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ON THE WELL-POSEDNESS OF GLOBAL FULLY NONLINEAR

FIRST ORDER ELLIPTIC SYSTEMS

HUSSIEN ABUGIRDA AND NIKOS KATZOURAKIS

Abstract. In the very recent paper [K1], the second author proved that for

any f ∈ L2(Rn,RN ), the fully nonlinear first order system F (·,Du) = f is
well posed in the so-called J.L. Lions space and moreover the unique strong

solution u : Rn −→ RN to the problem satisfies a quantitative estimate. A
central ingredient in the proof was the introduction of an appropriate notion

of ellipticity for F inspired by Campanato’s classical work in the 2nd order

case. Herein we extend the results of [K1] by introducing a new strictly weaker
ellipticity condition and by proving well posedness in the same “energy” space.

1. Introduction

In this paper we consider the problem of existence and uniqueness of global
strong solutions u : Rn −→ RN to the fully nonlinear first order PDE system

(1.1) F (·,Du) = f, a.e. on Rn,

where n,N ≥ 2 and F : Rn × RNn −→ RN is a Carathéodory map. The latter
means that F (·, X) is a measurable map for all X ∈ RNn and F (x, ·) is a continuous
map for almost every x ∈ Rn. The gradient Du : Rn −→ RNn of our solution
u = (u1, ..., uN )> is viewed as an N × n matrix-valued map Du = (Diuα)α=1...N

i=1...n

and the right hand side f is assumed to be in L2(Rn,RN ).
The method we use in this paper to study (1.1) follows that of the recent paper

[K1] of the second author. Therein the author introduced and employed a new
perturbation method in order to solve (1.1) which is based on the solvability of the
respective linearised system and a structural ellipticity hypothesis on F , inspired by
the classical work of Campanato in the fully nonlinear second order case F(·,D2u) =
f (see [C0]-[C5], [Co1, Co2] and [Ta1]-[Ta3]). Loosely speaking, the ellipticity
notion of [K1] requires that F is “not too far away” from a linear constant coefficient
first order differential operator. In the linear case of constant coefficients, F assumes
the form

F (x,X) =

N∑
α,β=1

n∑
j=1

AαβjXβj e
α,

for some linear map A : RNn −→ RN . We will follow almost the same conventions
as in [K1], for instance we will denote the standard bases of Rn, RN and RN×n by
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2 HUSSIEN ABUGIRDA AND NIKOS KATZOURAKIS

{ei}, {eα} and {eα ⊗ ei} respectively. In the linear case, (1.1) can be written as

N∑
β=1

n∑
j=1

AαβjDjuβ = fα, α = 1, ..., N,

and compactly in vector notation as

(1.2) A : Du = f.

The appropriate well-known notion of ellipticity in the linear case is that the
nullspace of the linear map A contains no rank-one lines. This requirement can be
quantified as

(1.3) |A : ξ ⊗ a| > 0, when ξ 6= 0, a 6= 0

which says that all rank-one directions ξ⊗a ∈ RNn are transversal to the nullspace.
A prototypical example of such operator A : R2×2 −→ R2 is given by

(1.4) A =

[
1 0 0 1
0 −1 1 0

]
and corresponds to the Cauchy-Riemann PDEs. In [K1] the system (1.1) was proved
to be well-posed by solving (1.2) via Fourier transform methods and by utilising
the following ellipticity notion: (1.1) is an elliptic system (or F is elliptic) when
there exists a linear map

A : RNn −→ RN

which is elliptic in the sense of (1.3) and

(1.5) ess sup
x∈Rn

sup
X,Y ∈RNn,X 6=Y

∣∣[F (x, Y )− F (x,X)
]
−A : (Y −X)

∣∣
|Y −X|

< ν(A),

where

(1.6) ν(A) := min
|η|=|a|=1

∣∣A : η ⊗ a
∣∣

is the “ellipticity constant” of A. This notion was called “K-Condition” in [K1].
The functional space in which well posedness was obtained is the so-called J.L.
Lions space

(1.7) W 1;2∗,2(Rn,RN ) :=
{
u ∈ L2∗(Rn,RN ) : Du ∈ L2(Rn,RNn)

}
.

