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J O U R N A L O F C L I M A T E

Observed relationships between cloud vertical structure and convective aggregation over
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ABSTRACT

Using the satellite-infrared-based Simple Convective Aggregation Index (SCAI) to determine the degree
of aggregation, 5 years of CloudSat-CALIPSO cloud profiles are composited at a spatial scale of 10 degrees
to study the relationship between cloud vertical structure and aggregation. For a given large-scale vertical
motion and domain-averaged precipitation rate, there is a large decrease in anvil cloud (and in cloudiness as
a whole) and an increase in clear sky and low cloud as aggregation increases. The changes in thick anvil
cloud are proportional to the changes in total areal cover of brightness temperatures below 240 K (cold cloud
area, CCA), which is negatively correlated with SCAI. Optically thin anvil cover decreases significantly when
aggregation increases, even for a fixed CCA, supporting previous findings of a higher precipitation efficiency
for aggregated convection. Cirrus, congestus, and mid-level clouds do not display a consistent relationship
with the degree of aggregation. We present the lidar-observed low-level cloud cover (where the lidar is not
attenuated) as our best estimate of the true low-level cloud cover and show that it increases as aggregation
increases. Qualitatively, the relationships between cloud distribution and SCAI do not change with sea-
surface temperature, while cirrus clouds are more abundant and low-level clouds less at higher sea-surface
temperatures. For the observed regimes, the vertical cloud profile varies more evidently with SCAI than with
mean precipitation rate. These results confirm that convective scenes with similar vertical motion and rainfall
can be associated with vastly different cloudiness (both high and low cloud) and humidity depending on the
degree of convective aggregation.

1. Introduction

Mean rainfall and convective activity are intrinsically
linked (e.g. Arkin and Meisner 1987). Increases in trop-
ical rainfall in recent years have been associated with a
shift towards more frequent organized convection (Tan
et al. 2015). Although such a response is consistent with
a warming climate (e.g. Trenberth et al. 2003), observa-
tions and GCMs do not agree on the rate at which pre-
cipitation increases with surface temperature (Allan and
Soden 2008; Pendergrass and Hartmann 2014). Elucidat-
ing the role of convective aggregation in crucial aspects
of weather and climate, including extreme events, trop-
ical intraseasonal oscillations, and hydrological and cli-
mate sensitivities, was recently recognized as one of the
Grand Challenges for climate science (Bony et al. 2015).

∗Corresponding author address: Philip Lyle Building, Room 507A,
University of Reading, Reading, RG6 6BX, United Kingdom
E-mail: t.h.m.stein@reading.ac.uk

Numerical studies constitute a powerful way to address
this issue. However, given uncertainties in the numeri-
cal prediction of clouds, investigations of the link between
convective aggregation and clouds should include obser-
vations.

Simulations of idealized radiative-convective equilib-
rium (RCE) have documented different equilibrium states
for the same large-scale forcing (e.g. Tompkins and Craig
1998; Bretherton et al. 2005; Stephens et al. 2008; Muller
and Held 2012; Wing and Emanuel 2014), not only with
cloud-resolving models, but also with general circulation
models (GCMs) (Reed et al. 2015; Coppin and Bony
2015). In some conditions, convection undergoes “self-
aggregation”, becoming clustered in small regions which
have high column-integrated water vapor and precipitation
while the rest of the domain becomes much drier. In other
conditions, convection stays mainly disaggregated, with
scattered convection and higher domain-mean humidity.
Some studies, particularly Muller and Held (2012), have
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FIG. 1. (a) Domain-mean column-integrated water vapor (cwv) in
mm from ERA-Interim and (b) CCA versus SCAI, averaged for three
rain rate bins (colors, in mm day−1). Vertical lines show ±1 standard
error of the mean. Note that an artificial offset of ±0.02 has been intro-
duced in SCAI for high and low rain rates to aid in visual interpretation
of the data.

also shown some dependence on horizontal resolution, do-
main size, and initial conditions. Cold pools may inhibit
aggregation (Jeevanjee and Romps 2013), and suppression
of cold pools can allow self-aggregation even when radia-
tive heating rates are fixed (Muller and Bony 2015; Hol-
loway and Woolnough 2016).

Several studies have shown a threshold behavior of self-
aggregation with respect to sea-surface temperature (SST),
with self-aggregation not occurring below an SST thresh-
old; Khairoutdinov and Emanuel (2010) found such a
threshold near 297 K, Wing and Emanuel (2014) found
a threshold near 300 K (and another near 307 K, above
which they did not see self-aggregation unless they in-
creased their domain size), and Emanuel et al. (2014)
found a critical SST threshold between 303 and 308 K.
These values are near the current most common observed
SST in tropical convective regions, as well as the maxi-
mum observed SST. Khairoutdinov and Emanuel (2010)
hypothesized that tropical SST may exhibit self-organized
criticality, with feedbacks between aggregation state and
net surface fluxes that tend to cool SSTs in aggregated
conditions (above the SST threshold) and warm SSTs in
disaggregated conditions, thus maintaining SSTs near the
threshold in convective regions. This hypothesis has been
questioned by observational studies (see below) and re-
cent modeling studies (Wing and Cronin 2015; Holloway
and Woolnough 2016). Nevertheless, understanding the
mechanisms and role of self-aggregation may be important
for predicting weather phenomena such as tropical cyclone
formation (Davis 2015; Wing et al. 2016) and the Madden-
Julian Oscillation (Arnold and Randall 2015), and for cli-
mate prediction (Mauritsen and Stevens 2015; Bony et al.
2016).

To determine relationships between convective aggre-
gation and the large-scale atmosphere, Tobin et al. (2012)
analyzed 10◦ × 10◦ regions over warm tropical ocean us-
ing satellite observations. For a given SST and large-scale
forcing, they found a dependence of domain-mean humid-

TABLE 1. Total number of stretches of CloudSat-CALIPSO orbits
considered for each combination of SCAI and rainfall rate (mm day−1).
Number of profiles per stretch may vary. SCAI and R ranges are indi-
cated by their midpoints.

Rainfall rate
SCAI 5 6 7 8 9 10 All
0.125 612 378 260 170 138 89 1,647
0.375 551 495 380 277 213 172 2,088
0.625 307 252 241 191 163 157 1,311
0.875 147 147 118 153 106 84 755
1.125 61 68 63 62 53 58 365
1.375 42 35 33 30 24 24 188
All 1,720 1,375 1,095 883 697 584 6,354

ity and outgoing longwave radiation (OLR) on the de-
gree of aggregation that resembled the relationships found
for these quantities in the aforementioned studies of RCE
in models. Tobin et al. (2013) performed similar analy-
ses on somewhat smaller scales and found similar rela-
tionships, although the two studies have somewhat dif-
ferent findings regarding the net surface flux tendencies
in aggregated versus disaggregated states, suggesting that
the self-organized criticality mechanism hypothesized in
Khairoutdinov and Emanuel (2010) may not be supported
by observations. Tobin et al. (2013) also analyzed Inter-
national Satellite Cloud Climatology Project (ISCCP) data
and found larger amounts of clear sky and low-level cloud,
and smaller amounts of mid-level cloud and cirrostratus,
with increased aggregation.

