, whereas the fluorescence intensity of the same
peak for 1-SDBS diminishes at a faster rate within this
concentration interval (Figure 6b). For 1-SDBS, the intensity
of all three emission bands begins to diminish above 3 × 10−5

M, and at concentrations of 4 × 10−4 M, a broad shoulder
begins to emerge at 608 nm (Figure 6a). The differences in
fluorescence intensity with concentration for 1-SDS and 1-
SDBS are indicative of different aggregation behavior for the

complexes. At the highest concentration assayed (4 × 10−4 M),
the fluorescence intensity is almost completely quenched for
both complexes; however, whereas for 1-SDBS a single broad
structureless emission band occurs at this concentration, for 1-
SDS vibronic structure can still be observed in the spectrum
(see Figure S3). For PDIs, loss of vibronic structure is
commonly observed due to increased excitonic coupling as a
result of chromophores, which are stacked in close
proximity.58,59 The lack of vibronic structure for the emission
spectra of 1-SDBS at high concentration is indicative of the
increased aggregation of this complex. For both complexes, the
loss in fluorescence intensity is likely due to a self-quenching
mechanism as a result of reabsorption of the emission by
aggregated molecules in the ground state.

Aggregation Behavior in Films. UV−Vis Investigations.
Films of the complexes were prepared by drop casting 1 × 10−3

M solutions of the complex onto quartz plates. UV−vis and CD
spectra were recorded to investigate whether the self-assembly
and aggregation of the molecules in solution could be preserved
in the solid state. For both complexes (Figure 7), films cast
from either EtOH or THF gave spectra similar to those of the
complexes in THF solution (see Figure 7); the UV−vis spectra
of these films exhibited broad, poorly defined absorption bands,
and the vibronic structure was much less resolved. The

Figure 6. (a) Concentration-dependent fluorescence spectra of 1-SDBS in THF, c = 5 × 10−5 to 4 × 10−4 M, arrows indicate changes with increasing
concentration, see Figure S3 for 1-SDS data; and (b) changes in the photoluminescence of the lowest wavelength emission band with concentration
for the complexes in THF, excitation wavelength 470 nm, slit width 5 nm.

Figure 7. Spectroscopic properties of the films cast of the complexes: (a) UV−vis absorption of films cast from EtOH; and (b) CD spectra of films
cast from 1 × 10−3 M THF solutions.
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hypsochromic shift of the absorption maximum to the S0−1
transition is characteristic of perylene chromophores stacked
cofacially in the aggregated state. These spectra indicate that
the packing features of the self-assembled aggregates in solution
are conserved in the solid state for both complexes.
CD Investigations. CD measurements of the solid-state films

cast from THF for both complexes (shown in Figure 7b)
showed features similar to those obtained in THF solution
(Figure 3). Each complex exhibited a bisignate Cotton effect
characteristic of right-handed helical orientation of the
transition dipoles in the films upon aggregation.
Similarly to the behavior seen at high concentration in EtOH,

1-SDBS films cast from EtOH exhibited strong bisignate
Cotton effects; that is, the chromophores are in a strongly
aggregated state. The absorption maxima and minima were
identical to those observed for the THF films. Films of 1-SDS
cast from EtOH also showed characteristics similar to those
observed in EtOH solution, with a weakly bisignate Cotton
effect evident (see Figure S4). This corresponds with the
pattern of absorption observed in the UV−vis data for this
complex, indicating that the helical ordering of the aggregates in
solution was clearly preserved in the solid state.
Bulk Aggregation Behavior. General Characterization.

Temperature-dependent polarized optical microscopy (POM)
was used to further characterize the films of the complexes cast
from THF and EtOH (Figure S5). POM revealed highly
birefringent materials at room temperature, indicative of
anisotropic organization of the complex materials for films
cast from both solvents. A liquid-crystalline phase structure
could not be assigned to the films as the domains were very
small. No transitions to the isotropic state prior to the onset of
degradation were observed for either of the complexes.
Thermal annealing could therefore not be used to investigate
the mesophase character of the materials.
X-ray diffraction (XRD) was carried out on films cast from

EtOH solutions to further investigate the structural ordering
within the materials (Figure 8). Wide-angle X-ray scattering
(WAXS) analysis of 1-SDS films cast from EtOH indicated that
the π−π stacking was strongly reduced when compared to the
π−π stacking typically observed in PDI systems.11 A low
intensity diffraction peak is observed at 2θ = 27.29°, giving a
π−π stacking distance of 3.27 Å. Peaks corresponding to

crystalline packing of the alkyl tails occur at 2θ = 20.8−23.7°
(Figure 8b).
Small-angle X-ray scattering (SAXS) analysis of 1-SDS gave a

broad reflection centered on 2θ = 2.6°; superimposed on this
reflection is a higher intensity sharp reflection at 2θ = 2.14°. A
set of reflections at integer multiples of this angle points to the
presence of lamellar ordering, although there are also a series of
broader reflections pointing to a coexistence of structures of
lower order. These results indicate that mixed phases exist for
1-SDS films.
Similar, for 1-SDBS, a very low intensity reflection occurs at

2θ = 27.2°, which corresponded to a π−π stacking distance of
3.28 Å for the complex. The absence of strong reflections (and
presence of a broad scattering halo) in the region
corresponding to the alkyl tails is likely to be indicative of a
disordered arrangement of the alkyl chains in this complex.
SAXS analysis of the material gave a very broad peak at 2θ =
2.82° corresponding to a structural feature of 31.1 Å, as well as
an additional (unidentified) scattering feature at 2θ = 6.5°.
Overall the SAXS results were representative of little long-range
ordering within the films cast from EtOH for this complex.