Here 2∗ is the conjugate Sobolev exponent

2∗ =
2n

n− 2

(note that “L2∗” means “Lp for p = 2∗”, not duality) and the natural norm of the
space is

‖u‖W 1;2∗,2(Rn) := ‖u‖L2∗ (Rn) + ‖Du‖L2(Rn).

In [K1] only global strong a.e. solutions on the whole space were considered and
for dimensions n ≥ 3 and N ≥ 2, in order to avoid the compatibility difficulties
which arise in the case of the Dirichlet problem for first order systems on bounded
domains and because the case n = 2 has been studied quite extensively.

In this paper we follow the method introduced in [K1] and we prove well-
posedness of (1.1) in the space (1.7) for the same dimensions n ≥ 3 and N ≥ 2.
This is the content of our Theorem 8, whilst we also obtain an a priori quantitative
estimate in the form of a “comparison principle” for the distance of two solutions
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in terms of the distance of the respective right hand sides of (1.1). The main ad-
vance in this paper which distinguishes it from the results obtained in [K1] is that
we introduce a new notion of ellipticity for (1.1) which is strictly weaker than (1.5),
allowing for more general nonlinearities F to be considered. Our new hypothesis
of ellipticity is inspired by an other recent work of the second author [K2] on the
second order case. We will refer to our condition as the “AK-Condition” (Definition
4). In Examples 5, 6 we demonstrate that the new condition is genuinely weaker
and hence our results indeed generalise those of [K1]. Further, motivated by [K2]
we also introduce a related notion which we call pseudo-monotonicity and examine
their connection (Lemma 7). The idea of the proof of our main result Theorem 8 is
based, as in [K1], on the solvability of the linear system, our ellipticity assumption
and on a fixed point argument in the form of Campanato’s near operators, which
we recall later for the convenience of the reader (Theorem 3).

We conclude this introduction with some comments which contextualise the
standing of the topic and connect to previous contributions by other authors. Lin-
ear elliptic PDE systems of the first order are of paramount importance in several
branches of Analysis like for instance in Complex and Harmonic Analysis. There-
fore, they have been extensively studied in several contexts (see e.g. Buchanan-
Gilbert [BG], Begehr-Wen [BW]), including regularity theory of PDE (see chapter
7 of Morrey’s exposition [Mo] of the Agmon-Douglis-Nirenberg theory), Differential
Inclusions and Compensated Compactness theory (Di Perna [DP], Müller [Mu]), as
well as Geometric Analysis and the theory of differential forms (Csató-Dacorogna-
Kneuss [CDK]).

However, except for the paper [K1] the fully nonlinear system (1.1) is much less
studied and understood. By using the Baire category method of the Dacorogna-
Marcellini [DM] (which is the analytic counterpart of Gromov’s geometric method
of Convex Integration), it can be shown that the Dirichlet problem

(1.8)

{
F (·,Du) = f, in Ω,

u = g, on ∂Ω,

has infinitely many strong a.e. solutions in W 1,∞(Ω,RN ), for Ω ⊆ Rn, g a Lips-
chitz map and under certain structural coercivity and compatibility assumptions.
However, roughly speaking ellipticity and coercivity of F are mutually exclusive. In
particular, it is well know that the Dirichlet problem (1.8) is not well posed when
F is either linear or elliptic.

Further, it is well known that single equations, let alone systems of PDE, in
general do not have classical solutions. In the scalar case N = 1, the theory of
Viscosity Solutions of Crandall-Ishii-Lions (we refer to [K0] for a pedagogical intro-
duction of the topic) furnishes a very successful setting of generalised solutions in
which Hamilton-Jacobi PDE enjoy strong existence-uniqueness theorems. However,
there is no counterpart of this essentially scalar theory for (non-diagonal) systems.
The general approach of this paper is inspired by the classical work of Campanato
quoted earlier and in a nutshell consists of imposing an appropriate condition that
allows to prove well-posedness in the setting of the intermediate theory of strong
a.e. solutions. Notwithstanding, very recently the second author in [K3] has pro-
posed a new theory of generalised solutions in the context of which he has already
obtained existence and uniqueness theorems for second order degenerate elliptic
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systems. We leave the study of the present problem in the context of “D-solutions”
introduced in [K3] for future work.

