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Abstract
In 2012, heavy rainfall resulted in flooding and devastating impacts across West Africa. With
many people highly vulnerable to such events in this region, this study investigates whether
anthropogenic climate change has influenced such heavy precipitation events. We use a
probabilistic event attribution approach to assess the contribution of anthropogenic greenhouse
gas emissions, by comparing the probability of such an event occurring in climate model
simulations with all known climate forcings to those where natural forcings only are simulated.
An ensemble of simulations from 10 models from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) is compared to two much larger ensembles of atmosphere-only simulations,
from the Met Office model HadGEM3-A and from weather@home with a regional version of
HadAM3P. These are used to assess whether the choice of model ensemble influences the
attribution statement that can be made. Results show that anthropogenic greenhouse gas
emissions have decreased the probability of high precipitation across most of the model
ensembles. However, the magnitude and confidence intervals of the decrease depend on the
ensemble used, with more certainty in the magnitude in the atmosphere-only model ensembles
due to larger ensemble sizes from single models with more constrained simulations. Certainty is
greatly decreased when considering a CMIP5 ensemble that can represent the relevant
teleconnections due to a decrease in ensemble members. An increase in probability of high
precipitation in HadGEM3-A using the observed trend in sea surface temperatures (SSTs) for
natural simulations highlights the need to ensure that estimates of natural SSTs are consistent
with observed trends in order for results to be robust. Further work is needed to establish how
anthropogenic forcings are affecting the rainfall processes in these simulations in order to better
understand the differences in the overall effect.
1. Introduction

In 2012, rainfall over 150% above normal for the
period from late July to late August was reported across
many countries in West Africa (ACMAD 2012). This
year was characterised by an anomalously wet
monsoon, with an earlier than normal onset and
possible links to the Madden-Julian Oscillation, El
Niño Southern Oscillation (ENSO) and strong African
© 2017 IOP Publishing Ltd
Easterly Wave activity (Cornforth 2013). This led to
more than 1.5million people being affected byfloods in
countries acrossWest andCentral Africa, with deaths in
some countries (OCHA 2012) and hundreds of
thousands of people made homeless (IRIN 2012).
When events such as this occur, they can raise questions
about how they have been affected by climate change.

Following its proposal by Allen (2003), the science
of extreme event attribution assesses the impact of
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Figure 1. Observed JJA monthly mean precipitation from GPCC. The red box outlines the West Sahel region.
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anthropogenic climate change on the probabilities
of individual events. This could be relevant for
informing adaptation strategies (Otto et al 2015)
and addressing impacts under international climate
policy (James et al 2014), which may be particularly
important in regions such as Africa. Since the
first event attribution study over a decade ago of
the 2003 European heatwave (Stott et al 2004),
there have been many more studies (as reported,
for example, in the annual Bulletin of the American
Meteorological Society reports, e.g. Herring et al
2015). However, relatively few have been on events in
Africa in comparison to developed regions of the
world (examples in Africa include Otto et al 2013,
Bellprat et al 2015, Lott et al 2013, Wolski et al 2014).

Techniques for assessing how probabilities of
extremes have changed due to anthropogenic climate
change can be based on observational trends or
climate model simulations. Climate model studies
compare the probability of a particular extreme in the
actual world, simulated with all known external
climate forcings, to that in a world with a particular
climate forcing removed, such as anthropogenic
emissions. These can either use coupled climate
models (e.g. Bellprat et al 2015) or atmosphere-only
simulations (e.g. Lott et al 2013). Coupled simulations
assess the change in probability of an event under
general climate conditions with all natural variability
included, whereas atmosphere-only simulations assess
the change in probability of an event given the actual
sea surface temperatures (SSTs). When using atmo-
sphere-only models to produce estimates of the world
without anthropogenic emissions, the influence of
emissions has to be removed from the SSTs as well as
the atmosphere. This can provide an additional
challenge and level of uncertainty (Christidis and
Stott 2014).