The results from Tobin et al. (2012) suggest that, for a
given precipitation rate, aggregated convection will have a
higher precipitation efficiency than disaggregated convec-
tion. Many questions remain, however, about how clouds
outside of deep convective storms respond to large-scale
forcing and to the degree of convective aggregation, for
instance:

• Low-level clouds dominate in large parts of the trop-
ical ocean and have a cooling effect on the Earth’s
surface, but does the low cloud amount decrease or
increase as convective aggregation increases and the
anvil cloud amount decreases?

• Cumulus congestus are often not considered in stud-
ies of tropical rainfall, despite their frequency and
considerable contribution to total rainfall (Johnson
et al. 1999; Liu and Zipser 2009); do such clouds per-
sist when deep convection is aggregated?

• Anvil clouds are a direct result of deep convection
detraining near the tropopause, but are the anvil char-
acteristics such as height, thickness, and relative fre-
quency per deep convective cloud related to the de-
gree of aggregation?
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To address such questions, we have analyzed individ-
ual cloud layers identified over nearly 5 years of data
(July 2006 – April 2011) from two A-Train satellites,
CloudSat and the Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observations (CALIPSO) (Stephens
et al. 2002). The cloud profiling radar aboard CloudSat
and the CALIPSO lidar observe the same cloud scenes,
and the strengths of the two instruments are combined
to provide near-complete cloud profiles, from thin cirrus
through deep convection down to shallow cumulus. Anal-
ysis of cloud-type occurrence has highlighted the promi-
nence of congestus and mid-level detrainment in the West-
African monsoon (Stein et al. 2011b), and the identifica-
tion of individual convective cloud features in CloudSat
data has related deep convective characteristics to sea sur-
face temperatures (SSTs) (Igel et al. 2014).

In this paper, we seek to explore the dependence of ver-
tical cloud structure and cloud type on convective aggrega-
tion in greater detail using CloudSat-CALIPSO data. We
summarize the methodology from Tobin et al. (2012) and
the design of the Simple Convective Aggregation Index
(SCAI) in Section 2. The compositing techniques and
cloud-type classification from CloudSat-CALIPSO data
are described in Section 3. In Section 4, we show our
results for the vertical distribution of cloud fraction. Frac-
tional cover from different cloud-types is presented in Sec-
tion 5, where we also consider the effect of optically thin
clouds on clear-sky identification; low-level clouds are
discussed separately in Section 6. The sensitivity of our
analysis to different SST values is discussed in Section 7
and a summary of key findings and their implications and
potential future work are provided in Section 8.

2. The Simple Convective Aggregation Index (SCAI)

Tobin et al. (2012) define the Simple Convective Aggre-
gation Index (SCAI) as:

SCAI =
N

Nmax

D0

L
×1000 , (1)

where N is the number of clusters, Nmax is the maxi-
mum possible number of clusters in the domain (which
is half the total number of pixels), L is the length scale
of the domain, and D0 is the geometric mean distance
between the centroids of all clusters. Clusters are com-
posed of cold-cloud pixels using 4-connectivity, with cold-
cloud pixels identified below a brightness temperature of
240 K. Brightness temperatures are at 4 km resolution
from window-channel (≈ 10.7µm) infrared data merged
by the Climate Prediction Center from several geostation-
ary satellites (Janowiak et al. 2001). Arithmetically speak-
ing, SCAI increases both with number of clusters N and
with mean distance D0 (D0 is set to 0 when there is only
one cluster in the domain). Due to the dependence of D0
on the spatial distances between the clusters, an increase

in N could lead to both an increase and a decrease in D0,
so that on a case-by-case basis SCAI may not necessarily
increase as N increases. However, such marginal changes
are not of interest in this study and broadly speaking, we
will consider low SCAI values to describe aggregated con-
vection and high SCAI values disaggregated convection.
Similar to Tobin et al. (2012), our analysis does not lead
to different conclusions when we consider number of clus-
ters N instead of SCAI.

In our analysis, mean rainfall rates are calculated from
the Tropical Rainfall Measurement Mission (TRMM)
3B42 product (Huffman et al. 2007), which incorporates
the same brightness temperature data as our SCAI calcu-
lations. SCAI values and mean rainfall rates are calcu-
lated for every 3 hours in time (0000 UTC, 0300 UTC, et
cetera) and for 10◦×10◦ grid boxes between 30◦S–30◦N,
with boxes overlapping 5◦ in both latitude and longitude.
As a result of the high resolution of brightness tempera-
ture data, Nmax is larger and SCAI values are lower com-
pared to those reported by Tobin et al. (2012); in partic-
ular, the 80th and 95th percentiles of SCAI are 0.61 and
1.36 using our method and data compared with 13 and 19,
respectively, for their study. SCAI values are considered
between 0–1.5 and precipitation rates, R, are considered
between 4.5–10.5 mm day−1 with 1 mm day−1 bins.

In addition to SCAI and R, we also consider the cold
cloud area (CCA) on the same grid, which is the fractional
area of all pixels with brightness temperature below 240 K.
To provide context for our study, column-integrated water
vapor and CCA are plotted as functions of SCAI for sev-
eral rainfall rates in Figure 1. Column-integrated water
vapor is obtained from ERA-Interim reanalysis (Dee et al.
2011), with the average calculated for each 10◦×10◦ grid
box; the 6-hourly instantaneous values from ERA-Interim
were repeated for the next 3-hourly time to match the tem-
poral resolution of the SCAI and R values. As found in To-
bin et al. (2012) and Tobin et al. (2013), the domain mean
is drier and the CCA (which they call convective area) is
lower for lower SCAI (more aggregation) at a given rain
rate.

Several restrictions were imposed on CloudSat-
CALIPSO observations used in this analysis in order to
discount large-scale influence on convective organization
and cloud occurrences. First, CloudSat-CALIPSO often
cut across only a corner of a grid box so that stretches may
have different number of profiles, although a minimum of
60 (approximately 100 km) was enforced and the results
presented in this paper are weighted by number of profiles
per stretch. Note that the grid used for SCAI is made up
of overlapping boxes, so that partial orbit stretches may be
sampled up to four times. Second, only grid boxes in the
Indian Ocean and Pacific Ocean were included (less than
5% land) and only when the mean sea surface temperature
was between 300.5–301.5 K (approximately 28◦C); fur-
ther SST ranges are briefly discussed in Section 7. Third,
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FIG. 2. Quicklook cloud mask images from up to 28 randomly selected orbits for four SCAI-R combinations. The CloudSat mask is shown in
black, with CALIPSO-only cloud in dark grey. Individual images show 10◦ latitude by 20 km height, with light grey areas filling the box when a
stretch is shorter than 10◦.
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vertical pressure velocity (ω) from ERA-Interim was av-
eraged over the 10◦ × 10◦ grid boxes at the 300-, 500-,
and 800-hPa level; the 6-hourly instantaneous values from
ERA-Interim were repeated for the next 3-hourly time to
match the temporal resolution of the SCAI and R values. A
given CloudSat-CALIPSO orbit stretch was only analysed
when all three ω values were within ±1 standard devia-
tion of their respective medians for the R bin associated
with the orbit stretch. The second and third requirement,
in combination with the restriction of precipitation regime
R, will ensure as much as possible that the relationships
analysed in this paper are not driven by differing large-
scale forcings. The total number of orbit stretches for each
SCAI-R combination that meets these three requirements
is listed in table 1.