2. Preliminaries

In this section we collect some results taken from our references which are needed
for the main results of this paper. The first one below concerns the existence and
uniqueness of solutions to the linear first order system with constant coefficient

A : Du = f, a.e. on Rn,

with A : RNn −→ RN elliptic in the sense of (1.3), namely when the nullspace
of A does not contain rank-one lines. By the compactness of the torus, it can be
rewritten equivalently as

(2.1) |A : ξ ⊗ a| ≥ ν |ξ||a|, ξ ∈ RN , a ∈ Rn,

for some constant ν > 0, which can be chosen to be the ellipticity constant of A
given by (1.6). One can easily see that (2.1) can be rephrased as

(2.2) min
|a|=1

∣∣ det(Aa)
∣∣ > 0,

where Aa is the N ×N matrix given by

Aa :=

N∑
α,β=1

n∑
j=1

(Aαβj aj) e
α ⊗ eβ .

It is easy to exhibit examples of tensors A satisfying (2.1). A map A : R2×2 −→ R2

satisfying it is

A =

[
κ 0 0 λ
0 −µ ν 0

]
,

where κ, λ, µ, ν > 0. A higher dimensional example of map A : R4×3 −→ R4 is

A =


1 0 0 0 −1 0 0 0 −1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 −1
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 1 0 −1 0 1 0 0


which corresponds to the electron equation of Dirac in the case where is no external
force. For more details we refer to [K1].

Theorem 1 (Existence-Uniqueness-Representation, cf. [K1]). Let n ≥ 3, N ≥ 2,
A : RNn −→ RN a linear map satisfying (2.1) and f ∈ L2(Rn,RN ). Then, the
system

A : Du = f, a.e. on Rn,
has a unique solution u in the space W 1;2∗,2(Rn,RN ) (see (1.7)), which also satisfies
the estimate

(2.3) ‖u‖W 1;2∗,2(Rn) ≤ C‖f‖L2(Rn)

for some C > 0 depending only on A. Moreover, the solution can be represented
explicitly as:

(2.4) u = − 1

2πi
lim
m→∞

{
ĥm ∗

[
cof (Asgn)>

det(Asgn)

∨
f

]∧}
.
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In (2.4), (hm)∞1 is any sequence of even functions in the Schwartz class S(Rn)
satisfying

0 ≤ hm(x) ≤ 1

|x|
and hm(x) −→ 1

|x|
, for a.e. x ∈ Rn, as m→∞.

The limit in (2.4) is meant in the weak L2∗ sense as well as a.e. on Rn, and u is
independent of the choice of sequence (hm)∞1 .

In the above statement, “sgn”, “cof” and “det” symbolise the sign function on
Rn, the cofactor and the determinant on RN×N respectively. Although the formula
(2.4) involves complex quantities, u above is a real vectorial solution. Moreover,
the symbol “̂” stands for Fourier transform (with the conventions of [F]) and “∨”
stands for its inverse.

Next, we recall the strict ellipticity condition of the second author taken from
[K1] in an alternative form which is more convenient for our analysis. We will relax
it in the next section. Let

A : RNn −→ RN

be a fixed reference linear map satisfying (2.1).

Definition 2 (K-Condition of ellipticity, cf. [K1]). Let F : Rn×RNn −→ RN be a
Carathéodory map. We say that F is elliptic with respect to A when there exists
0 < β < 1 such that for all X,Y ∈ RNn and a.e. x ∈ Rn, we have

(2.5)
∣∣∣[F (x,X + Y )− F (x,X)

]
−A : Y

∣∣∣ ≤ β ν(A) |Y |,

where ν(A) is given by (1.6).

Finally, we recall the next classical result of Campanato taken from [C0] which
is needed for the proof of our main result Theorem 8:

Theorem 3 (Campanato). Let F ,A : X −→ X be two mappings from the set
X 6= ∅ into the Banach space (X, ‖ · ‖). If there is a constant K ∈ (0, 1) such that

(2.6)
∥∥∥F [u]−F [v]−

(
A[u]−A[v]

)∥∥∥ ≤ K
∥∥A[u]−A[v]

∥∥
for all u, v ∈ X and if A : X −→ X is a bijection, it follows that F : X −→ X is a
bijection as well.

