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For adaptation and mitigation planning, stakeholders need reliable information about regional

precipitation changes under different emissions scenarios and for different time periods.

A significant amount of current planning effort assumes that each K of global warming

produces roughly the same regional climate change. Here using 25 climate models,

we compare precipitation responses with three 2 K intervals of global ensemble mean

warming: a fast and a slower route to a first 2 K above pre-industrial levels, and the

end-of-century difference between high-emission and mitigation scenarios. We show that,

although the two routes to a first 2 K give very similar precipitation changes, a second 2 K

produces quite a different response. In particular, the balance of physical mechanisms

responsible for climate model uncertainty is different for a first and a second 2 K of warming.

The results are consistent with a significant influence from nonlinear physical mechanisms,

but aerosol and land-use effects may be important regionally.
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A
ccording to ensemble mean projections from the fifth
coupled model intercomparison project (CMIP5),
global mean temperatures could reach at least 2 K above

pre-industrial levels1, even with significant mitigation action
(here, pre-industrial refers to the CMIP5 pre-industrial control
simulations). This magnitude of change has been taken as a target
to avoid potentially dangerous anthropogenic interference with
the climate system. This level may be reached by mid-century
if high anthropogenic emissions continue (as in the RCP8.5
scenario), or near the end of the century under relatively strong
mitigation conditions (that is, for emissions between those of the
RCP2.6 and RCP4.5 scenarios). If high emissions persist, a second
2 K of global warming could occur by the end of the century.

Stakeholders need information, not just about global mean
warming but on likely regional-scale climate changes—especially
for precipitation2. Some require information on change over the
coming decades (for example, to inform adaptation policy), while
for others the potential benefits of mitigation action later in the
century is of more interest (that is, the difference in climate
change between high- and low-emission scenarios). It is
important to quantify and understand likely climate changes
under these distinct conditions, but they are not always examined
separately.

A significant amount of current work assumes, either implicitly
or explicitly, that in any given climate model each K of global
warming produces roughly the same changes in regional climate.
This assumption is implied in some studies of physical
mechanisms, where it is common3 to examine the climate
changes under a high-forcing scenario (for example, RCP8.5 at
the end of the century, or the suite of high-forcing idealized
experiments, designed for studying mechanisms, in CMIP5).
If the results from this kind of study are to be applied to lower-
forcing scenarios or periods of stakeholder interest, one must
assume that the balance of mechanisms driving regional climate
change is roughly constant—or, equivalently, that the spatial
patterns of precipitation change are roughly constant, and simply
scale with global mean warming. The assumption of a fixed
spatial pattern of climate change per K of global warming is also
explicit in some policy tools (usually called pattern scaling4–7).

The above assumption is known not to apply exactly4,8–10, and
physical reasons exist to challenge it, but have yet to be
thoroughly investigated. These reasons fall into three categories:
a changing balance of different forcing agents (which cause
different patterns of climate response11), and linear and nonlinear
mechanisms of climate response12.

The most obvious reason for precipitation patterns to differ
between different scenarios or time periods is a changing balance
of forcings. Different forcings in general produce different
patterns of climate response, so if their balance changes
(even with a constant total), the climate patterns will alter9.
Anthropogenic aerosol, in particular, produces different
responses than greenhouse gases11,13,14, and its temporal
evolution, peaking near the end of the twentieth century, is
expected to be quite different from that of greenhouse gases under
the CMIP5 RCP scenarios15,16. Land-use and land-cover change
could also have distinct effects on climate change17. Even for a
constant balance of forcings, however, climate change patterns
may differ between different scenarios or periods, due to linear
and nonlinear mechanisms12.

Linear mechanisms are here considered to be those consistent
with linear system theory—that is, where doubling the forcing
everywhere along a scenario doubles the response throughout
(as assumed by linear response function models18–20). Even in a
linear system, climate change response patterns may evolve due to
different timescales of response21,22. For example, precipitation
has both fast responses to forcing (via reduced tropospheric

radiative cooling and rapid land surface warming) and slower
indirect responses (via sea-surface temperature warming)23,24.
Patterns of surface warming (and hence precipitation change3)
can also evolve over time (for example, warming over the
Southern Ocean lags global mean warming21). These effects,
therefore, are sensitive to the forcing history. If forcings have been
changing rapidly (such as under RCP8.5), then fast responses are
relatively important, as they adjust quickly to the recent forcing
changes. If, on the other hand, forcings have been stabilised
for some time (such as under RCP2.6 or RCP4.5 by the end
of the century), slower responses have had more time to develop,
so play a relatively larger role. Linear mechanisms can alter
both global mean precipitation and global climate feedbacks
significantly25–27, but have not been investigated thoroughly for
regional precipitation28.

