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Abstract. A climate model represents a multitude of pro-
cesses on a variety of timescales and space scales: a canoni-
cal example of multi-physics multi-scale modeling. The un-
derlying climate system is physically characterized by sensi-
tive dependence on initial conditions, and natural stochastic
variability, so very long integrations are needed to extract sig-
nals of climate change. Algorithms generally possess weak
scaling and can be I/O and/or memory-bound. Such weak-
scaling, I/O, and memory-bound multi-physics codes present
particular challenges to computational performance.

Traditional metrics of computational efficiency such as
performance counters and scaling curves do not tell us
enough about real sustained performance from climate mod-
els on different machines. They also do not provide a satis-
factory basis for comparative information across models.

We introduce a set of metrics that can be used for the
study of computational performance of climate (and Earth
system) models. These measures do not require specialized
software or specific hardware counters, and should be acces-

sible to anyone. They are independent of platform and un-
derlying parallel programming models. We show how these
metrics can be used to measure actually attained performance
of Earth system models on different machines, and identify
the most fruitful areas of research and development for per-
formance engineering.

We present results for these measures for a diverse suite
of models from several modeling centers, and propose to use
these measures as a basis for a CPMIP, a computational per-
formance model intercomparison project (MIP).

1 Introduction

Climate and weather models (henceforth Earth system
models or ESMs) have always been among the most
computationally intensive scientific challenges. Strategic
planning documents for high-performance computing such
as André et al. (2014), Cappello et al. (2013), Attig et al.
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20 V. Balaji et al.: Measurements of Earth system models in CMIP6

(2011), Reed and Dongarra (2015), and Wehner et al. (2011)
all outline the challenges presented by Earth system model-
ing to the coming generation of high-performance computing
and data intensive computing.

ESMs are a computing and data challenge with a partic-
ular profile, as this article will show. The needs of ESMs
are driven by trends in the science. Weather forecasting and
the understanding of climate have both been synonymous
with high-end computing since its pioneering days (Dahan-
Dalmedico, 2001). Besides understanding the functioning of
the Earth system, there are pressing needs on the science to
serve other communities: ever since the seminal Charney Re-
port of 1979 (Charney et al., 1979), the Earth system model-
ing community has also been increasingly responsive to the
concerns about the human influence on climate. Computer
simulations need to underpin scientific input to global policy
decisions around possible mitigation and adaptation strate-
gies. In the decades since, climate and weather have contin-
ued to be at the forefront of computational science, to be pio-
neering users of evolving supercomputing architectures, and
to be drivers of data science.

As available computing power has continued to increase
following Moore’s law, so has the computing power de-
manded by Earth system modeling. ESMs consume comput-
ing along several axes, including resolution, as processes are
included at finer and finer scales, complexity (to be defined
more precisely below), as they seek to simulate, rather than
prescribe, more and more processes and feedbacks internal to
the climate system, and ensemble size to sample uncertainty
across the chaotic nonlinear dynamics that underlie complex
systems. Where in this multi-dimensional domain of demand
a given increase in computing is applied depends both on the
scientific problem of interest, but also, crucially, on the type
of computer available. This is because different computing
architectures are more or less suitable to increasing problem
size along any of these axes.

For example, a supercomputer with a fast communication
fabric may be suitable for increasing resolution, as the fabric
would support the increased communication load, whereas
a more conventional loosely coupled cluster may support
a large ensemble of simulations that do not communicate
amongst themselves. A novel machine with adequate fast
memory may be able to accommodate the many variables
and instructions associated with an increase in complexity.

