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Abstract 

Scope: To determine the contribution of intestinally and liver-derived lipoproteins to the 

postprandial plasma triacylglycerol (TAG) response in APOE3/E3 and E3/E4 individuals 

following chronic dietary fat manipulation. 

Methods and Results: In sequential order, participants (n=12 E3/E3, n=11 E3/E4) followed 

low fat (LF); high-fat, high-saturated fat (HSF); and HSF with 3.45 g/day docosahexaenoic 

acid (HSF-DHA) diets, each for 8 weeks. After each dietary period, an acute test meal with a 

macronutrient profile representative of the dietary intervention was consumed. 

Apolipoprotein (apo)B isoforms were determined in isolated TAG-rich lipoprotein fractions 

(Sf>400, Sf 60-400 and Sf 20-60) by specific ELISA. A genotype*meal/diet interaction for 

the Sf>400 fraction apoB-48 response (P<0.05) was observed, with higher concentrations 

reached after the LF than HSF-DHA meal in E4 carriers. This finding was associated with a 

lower TAG content of the Sf>400 particles. Fasting Sf 60-400 and 20-60 apoB-48 

concentrations were also significantly higher in E4 carriers. No impact of genotype on the 

apoB-100 responses was evident. 

Conclusion: Our study revealed marked effects of dietary fat composition on the Sf>400 

apoB-48 response and particle TAG content in E4 carriers relative to the ‘wild-type’ E3/E3 

genotype, which suggest APOE genotype is a potential modulator of chylomicron particle 

synthesis. 

  



1. Introduction 

The concentration of triacylglycerol (TAG) in the fasting and postprandial (fed) state has 

been consistently associated with cardiovascular disease (CVD) risk, although causality has 

not been fully established [1]. The contribution of the liver-derived TAG-rich lipoproteins 

(TRL), VLDL and their remnants, to the pathogenesis of atherosclerosis has been well 

described [2-4]. Elevated levels of chylomicrons and chylomicron remnants which circulate 

following a meal have also been directly and indirectly related to CVD risk. However, 

different mechanisms are thought to operate for the liver and intestinally-derived TRL [1]. 

Yet, insight into the atherogenicity of these intestinally-derived TRL have been slower to 

emerge due to methodological difficulties associated with the determination of their inherent 

apolipoprotein, apolipoprotein (apo)B-48, in plasma and TRL fractions [5].  

 The APOE (epsilon) genotype is considered to be an important genetic determinant of 

the inter-individual variation in postprandial lipid metabolism [6-8]. with higher TAG 

concentrations reported in E4 carriers relative to the ‘wild-type’ E3/E3 group [9]. However, 

little is known about the contribution of intestinally (apoB-48) and liver (apoB-100) derived 

TRL to the total TAG response according to APOE genotype. Of the studies conducted [10-

13], APOE genotyping has been performed retrospectively resulting in differences in age, 

male/female ratio and subject numbers between the E3/E3 and E3/E4 study groups, which 

makes the independent impact of genotype difficult to establish with certainty. Using a 

prospective genotyping approach in the SATgenε study, we aimed to determine for the first 

time, both the postprandial TRL apoB-48 and B-100 responses to meals of varying fat 

composition in E3/E3 and E3/E4 men, matched for age and BMI.  

 

2. Methods 

2.1 Subjects and postprandial protocol 



Details of the SATgenε dietary intervention [8] and postprandial study [9] have been 

published elsewhere. The study was given a favourable ethical opinion for conduct by the 

University of Reading Research Ethics committee (project 08/62) and is registered at 

Clinicaltrials.gov I.D NCT0138. All subjects gave informed consent prior to participation in 

the study. Briefly 23 men prospectively recruited according to APOE genotype (n=12 E3/E3 

and n=11 E3/E4) underwent a postprandial investigation at the end of the 8 week prescribed 

iso-energetic low fat (LF) diet, high fat, high saturated fat (HSF) diet and HSF diet with 3.45 

g/day of docosahexaenoic acid (HSF-DHA). The macronutrient composition of the diets and 

test meals are shown in Table 1. After an overnight fast, the subjects attended the clinical 

investigation unit where an indwelling cannula was inserted into a vein in the forearm, and a 

fasting blood sample (0 min) was taken. The test meal was given in the form of a warm 

chocolate drink containing the test oils with toast and jam, and consumed within 20 min. For 

isolation of the TRL fractions, Svedberg flotation rate (Sf)>400 (predominately 

chylomicrons), Sf 60-400 (large TAG-rich VLDL1) and Sf 20-60 (smaller TAG-poor 

VLDL2), blood was collected at 180, 240, 300, 360 and 480 min post meal.  