Nonlinear mechanisms are those inconsistent with linear
system theory. These may include state-dependent feedbacks,
such as the sea-ice albedo feedback (which vanishes for large or
zero sea-ice cover29). Nonlinear mechanisms can cause climate
patterns to differ at different levels of forcing12. For example, if an
equivalent of RCP8.5 was run with double the forcing, linear
mechanisms would show exactly double the response compared
with the standard RCP8.5, but nonlinear mechanisms would not.
Nonlinear mechanisms have been demonstrated in a few models
for very high-forcing levels30, or under idealized CO2-forced
experiments, for global and regional-scale precipitation31,
warming12,32–34 and ocean heat uptake35. In one model
study using idealized experiments36, nonlinear precipitation
change over tropical oceans was associated with interactions
between pairs of approximately linear mechanisms (for example,
simultaneous moisture increases and circulation shifts).
Nonlinear behaviour of the Indian Summer Monsoon
associated with the positive moisture advection feedback has
also been proposed37.

However, these studies do not investigate the implications
of linear or nonlinear mechanisms of pattern change for
policy-relevant scenario projections. Both the relative importance
of precipitation pattern change and the relative roles of different
mechanisms are unclear. In particular, no information is available
on their role in climate model uncertainty in regional-scale
precipitation change.

Here we address these gaps directly for CMIP5 scenario
projections from 25 climate models. We focus on three different
intervals in the CMIP5 simulations that each show differences in
global, ensemble mean temperature of close to 2 K. Two of these
are fast and slow paths to 2 K above pre-industrial conditions; the
third is an interval from 2 to 4 K above pre-industrial (in this
case, the difference between a high-forcing and a mitigation
scenario at the end of the century). For each of these 2 K intervals,
we examine the regional-scale differences in precipitation that
accompany the 2 K difference in global, ensemble mean
temperature. It is found that, although the two routes to a first
2 K give very similar precipitation changes, a second 2 K produces
quite a different response, consistent with a significant influence
from nonlinear physical mechanisms.

Results
2 K intervals and the roles of linear and nonlinear mechanisms.
We examine change relative to pre-industrial conditions, rather
than relative to a recent historical period. This is done because it
simplifies the separation of different physical mechanisms, by
reducing pattern changes due to a changing balance of aerosol
forcing (which has seen more attention elsewhere9,14). In all
CMIP5 scenarios, the change in aerosol forcing relative to
pre-industrial levels is small by the end of the century, but this
is not true for changes relative to recent historical periods.
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The historical climate change, from pre-industrial to the recent
past, may be considered to be a separate problem that may be
tackled using different information, such as real-world observations.

We first study two routes to a first 2 K of global mean warming
relative to pre-industrial conditions. This is reached, in the
CMIP5 ensemble mean, by mid-century under the reference
scenario RCP8.5. This, the fastest route to a first 2 K in CMIP5
projections, is denoted 2 K (Fast).

An alternative, mitigation route to a first 2 K is obtained by
averaging the RCP2.6 and RCP4.5 scenarios: the ensemble mean
warming is slightly o2 K above pre-industrial levels under
RCP2.6, and slightly 42 K under RCP4.5. Taking this mean
reduces noise from internal variability and produces a scenario
that reaches 2 K in the ensemble mean by the end of the century.
This route is denoted 2 K (Mit). Potential issues with averaging
RCP2.6 and RCP4.5 are discussed in the Supplementary Note 1.

These two routes to a first 2 K have different warming and
forcing histories (compare yellow and blue lines in Fig. 1). As a

result, they may show different precipitation patterns due to
linear mechanisms (that is, from different timescales of response).
Further pattern differences may arise because the mid-century
aerosol burden in 2 K (Fast) is higher than that at the end of the
century—in 2 K (Mit).