3. The AK-Condition of Ellipticity for Fully Nonlinear First Order
Systems

In this section we introduce and study a new ellipticity condition for the PDE
system (1.1)which relaxes the K-Condition Definition 2 and still allows to prove
existence and uniqueness of strong solutions to

F (·,Du) = f, a.e. on Rn

in the functional space (1.7). Let

A : RNn −→ RN

be an elliptic reference linear map satisfying (2.1).
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Definition 4 (The AK-Condition of ellipticity). Let n,N ≥ 2 and

F : Rn × RNn −→ RN

a Carathéodory map. We say that F is elliptic with respect to A when there exists
a linear map

A : RNn −→ RN

satisfying (1.3), a positive function α with α, 1/α ∈ L∞(Rn) and β, γ > 0 with
β + γ < 1 such that

(3.1)
∣∣∣α(x)

[
F (x,X + Y )− F (x, Y )

]
− A : X

∣∣∣ ≤ β ν(A)|X| + γ |A : X|.

for all X,Y ∈ RNn and a.e. x ∈ Rn. Here ν(A) is the ellipticity constant of A given
by (1.6).

Nontrivial fully nonlinear examples of maps F which are elliptic in the sense of
the Definition 4 above are easy to find. Consider any fixed map A : RNn −→ RN
for which ν(A) > 0 and any Carathéodory map

L : Rn × RNn −→ RN

which is Lipschitz with respect to the second variable and∥∥L(x, ·)
∥∥
C0,1(RNn)

≤ β ν(A), for a.e. x ∈ Rn

for some 0 < β < 1. Let also α be a positive essentially bounded function with 1/α
essentially bounded as well. Then, the map F : Rn × RNn −→ RN given by

F (x,X) :=
1

α(x)

(
A : X + L(x,X)

)
satisfies Definition 4, since∣∣∣α(x)

[
F (x,X + Y )− F (x, Y )

]
−A : X

∣∣∣ ≤ ∣∣L(x,X + Y )− L(x, Y )
∣∣

≤ β ν(A)|X|

≤ β ν(A)|X| +
1− β

2
|A : X|.

As a consequence, F satisfies the AK-Condition for the same function α(·) and for
the constants β and γ = (1− β)/2.

The following example shows that, given a reference tensor A, there exist even
linear constant “coefficients” F which are elliptic with respect to A in the sense
of our AK-Condition Definition 4 but which are not elliptic with respect to A in
the sense of Definition 2 of [K1].

Example 5. Fix a constant α ∈ (0, 1/2] and consider the linear map F given by

F (x,X) :=
1

α
A : X,

where A is the Cauchy-Riemann tensor of (1.4). Then, F is elliptic in the sense
of Definition 4 with respect to A for α(·) ≡ α and any β, γ > 0 with β + γ < 1,
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but it is not elliptic with respect to A in the sense of Definition 2. Indeed for any
X,Y ∈ RNn we have:∣∣∣α[F (·, X + Y )− F (·, Y )

]
−A : X

∣∣∣ =

∣∣∣∣α [ 1

α
A : (X + Y )− 1

α
A : Y

]
−A : X

∣∣∣∣
= 0

≤ βν(A)|X| + γ |A : X|.

On the other hand, by (1.4) and (1.6) we have that ν(A) = 1. Moreover, for

X0 :=

[
1 1
1 1

]
we have |X0| = 2 and |A : X0| = 2. Hence, for any Y ∈ RNn we have∣∣∣[F (·, X0 + Y )− F (·, Y )

]
−A : X0

∣∣∣ =

∣∣∣∣[ 1

α
A : (X0 + Y )− 1

α
A : Y

]
−A : X0

∣∣∣∣
=

∣∣∣∣ 1αA : X0 −A : X0

∣∣∣∣
=
∣∣A : X0

∣∣ ∣∣∣∣ 1α − 1

∣∣∣∣
= 2

(
1

α
− 1

)
≥ 2

= ν(A) |X0|,

where we have used that (1/α)− 1 ≥ 1. Our claim ensues.

The essential point in the above example that makes Definition 4 more general
than Definition 2 was the introduction of the rescaling function α(·). Now we give
a more elaborate example which shows that even if we ignore the rescaling function
α and normalise it to α(·) ≡ 1, Definition 4 is still more general that Definition 2
with respect to the same fixed reference tensor A.