 

2.2 TRL isolation and apoB analysis 

Blood samples and TRL fractions were isolated as previously described [9]. ApoB-48 and B-

100 were measured in the TRL fractions using specific in-house ELISAs [14]. For the apoB-

100 ELISA, some modifications to the original method were made. Briefly, the ELISA plate 

was coated with 1 mg/ml of a 1:1 mixture of apoB-100 monoclonal antibodies 4G3 and 5E11 

(Ottawa Heart Institute Research Corporation, University of Ottawa) in 0.1 M bicarbonate-

carbonate buffer (pH 9.6) for 16 h at 4°C. After washing with 0.02 M PBS containing 0.05% 

(by volume) Tween 20 and 0.1% BSA (PBSBT), the plate was blocked with 150 μl of 0.02M 

PBS, 0.025% (by volume) Tween 20 and 3% BSA at 37°C for 1 h. A 9 point standard curve 



was prepared by serial dilution of LDL (density=1.019-1.063 g/ml, Source Bioscience, 

Nottinghamshire, UK) in PBSBT to produce a concentration range of apoB-100 from 1.25 

μg/ml to 5 ng/ml. The Sf>400 fraction was diluted 1:6, the Sf 60-400 fraction 1:1000 and Sf 

20-60 fraction 1:2000 in PBSBT prior to the addition to the plate. Standards, samples and 

quality controls (100 μl/well) were added in duplicate to the plate and incubated for 2 h at 

37°C. The plate was washed, 100 μl of goat anti-apoB antibody conjugated to horse radish 

peroxidase (Source Bioscience) was added to the plate at a final dilution of 1:20,000, and 

incubated for a further 2 h at 37°C. After washing the plate, 100 μl of 3, 3’, 5, 5’-

tetramethylbenzamidine substrate (Sigma, Dorset, UK) was added for 30 min and reaction 

stopped by the addition of 1M HCL. The absorbance was read at 450 nm. The inter-assay 

CVs for the apoB-48 and apoB-100 assays were less than 10%. 

 

2.3 Statistical analysis 

Details of the sample size calculation for the postprandial study have been previously 

described [9]. Data were analysed using PASW statistics 18 (SPSS Inc, Chicago, IL). All data 

were checked for normality and log transformed where necessary before statistical analysis. 

Repeated measures analysis of variance (ANOVA) determined the effects of the meals on the 

postprandial time course responses, with ‘meal’ and ‘time’ as the within-subject factors and 

‘genotype’ as the between-subjects factor. A one-within, one-between repeated measures 

ANOVA analysed differences in the fasting concentrations and postprandial summary 

measures between the genotype groups. For a significant main effect of ‘diet/meal’, Student’s 

paired t-tests were performed, with a Holm’s sequential Bonferroni correction applied to 

correct for significant pairwise differences. Data are presented as mean ± SEM. Values of P ≤ 

0.05 were taken as significant. 

 



3. Results 

3.1 ApoB-48 responses 

The impact of the test meals on the postprandial apoB-48 response in the Sf>400 fraction 

(predominately chylomicrons) was influenced by APOE genotype (meal*genotype 

interaction, P=0.030), with higher apoB-48 concentrations following the LF compared with 

the HSF-DHA meal in the E3/E4 group only (Fig.1). This was reflected in the greater AUC 

(44%), IAUC (53%) and maxC (53%) after the LF than HSF-DHA meal (P≤0.010; Table 2). 

ApoB-48 responses were not different between meals in the E3/E3 group (Fig. 1 and Table 

2). 

Since  meal*genotype interactions were not evident for the apoB-48 responses in the 

Sf 60-400 and Sf 20-60 TRL fractions, data for the two genotype groups within each TRL 

fraction were combined to determine the overall effects of the diet/meals on the fasting and 

postprandial responses. In the Sf 60-400 fraction, fasting apoB-48 concentrations were higher 

after the LF than HSF-DHA diet (P=0.006; Supplementary Table 1). A higher postprandial 

time course response, AUC, IAUC and maxC was also observed after the LF than HSF and 

HSF-DHA meals (P≤0.017; Supplementary Fig.1 and Supplementary Table 1). Only the 

apoB-48 IAUC (found to be higher after the HSF compared with the LF meal) was 

influenced by meal composition in Sf 20-60 TRL fraction (P=0.005; Supplementary Table 1).  