In addition, we study a second 2 K interval, defined as the
difference between 2 K and 4 K above pre-industrial levels. This is
quantified by the difference between RCP8.5 and our averaged
mitigation scenario (the mean of RCP2.6 and RCP4.5), at the end
of the century. This 2 K interval can be interpreted as quantifying
the climate benefits of mitigation action, and is directly relevant
to the debate on climate mitigation. It is denoted 4–2 K (Mit). The
forcing history in 4–2 K (Mit) is similar to that in 2 K (Fast)—see
red and orange lines in Fig. 1. 4 K–2 K (Mit) should be relatively
unaffected by aerosol forcing.

We include results for all CMIP5 models which simulate all of
RCP2.6, RCP4.5 and RCP8.5 (25 models; Supplementary
Table 1). The same time periods are taken from each climate
model, to ensure that they each experience the same forcing
history. Hence, individual models may show global mean
warming greater or o2 K. Specific averaging periods are given
in Methods. We analyse ensemble mean patterns first, then
explore the inter-model differences.

Ensemble means. For the CMIP5 ensemble mean, the two routes
to a first 2 K give very similar patterns of regional precipitation
change (Fig. 2a–c). The difference between the two (Fig. 2c,
plotted with half the scale of Fig. 2a,b) is small everywhere, except
over part of China, which shows a locally large effect attributable
to the higher aerosol burden in this region in the middle than
at the end of the century15: increased aerosol suppresses
precipitation in this region9,14. Apart from this local effect, it
appears that the ensemble mean response is relatively insensitive
to how a first 2 K of global ensemble mean warming is achieved.
This implies that linear mechanisms (associated with different
timescales of response) do not cause a large difference in
regional-scale precipitation change patterns under these
scenarios, although fast precipitation responses24 to CO2 may
still contribute to the pattern seen in Fig. 2a,b. Away from China,
the small differences in Fig. 2c are consistent, in location and
approximate magnitude (Supplementary Note 2) with linear
mechanisms associated with fast responses to radiative forcing24.
Nonlinear mechanisms do not contribute significantly to the
pattern in Fig. 2c, because the forcing and global mean
temperature is similar for the two 2 K intervals.

In contrast, the end-of-century response to a second 2 K,
4 K–2 K (Mit), is rather more distinct (Fig. 2d,e). Figure 2e shows
the difference in response between this second 2 K of warming,
and the first 2 K under mitigation. These differences are much
larger than those shown in Fig. 2c. Positive values are more
common at low latitudes and negative values at mid-latitudes,
including southern South America. This is not a small effect: over
large areas of the land surface the responses for these two 2 K
intervals differ by a factor of 1.5 or more (values 43/2 or o2/3 in
Fig. 2f).

The effects of linear mechanisms on these results (that is, on
Fig. 2e,f) should be relatively small. The forcing history for 4 K–
2 K (Mit) is similar to that for the first 2 K under RCP8.5
(compare red and orange lines in Fig. 1b,c). Therefore, the
contribution of linear mechanisms to Fig. 2e should be similar to
their contribution to Fig. 2c. Figure 2c shows this to be a relatively
small effect. In other words, if only linear mechanisms
were important, Fig. 2c,e would be similar. Aerosol effects may
largely be excluded because aerosol forcing is small relative to
pre-industrial levels in all RCPs at the end of the century.
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Figure 1 | Warming and forcing history of the three 2 K warming

intervals. (a) Ensemble mean global warming before the centre of each

time period of interest (that is, before year 2040 for 2 K (Fast) and 2085

for the other two) for 2 K (Mit); blue, 2 K (Fast); brown/yellow, 4 K–2 K

(Mit); red. (b) The corresponding radiative forcing history (ensemble mean,

calculated using the Forster and Taylor method41). Results are shown for a

subset of 16 models (Supplementary Table 1) for which the forcing was

available (sufficient for illustrating scenario forcing histories).
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Figure 2g also shows ratios between precipitation change under
a second and a first 2 K of warming (as Fig. 2f), but just for the
RCP8.5 scenario (for the second 2 K under RCP8.5, divided by
the first 2 K under the same scenario). Away from China, Fig. 2g
is similar to Fig. 2f, with slightly smaller magnitudes, due to a
different effect of linear mechanisms (arising from different
forcing histories).