Electron Microscopy. Electron microscopy investigations
were carried out to observe the self-assembled structures of the
complexes in thin films. It was aimed to investigate the effect of
the different structural compositions of the surfactant alkyl tails
on the self-assembly of the ISA complexes.
TEM micrographs of thin films for both complexes cast from

either EtOH or THF (Figures S6 and S7) showed similar
morphologies: sheet-like architectures consisting of smaller
aggregates of nonuniform width and length. Because of the
sheet-like morphology, helical ordering could not be identified
in the self-assembled structures. It was therefore decided to
expand our investigations, and explore whether solvent could
be used as a driving force for the formation of well-defined self-
assemblies for the complexes. We utilized a solution-injection
method in which the complexes in “good” solvent were added
to “poor” solvent with vigorous mixing. EtOH was chosen for
the good solvent as spectroscopic studies demonstrated that the
PDI complexes were molecularly dissolved in EtOH solution.
Water was chosen as the poor solvent as the complexes exhibit
little solubility in aqueous solution.
Four different conditions were employed (80/20, 50/50, 20/

80, and 4/96 EtOH and water). A well-defined spherical

Figure 8. X-ray diffraction studies of the films cast from EtOH: (a) SAXS, and (b) WAXS.
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morphology was observed for both complexes across the
conditions with the three highest proportions of water (Figure
9, Figures S8 and S9). With decreasing proportion of EtOH
(and thus decreasing concentration of each complex), the
spherical aggregates decrease in size, and increasingly depart
from the observed spherical structures.
Films of each complex were prepared from a 50:50

EtOH:Water system, and were analyzed by UV and CD, to
probe the structure of the observed aggregates. For both 1-SDS
and 1-SDBS, UV spectroscopic analysis indicated that the
perylene cores adopt an H-aggregate mode of packing in the
spherical self-assemblies (Figure S10). CD analysis of the films
was indicative of a right-handed helical arrangement of the
perylene units in the spherical aggregates (Figure S11). Helical
ordering has previously been reported for chiral PDI systems
forming self-assembled spherical aggregates.60

Interestingly, TEM investigations revealed the existence of
different architectures for 1-SDS versus 1-SDBS at high water
content and low concentration (4/96 EtOH:Water). For 1-
SDS, spherical structures were obtained (Figure 9a), whereas 1-
SDBS exhibited rod-like structures (Figure 9c). The lengths of
the rods varied widely, but the widths were uniform at ∼100
nm for 1-SBDS.
For PDIs, ordered 1D stacking takes place due to a balance

between the lateral interactions between the side chains (in this
case, the extended side chains from the surfactant tails) and the
tendency for π−π stacking between the central perylene units.
At higher volume fractions of poor solvent, the hydrophobic
driving force for aggregation is increased, and π−π interactions
between the central perylene units direct the formation of self-
assembled complex aggregates. For 1-SDBS, π−π interactions
in addition to van der Waals forces can occur between the
surfactant alkyl tails as a result of the benzyl moieties. Both of

these interactions stabilize the self-assembly into 1D columnar
arrays, and could provide a possible explanation for the
formation of rods over spheres. The hydrophobic effect also
drives the formation of aggregates for 1-SDS; however, other
than van der Waals interactions, there are few other secondary
interactions to direct the self-assembly in a columnar fashion.
Control experiments carried out using the parent compound 1
did not give any well-defined spherical nanostructures,
providing further evidence that the self-assembly in the solvent
systems used here is highly dependent upon the presence of the
oppositely charged surfactants (Figure S12).
With increasing proportion of EtOH, the hydrophobic

driving force for aggregation is reduced, leading to distorted
π−π stacking geometries for the complexes. Instead of 1D self-
assembly, spherical morphologies are obtained for both
complexes, the size of which increases with concentration.

■ CONCLUSION

We have presented the preparation of chiral supramolecular
materials using the ionic self-assembly of oppositely charged
surfactants with an intrinsically chiral perylene diimide tecton,
1. The differences in the solubility and aggregation properties
of the parent tecton versus those of the complexed materials
illustrate how the ISA strategy can be used to tune the
properties of chiral perylene diimides via rational selection of
precursors. Characterization of the materials indicates that the
properties of the parent tectons can be conserved utilizing ionic
interactions; in particular, the molecular chirality of the
perylene tecton can be translated into the molecular chirality
of the resulting materials. The differences in surfactant tail
architecture enabled specific noncovalent interactions that
influenced the aggregation behavior and self-assembly of the

Figure 9. TEM and SEM images of self-assembled structures of the complexes produced using different solvent compositions of EtOH:Water for (a)
1-SDS 4/96, (b) 1-SDS 50/50, (c) 1-SDBS 4/96, and (d) 1-SDBS 50/50.
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complexes in solution and solid state, leading to the formation
of a range of morphologies (depending on preparation
conditions). X-ray diffraction demonstrated the presence of
mixed phases for the complexes in the solid state.
These results illustrate the potential of the ISA strategy for

the generation of a library of materials without covalent
synthesis based on the chiral tecton 1, in which the dominant
chiral features are preserved when using commonly available
oppositely charged surfactants. In this way, ISA represents a
particularly attractive route for the preparation of chiral
functional materials based on PDIs, for the investigation of
the relationship between structure, function, and application.
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