Independent of the diet/meals, APOE genotype was shown to influence fasting apoB-

48 concentrations.  Compared with the wild-type E3/E3 group, E4 carriers had higher 

concentrations in both the Sf 60-400 (46.5 vs. 63.5 pmol/l; P=0.048) and Sf 20-60 (47.8 vs 

78.1 pmol/l; P=0.003) fractions. A genotype effect was also observed for maxC reached after 

the meals in the Sf 20-60 fraction, with on average higher apoB-48 concentrations in the 

E3/E4 (160 pmol/l) than E3/E3 (122 pmol/l) group (P=0.035). 

 



3.2 ApoB-100 responses 

Independent of genotype, diet/test meal composition only influenced fasting and postprandial 

apoB-100 concentrations in the Sf 60-400 TRL fraction (P<0.001; Supplementary Table 1). 

Fasting concentrations were 52% and 42% lower after the HSF-DHA than LF and HSF diets, 

respectively. The postprandial time response profile, AUC and maxC were also lower after 

HSF-DHA compared with the other test meals (P≤0.005; Supplementary Fig. 1 and 

Supplementary Table 1). There was no impact of diet/meal composition or genotype on 

fasting apoB-100 concentration or postprandial responses determined in the Sf>400 and Sf 

20-60 fractions. 

 

3.3 Sf>400 fraction TRL composition 

As each chylomicron particle has only one apoB-48 molecule, the TAG, cholesterol and apoE 

concentrations [9] were expressed as a ratio of the apoB-48 concentration in order to establish 

particle composition and gain insight into possible mechanisms underlying the differences in 

the Sf>400 fraction apoB-48 responses between the meals in the E4 carriers. There was a 

significant meal*genotype interaction for the TAG:apoB-48 ratio (an indicator of particle 

TAG content) of the Sf>400 particles after the meal (P=0.015), with a higher ratio observed 

after the HSF than LF meal in the E4 carriers only (P=0.009; Fig.2). The IAUC for the 

postprandial TAG:apoB-48 ratio was also lower after the LF meal than following the HSF 

and HSF-DHA meals (P≤0.023). Differences were not evident in the postprandial 

TAG:apoB-48 ratio between meals in the E3/E3 group. Meal composition and genotype did 

not influence the cholesterol:apoB-48 or apoE:apoB-48 ratios (data not shown). 

 

4. Discussion 



An APOE4 genotype (20-25% Caucasians) has been associated with reduced longevity [15] 

and increased CVD risk [16], with an impact on fasting and postprandial lipid metabolism 

likely to significantly contribute to the higher CVD incidence. Here, in the SATgenε study, 

we observed a greater responsiveness of the Sf>400 fraction apoB-48 response to diet/meals 

of varying fat content and composition in E4 carriers, with little impact of APOE genotype on 

TRL apoB-100 responses.  

Only three studies have determined postprandial TRL apoB-48 and apoB-100 

responses according to APOE genotype [10, 11, 13], but findings are inconsistent. In two 

studies [10, 11], similar fasting and postprandial TRL apoB-48:B-100 ratios and retinyl 

palmitate (RP, an indirect marker of chylomicrons and their remnants) concentrations were 

observed in response to high fat meals (100-105 g) in E3/E3 and E4 carriers. Using stable 

isotopes (a primed constant infusion of deuterated leucine) in the fed state, Welty et al. [13] 

reported E3/E4 individuals to have a significantly lower postprandial TRL (d<1.006 g/ml) 

apoB-100 production rate after small meals (each equivalent to 1/20th of their daily food 

intake) representative of an American diet (36% fat) whereas the TRL apoB-48 pool size and 

clearance of chylomicron remnants were not different between the genotype groups. In 

contrast to previous studies which genotyped retrospectively, we prospectively recruited 

according to APOE genotype and matched the groups for age and BMI, two important 

determinants of the postprandial lipaemic response [17, 18]. E4 carriers had higher fasting Sf 

60-400 and Sf 20-60 apoB-48 concentrations, and reached higher postprandial (maxC) 

concentrations in the Sf 20-60 fraction than E3/E3 individuals, with apoB-100 responses 

similar in the genotype groups. The technique used to measure intestinally-derived 

lipoproteins may provide an explanation for the inconsistent findings on the effects of APOE 

genotype on TRL apoB responses. Early studies [10, 11] included RP in the test meal to label 

the lipid moiety of chylomicrons and determined RP responses in plasma and TRL fractions. 



However, discordance in the data from studies comparing apoB-48 (the integral protein 

component of chylomicrons) with RP responses, has highlighted limitations of the latter as a 

specific marker of chylomicron remnants [19]. Furthermore, the isolation of only TAG-rich 

and TAG-poor TRL fractions in the earlier studies compared with the three distinct TRL 

fractions of progressively increasing density and decreasing particle size [20] in the current 

study, may have masked the specific effects of APOE genotype on TRL apoB-48 

metabolism. 