We find similar pattern differences in the idealized 1pctCO2

experiment, which is forced by CO2 changes only (Fig. 2h).
Combined with the above results, this implies that nonlinear
responses to greenhouse gas forcing are the primary influence
behind Fig. 2e–g, although other forcings such as aerosol and
land-use are also likely to be important locally. Underlying
nonlinear mechanisms are likely to include interactions between
roughly linear processes36, or nonlinear evapotranspiration
effects12 or rainband shifts30.

The above results are presented in units of mm per day.
The same broad conclusions are found if results are given
as percentages of the local pre-industrial climate mean

(Supplementary Figs 2 and 3). In particular, the ratios (compare
Fig. 2f and Supplementary Fig. 3c) are insensitive to whether
precipitation change is expressed in absolute or relative terms.

Some large model uncertainties exist, however. Supplementary
Fig. 4 shows estimates of the signal/noise ratio in the ensemble
mean, corresponding to Fig. 2a–e. In most cases, the ensemble
mean patterns coloured in Fig. 2a–e are relatively robust, with
signal/noise ratios 42, although individual models may disagree
on the sign of change. However, signal/noise ratios are weaker
(Supplementary Fig. 4e) for tropical regions of Fig. 2e: so, while
the differences in rainfall response between a first and second 2 K
can be relatively large in the tropics (Fig. 2e,f), model uncertainty
in this behaviour is also large in this region. The next section
explores how this alters the inter-model differences between the
different 2 K intervals.

Inter-model differences. To reduce uncertainty of climate
projections, it is important to understand physically the differ-
ences between different model simulations. We now compare the
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inter-model differences for different 2 K intervals. Underlying this
is the question: is the balance of physical mechanisms driving the
inter-model differences the same for each 2 K interval? If the
answer is yes, then a model that exhibits strong drying at a given
location for one 2 K interval should also dry strongly for other 2 K
intervals. Therefore, if, for this location, we plot the precipitation
response for one 2 K interval against the response for another
(one point per model), a strong correlation should be seen.

This is indeed the case when the two routes to a first 2 K are
compared over the Western Amazon (Fig. 3a). However, a rather
weaker correlation is found (Fig. 3b) when 4 K–2 K (Mit) is
compared with 2 K (Fast). That is, inter-model differences in
precipitation change over this region look similar for the two
routes to a first 2 K, but different for the second 2 K. Hence, the
main physical reasons for the model differences over the Western
Amazon may be different for warming from 2 K to 4 K than for a
first 2 K. A similar picture is seen over Western Africa—one of
the most densely populated areas of Africa (Fig. 3c,d). For this

region, both the inter-model differences and the ensemble mean
are quite different for 4 K–2 K (Mit) than for a first 2 K. Both
nonlinear mechanisms and land-use change could influence these
results, but a strongly nonlinear precipitation response to CO2

forcing over this region has been shown in the HadCM3
climate model31. In contrast, inter-model differences are rather
similar for all three 2 K intervals over East Africa (Fig. 3e,f). This
is consistent with the hypothesis that inter-model disagreement in
this region is caused by similar physical mechanisms for all three
2 K intervals. These regions were chosen just to illustrate the
range of behaviours. Other regions also show differences in inter-
model spread between different 2 K intervals.

The regional mean results in Fig. 3 are broadly typical of other
regions, especially in the tropics (Fig. 4a–c). Our primary result
here is in Fig. 4c: over most, but not all regions, the two routes to
a first 2 K are more strongly correlated with each other than with
the second 2 K response. The correlation coefficients often differ
by a factor of 2 or more (Fig. 4c). This suggests that in many
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regions the balance of mechanisms driving model differences for
a second 2 K may be different than that for a first 2 K, but further
investigation of specific mechanisms is required.

This result is important for efforts to understand and reduce
uncertainty in regional precipitation change: it implies that it is
inaccurate to think of the balance of physical mechanisms driving
this uncertainty to be constant across the range of conditions
explored by the CMIP5 scenarios. For example, studies using
observable constraints based on the present-day variability38 may
have limited relevance to quantifying the benefits of climate
mitigation action.