3. CloudSat-CALIPSO compositing analysis

CloudSat and CALIPSO are part of the A-Train con-
stellation of satellites, which fly in a polar-orbiting con-
figuration with equatorial overpasses around 0130 LT and
1330 LT with roughly 16 overpasses per day and a re-
turn period of about 16 days. The 94-GHz cloud-profiling
radar aboard CloudSat observes ice aggregates and liq-
uid precipitation, but is not sensitive to cloud-ice domi-
nated by small crystals such as in thin cirrus, or to liq-
uid clouds composed of small droplets or low liquid water
contents (e.g. Christensen et al. 2013b). Surface clutter
contamination rules out the bottom 1 km of each Cloud-
Sat profile (Marchand et al. 2008). The CALIPSO lidar
observes most cloud-ice colder than −40◦C (Stein et al.
2011a) but is easily attenuated by optically thick clouds
before the signal can reach the surface. The lidar detects
liquid clouds, allowing the identification of cumulus and
stratus as well as supercooled liquid layers. The analysis
presented here uses the DARDAR mask product (Delanoë
et al. 2011), in which CloudSat and CALIPSO data are in-
terpolated and averaged, respectively, on to a common grid
with 60-m vertical resolution and 1.5 km horizontal foot-
print. All available orbits between June 2006 and April
2011 inclusive were used.

To composite cloud properties on SCAI and other
convective indices, each CloudSat-CALIPSO orbit was
matched with the nearest 3-hourly time, ti. For each
10◦×10◦ grid box, the part of the satellite orbit that passed
through it was included and stratified by the convective in-
dices of that grid box at ti. The further restrictions men-
tioned in the previous section also applied to the composit-
ing analysis.

Using a selection of quicklook images, we illustrate the
different cloud type occurrences for four combinations of
SCAI and R in Figure 2. The images were randomly se-
lected apart from a requirement of at least 800 profiles per
image. It is clear from Figure 2 that for low SCAI, clear
skies and low-level cloud dominate the orbits, while deep

clouds are concentrated. For high SCAI (panels c and
d), deep clouds appear more numerous, though scattered
across individual orbits; clear skies and low-level cloud
are less prominent. For a given SCAI, there is no imme-
diately apparent difference in cloud distributions between
low rain rates and high rain rates when comparing pan-
els a and b (or c and d) in Figure 2, apart from a higher
frequency of deep clouds.

We assume that the individual CloudSat-CALIPSO
orbits are independent samples of the cloud-and-
precipitation distribution for a given SCAI-R combination.
Thus, the mean vertical cloud-and-precipitation structure
will be obtained by combining all samples and, for each
height, calculating the fraction of observations for which
the CloudSat cloud mask or the CALIPSO mask detects
cloud or precipitation. We will use the term “radar-lidar
hydrometeor fraction” (RLH fraction) following Marc-
hand et al. (2009) to indicate that no distinction is made
between cloud and precipitation in this analysis. Since
some of the SCAI-R combinations have a low number of
associated CloudSat-CALIPSO stretches, we use a boot-
strapping method to calculate the mean RLH fraction.
Thus, for a given population of M (number of) CloudSat-
CALIPSO stretches, we re-sample this population draw-
ing M stretches with replacement and derive the mean
RLH fraction from this new set; we repeat this 1,000
times to obtain 1,000 estimates of the mean RLH frac-
tion. This bootstrapping method allows us to estimate a
90%-confidence interval for the mean RLH fraction from
the 1,000 realizations and we choose the median of these
1,000 means to denote the mean RLH fraction (van de Poll
et al. 2006; Liu et al. 2010).

Finally, we will also comment on the Spearman rank
correlation coefficient between RLH fraction or cloud-
type cover and SCAI or CCA. The Spearman rank cor-
relation does not assume a linear relationship between
two variables, but it is a useful indication of a mono-
tonic increase or decrease (statistical significance is set at
p < 0.05). The purpose of the rank correlation is to avoid
any assumptions on the behavior of an increase or decrease
in cloud amounts with SCAI — beyond monotonicity —
given that SCAI itself has a complex relationship involv-
ing both N and D0. Following Tobin et al. (2012), we
performed our analysis of cloud distributions both using
SCAI and using N and found qualitatively similar results.
We therefore only consider SCAI in this study.

a. Cloud-type classification

The cloud classification presented here distinguishes
cloud types by pressure levels, where pressure is provided
in the DARDAR product through the ECMWF-AUX prod-
uct. Cloud types are identified for each individual profile,
i.e. no consistency across adjacent profiles is required.
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The delineation generally follows the method introduced
by Stein et al. (2011b), namely:

1. Low-level clouds have cloud top below the 700-hPa
level (detection by radar and lidar is explored in Sec-
tion 6).

2. Mid-level clouds have cloud top between 350 and
700 hPa and base at least 1 km above the surface.

3. Congestus clouds have cloud top between 350 and
700 hPa and base within 1 km of the surface.

4. Nimbostratus and deep convective clouds have cloud
top above the 350-hPa level and base within 1 km of
the surface; deep convective clouds are further dis-
tinguished by having the maximum height of 10 dBZ
above 8 km above mean-sea level.

5. Anvil clouds have cloud top above the 350 hPa level
and base at least 1 km above the surface (but no
higher than the 200-hPa level); thin anvil clouds are
further distinguished by having optical thickness less
than 2.

6. Cirrus clouds have cloud base above the 200 hPa
level.

Cloud types may be wrongly classified due to multiple
scattering and attenuation (Battaglia et al. 2008), but these
misclassifications affect only a small fraction of profiles
and are not expected to depend on the compositing param-
eters SCAI and R.

The split between optically thick and optically thin anvil
is introduced here as the latter usually do not contribute
to CCA: down to 9 km, only 2.1% of profiles with cloud
optical thickness (τ) between 1 and 2 have brightness tem-
peratures less than 240 K; for optical thickness between 2
and 4 this increases to 22.1%. Optical thickness of cloud
layers is determined by integrating the visible extinction
coefficient, which is retrieved from CloudSat-CALIPSO
observations using the Delanoë and Hogan (2010) opti-
mal estimation algorithm and is available in the DARDAR
cloud product. Of all the profiles with cirrus cloud layers,
less than 2% had a cirrus cloud with optical thickness, τ ,
greater than 2, so no distinction between optically thick
and optically thin cirrus was considered in the results. In
addtion to these cloud types, a profile in which no cloud
layer is encountered is considered “clear sky”.