A novel aspect of our study design is the use of test meals which were representative 

of the fat content and composition of the intervention diet, providing a more physiological 

assessment of the effects of diets with varying fat composition on postprandial lipaemia. As 

far as the authors are aware, only one other study has determined the effects of habitual 

dietary fat manipulation on TRL apoB responses according to APOE genotype [12]. 

Following a high-fat PUFA-rich diet for 29 days, fasting concentrations of TRL apoB-48 and 

B-100 were similar in the E3/E3 and E3/E4 groups, with E4 carriers showing a delayed 

clearance of both apoB-48 and B-100 TRL remnants after the test meals, irrespective of 

whether they were enriched in SFA (PUFA/SFA ratio = 0.2) or PUFA (PUFA/SFA ratio = 

1.3). In the present study, greater postprandial changes in apoB-48, but not B-100 in response 

to the test meal fat content and composition were evident in E4 carriers. In particular, higher 

Sf>400 apoB-48 responses and IAUC after the LF than HSF-DHA meal are suggestive of 

either a greater production and/or impaired clearance of chylomicrons after the low fat, high 

carbohydrate test meal.  

Insulin plays a pivotal role in chylomicron metabolism by regulating apoB-48 

secretion, the activity of the hydrolytic enzyme lipoprotein lipase and the expression of 

hepatic remnant receptors [21, 22]. Acutely, insulin secretion has been shown to be 

influenced by test meal fat composition [23]. In the current study, as we have previously 



reported, the insulin and glucose responses to the meals were similar within each genotype 

group [9], indicating that differences in insulin action do not contribute to the marked effects 

of meal composition on apoB-48 responses in APOE4 carriers. Animal studies have reported 

gut hormones, in particular glucagon-like peptide 2 to play an important role in stimulating 

intestinal lipid absorption and chylomicron production [24-26] but findings in humans are 

limited [27]. The impact of APOE genotype on gut hormone production is currently 

unknown.  

Previous reports by ourselves [14] and others [28, 29] have suggested that the meal fat 

composition could influence the lipid and apolipoprotein content of TRL particles which has 

been proposed to affect their rate of metabolism in the circulation. A notable difference in the 

TAG content (TAG:apoB-48 ratio) of the postprandial Sf>400 TRLs after the meals was 

evident, with a lower TAG content and smaller incremental change in the TAG enrichment of 

the TRL particles after the LF relative to the high-fat meals. Since TRL particle size is 

determined primarily by the TAG content, the smaller chylomicrons circulating after the LF 

than HSF-DHA meal may have been more resistant to hydrolysis by lipoprotein lipase which 

could result in delayed clearance and provide an explanation for the greater Sf>400 fraction 

apoB-48 response relative to the HSF-DHA meal. Although the apoE content of the Sf>400 

particles was not different, the apoE isoform (E3 versus E4) present on the surface of the 

TRLs may have also influenced their metabolism in the circulation. In particular, apoE3 

shows a greater preference for smaller TAG-poor TRL whereas apoE4 binds specifically to 

larger TAG-rich particles [30, 31] and is associated with a more atherogenic lipoprotein 

profile [30]. We speculate that the larger TAG-rich chylomicrons circulating after the HSF-

DHA meal (than LF meal) were more enriched with apoE4, facilitating a more rapid 

conversion to smaller denser remnant particles than after the LF meal. However, similar Sf 

20-60 fraction apoB-48 responses (representing small chylomicrons and chylomicron 



remnants) were observed after the HSF-DHA and LF meals, which were lower relative to the 

HSF meal. It is unclear from our data whether differences in production rate and clearance of 

these particles from the circulation or rates of conversion between Sf>400 to Sf 60-400 and Sf 

20-60 fractions were responsible for these findings.      

With the increasing recognition of the contribution of raised levels of intestinally-

derived lipoproteins after a fat containing meal to CVD risk, there is considerable interest in 

the effects of diet on postprandial fat handling and TRL composition. Our study has revealed 

marked effects of the LF diet/meal on Sf>400 apoB-48 responses in E4 carriers relative to the 

HSF-DHA diet/meal, which was associated with a notable difference in the estimated TAG 

content of the chylomicron particles. Although the postprandial Sf>400 TAG time response 

profiles were comparable after the LF, HSF and HSF-DHA diet/meals, our findings indicate 

that consumption of the lower fat and higher carbohydrate diet may have impacted on 

pathways regulating chylomicron synthesis and particle lipid composition, particularly in 