Example 6. Fix c, b > 0 such that c + b < 1 and
√

2c + b > 1 and a unit vector
η ∈ RN . Consider the Lipschitz function F ∈ C0

(
R2×2), given by:

(3.2) F (x,X) := A : X + η ·
(
b
∣∣X∣∣+ c

∣∣A : X
∣∣),

where A is again the Cauchy-Riemann tensor (1.4). Then, this F satisfies

(3.3)
∣∣∣[F (·, X + Y )− F (·, X)

]
−A : Y

∣∣∣ ≤ β ν(A)|Y | + γ
∣∣A : Y

∣∣,
for some β, γ > 0 with β + γ < 1, but does not satisfy (3.3) with γ = 0 for any
0 < β < 1 for the same A. Hence, F satisfies Definition 4 (even if we fix α(·) ≡ 1)
but it does not satisfy Definition 2. Indeed we have:∣∣∣A : Y−

[
F (·, X + Y )− F (·, X)

]∣∣∣
=
∣∣∣A : Y − A : Y − bη

(
|X + Y | − |X|

)
− cη

(∣∣A : (X + Y )
∣∣− |A : X|

)∣∣∣
≤ b|η|

∣∣∣|X + Y | − |X|
∣∣∣ + c|η|

∣∣∣|A : X + A : Y | − |A : X|
∣∣∣

≤ b|Y | + c|A : Y |
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and hence (3.3) holds for β = b and γ = c. On the other hand, we choose

X0 := 0, Y0 :=

[
1 ζ
ζ 1

]
, ζ :=

1− b√
2c2 − (1− b)2

.

This choice of ζ is admissible because our assumption
√

2c + b > 1 implies 2c2 −
(1− b)2 > 0. For these choices of X and Y , we calculate:∣∣∣A : Y0 −

[
F (·, X0 + Y0)− F (·, X0)

]∣∣∣ =
∣∣∣A : Y0 − F (·, Y0)

∣∣∣
=
∣∣∣A : Y0 − A : Y0 − η

(
b |Y0| + c|A : Y0|

)∣∣∣
= |η|

∣∣∣b|Y0| + c|A : Y0|
∣∣∣

= b |Y0| + c |A : Y0|.

We now show that

b |Y0| + c|A : Y0| = |Y0|

and this will allow us to conclude that (3.3) can not hold for any β < 1 if we impose
γ = 0. Indeed, since |Y0|2 = 2 + 2ζ2 and |A : Y0|2 = 4ζ2, we have(

1− b
)2|Y0|2 − c2|A : Y0|2 =

(
1− b

)2
2
(
1 + ζ2

)
− c2 4ζ2

= 2
(
1− b

)2
+ 2
((

1− b
)2 − 2c2

)
ζ2

= 2
(
1− b

)2
+ 2
((

1− b
)2 − 2c2

) (1− b)2

2c2 − (1− b)2
= 0.

We now show that our ellipticity assumption implies a condition of pseudo-
monotonicity coupled by a global Lipschitz continuity property. The statement
and the proof are modelled after a similar result appearing in [K2] which however
was in the second order case.

Lemma 7 (AK-Condition of ellipticity as Pseudo-Monotonicity). Definition 4 im-
plies the following statements:

There exist λ > κ > 0, a linear map A : RNn −→ RN satisfying (1.3) a positive
function α such that α, 1/α ∈ L∞(Rn) with respect to which F satisfies

(3.4) (A : Y )>
[
F (x,X + Y )− F (x,X)

]
≥ λ

α(x)
|A : Y |2 − κ

α(x)
ν(A)2|Y |2,

for all X,Y ∈ RNn and a.e. x ∈ Rn. In addition, F (x, ·) is Lipschitz continuous
on RNn, essentially uniformly in x ∈ Rn; namely, there exists M > 0 such that

(3.5)
∣∣F (x,X) − F (x, Y )

∣∣ ≤ M |X − Y |

for a.e. x ∈ Rn and all X,Y ∈ RNn.