Low-level cloud detection becomes an issue because at-
tenuation of the lidar signal by thick cloud aloft will lead
to an underestimate of non-drizzling low-level clouds that
have small liquid water contents. As explained above,
optically thick anvil clouds are definitely correlated with
CCA and may therefore be correlated with SCAI and R,
so that potential reductions in low-level cloud cover with
SCAI may simply be due to an increased occurrence of li-
dar attenuation. We expect that the CloudSat radar is less

FIG. 3. Average radar-lidar hydrometeor (RLH) fraction for different
ranges of SCAI, restricted to rainfall rates of (a) 4.5–5.5mm day−1,
(b) 6.5–7.5mm day−1, and (c) 8.5–9.5mm day−1. Different colored
lines indicate different SCAI ranges, namely 0–0.25 (red), 0.25–0.50
(magenta), 0.50–0.75 (blue), 0.75–1.00 (cyan), 1.00–1.25 (green), and
1.25–1.50 (black). Shaded areas depict the 90%-confidence intervals
for the lowest and highest SCAI ranges. Panels (d–f) as in (a–c), but
restricted to observations with CCA between 0.10 and 0.15 (indicated
by the dashed vertical lines).

likely attenuated before it can detect low-level clouds, but
its sensitivity to liquid clouds is much less than CALIPSO.
Of all profiles with low-level cloud detected, 7% have de-
tections by the CloudSat radar only, 67% by CALIPSO
only, and 26% by both the CloudSat radar and CALIPSO.
In Section 6, we argue that fractional cover of low-level
cloud detected by the lidar for profiles where the lidar is
not attenuated is indicative of the true low-level cloud frac-
tion regardless of SCAI and R.

4. Cloud vertical structure

In Figure 3(a–c), we show the mean radar-lidar hydrom-
eteor (RLH) fraction with height for height bins of 500 m,
with means calculated for three ranges of precipitation
rates and within each precipitation range for six ranges of
SCAI values. For each precipitation range, between 3 and
14 km we see a clear increase of RLH fraction between
SCAI values at 0–0.25 and those at 1.25–1.50, with the
largest increase around 12 km. Between 6 and 14 km,
the rank correlation between RLH fraction and SCAI is
statistically significant with values 0.63–1.00 across the R
ranges (not shown), indicating that RLH fraction mono-
tonically increases as SCAI increases at these heights. For
heights between 16–18 km, the rank correlation indicates
a monotonic decrease of RLH fraction as SCAI increases
(not shown); this is discernible from Figure 3(a–c), as the
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FIG. 4. As in Figure 3, but only considering CloudSat observations to
exclude cirrus and optically thin anvil.

RLH fraction for SCAI between 0–0.25 is greater than for
SCAI between 1.25-1.50.

The increase of RLH fraction between 6 and 14 km may
be partly due to the strong correlation between SCAI and
cold-cloud area (CCA). For example, more than 95% of
CloudSat-CALIPSO profiles with brightness temperature
below 240 K have cloud layers above 10 km, so we expect
that the RLH fraction at such heights will show a posi-
tive correlation with CCA, which may be the underlying
cause of the relationship with SCAI seen in Figure 3(a–c).
Therefore, in Figure 3(d–f), we show the RLH fraction re-
stricted to observations with CCA between 0.10–0.15. For
all R ranges, several of the SCAI curves are now within
the 90%-confidence intervals of one another for much of
the range between 3 and 15 km, although the extreme ag-
gregation cases are still significantly different. The cloud
fraction around 13 km is considerably higher than the
range of CCA values considered, which we attribute to op-
tically thin clouds that do not contribute to CCA. The cu-
mulative contribution to RLH fraction by brightness tem-
perature (not shown) indicates that at 12 km, only 30% of
the total RLH fraction comes from profiles with brightness
temperatures below 240 K; the remainder is from (opti-
cally thin) high clouds in profiles with warmer brightness
temperatures. Therefore, for a given CCA, we should ex-
pect the high-level RLH fraction to be several times that
value, regardless of the degree of aggregation between the
convective clusters. This explains why the RLH fraction
around 13 km is greater than the CCA in Figure 3(d–f).

In Figure 4 we show the same analysis as in Figure 3,
but excluding CALIPSO observations in an attempt to ex-
clude optically thin clouds. The decrease in RLH fraction
as SCAI increases for height below 1 km and between 16–

18 km is no longer evident in Figure 4(a–c), suggesting
that the majority of the RLH fraction in Figure 3 at these
heights is due to clouds with relatively low liquid water
contents and optically thin cirrus, respectively, that can
only be observed by the lidar. When we restrict observa-
tions to CCA between 0.10–0.15 in Figure 4(d–f), cloud
fraction around 12 km is still significantly greater than
CCA for several SCAI curves, for instance indicated by
the 90%-confidence interval for the highest SCAI range.
In the next Section we discuss possible meteorological
mechanisms behind the high fraction of optically thin anvil
when convection is disaggregated.

5. Cloud-type frequency

The previous analysis groups all cloud and rainfall
together, which masks the contribution from individual
cloud types, as well as possible correlations between cloud
types and SCAI or R. In Figure 5 we show the mean cover
from different cloud types versus SCAI, for three ranges
of R (columns). The fractional cover shown is the boot-
strapped mean for every 0.05 step in SCAI, considering
all stretches within a range of 0.25 in SCAI and requir-
ing at least 30 stretches; the rank correlation was then cal-
culated using these bootstrapped means. The overlap of
neighbouring SCAI bins introduces correlation between
consecutive means, but the wider range allows for smaller
confidence intervals in the cloud cover means. We note
that our conclusions based on rank correlation — particu-
larly in terms of sign of the correlation and the statistical
significance — are not affected by this choice of overlap-
ping bins.

We see in Figure 5a–c that cirrus and anvil generally in-
crease when SCAI increases, whereas clear-sky fraction
and low-level clouds (panels j–l) decrease. These rela-
tionships all have a significant Spearman rank correlation,
which is provided in Table A1 (correlation with SCAI, all
CCA, final column); the correlations between cirrus and
SCAI and between anvil and SCAI is positive, whereas the
correlation between clear-sky fraction and SCAI and low-
level clouds and SCAI is negative. For mid-level clouds
and congestus (panels d–f), we cannot discern a mono-
tonic increase or decrease and the correlations are not sig-
nificant across all R. Deep stratiform clouds increase when
SCAI increases (panels g–i), while deep convective clouds
decrease, both with statistically significant rank correla-
tions across all R, although the change in deep convective
cover with SCAI is difficult to discern in Figure 5. These
results confirm the findings from Figure 3, with the added
understanding that the increase in cloudiness when SCAI
increases is largely associated with more widespread opti-
cally thin anvil. Since these optically thin clouds typically
do not contribute to CCA, their abundance might explain
why cloud fraction at 13 km is considerably greater than
CCA in Figure 3(d–f).
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FIG. 5. Average fractional cover versus SCAI for a given R range. Shaded regions indicate the 90%-confidence interval. (a–c) Anvil clouds and
cirrus, τ stands for optical thickness; (d–f) mid-level clouds and congestus; (g–i) deep stratiform and deep convective (Cb); and (j–l) clear-sky and
low-level clouds. Note that the range in fractional cover (y-axis) changes with each row.