Defining the mapping between the scientific problem and
a computing architecture has become a crucial issue today.
HPC architecture is at one of its transition points, or “dis-
ruptions”. The previous transition, around 2 decades ago,
moved HPC from the vector architectures of the Seymour
Cray era, to distributed computing, based on networked clus-
ters of commodity computers. The current transition is based
on the end of how Moore’s law is traditionally understood
(see, e.g., Chien and Karamcheti, 2013), to a future where
arithmetic and logic no longer get faster on successive hard-
ware generations, but may in fact get slower, alongside in-

creases in parallelization and heterogenous memory archi-
tectures. On the current generation of new machines, ESMs
have been able to show only modest gains in some measure
of performance (Balaji, 2015). This means that traditional
measures of computing power, such as flops (floating point
operations per second), no longer appear to be representative
of what is actually available.

In this article, we will examine the gaps between theoret-
ical and actual performance (Sect. 2) and show how existing
standard metrics of HPC performance are insufficient. We
will demonstrate that there is sufficient diversity in ESMs so
that no single measure, even a newly developed community
one, is likely to be representative of the spectrum of ESMs.
Rather we seek to identify a suite of measures for ESMs
whose defining characteristics are that

– they are universally available from current ESMs, and
applicable to any underlying numerics, as well as any
underlying hardware architecture;

– they are representative of the actual performance of the
ESMs running as they would in a science setting, not
under ideal conditions, or collected from representative
subsets of code;

– they measure performance across the entire lifecycle of
modeling, and cover both data and computational load;
and

– they are easy to collect, requiring no specialized instru-
mentation or software, but can be acquired in the course
of routine production computing.

These measures are described in Sect. 3. In Sect. 4 we
show results from many current ESMs. We conclude in
Sect. 5 with a proposal to collect these metrics routinely
from the globally coordinated modeling campaigns such as
the Coupled Model Intercomparison Project (CMIP: Meehl
et al., 2000, now approaching its sixth generation in CMIP6).
We hope thereby to outline a computational and data profile
for Earth system modeling across the enterprise, which may
be useful to define the kinds of machines most suited for this
scientific and societal grand challenge in the exascale era.

2 Theoretical and actual computational performance

2.1 HPC performance measures: a brief history

The most common measure of computational performance is
the theoretical maximum number of floating-point (FP) op-
erations per second, or flops, achievable on a given machine.
Computer vendors like to report this measure – peak flops –
even though it is not achievable in practice. Peak flops are
calculated by simply multiplying the number of arithmetic
units (arithmetic-logic units, or ALUs) in hardware by the
clock speed and any concurrency supported by the hardware
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(for example, fused multiply–add (FMA), or the advanced
vector extensions, AVX, used in many modern processors to
carry out multiple operations per clock cycle).

Unless the algorithm is perfectly tuned to the hardware
layout, it is impossible to keep all ALUs and their internal
hardware active all the time. A more practical measure is
the maximum sustained flops that can be achieved with a
real code. With the advent of parallel computing, the HPC
community converged on a single code that was thought to
be representative of compute-intensive tasks, and compared
between machines. This Linpack linear algebra benchmark
(Dongarra, 1988) became the de facto HPC benchmark, and
current supercomputer rankings, such as the Top 500 list
(http://www.top500.org/), are based on comparisons of mea-
sured sustained flops obtained running Linpack.

Very early in the parallel computing era it was recognized
that even Linpack does not truly characterize real application
performance (see, e.g., the critique of the SPEC benchmarks
in Dixit, 1991). One issue was the limitations imposed by
memory bandwidth. Vector computers of the Seymour Cray
era used specialized memory technology (called SRAM) to
keep the vector registers filled. In the era of parallel com-
puting, based on clusters constructed from commodity parts,
it was often the case that bandwidth from commodity mem-
ory (DRAM) constrained computational performance more
than computational speed itself. Accordingly, the STREAM
benchmark (McCalpin, 1995) was developed to measure the
performance obtained on FP codes when memory bandwidth
is the limiting factor. This later led to a popular visual rep-
resentation of performance limits imposed by both mem-
ory bandwidth and computational intensity known as the
“roofline” (Williams et al., 2009).