Proof of Lemma 7. Suppose that Definition 4 holds for some constant β, γ > 0
with β + γ < 1, some positive function α with α, 1/α ∈ L∞(Rn) and some linear
map A : RNn −→ RN satisfying (1.3). Fix ε > 0. Then, for a.e. x ∈ RN and all
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X,Y ∈ RNn we have:

|A : Y |2 + α(x)2
∣∣∣F (x,X + Y )− F (x,X)

∣∣∣2
− 2α(x) (A : Y )

>
[
F (x,X + Y )− F (x,X)

]
≤ β2ν(A)2|Y |2 + γ2|A : Y |2 + 2βν(A)|Y | γ|A : Y |

which implies

|A : Y |2− 2α(x) (A : Y )
>
[
F (x,X + Y )− F (x,X)

]
≤ β2ν(A)2|Y |2 + γ2|A : Y |2 +

β2ν(A)2|Y |2

ε
+ εγ2|A : Y |2.

Hence,

(A : Y )
>
[
F (x,X + Y )− F (x,X)

]
≥ 1

α(x)

(
1− γ2 − εγ2

2

)
|A : Y |2 − 1

α(x)

(
εβ2 + β2

2ε

)
ν(A)2|Y |2.

By choosing ε := β/γ, from the above inequality we obtain (3.4) for the values

λ :=
1− γ(γ + β)

2
, κ :=

β(γ + β)

2
.

These are admissible because κ > 0 and λ > κ since

λ − κ =
1− (β + γ)2

2
> 0.

In addition, again by (3.1) we have:

α(x)
∣∣∣F (x,X)− F (x, Y )

∣∣∣ ≤ βν(A)|X − Y | + γ
∣∣A : (X − Y )

∣∣ +
∣∣A : (X − Y )

∣∣,
and hence,∣∣∣F (x,X)− F (x, Y )

∣∣∣ ≤ 1

α(x)

(
(1 + γ)

∣∣A : (X − Y )
∣∣ + βν(A)

∣∣X − Y ∣∣)
≤

{∥∥∥∥ 1

α(·)

∥∥∥∥
L∞(Rn)

(
(1 + γ)|A|+ βν(A)

)}
|X − Y |

for a.e. x ∈ RN and all X,Y ∈ RNn, which immediately leads to (3.5) and the
proposition ensues. �

4. Well-Posedness of Global Fully Nonlinear First Order Elliptic
Systems

In this section we state and prove the main result of this paper which is the
following:

Theorem 8 (Existence-Uniqueness). Assume that n ≥ 3, N ≥ 2 and let F :
Rn ×RN×n −→ RN be a Carathéodory map, satisfying Definition 4 with respect to
a reference tensor A which satisfies (2.1).

(1) For any two maps v, u ∈W 1;2∗,2(Rn,RN ) (see (1.7)), we have the estimate

(4.1) ‖v − u‖W 1;2∗,2(Rn) ≤ C
∥∥F (·, Dv)− F (·, Du)

∥∥
L2(Rn)
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for some C > 0 depending only on F . Hence, the PDE system F (·,Du) = f has at
most one solution.

(2) Suppose further that F (x, 0) = 0 for a.e. x ∈ Rn. Then for any f ∈ L2(Rn,RN ),
the system

F (·,Du) = f, a.e. on Rn,
has a unique solution u in the space W 1;2∗,2(Rn,RN ) which also satisfies the esti-
mate

(4.2) ‖u‖W 1;2∗,2(Rn) ≤ C‖f‖L2(Rn)

for some C > 0 depending only on F .

Proof of Theorem 8. (1) Let α and A be as in Definition 4 and fix u, v ∈
W 1;2∗,2(Rn,RN ). Since A satisfies (2.1), by Plancherel’s theorem (see e.g. [F]) we
have:

1

ν(A)

∥∥A :
(
Dv −Du

)∥∥
L2(Rn)

=
1

ν(A)

∥∥A :
(
D̂v − D̂u

)∥∥
L2(Rn)

=
1

ν(A)

∥∥A :
(
v̂ − û

)
⊗ (2πiId)

∥∥
L2(Rn)

≥
∥∥(v̂ − û)⊗ (2πiId)

∥∥
L2(Rn)

(4.3)

=
∥∥D̂v − D̂u

∥∥
L2(Rn)

=
∥∥Dv −Du

∥∥
L2(Rn)

,

where we symbolised the identity map by “Id”, which means Id(x) := x. Further,
by Definition 4 also we have∥∥∥α(·)