The differences between the two routes to a first 2 K are
uncorrelated (across models) with the differences between a first
2 K and a second 2 K. We show this by calculating, at each
location, two differences for each model: (2 K (Mit)� 2 K (Fast))
and (4 K–2 K (Mit)� 2 K (Fast)). At each location, we calculate
the correlation between these two differences across the 25
models. Over 99% of the land area, r2 is o0.2. This result is
consistent with the idea that different mechanisms are highlighted
by these two differences: primarily linear mechanisms and aerosol
when comparing the two routes to a first 2 K; and nonlinear
mechanisms and possibly land-use for the second 2 K versus a
first 2 K.

At mid-latitudes, correlation coefficients are generally lower,
even in Fig. 4a. This is probably an artefact of internal variability:
the ratio between internal variability and inter-model spread in
precipitation change is larger here than in the tropics39. For this
reason, we focus on the ratios in Fig. 4c rather than the absolute
values in Fig. 4a,b.

Although the spatial patterns in Fig. 4 may give useful clues as
to which regions to prioritize for further investigation, caution is
required in interpreting these patterns. The correlation coefficient
at any given location has some statistical uncertainty due to the
finite number of models. For our purposes, it is sufficient to note
that the values in Fig. 4c are generally much o1.

Using the same arguments as for the ensemble mean, these
results together suggest that uncertain nonlinear mechanisms,
combined with land-use effects in some regions, are the primary
factor altering the balance of uncertain mechanisms between
the first and second 2 K, although linear mechanisms will also
play a role.

Discussion
Our results have implications most directly for efforts to
understand climate change mechanisms (in particular, for
understanding mechanisms behind climate model disagreement),
but potentially also for quantitative policy advice tools and for
what the observable climate can tell us about future change.
We find that, for precipitation, the task of quantifying and
understanding the benefits of mitigation—what climate impacts
can be avoided by taking mitigation action—is a somewhat
different problem than understanding responses to climate
change under low-forcing conditions (that is, over the next few
decades, or under strong mitigation conditions such as RCP2.6 or
RCP4.5). On the other hand, patterns of precipitation change are
relatively insensitive to how a first 2 K of global ensemble mean
warming is reached, relative to pre-industrial conditions. This
supports the approach of quantifying some impacts under þ 2 K
and þ 4 K conditions, as in work towards the next UK Climate
Change Risk Assessment40.

Evidence for strong nonlinearities in some regions31,36 points
to a challenge in better understanding the underlying physical
mechanisms, with implications for how observations are used to
improve parameterisations of cloud, convection and other rainfall
processes. There may be some links to the nonlinear mechanisms
identified previously12 for surface warming. In particular, effects
related to change in the Bowen ratio over the west Amazon and
tropical Africa12 could plausibly play a role in results in similar
regions in Fig. 4c. Behaviour of seasonal mean rainfall and other
climate variables will be investigated in future. There is an
opportunity, in the forthcoming CMIP6 for comparing responses
to abrupt2�CO2 (part of CFMIP) and the conventional
abrupt4�CO2. It is hoped that this experiment will see
widespread engagement of the climate modelling community,
alongside experiments targeting other forcings, such as aerosol
and land-use change.

There are also potential implications for quantitative
policy tools using pattern scaling6,7, which by definition assume
the patterns of climate change for each K of global warming
are approximately constant. Some ensemble mean scenario
dependence of precipitation change patterns has previously
been shown8, notably in the RCP2.6 extension to year 2300.
Some differences in spatial patterns stand out more clearly in the
current study due to the use of longer-term means, and because
we study the second 2 K of warming independently of the first 2 K
(the second 2 K is relevant to mitigation advice). Relative changes
in precipitation patterns per K of global warming shown here are
significantly larger than for temperature12. Some techniques
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already exist to improve pattern scaling. Attention has focused on
aerosol forcing9, and on linear mechanisms (the latter, by adding
greenhouse gas forcing9 or land-sea contrast10 as additional
predictors alongside global warming, or by using response
function methods12). A time-shifting method also exists10 that
could reduce error from some nonlinear mechanisms. This
method could perform better if effects from non-greenhouse gas
forcings and linear mechanisms are first removed (for example,
Fig. 2e of ref. 10 shows errors over China that are consistent with
aerosol forcing). The most appropriate method will be
application-dependent, according to the region, scenario and
time-period studied and on the magnitude of internal variability,
which depends on the time-averaging period chosen.