Very few studies have compared the information
that coupled and atmosphere-only models can provide
about the influence of climate change on an event.
Lewis and Karoly (2015) compared a coupled multi-
2

model ensemble of Coupled Model Intercomparison
Project Phase 5 (CMIP5) simulations to two different
atmosphere-only model ensembles in their study of
extreme rainfall in Australia in 2010–2012. They
found that anthropogenic contributions to the event
depended on the model used, with more robust
results using atmosphere-only models than the
CMIP5 ensemble. This highlights the need for
comparisons of different model ensembles in order
to produce robust event attribution results. Here we
carry out a similar analysis of the anthropogenic
influence on 2012 precipitation in the West Sahel,
using a multi-model ensemble of coupled CMIP5
simulations and two ensembles of atmosphere-only
simulations from the Hadley Centre Global Environ-
ment Model version 3-A (HadGEM3-A) and a
regional version of the Hadley Centre Atmospheric
general circulation Model version 3P (HadAM3P), to
establish if attribution statements about the event are
consistent across the ensembles.

The paper is structured as follows: section 1
describes the observational and model datasets, model
validation methods and event attribution analysis
used. In section 2 we present the results of the model
evaluation and anthropogenic influences on 2012
precipitation, and these are compared and discussed in
section 3. Conclusions can be found in section 4.
2. Methods
2.1. Region and observations
The region considered is the West Sahel, as defined by
Rowell et al (2016), as this encompasses many of the
areas that were affected by the rainfall of 2012. This
region is shown in figure 1 and defined by 16°Wto 5°W
and 12°N to 18°N. Throughout this study, monthly
mean precipitation is averaged over June–July–August
(JJA) for each year. Although this periodmisses the end
of the rainy season in the region in September, this
standard season definition allows for comparison



Table 1. All forcings (ALL) and natural forcings (NAT) simulations from CMIP5 models used. References provide information about
forcings used in simulations.

Modelling centre Model name Number of ALL

simulations

Number of NAT

simulations

Reference

Beijing Climate Center, China Meteorological

Administration

BCC-CSM1-1 3 1 Xin et al 2013

Centre National de Recherches Météorologiques/

Centre Européen de Recherche et Formation

Avancée en Calcul Scientifique

CNRM-CM5 10 6 Voldoire et al 2013

Commonwealth Scientific and Industrial Research

Organization in collaboration with Queensland

Climate Change Centre of Excellence

CSIRO-Mk3.6.0 10a 5 Rotstayn et al 2012

Canadian Centre for Climate Modelling and Analysis CanESM2 5 5 Arora et al 2011

NASA Goddard Institute for Space Studies GISS-E2-H 5 5 Miller et al 2014

GISS-E2-R 5 5

Met Office Hadley Centre HadGEM2-ES 3 4 Jones et al 2011

Institut Pierre-Simon Laplace IPSL-CM5A-LR 4a 3 Dufresne et al 2013

IPSL-CM5A-MR 1a 3

Norwegian Climate Centre NorESM1-M 1 1 Bentsen et al 2013

TOTAL 47 38

a Denotes where RCP8.5 used to extend simulations rather than historicalExt.
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between all the model datasets (which would not
otherwise be possible due to the HadGEM3-A
simulations ending in August 2012).

Observations of precipitation are taken from the
Global Precipitation Climatology Centre (GPCC,
Becker et al 2013) at 1.0° � 1.0° horizontal
resolution. GPCC observations provide a long
time-series with which to validate the model
simulations, while being consistent with other
precipitation datasets in the region over the more
recent period. SST observations are from the Hadley
Centre Sea Ice and Sea Surface Temperature
(HadISST, Rayner et al 2003) dataset.

2.2. Model ensembles
For each model, or multi-model ensemble, two
ensembles are required. One comprises simulations
with all known external climate forcings included
(ALL) and the other with only natural forcings (NAT).