APOE3/E4 individuals. Our novel findings are of interest and potentially lend support to a 

recent study in men classified with the metabolic syndrome [32] which proposed that the 

enterocyte does not just process dietary TAG but may also upregulate pathways for the 

synthesis of fatty acids (de novo lipogenesis) during higher intakes of carbohydrate. The 

APOE genotype now represents one of the few common genotypes consistently associated 

with longevity, chronic disease risk and responsiveness to dietary manipulation. Therefore, 

further studies, in particular kinetic studies using stable isotopes, are warranted to confirm 

our findings and provide insights into mechanisms underlying the effects of APOE genotype 

on intestinal fat absorption, chylomicron synthesis and metabolism. 
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FIGURE LEGENDS 

Figure 1: Mean ± SEM for the apoB-48 responses in the Svedberg flotation rate (Sf)>400 

fraction after consumption of test meals representative of the low fat diet (LF, open squares), 

high saturated fat diet (HSF, closed circles) and HSF diet with fish oil (HSF-DHA, open 

circles) in the APOE3/E3 (n = 12) and APOE3/E4 (n = 11) groups. For the E3/E4 group, 

there was a significant test meal (P=0.032) and time (P<0.001) effect, with a trend for a 

meal*time interaction (P=0.077). 

 

Figure 2: Mean ± SEM for the change in triacylglycerol (TAG) content of the Svedberg 

flotation rate (Sf)>400 fraction lipoproteins (presented as number of TAG molecules per 

apoB-48 particle) after consumption of test meals representative of the low fat diet (LF, open 

squares), high fat, high saturated fat diet (HSF, closed circles) and HSF diet with fish oil 

(HSF-DHA, open circles) in the APOE3/E3 (n = 12) and APOE3/E4 (n = 11) groups. For the 

E3/E4 group, there was a significant test meal (P=0.018) and time (P<0.001) effect. 

  



Table 1: Macronutrient composition of the diets and test meals 

Composition Diets†  Test meals 

 LF HSF HSF-DHA  LF HSF HSF-DHA 

%Energy from fat 24.0 38.0 38.0  27.5 37.8 37.8 

 SFA  8.0 18.0 18.0  8.3 18.0 18.3 

 MUFA 8.0 12.0 12.0  12.2 12.2 12.2 

 PUFA 6.0 6.0 6.0  6.4 6.4 6.6 

%Energy from CHO 55.0 45.0 45.0  55.0 45.0 45.1 

%Energy from protein 17.0 17.0 17.0  17.0 17.0 17.0 

†Target daily intake. Abbreviations: CHO, carbohydrate; HSF, high fat, high saturated fat 

diet; HSF-DHA, HSF diet with 3.45 g/day docosahexaenoic acid; LF, low fat; SFA, saturated 

fatty acid. 

  



Table 2: Postprandial summary measures for the Sf>400 fraction apoB-48 responses in 

the APOE3/E3 and APOE3/E4 groups 

 Test meals ANOVA 

 LF HSF HSF-DHA meal (P=) 

APOE3/E3 (n=12)     

   Fasting (pmol/l) 

   AUC 

   IAUC 

   maxC (pmol/l) 

15.2 ± 2.3 

22.1 ± 3.2 

14.8 ± 3.1 

95 ± 13 

13.5 ± 2.3 

22.8 ± 4.5 

16.3 ± 4.2 

104 ± 25 

16.5 ± 2.6 

25.0 ± 5.6 

17.0 ± 5.3 

107 ± 28.0 

0.815 

0.585 

0.857 

0.831 

APOE3/E4 (n=11)     

   Fasting (pmol/l) 

   AUC 

   IAUC 

   maxC (pmol/l) 

15.9 ± 2.3 

48.0 ± 10.6* 

40.4 ± 10.7* 

201 ± 50† 

15.7 ± 1.8 

28.9 ± 5.1 

21.4 ± 5.0 

117 ± 21 

15.8 ± 2.3 

26.6 ± 7.5 

19.0 ± 7.2 

95 ± 26 

0.954 

0.007 

0.034 

0.003 

Values represent mean ± SEM. Abbreviations: AUC, area under the curve; HSF, high fat, 

high saturated fat diet; HSF-DHA, HSF diet with 3.45 g/day docosahexaenoic acid; IAUC, 

incremental AUC; LF, low fat ; maxC, maximum concentration. AUC and IAUC are 

expressed as pmol/l x 480 min. 

*P≤0.01, compared with HSF-DHA meal, †P≤0.013, compared with HSF and HSF-DHA 

meals. 
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