As discussed in Section 4, any relationship between
cloud-type fractional cover and SCAI may be influenced
by the correlation between SCAI and CCA and the cor-
relation between a given cloud-type cover and CCA. We
therefore continue our analysis by studying the relation-
ship between cloud-type cover and CCA at constant SCAI.
In Figure 6 we show the fractional cover from different
cloud types versus CCA, for three ranges of R (columns)
and three ranges of SCAI (individual curves); the SCAI
values separating the ranges were chosen to allow suffi-
cient CloudSat-CALIPSO samples in each SCAI range for
the different R. For given R and SCAI ranges, the boot-
strapped mean cloud-type cover was calculated for every
0.01 step in CCA for all stretches within a range of 0.05 in
CCA, and we set a minimum requirement of 30 stretches;
the rank correlation was then calculated using these boot-
strapped means (see Table A1, correlation with CCA). The
rank correlation between cloud-type cover and SCAI was
also calculated for each tercile of CCA values (see Ta-
ble A1, correlation with SCAI).

Optically thick anvil cover strongly increases when
CCA increases (Figure 6a–c), which is expected given the
relationship between anvil optical thickness and probabil-
ity of brightness temperature below 240 K discussed in
Section 3. The correlation between optically thick anvil
and CCA is 1.0 for the three R shown (see Table A1),
while the correlation with SCAI is also positive and sta-
tistically significant. For many CCA values, the 90%-
confidence intervals overlap with other SCAI curves (e.g.
at CCA=0.1 in panel b), which indicates that the strong
correlation between thick anvil cover and SCAI is partly a
consequence of the correlations between SCAI and CCA
and between thick anvil cover and CCA.

Optically thin anvil cover also increases when CCA in-
creases (Figure 6d–f), but it has a strong relationship with
SCAI that cannot be explained solely by the correlation
between SCAI and CCA. The rank correlation between
thin anvil and SCAI is greater than 0.90 for the R ranges
and is greater than 0.88 for any given CCA range. For a
given CCA range, the mean optically thin anvil cover for a
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FIG. 6. Average fractional cover versus CCA for a given R range and for SCAI between 0.00 and 0.35 (red), SCAI between 0.35 and 0.70
(black), and SCAI between 0.70 and 1.50 (blue); τ stands for optical thickness. Shaded regions indicate the 90%-confidence interval. (a–c) Thick
anvil, (d–f) optically thin anvil, (g–i) deep (stratiform), and (j–l) deep (Cb) (i.e. convective). Note that the range in fractional cover (y-axis) changes
with each row.

given SCAI range is typically outside the 90%-confidence
interval for the other SCAI ranges and means can be sep-
arated by as much as 0.15 (or 75% in relative terms). Fur-
thermore, we note that while thick anvil appears to re-
duce towards zero when CCA decreases, thin anvil cover
is much greater than zero at low CCA. The presence of
thin anvil clouds when CCA is low could be the result of

long-lived remnants of thicker anvils that have precipitated
out or sublimated to persist as optically thin layers, or of
cirrus that has descended to a base below 200 hPa (Nair
et al. 2012).

The greater abundance of anvil clouds when convec-
tion is disaggregated supports the concept of lower pre-
cipitation efficiency in this situation compared to aggre-
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FIG. 7. As in Figure 6 but for (a–c) cirrus, (d–f) mid-level clouds, (g–i) congestus, and (j–l) clear sky.

gated convection. There are numerous ways to define
precipitation efficiency, for instance through tracking La-
grangian particles (Langhans et al. 2015), or by studying
the cloud microphysics budget or the moisture budget (Sui
et al. 2007). Here, we interpret precipitation efficiency
of a convective cloud as the ratio of rain water over the
moisture source (Sui et al. 2007), where we define the
moisture source as the amount of water vapor that leaves
the boundary layer in convective updrafts. For disaggre-

gated convection, the combination of high column-water
vapor, overall greater cloudiness, and extensive anvil sug-
gests that the combined efficiency of the convective clouds
is low compared to an aggregated state of convection with
similar R and CCA.

The fractional cover from deep stratiform profiles (Fig-
ure 6g–i) has significant positive rank correlations with
both SCAI and CCA. For this cloud type, however, for a
given CCA, the correlation with SCAI is typically not sta-
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FIG. 8. As in Figure 6, but for (a–c) profiles with clear sky or low-level clouds only, (d–f) profiles with clear sky or cirrus only, and (g–i) profiles
with clear sky or cirrus and/or low-level clouds.

tistically significant, which is illustrated by the consistent
overlap of the 90%-confidence intervals with other curves.

The cover from deep convective profiles (Figure 6j–
l, indicated “Deep (Cb)”) has a positive correlation with
CCA, but this is only statistically significant for the low
SCAI range. In contrast, the correlation with SCAI is
negative (see also Figure 5), but it is not always signifi-
cant for all CCA ranges, as evident from the overlap be-
tween mean cover and 90%-confidence intervals for differ-
ent SCAI ranges. This lack of a strong relationship with
SCAI or CCA supports the idea of Craig (1996) that the
total area of convective updrafts should be roughly pro-
portional to the large-scale forcing in a region, which in
our analysis we assume to be in balance with, and there-
fore equivalent to, the mean precipitation rate R.

In Figure 7, we show the fractional cover against CCA
for the remaining cloud types and for clear sky conditions.

Cover from cirrus does not show a consistent relationship
with SCAI, while it has a significant positive correlation
with CCA for all R ranges, even when considering individ-
ual SCAI ranges. However, for most SCAI and R ranges,
we note that for a change in CCA of 0.1, the change in
mean cirrus cover is less than half the 90% confidence in-
terval. The lack of variation of cirrus cover with SCAI,
CCA, and even R may be due to formation mechanisms
that are not related to local convective activity. For in-
stance, cirrus can be generated through gravity waves and
Kelvin waves thousands of kilometers away (e.g. ahead of
the MJO, Virts and Wallace (2010)) or through radiatively
driven large-scale ascent in the tropical tropopause layer.