2.2.1. CMIP5
From the CMIP5 simulations (Taylor et al 2012) an
ensemble comprising ten models is used, selected on
the basis of having monthly precipitation data
available for both all forcings and natural forcings
simulations including the year 2012. The models and
numbers of simulations used are detailed in table 1.
For the ALL ensemble, historical simulations were
extended to include 2012 using extension simulations
(historicalExt) where possible, else using RCP8.5
simulations. This emissions scenario was chosen as it
is closest to recent emissions observations (Sanford
et al 2014). The NATensemble comprises historicalNat
simulations. All the models used include greenhouse
gas, aerosol, solar and volcanic forcings (for more
detail about the forcings see references in table 1).
3

2.2.2. HadGEM3-A
An ensemble of simulations is used fromHadGEM3-A
(Christidis et al 2013). These are the September
2011–August 2012 experiments from Christidis and
Stott (2014). This atmosphere-only model is forced
with observed HadISST SSTs and sea ice coverage and
run at N96 horizontal resolution. Well-mixed green-
house gases, aerosols, ozone, land-use changes,
volcanic and solar forcings are used (Christidis et al
2013). Five all forcings runs from 1960–2010 are used
for validation. For the year 2012 there are 600 ALL
ensemble members and four NATensembles with 600
members in each. Each NATensemble uses a different
estimate of the anthropogenic influence on SSTs, from
HadGEM2-ES, CanESM2, CSIRO Mk3.6.0 and using
the observed trend. For each model, SST changes are
estimated using the difference in temperature averaged
over 2003–2012 between the mean of the ALL and
NAT simulations. The observed trend is calculated
using a linear fit to a time series of HadISST data since
1870. This change is assumed to be caused by
anthropogenic forcings (Christidis and Stott 2014).
These model and observed changes are calculated for
each month and gridpoint and subtracted from the
HadISST data to approximate the natural boundary
conditions to the atmosphere.

2.2.3. HadAM3P
The final ensemble used is from the weather@home
modelling system (Massey et al 2015), which allows a
very large ensemble of simulations to be produced.
The model used for these simulations is a regional
version of HadAM3P over Africa, at N96 horizontal
resolution. This atmosphere-only model is forced by
Operational Sea Surface Temperature and Sea Ice
Analysis (OSTIA) SSTs and sea ice coverage (Donlon



Table 2. Teleconnection regions.

SST region Definition Reference

Tropical Atlantic

Dipole (TAD)

averages of 5°–25°N,

55°–15°W minus

20°S–0°, 30°W–10°E

Rowell (2013),

modified from

Enfield et al (1999)

Equatorial East

Atlantic (EqEAtl)

average of 5°S–5°N,

15°W–5°E

Chang et al (1997)

South Atlantic

Tropical index in

Rowell (2013)

Indian Ocean Dipole

(IOD)

averages of

10°S–10°N, 50°–70°E

Saji et al (1999)

Environ. Res. Lett. 12 (2017) 014019
et al 2011). The estimated natural world SST patterns
are calculated using models in the same way as for
HadGEM3-A. All the models listed in table 1 are
employed leading to NATensemble members run with
SSTs from the different model estimates. Solar,
volcanic, aerosol and greenhouse gas forcings are
used in these simulations, which are each run for one
year at a time. The ensemble produced has on average
116 members for each ALL ensemble for the years
1987–2011, 2164 members in the ALL ensemble for
2012 and 2313 in the NAT ensemble for 2012.
minus 10°S–0°,

90°–110°E

Central Indian Ocean

index (CIndO)

average of

25°S–10°N, 55°–95°E

Rowell (2013)

Niño 3.4 average of 5°S–5°N,

170°–120°W

Trenberth (1997)

Mediterranean (Med) Whole basin Rowell (2013)
2.3. Model evaluation
2.3.1. Variability
All model data are regridded to the observational grid
(1.0° � 1.0°). The mean of each ALL ensemble is then
bias corrected to that of the observations, over the
longest time period shared by the two datasets. This
bias correction is also applied to the NAT ensemble.
For the CMIP5 ensemble, this is done for each
individual model ensemble. The variance is not bias-
corrected due to the relatively short data time periods
available. The ALL ensembles are evaluated with
respect to the observations by analysing the long-term
trends, interannual variability and power spectra.
Before analysing the interannual variability and power
spectra, time series are detrended using a linear least-
squares fit, except for the HadAM3P simulations as
these are each run for a single year.
2.3.2. Teleconnection analysis
The ability of each ALL ensemble to reproduce
significant observed teleconnections is assessed, as
these are a key driver of rainfall variability. The SST
regions considered are from Rowell (2013) and
defined in table 2. Teleconnections are first assessed
between GPCC precipitation and HadISST SST
observations in the six regions, using JJA means of
the same year for both. The Pearson correlation
coefficient is calculated for each teleconnection and
the significance assessed at a 95% confidence level.