Over time the community came to develop suites of ker-
nels or “mini-apps” representing a spectrum of algorithms in
use in HPC, such as the NAS Parallel Benchmarks (Bailey
et al., 1991) and the HPC Challenge Suite (Luszczek et al.,
2005). These were supposed to characterize a broad range
of issues including clock speed, parallel arithmetic, mem-
ory bandwidth, cache efficiency, and the like. The kernel ap-
proach to getting a better measure of real computing perfor-
mance has now converged on the HPCG benchmark (Don-
garra et al., 2015), based on a popular elliptic solver, to sup-
plement the HPC measure based on Linpack.

Despite all this progress, the key issue in measuring and
improving computational performance remains the shortfall
of actual performance obtained in real HPC applications rel-
ative to a theoretical ideal machine performance, often ex-
pressed as a percent of peak. The HPCG / HPC ratio, suitably
normalized, is a good measure of this shortfall and has been
steadily falling with each succeeding transition. While 50 %
of peak flops were attainable on Cray vector machines of the
1980s (and even NEC-SX machines into the current era),
the figure of 10 % was considered satisfactory in commod-
ity parallel cluster architectures. The current transition to-
ward fine-grained parallelism based on graphical processing

Earth System Model
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Figure 1. Notional architecture of an ESM: the model is composed
of components (or sub-models), each of which is itself composed of
components representing a group of one or more related processes.
For example, within the atmosphere, the dynamical core (AtmDyn)
is only one component, alongside the “physics” (AtmPhy), which
itself has subcomponents for radiation (RAD), clouds and moisture
(H2O), planetary boundary layer (PBL), and so on. The list shown
here is clearly not exhaustive, and one could easily imagine further
recursive trees within any component shown.

unit (GPU) and many-integrated core (MIC) technology has
pushed the percent of peak down into the single digits, as re-
vealed by the HPCG / HPC ratio (see http://goo.gl/yy6ZJ4)1.
This trend warrants curbing one’s enthusiasm when looking
at peak-flop ratings of today’s most powerful machines.

2.2 Computational performance of ESMs

Earth system models have always presented a particular set
of issues for performance on HPC architectures. To begin
with, there is the problem of complexity. Climate science
has been described as an attempt to simulate “the time evo-
lution of the Earth system, a complex evolving mixture of
fluids and chemicals in a very thin layer atop a wobbling,
spinning sphere with an unstable surface and a molten in-
terior, zooming through space in a field of extra-terrestrial
photons at all wavelengths. Between sea and sky [lies] that
thin layer of green scuzz that contain[s] all the known life in
the universe, which itself [is] capable of affecting the state
of the whole system” (Balaji, 2013). This growth in sophisti-
cation implies that the construction of an ESM (Fig. 1) now
involves large development teams, consisting of specialists in
different aspects of the climate system such as atmospheric
and oceanic dynamics, atmospheric chemistry, biosphere and
land hydrology, and so on, with the whole system held to-
gether by a software framework. The framework may pro-
vide infrastructure services such as parallelism and I/O, as
well as a superstructure, expressing the algorithms of cou-
pling between components.

The computational characteristics of ESM components
can be quite diverse: a land component for instance may have
no data dependencies across cells but highly multivariate rep-

1“Architectural Surprises Underpin New HPC Benchmark Re-
sults.”, HPCWire 2014-12-01.
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22 V. Balaji et al.: Measurements of Earth system models in CMIP6

Figure 2. Component layout of three ESMs, in processor-time space (time increasing downward). Each box represents a component which
is integrated either concurrently (coarse-grained concurrency; see text), in which case it is shown alongside the other components running at
the same time, or sequentially, in which case it is shown below the previous component. The bounding rectangle shows the total cost of the
coupled system, including waiting times due to load imbalance. Adapted from Fladrich and Maisonnave (2014).

resentations of ecosystem dynamics inside a cell, whereas an
atmospheric dynamical core (dycore) may only encompass
a few key variables representing momentum, mass, and en-
ergy but have strong cross-cell dependencies, which inhibit
scaling. This is one reason why it is hard to define kernels,
or “mini-apps”, representative of an ESM. Even for a single
component, such as a dycore (which solves the equations of
fluid flow for atmosphere or ocean), there is remarkable di-
versity of methods and approaches across models. Spectral,
finite-difference (FD), finite-volume (FV), and finite-element
(FE) methods are all in use in the world’s major ESMs, as are
both structured and unstructured grid approaches.