We note that the rank correlation between mid-level
clouds and CCA is negative, while its correlation with
SCAI is positive (when it is significant). This positive cor-
relation with SCAI can be identified in Figure 7(d–f) and,
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FIG. 9. (a) Radar-observed low-level cloud fraction for different
SCAI-R combinations, indicated by colours and symbols, respectively.
Filled symbols are for low-level cloud fraction conditional on a lidar
signal down to 3.5 km; open symbols are conditional on the lidar being
attenuated. Dashed line indicates a 1:1 ratio between conditional frac-
tion and all-sky fraction. (b) Low-level cloud fraction conditional on a
lidar signal down to 3.5 km, as observed by radar versus as observed by
lidar. Line indicates the 1:2.5 ratio.

for various CCA ranges, the mean cover for a given SCAI
range is outside the 90%-confidence intervals for the other
SCAI ranges. In contrast, the positive correlation with
SCAI was difficult to discern in Figure 5, seemingly due
to the positive correlation between SCAI and CCA and
the correlations of opposite sign between mid-level clouds
and CCA and between mid-level clouds and SCAI. The
increase in mid-level cloud cover when SCAI increases
coincides with increases in thick and thin anvil, but the
decreasing cover when CCA increases is surprising. The
latter will require further investigation into the microphys-
ical and macrophysical structure of mid-level clouds and
whether these clouds are often missed by the radar, for in-
stance due to having little or no ice present (Zhang et al.
2010).

Congestus shows a clear increase with R (approxi-
mately 50% between the lowest and highest R) but no con-
sistent relationship with SCAI. Across all R and also for
any given SCAI range, congestus decreases when CCA
increases, associated with a decrease in mid-level clouds.
Mid-level clouds can be generated through detrainment
near the freezing level (Johnson et al. 1999) from both
deep convection and congestus. Thus, for a given CCA,
when convection is disaggregated, more individual con-
vective plumes can mix with the environment and pro-
duce mid-level clouds through detrainment, which might
explain the increase in mid-level clouds when SCAI in-
creases. The decrease in mid-level cloud when CCA in-
creases could therefore be a result of the decrease in con-
gestus, but the physical mechanism for the latter is not ob-
vious from these statistical relationships alone.

In Figure 7(j–l) we show the fraction of profiles without
any cloud layers, denoted as “clear sky”. This fractional
cover decreases with CCA as we might expect, although
when convection is aggregated (red curves), this decrease
does not vary beyond the 90%-confidence interval. Clear
sky also become less frequent as SCAI increases, consis-
tent with results using ISCCP (Tobin et al. 2013). How-
ever, for any given CCA range, we note that a change from
aggregated to disaggregated convection does not lead to a
decrease in clear-sky fraction beyond the 90%-confidence
interval. Tobin et al. (2013) found that low SCAI is as-
sociated with a dry mid-troposphere and they related this
to the proposed mechanism through which convective ag-
gregation promotes a larger coverage of large-scale subsi-
dence (Muller and Held 2012), both of which in the tropics
may lead to widespread low-level stratocumulus or trade
cumulus. We briefly investigate several combinations of
cloud types and clear sky to estimate the fractional cov-
erage of cloud regimes that could be expected in regions
with large-scale subsidence, to test whether this fractional
coverage decreases when SCAI increases.

First, we test whether this lack of significant decrease
of clear-sky cover when CCA or SCAI increase is due to
an associated decrease of low-level clouds. For instance,
while an increase in CCA or SCAI is evidently associ-
ated with more anvil, which would reduce clear-sky frac-
tion, it may also be associated with fewer low-level clouds
(investigated in Section 6), which would increase clear-
sky fraction. In Figure 8(a–c) we see that the fractional
cover of clear-sky profiles and profiles with only low-level
clouds decreases when CCA or SCAI increases. When re-
stricting the range of SCAI or CCA, respectively, the rank
correlations are negative and typically statistically signif-
icant, and we note that the curves vary beyond the 90%-
confidence intervals for the two lower rain rates consid-
ered. Compared to the low SCAI range, the fractional area
of clear sky and low-level clouds (and no other clouds) is
0.10 smaller for the high SCAI range and a similar de-
crease in low-level cloud cover can be noted when CCA
increases. This result supports the idea that convective
aggregation promotes widespread clear sky and low-level
cloud.

Second, we test if cirrus has an impact on the frac-
tional area of clear sky and its relationship with SCAI
and CCA, without low-level clouds (Figure 8(d–f)) and
with low-level clouds (Figure 8(g–i)). Cirrus is abundant
across all SCAI and CCA ranges considered, but it does
not have a significant relationship with SCAI and its re-
lationship with CCA is not consistent across SCAI and
R ranges. Furthermore, formation mechanisms for cirrus
have been proposed that do not rely on local convective
activity, so that the presence of cirrus — and its negation
of clear sky — may sometimes be random and not cor-
related with SCAI or CCA. In Figure 8(d–f), when clear
sky is combined with cirrus, we note that the relationship
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with CCA and SCAI is similar compared to the clear-sky
fraction in Figure 7(j–l), apart from an overall increase in
fractional cover. However, the combined fractional cover
of clear sky, low-level clouds, and cirrus, shown in Fig-
ure 8(g–i), decreases significantly when SCAI or CCA in-
creases. This decrease in fractional area is greater than
when clear-sky is combined with low-level clouds alone
and the curves for individual SCAI ranges are clearly sep-
arated beyond their 90%-confidence intervals. We con-
clude that — regardless of cirrus — the fractional cover of
low-level clouds and clear sky can increase by as much as
0.2 (50% in relative terms) when convective aggregation
increases.

6. Low-level cloud cover

Estimating low-level cloud cover from satellite data is
not straightforward, as observations of low-level clouds
are incomplete. The CloudSat radar sensitivity threshold
means that it only detects low-level clouds with high liq-
uid water contents or when drizzle is present (Christensen
et al. 2013b). In our analysis, for profiles where CALIPSO
detects low-level cloud layers, only 40% of these pro-
files have low-level cloud layers that are also detected
by CloudSat, so the low-level cloud cover estimated from
radar alone will be an underestimate. The CALIPSO lidar,
on the other hand, gets attenuated by thick clouds — typi-
cally optical thickness greater than 3 (Chepfer et al. 2008)
— so that for cloudy conditions, the probability of detect-
ing low-level clouds using CloudSat-CALIPSO is severely
reduced.

Here, we present the “lidar-observed low-level cloud
fraction with lidar detection” as our best estimate for low-
level cloud cover over tropical ocean. We consider a pro-
file to have “lidar detection” if the CALIPSO signal is not
attenuated at 3.5 km above mean-sea level (approximately
the 700-hPa level), based on the CALIPSO vertical feature
mask (Anselmo et al. 2006). To substantiate our choice
for best low-level cloud estimate, we hypothesize that for
a given SCAI-R combination, low-level clouds are equally
likely to occur in profiles with lidar detection and in pro-
files without lidar detection (i.e. without and with thick
cloud aloft, respectively), and we assume that low-level
clouds are not systematically different in their microphys-
ical composition and macrophysical structure depending
on their location. Under these conditions, the following
two fractions should be approximately equal:

1. The fraction of low-level cloud profiles with Cloud-
Sat radar detections over all profiles with lidar detec-
tion.

2. The fraction of low-level cloud profiles with Cloud-
Sat radar detections over all profiles without lidar de-
tection.