For each model ensemble, teleconnections are
assessed for the longest available time period. For the
HadGEM3-A and HadAM3P ensembles, these are
analysed in the same way as the observations using
HadISST and OSTIA SST observations respectively.
For the CMIP5 ensemble, the teleconnections are
analysed for each model ensemble, using the
corresponding SST data, and the analysis used to
create a reduced CMIP5 ensemble (CMIP5 tc). Where
a model has significant teleconnection of the opposite
sign to a significant correlation in the observations, for
any of the regions, this model is removed from the
analysis. For each remaining model, ensemble
members in the incorrect phase for any significant
teleconnections in the model years used in the event
attribution analysis are removed. In this way, smaller
ensembles that represent the relevant teleconnections,
4

ALLTC and NATTC, are produced in a similar way as by
Bellprat et al (2015).

2.4. Event attribution
The ALL and NAT ensembles for 2012 are boot-
strapped 1000 times. For the CMIP5 ensemble, which
has fewer members, a period of 5 years (2008–2012) is
used instead of the single year in order to reduce
uncertainty. This is a reasonable compromise as the
climate is approximately stationary over this short
period and these are coupled simulations so do not
represent actual calendar years. The bootstrapped ALL
and NAT ensembles have gamma distributions fitted,
as this gives a reasonable fit for monthly mean
precipitation (Husak et al 2007). The probability of
exceeding the observed 2012 value is then calculated
for the ALL distribution (PALL) and the NAT
distribution (PNAT).

The Difference of Binary Logarithms of Probabili-
ty (DBLP, Lott and Stott 2016) is calculated to analyse
the difference in the probabilities. This is defined as

DBLP ¼ log2
PALL

PNAT

� �
:

The more traditional FAR function

FAR ¼ 1� PNAT

PALL

� �
, while being useful when PALL >

PNAT so FAR is between 0 and 1, is not well-defined
when PALL < PNAT and FAR is negative (Hansen et al
2014). DBLP has the benefit of being well-defined when
positive or negative. It is a symmetrical index tending to
positive or negative infinity if either probability is zero,
while retaining ease of understanding. For example,
DBLP = 1 corresponds to a doubling in probability due
to climate change and DBLP = 2 is a 4 times increase.
DBLP = �1 corresponds to a halving of probability to
climate change and DBLP = �2 a quartering, etc. The
bootstrapping enables an estimate of uncertainty in the
DBLP distribution to be generated.
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Figure 2. Distributions of the ALL ensemble for each model with GPCC observations for the longest available time period covering
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3. Results

3.1. 2012 observations
Figure 1 shows the observed 2012 precipitation
anomaly, which is positive across most of the West
Sahel region. The observational times series (figure 2
(a)) shows that precipitation is at its highest in 2012, at
156 mm month−1, since 1964, at the beginning of the
well-documented decreasing precipitation trend and
subsequent recovery (e.g. Dai et al 2004).

3.2. Model evaluation
3.2.1. Variability
Figure 2 compares the model ALL ensembles and
observations. The CMIP5 ensemble reasonably sim-
ulates the long-term precipitation trend, but fails to
capture the drought period and recovery since the
1960s (figure 2(a)). However, the ensemble interan-
nual variability captures the spread of the observations
well (figure 2(b)) and the power spectra of the
observations lies within the ensemble spread, except
for very short periods (figure 2(c)).

The HadGEM3-A and HadAM3P simulations
capture the trends in precipitation over recent decades
5

much more reliably (figures 2(d) and (g)) and the
interannual variability is well-represented (figures 2(e)
and (h)). This is to be expected from the more
constrained atmosphere-only simulations compared
to the coupled simulations. The power spectrum of the
observations is also within the spread of the
HadGEM3-A spectra ensemble (figure 2(f)).

This qualitative comparison of the interannual
variability and power spectra suggest that the variability
in the observations is reasonably well captured by all the
model ensembles analysed, which supports only bias-
correcting the mean of the model data.