[
F (·,Du)− F (·,Dv)

]
− A :

(
Du−Dv

)∥∥∥
L2(Rn)

≤ βν(A)
∥∥Du−Dv

∥∥
L2(Rn)

+ γ
∥∥A :

(
Du−Dv

)∥∥
L2(Rn)

Using the estimate (4.3) above this gives:∥∥∥α(·)
[
F (·,Du)− F (·, Dv)

]
− A :

(
Du−Dv

)∥∥∥
L2(Rn)

≤ β
∥∥A :

(
Du−Dv

)∥∥
L2(Rn)

+ γ
∥∥A :

(
Du−Dv

)∥∥
L2(Rn)

(4.4)

≤
(
β + γ

)∥∥A :
(
Du−Dv

)∥∥
L2(Rn)

and hence(
β + γ

)∥∥A :
(
Du−Dv

)∥∥
L2(Rn)

≥
∥∥∥A :

(
Du−Dv

)
− α(·)

[
F (·,Du)− F (·,Dv)

]∥∥∥
L2(Rn)

≥
∥∥A :

(
Du−Dv

)∥∥
L2(Rn)

−
∥∥∥α(·)

[
F (·,Du)− F (·,Dv)

]∥∥∥
L2(Rn)

which implies the following estimate:∥∥∥α(·)
[
F (·,Du)− F (·,Dv)

]∥∥∥
L2(Rn)

≥
[
1− (β + γ)

]∥∥A :
(
Du−Dv

)
]
∥∥
L2(Rn)

≥
[
1− (β + γ)

]
ν(A)

∥∥Du−Dv
∥∥
L2(Rn)
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Since β + γ < 1, we have the estimate:

‖α(·)‖L∞(Rn)[
1− (β + γ)

]
ν(A)

∥∥F (·,Du)− F (·,Dv)
∥∥
L2(Rn)

≥
∥∥Du−Dv

∥∥
L2(Rn)

.(4.5)

By (4.5), and the fact that n ≥ 3, the Gagliardo-Nirenberg-Sobolev inequality gives
the estimate

‖u− v‖W 1;2∗,2(Rn) ≤ C
∥∥F (·,Du)− F (·,Dv)

∥∥
L2(Rn)

(4.6)

where C > 0 depends only on F .

(2) By our assumptions on F and that F (x, 0) = 0, Lemma 7 implies that there
exists an M > 0 depending only on F , such that for any u ∈ W 1;2∗,2(Rn,RN ), we
have the estimates∥∥α(·)F (·,Du)

∥∥
L2(Rn)

=
∥∥∥α(·)

[
F (·, 0 + Du)− F (·, 0)

]∥∥∥
L2(Rn)

= M‖α(·)‖L∞(Rn)‖Du‖L2(Rn)(4.7)

≤ M‖α(·)‖L∞(Rn)‖u‖W 1;2∗,2(Rn)

and also

(4.8) ‖A : Du‖L2(Rn) ≤ ‖A‖ ‖Du‖L2(Rn) ≤ ‖A‖‖u‖W 1;2∗,2(Rn).

We conclude from (4.7) and (4.8) that the differential operators{
A [u] := A : Du,

F [u] := α(·)F (·,Du),

map the functional space W 1;2∗,2(Rn,RN ) into the space L2(Rn,RN ). Note that
Theorem 1 proved in [K1] implies that the linear operator

A : W 1;2∗,2(Rn,RN ) −→ L2(Rn,RN )

is a bijection. Hence, in view of inequality (4.4) above and the fact that β+ γ < 1,
Campanato’s nearness Theorem 3 implies that F is a bijection as well. As a result,
for any g ∈ L2(Rn,RN ), the PDE system

α(·)F (·,Du) = g, a.e. on Rn,
has a unique solution u ∈W 1;2∗,2(Rn,RN ). Since α(·), 1/α(·) ∈ L∞(Rn), by select-
ing g = α(·)f , we conclude that the problem

F (·,Du) = f, a.e. on Rn,
has a unique solution inW 1;2∗,2(Rn,RN ). The proof of the theorem is now complete.

�
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DM. B. Dacorogna, P. Marcellini, Implicit Partial Differential Equations, Progress in Nonlinear
Differential Equations and Their Applications, Birkhäuser, 1999.
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