From Figure 9a we see that, indeed, these two fractions are
comparable, although the “radar-observed low-level cloud
fraction without lidar detection” (open symbols) appears
consistently slightly smaller. Notably, the “radar-observed
fraction with lidar detection” (filled symbols) provides a
reasonable estimate of the “all-sky radar-observed low-
level cloud fraction”, as indicated by the dashed line. We
have no means of testing our assumption on the cloud mi-
crophysical and macrophysical structure, but we can anal-
yse whether low-level cloud structures vary between dif-
ferent SCAI-R combinations by comparing the probability
of detection by CloudSat in Figure 9b. We note that the
lidar-observed fraction is approximately 2.5 times greater
than the radar-observed fraction and that this ratio does not
vary consistently with SCAI or R. Thus, the probability of
low-level cloud detection by the radar is not affected by the
large-scale conditions represented by the different SCAI-
R combinations. Because the probability of detection of
low-level clouds by CloudSat does not vary much across
SCAI-R ranges (Figure 9b), we believe that our assump-
tion on low-level cloud microphysical composition and
macrophysical structure is supported (though not proven).

In Figure 10 we show the cloud cover from low-level
clouds as it is defined from these different combinations
of the CloudSat-CALIPSO observations. For all defini-
tions of low-level cloud cover, a decrease is noticeable as
SCAI increases, while cover also decreases when CCA
increases. The factor 2.5 increase in low-level cloud be-
tween the radar and the lidar (with lidar signal) is evi-
dent across all R and SCAI combinations (panels a–c and
g–i). For the “lidar-observed all-skies” cover (panels d–
f), the rank correlation is negative both for SCAI and for
CCA and is typically statistically significant when restrict-
ing the range of CCA or SCAI, respectively. More CCA
leads to relatively less low-level cloud detection due to li-
dar attenuation, which would explain this strong decrease
when CCA increases. For many CCA values, curves for
different SCAI ranges do not overlap with other 90%-
confidence intervals, but this apparent relationship with
SCAI could be due to other cloud types (or multi-layered
clouds) attenuating the lidar signal. Thus, we continue our
discussion by considering our best estimate of low-level
cloud cover, i.e. lidar-observed with lidar signal.

Our best estimate does not vary consistently with CCA
across the SCAI-R ranges (panels g–i) and no consistent
sign in rank correlation is found. For a given CCA range,
low-level cloud cover decreases when SCAI increases —
statistically significant for all but one of the R and CCA
combinations tested — with a typical difference of 0.05–
0.10 between the low and high SCAI ranges (approxi-
mately 15% in relative terms). Thus, when we account for
the low-level clouds obscured by optically thick clouds,
our results continue to support the suggestion by Tobin
et al. (2013) that low-level cloud formation depends on the
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FIG. 10. As in Figure 6, but for (a–c) radar-observed low-level clouds for all sky conditions, (d–f) lidar-observed low-level clouds for all sky
conditions, and (g–i) lidar-observed low-level clouds for sky conditions with a lidar signal at 3.5 km.

large-scale thermodynamic and dynamic conditions that
correlate with convective aggregation.

7. Discussion

Further insight into the results of this study can be
gained from examining how the relationships between
convective aggregation and cloud types vary with SST. In-
deed, models suggest that convective aggregation is sensi-
tive to surface temperature (e.g. Wing and Emanuel 2014;
Wing and Cronin 2015; Coppin and Bony 2015; Holloway
and Woolnough 2016). Igel et al. (2014) and Zelinka and
Hartmann (2010) suggest that the anvil cloud amount de-
creases as the SST increases, but whether or not this de-
crease is associated with an increase of convective aggre-
gation remains unknown. Therefore we briefly consider
how convective aggregation — and its relationship to dif-
ferent cloud types — changes with sea surface tempera-

ture (for the same domain-averaged precipitation rate and
large-scale vertical motion). We follow the same method-
ology as is used throughout the paper, changing only the
range of SSTs, but having the same range of ω ± 1 stan-
dard deviation calculated for 301 K.

In Figure 11 we show the RLH fraction for rainfall rates
between 4.5–5.5 mm day−1 and for SST ranges between
299.5–300.5 K, 301.5–302.5 K, and 302.5–303.5 K, for
comparison with Figure 3(a,d). The increase in cloudiness
when SCAI increases is universal across the different SST
ranges, while for a given SCAI, there is an obvious depen-
dence of cloudiness on SST as well: the height of max-
imum cloud fraction increases from 12–13 km at 300 K
to 14–15 km at 303 K. Assuming that the Fixed-Anvil
Temperature hypothesis (Hartmann and Larson 2002) or
the Proportionally Higher Anvil Temperature hypothesis
(Zelinka and Hartmann 2010) applies, the rise of high
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FIG. 11. As in Figure 3, but for rainfall rates between 4.5–
5.5 mm day−1 and for SST ranges of (a,d) 299.5–300.5 K, (b,e) 301.5–
302.5 K, and (c,f) 302.5–303.5 K.

clouds when SST increases is associated with a nearly un-
changed cloud-top temperature or a slight warming. Igel
et al. (2014), however, studied individual contiguous cloud
objects identified in CloudSat data and find cooler cloud
top temperatures with warmer SSTs. A direct compari-
son between our results and those studies is not straight-
forward, since we consider variations of cloud types with
SST for a given domain-averaged precipitation rate and
a given vertical motion, whereas Igel et al. (2014) and
Zelinka and Hartmann (2010) do not stratify their results
by precipitation.

In Figure 12, we show the fractional cover of thick and
thin anvil, cirrus, and our best estimate of low-level cloud
amount. We see that for the different SST ranges, thick
anvil is strongly associated with CCA but not with SCAI
(for a fixed CCA), while thin anvil does have a strong
association with SCAI, becoming more prominent when
convection is disaggregated, as we found in Figure 6(a,d).
Cirrus cover does not show a clear association with SCAI
or CCA for any of the SST ranges considered, but it does
strongly increase with warmer SSTs. Note, however, that
our use of a fixed pressure level to distinguish cirrus from
anvil clouds is likely associated with different heights at
different SSTs and therefore this result requires some cau-
tion; further work may focus on the cloud-top and cloud-
base heights of all optically thin ice cloud, for instance.

Igel et al. (2014) found a decreasing anvil width per
cloud object when SST increases, but for a given SCAI,
CCA, and rainfall rate, we do not see a clear response
in total fractional cover of anvil cloud with varying SST.
However, we do note that in our analysis, at lower SSTs,
low SCAI values are more frequently observed, while at

higher SSTs, high SCAI values are more frequently ob-
served. Thus, if high SSTs in observations are more fre-
quently associated with disaggregated convection, they
will also be associated with a larger number of individ-
ual clusters (incidentally, Igel et al. (2014) report a much
greater number of cloud objects for higher SSTs). The
decreasing anvil width when SST increases may thus be
partly due to convection being less aggregated in the ob-
servations, although further investigation is required to
confirm this suggestion.