Figure 4b implies a possible limit to which observable past
precipitation changes could constrain uncertainty about change
under further global warming. According to this ensemble, even if
the regional precipitation change for a first 2 K of global warming
was known precisely, this may not greatly reduce uncertainty
about change under a second 2 K. For example, over the Western
Amazon, the first 2 K response explains only about a third of the
inter-model variance for the second 2 K (Fig. 3b). Similarly,
observational constraints based on the present-day variability38

may be biased for precipitation change, especially for quantifying
the benefits of mitigation.

Methods
Model data and 2 K intervals. Results show annual mean precipitation from
25 CMIP5 models (listed in Supplementary Table 1). A single initial value
ensemble member is used from each model, for each of four simulations:
the pre-industrial control, and the RCP2.6, RCP4.5 and RCP8.5 projections.
Results from all models were regridded to a common 2.5� grid. Data are
converted to anomalies with respect to the pre-industrial control mean before
analysis.

2 K intervals and choice of averaging periods. The 2 K intervals are as follows:
2 K (Fast): change by mid-century under RCP8.5; 2 K (Mit): change by the end of
the century under the averaged mitigation scenario (the mean of RCP2.6 and
RCP4.5); 4 K–2 K (Mit): the difference between RCP8.5 and the averaged mitiga-
tion scenario, at the end of the century.

End-of-century results, for 2 K (Mit) and 4 K–2 K (Mit) are all averaged over the
30-year period 2071–2100. Thus, the averaged mitigation scenario (mean of
RCP2.6 and RCP4.5) involves a mean over 60 years of data. This 60-year mean has
relatively low noise from internal variability. This is important for this period in
particular as it is used in both 2 K (Mit) and 4 K–2 K (Mit). So, in principle, noise
from internal variability could disproportionately affect their difference (shown in
Fig. 2e). The small differences seen in Fig. 2c suggest that internal variability is not
large. For 2 K (Fast), RCP8.5 is averaged over the 60-year period, 2011–2070. For
2 K (Mit) and 2 K (Fast), anomalies are taken with respect to the 30-year pre-
industrial period 1861–1890 (an additional historical period is used in Figs 3 and
4—see below). This means that internal variability has a similar magnitude in each
of the three 2 K intervals (each is a difference between a 30-year mean and a 60-
year mean).

For a subset of nine models (those that also include a second initial value
ensemble member for RCP8.5), a similar analysis was performed where 60-year
means were used for the pre-industrial and end-of-century RCP8.5 periods (that is,
averaging the two initial value ensemble members for the latter). This produced
similar results to those shown in the main paper.

Internal variability. The analysis in Figs 3 and 4 is constrained by two issues.
First, no-longer than 30-year means are possible for the 4 K climate state (that

is, for RCP8.5, end of century). To ensure that the magnitude of internal variability
is consistent, each 2 K interval is evaluated as a difference between a 30-year mean
and a 60-year mean (see ‘Scenario averaging periods’ above).

Second, we ensure that the internal variability in each pair of 2 K intervals being
correlated is statistically independent. This is necessary to avoid bias in the
correlation between these variables. Therefore, when comparing the two routes to a
first 2 K (left column of Figs 3 and 4a), different historical periods are used for 2 K
(Fast) and 2K (Mit) (1861-1890 and 1911-1940 respectively). For the same reason
(ensuring independent variability), 4 K–2 K (Mit) is compared with 2 K (Fast) in
the right column of Figs 3 and 4b. Swapping the two historical periods in this
analysis has no effect on the conclusions drawn from Figs 3 and 4a: only minor
changes in the pattern in Fig. 4a are seen.

Data availability. The CMIP5 data used here are publically available from the
CMIP5 web portal at http://cmip-pcmdi.llnl.gov/cmip5/.
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