3.2.2. Teleconnections
Table 3 summarises the correlations between West
Sahel precipitation and SSTs in six teleconnection
regions. In the observations, the EqEAtl, CIndO,
Niño3.4 and IOD regions all exhibit negative
correlations with precipitation. The TAD has a positive
correlation and the Med correlation is not significant.

HadGEM3-A only has three significant teleconnec-
tionregions; theNiño3.4andIODareof the samesign as
the observations but the EqEAtl has is a positive
correlation which is negative in the observations.



Table 3. Pearson correlation coefficients (r) between West Sahel precipitation and SSTs in six regions (defined in table 2) for JJA
monthly means. Where no significant correlation (at 95%) is found the entry is left blank.

Dataset EqEAtl CIndO Niño3.4 IOD TAD Med

GPCC �0.36 �0.52 �0.32 �0.34 0.38

CMIP5 bcc-csm1-1 0.33

CNRM-CM5 �0.12 �0.13 �0.12 0.33 0.11

CSIRO-Mk3-6-0 �0.09 �0.09 0.12 0.35 0.06

CanESM2 �0.23 �0.39 �0.11 �0.15 0.23

GISS-E2-H �0.28 �0.30 �0.19 �0.08 0.37

GISS-E2-R �0.17 �0.26 �0.10 0.27

HadGEM2-ES �0.63 �0.13 0.67

IPSL-CM5A-LR �0.36 �0.21 0.32 0.19

IPSL-CM5A-MR �0.28 �0.26 0.31 0.17

NorESM1-M �0.22 0.37

HadGEM3-A 0.18 �0.26 �0.14

HadAM3P 0.26 �0.29 �0.30 �0.12 �0.13 0.24

Environ. Res. Lett. 12 (2017) 014019
HadAM3P has significant correlations for all regions,
but these are of opposite sign to the observations for
both the EqEAtl and the TAD.

Similar analysis for each of the CMIP5 models
shows only one model has a teleconnection that is
significant and opposite in sign to the observations:
CSIRO Mk3.6.0 with a positive IOD relation. This
model was removed from the ensemble and the data
from the remaining models removed if in the wrong
teleconnection phases for years 2008–2012, as per
section 1.3.2, to create the ALLTC and NATTC

ensembles. In general, most of the CMIP5 models
represent the signs of the EqEAtl and CIndO
teleconnections correctly, and all models correctly
simulate the positive TAD correlation, most also with
very similar magnitudes. However the Niño3.4 and
IOD correlations are less well captured and not
significant in most of the models.

3.3. Distributions of 2012 precipitation and DBLP
The CMIP5 ensemble NAT distribution for 2008–2012
is shifted slightly higher than the ALL distribution,
with the observed value in the upper part of the
distributions (figure 3(a)). With the teleconnection
analysis these distributions become narrower (figure 3
(b)), as expected since some of the SST variability has
been removed. The distributions appear much closer
together, with the NAT still slightly higher than the
ALL. The observed value is situated further towards
the tails of the distributions in this case. The DBLP
distributions are negative for both of these cases, with
the CMIP5 median DBLP at �1.5 (figure 4(a)),
corresponding to a probability of high precipitation in
the all forcings world (PALL) around one third of that
in the natural forcings world (PNAT). The CMIP5 tc
DBLP distribution has much greater spread (figure 4
(b)). The median is lower at �1.8, but distribution
ranges from approximately 0 to �4, representing an
uncertainty in the change in probability of high
precipitation due to climate change varying from no
change to a 1/16 reduction.
6

For the HadAM3P ensemble, the 2012 distribu-
tions show a higher NAT distribution than ALL with
the observed value in the upper tail of the ALL
distribution (figure 3(c)). The DBLP distribution is
again negative but is much narrower than the CMIP5
distribution (figure 4(c)). The median is �2.4,
corresponding to a PALL around 1/5 of PNAT.