Finally, in Figure 12(j–l), we consider low-level cloud
amounts using our best estimate. We still note signifi-
cant negative rank correlations between low-level cloud
cover and SCAI for most CCA ranges (not shown), but
we see that the mean fractional cover for a given SCAI
range typically lies within the 90%-confidence interval of
the other SCAI ranges. Thus, the decrease in low-level
cloud cover when convection becomes less aggregated is
not consistent across different SST regimes. Instead, we
note a strong association between low-level cloud cover
and varying SSTs, as for a CCA of 0.1 the fractional cover
decreases from around 0.45 for SSTs around 300 K to
around 0.25 for SSTs around 303 K. This is surprising,
as Johnson et al. (1999) found an increasing frequency
of cumulus clouds over warmer SSTs, although we note
that in their observations, there was an absence of deep
convective clouds in those situations. Alternatively, the
decrease in low-level cloud cover may be directly related
to the increase in cirrus cover, since a decrease of the ra-
diative cooling rate of the planetary boundary layer leads
to a weaker inversion, which in turn relates to a reduc-
tion in low-level cloud cover (Wood and Bretherton 2006).
A positive feedback has been argued for low-level cloud
cover over tropical ocean due to a weakening of the inver-
sion (e.g. Qu et al. 2015), but these studies were primarily
focused on the large-scale subsidence regions in the trop-
ics. Nevertheless, it will be a worthwhile endeavor to use a
similar modelling framework to study the relationship be-
tween low-level cloud characteristics and the large-scale
environment in simulations with high R and significant
presence of deep convection.

8. Conclusions

Using 5 years of CloudSat-CALIPSO data, we have
shown that, over tropical ocean, the vertical structure of
clouds is related to the degree of convective aggregation.
The degree of convective aggregation is determined us-
ing SCAI, the Simple Convective Aggregation Index (To-
bin et al. 2012), which in our analysis ranges from 0 for
aggregated convection to 1.5 for disaggregated convec-
tion. Changes in convective aggregation are primarily as-
sociated with changes in two cloud types: anvil clouds
and low level clouds. Cloud fraction changes monoton-
ically with SCAI at all heights between 3–14 km, with
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FIG. 12. As in Figure 6, but for rainfall rates between 4.5–5.5 mm day−1 and for SST ranges of (a,d,g) 299.5–300.5 K, (b,e,h) 301.5–302.5 K,
and (c,f,i) 302.5–303.5 K. (a–c) Thick anvil, (d–f) optically thin anvil, (g–i) cirrus, and (j–l) lidar-observed low-level clouds for sky conditions with
a lidar signal at 3.5 km.

the largest change at 13 km from 0.15 at aggregated con-
vection to 0.38 at disaggregated convection. Our results
clearly show that the vertical cloud distribution is associ-
ated more strongly with SCAI than with the mean rainfall
rate.

We have taken into account the fact that SCAI is posi-
tively correlated with cold cloud area (CCA), from which

it is derived and which itself is a measure of high-level
cloud fraction. Thus, the large increase of cloud fraction
with SCAI around 13 km height is mostly due to the in-
crease of CCA with SCAI, as illustrated when our find-
ings are restricted by CCA, and as shown similarly for
fractional cloud cover of thick anvil. Although this result
may seem obvious, this is still an important point, since
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FIG. 13. CloudSat reflectivities (main colorbar) and CALIPSO cloud
mask (light blue color at left of colorbar) for four SCAI-R combinations.
Quicklooks are selected based on whether fractional cover from the fol-
lowing cloud-types is representative of the SCAI-R combination: thin
anvil cloud, thick anvil cloud, precipitating cloud (which is the total of
congestus, deep convective, and deep stratiform), and clear sky.

different SCAI/CCA regimes, for a given rain rate, have
different amounts of moisture and cloudiness, and have
different amounts of various cloud types. We can confirm
that CCA is comparable to — though slightly less than —
the combined fractional cover from thick anvil and deep
precipitating clouds (not shown).

Our results show that the fractional cover of optically
thin anvil increases when CCA increases — while they
are not part of CCA — indicating that these clouds are
closely associated with deep convection, likely due to de-
trainment. However, thin anvil shows a much stronger
association with SCAI than with CCA, increasing from
around 0.2 in aggregated conditions to around 0.4 when
convection is disaggregated. Cirrus clouds, which have
cloud base above the 200-hPa level, increase their frac-
tional cloud cover with SCAI and with CCA, but the in-
crease stays within the 90% confidence interval. The lack
of a strong relationship between cirrus and SCAI or CCA
is consistent with cirrus formation mechanisms indepen-
dent of convection and convective aggregation (e.g. large-
scale tropical waves).

The typical variation of clouds with aggregation and
precipitation is illustrated in Figure 13, which shows se-
lected quicklooks of CloudSat reflectivity profiles and
CALIPSO cloud mask. The quicklooks describe what the
different aggregation states, for the same rain rate or large-
scale forcing, look like on average: a comparable fraction
of deep convective profiles with different amounts of anvil,
shallow clouds, and clear-sky.

Our study thus suggests that the distribution of cloud
types and vertical cloud fraction are strongly affected by
the degree of aggregation of deep convection. In particu-

lar, we observe a clear reduction of the anvil cloud amount
in more aggregated situations. Several physical interpre-
tations might be given to this behavior. It could be related
to an increase of the precipitation efficiency of convective
systems: as the convective cells aggregate, they become
surrounded by moister air, which reduces the entrainment
of unsaturated environmental air into the clouds and re-
duces the reevaporation of the falling rain. Another in-
terpretation as recently proposed by Bony et al. (2016) is
that aggregated convection warms the troposphere and in-
creases upper-tropospheric stability, which in turn reduces
convective outflow and could therefore relate to a reduc-
tion in anvil cloud amount. The future investigation of
co-variations between convective aggregation, the differ-
ent cloud types studied here and thermodynamic parame-
ters could help test this hypothesis. The interpretation of
the increase of low-level clouds with increased aggrega-
tion will also merit further investigation. Whether it re-
sults from the reduced upper-level cloud amount and the
subsequent reduced downward infrared radiation (Chris-
tensen et al. 2013a) or from more dynamical influences
remains an open question.

In any event, the systematic variations of cloud types
with convective aggregation pointed out here imply that
changes in convective aggregation are associated with sig-
nificant changes in atmospheric cloud-radiative effects.
Indeed, low-level clouds radiatively cool the troposphere
(especially the boundary layer), whereas anvil clouds ra-
diatively warm the troposphere. Therefore, in situations
where convection is more aggregated, the reduced anvil
cloud amount combined with the increased low-cloud
amount in the vicinity of deep convection may promote the
narrowing of convergence areas and the extension of sub-
siding areas, thus providing a positive feedback on convec-
tive aggregation. By modulating the atmospheric radiative
cooling, changes in convective aggregation may also play
an active role in the intraseasonal variability of the tropical
atmosphere (Tobin et al. 2013; Arnold and Randall 2015).

A final open question is whether, as convective aggrega-
tion increases, the radiative impact of changes in the anvil
cloud amount on the top-of-atmosphere budget is opposed,
or instead amplified, by changes in the low-cloud amount.
Answers to these questions will be required to assess the
role that convective aggregation plays in climate and hy-
drological sensitivity (Mauritsen and Stevens 2015; Bony
et al. 2015).
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