In the HadGEM3-A case there are four different
NAT ensembles compared with the ALL ensemble
(figures 3(d)–(g)). In the three model cases, the NAT
ensemble is shifted higher than the ALL ensemble.
However, using the natural SSTs from the observed
trend (figure 3(g)) produces the only case where the
NAT distribution is lower than the ALL distribution.
The DBLP distributions are all relatively narrow
(figures 4(d)–(g)). The three model NATensembles all
show negative DBLPs, with medians between �2.7
and�1.7. The Obstrend DBLP distribution is positive
with a median of 1, corresponding to a doubling of the
probability of high precipitation compared to the
natural world.
4. Discussion

Across most of the model ensembles, climate change
decreased the probability of high precipitation in
the West Sahel in JJA 2012. However, results from the
coupled and atmosphere-only models cannot be
directly compared as they ask different questions.
While the CMIP5 ensemble assesses the change in
probability given all SST variability (with some
limitation to this variability by filtering teleconnec-
tions), the HadAM3P and HadGEM3-A ensembles
assess the change in probability given the actual SSTs at
the time of the event (with estimated SSTs for the
natural world). This partly explains why the Difference
of Binary Logarithms of Probabilities (DBLP)
uncertainty distributions are much narrower in the
atmosphere-only model cases, as the simulations are
much more constrained. It is also due to the greater
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Figure 3. Distributions of bias-corrected JJA monthly mean ALL (red) and NAT (green) precipitation for 2012 (2008–2012 for
CMIP5) with fitted gamma distributions and 2012 observed precipitation in black. CMIP tc is the CMIP5 ensemble after the
teleconnection analysis. These include all ensemble members before bootstrapping.
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numbers of ensemble members and use of only one
model. The CMIP5 ensemble with teleconnection
analysis provides something in between these two
cases, by excluding members which incorrectly
simulate relevant teleconnections and also those in
incorrect SST phases for the event of 2012 (estimated
by years 2008–2012). By constraining the distributions
we would expect a narrower DBLP distribution than
with all the CMIP5 simulations included. However
this appears to have been counteracted by the
substantial decrease in the number of data points,
leading to much greater uncertainty.

Across West Africa and the wider Sahel region
there is much uncertainty in climate model projections
of precipitation (e.g. Biasutti et al 2008, Druyan 2011)
and disagreement about the role of anthropogenic
forcings in altering the climate. The direct effect of
carbon dioxide in the atmosphere could increase
7

precipitation by enhancing monsoon flow (Skinner
et al 2012, Biasutti 2013). Dong and Sutton (2015)
found greenhouse gases to be the main cause of the
recovery of Sahel July-August-September rainfall using
HadGEM3-A, explained by the increase in land-sea
temperature contrast. This would be consistent with a
positive DBLP. However, warming SSTs in different
regions have been shown to decrease precipitation in
the Sahel (e.g. Bader and Latif 2003, Rodríguez-
Fonseca et al 2015, Biasutti 2013) by weakening
monsoon flow (Giannini et al 2003), which would be
consistent with a negative DBLP. Tropical ocean
warming could also lead to increased precipitation if
sufficient moisture is available to reach an increased
convection threshold (Giannini et al 2013). Other
anthropogenic emissions may also have an impact on
precipitation, for example sulphur dioxide emissions
may cause a decrease in precipitation in the Sahel
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(Dong et al 2014), and aerosols were shown to
producing drying around 1940-1980 (Ackerley et al
2011), which would act to decrease the DBLP.

When interpreting these attribution results it must
be noted that the HadGEM3-A ensemble does not
represent the EqEAtl teleconnection correctly, and
misses the CIndO and TAD correlations (table 3).
HadAM3P also has the EqEAtl and TAD correlations
in the opposite direction, which will affect the
precipitation processes in the model. The CMIP5
ensemble fails to capture the long-term trends in
precipitation in the region. Further analysis could
consider how well the models represent the relevant
dynamical phenomena associated with extreme
rainfall in the region, to ensure they are suitable for
an attribution study (Mitchell et al 2016). Future work
is also needed to establish how anthropogenic forcings
are affecting the rainfall processes in the simulations.
This will help us to further understand the differences
in the overall effect on precipitation, so we can be
confident that events such as those of 2012 are
genuinely less likely to happen in the future, as the
majority of the models show.

TheHadGEM3-A ensemble with natural SSTs from
the observed trend was the only ensemble to produce a
positive DBLP distribution. Figure 5 shows JJA mean
SST time series for each model and the observations
used to calculate the SST changes used in the
HadGEM3-A simulation, averaged over each tele-
connection region which is significant in HadGEM3-A
(table 2). Considering the trend in HadISST and the
difference between ALL and NAT model simulations
over recent years, the EqEAtl region shows a positive
8

difference between the ALL and NATsimulations in all
themodels which is consistent with the increasing trend
inHadISST. In theNiño 3.4 region,ALL simulations are
warmer thanNATsimulationsover recent years in all the
models, but with greater magnitudes than the observed
trend. In the HadGEM3-A simulations, a greater
anthropogenic SST contribution would be subtracted
from the HadISST observations in the model cases
compared to the Obstrend case. This would lead to
higher NAT precipitation because of the positive
correlation. This is consistent with the 2012 distribu-
tions (figures 3(d)–(g)), with the highest NAT
distributions corresponding to themodels with greatest
differences in ALL and NAT Niño3.4 SSTs. The IOD
region has a positive HadISST trend with a similar SST
difference magnitude in CanESM2. However, CSIRO
Mk3.6.0 andHadGEM2-ES both show theNATSSTs to
be slightly higher than the ALL SSTs. We would expect
this to lead to higher precipitation in the ObstrendNAT
distribution than in these two models. This is not the
case (figures 3(e)–(g)), but this effect may be counter-
actedby theNiño3.4 influencewhere the teleconnection
is of a greater magnitude (table 3). The NAT SSTs in the
HAM3P simulations were also estimated using CMIP5
simulations and produce a similar DBLP distribution
(figure 4(c)) to the HadGEM3-A distributions using
model estimates of NAT SSTs.

This shows the importance of model SST changes
being consistent with observations if results are to be
robust. Assessing whether model simulations of SST
changes due to anthropogenic climate change are
consistent with observed SST trends is one way of
validating natural forcings simulations. However it
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also needs to be considered that long-term trends in
observed SSTs may not only be due to anthropogenic
forcings. Being able to evaluate natural simulations is
obviously a difficulty, as observations do not exist for a
world without anthropogenic climate change, and also
often do not exist for the world prior to when
anthropogenic forcings began to have an influence.
5. Conclusions

There is much disagreement between climate model
projections about the magnitude and sign of future
changes in precipitation in the West Sahel. This study
contributes to climate change understanding in this
region by analysing the change in probability due to
anthropogenic emissions of high precipitation in June-
July-August 2012 using three model ensembles. This is
one of only a few studies to have analysed results from
both coupled and atmosphere-only model simula-
tions, but this is important to generate greater
understanding of changes in the event due to
anthropogenic forcings. Results show a decrease in
the probability of high precipitation across the
majority of the model ensembles: the CMIP5 coupled
multi-model ensemble, the weather@home
HadAM3P atmosphere-only ensemble, and the
HadGEM3-A ensembles when natural SSTs are
estimated using models. The decreases are between
a factor of 0 and 16, and signify a decrease in
probability under both general climate conditions and
those specific for 2012. The uncertainty in the effect of
climate change clearly depends on the model ensemble
used, with greater certainty in atmosphere-only
models. These models, however, do not completely
represent all the observed SST-precipitation tele-
connections and so results must be caveated by this.
Creating reduced ensembles of CMIP5 simulations
where teleconnections were well-represented greatly
reduced the number of ensemble members and
therefore the certainty in the result.

However, when the observed SST trend is used to
estimate the natural world SSTs to force theHadGEM3-
A model, climate change increases the probability of
highprecipitationby a factorof 2.This appears tobedue
to differing trends in SSTs between the models and
observations in the Niño 3.4 region. It is difficult to
determinewhether this divergence is a product ofmodel
errors or natural variability in the observations. This
emphasises the need to ensure that modelled climate
processes are consistent with observed changes.

Further work is needed to understand how
anthropogenic forcings are affecting the rainfall
processes in the different models, in order to
understand why and how the different model
ensembles produce different estimates of the
change in probability of high precipitation. This study
demonstrates the need for comparisons of model
ensembles in event attribution studies, in order to gain
9

understanding of the robustness of results, and to
make use of evaluation techniques to ensure that
natural simulations are consistent with observations.
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