The dycore is quite often taken to be representative of the
ESM as a whole. Dycores, regardless of numerics and mesh
choice, generally exhibit weak scaling; i.e., the concurrency
achieved scales with the problem size2. Scaling is capped
beyond some point for a fixed problem size, beyond which
strong scaling is difficult to achieve. Thus, one may run a
problem at higher resolution in the same time, consuming
more resources on a given machine (which might include
a higher cost incurred in increased time resolution as well),
but a model at fixed resolution is capped in terms of time to
solution, absent advances in hardware or algorithm. Some-
times, adding more local physics (which does not involve
distributed data dependencies) can improve scaling (the abil-
ity to use more computing capacity), but even that does not
improve time to solution. We next address this issue of com-
plexity of models as we go from dycores to full ESMs.

While dycores often consume the bulk of the resources de-
voted to performance engineering, their performance charac-
teristics are not in fact representative of a whole ESM. This

2Since concurrency is usually achieved with a mixture of thread-
based (shared-memory, such as OpenMP) and processor-based
(distributed-memory, such as MPI) parallelism, we prefer to use the
neutral term concurrency here, to indicate the number of concurrent
executing elements, regardless of how this is achieved.

is because of the complexity inherent in climate modeling.
Beyond the dycore, there are many other components. As
shown in Fig. 1, these may comprise the “physics”, which
is then further composed of components representing radia-
tive transfer, clouds and convection, the planetary boundary
layer (PBL), and so on. Many physical variables, of O(100)

in modern ESMs, are needed to represent the full physics. Of-
ten these are local processes, which may not be a problem for
scaling but which significantly alter the load per thread. Sec-
ondly, the number of variables (each typically a 3-D array) is
a significant burden on memory. The scaling behavior can be
significantly different when “fully loaded” with physics.

A second feature of multi-component codes is that an ESM
is quite often set up to run multiple component codes con-
currently as separate executables each with their own pro-
cessor decomposition. This component architecture of ESMs
is quite diverse (Alexander and Easterbrook, 2015), but typi-
cally most include at least two such components set up to run
concurrently, in a mode we term coarse-grained concurrency
(Balaji et al., 2016). This raises issues of load balance, con-
figuring components to execute in roughly the same amount
of time, so no processors sit idle. In such a “coupled” set-
ting, components may not be able to run at their individual
optimal scaling point, but rather at the scaling point which is
optimal for the ESM as a whole. In addition, there are over-
heads associated with the coupling software itself. Compo-
nents are generally allowed to have their own grid resolu-
tions and timescales, and the coupler is responsible for ex-
changing information in a manner respecting numerical sta-
bility, accuracy, and, above all, conservation of the quantities
exchanged among the components. The coupling overhead
must be taken into account in an ESM performance study.
Coarse-grained concurrency may be increasingly prevalent in
ESM architectures in the future, because of current hardware
trends (Balaji et al., 2016). The parallel component layout of
some typical ESMs is shown in Fig. 2.
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Some components are scheduled to run concurrently, but
usually are not exactly load-balanced, leaving load imbal-
ance as blank spaces on the processor-time diagram, as
shown. Other components may run serially at the end of other
components. We will revisit this aspect of coupling below in
Sect. 3.3.

A third consequence of complexity is that a large num-
ber of variables needs to be analyzed in scientific experi-
ments involving ESMs. I/O is often ignored in scaling stud-
ies (including the standard HPC benchmarks other than those
specifically measuring I/O performance), although rigorous
and careful studies, such as the recent AVEC report (http://
www.nws.noaa.gov/ost/nggps/dycoretesting.html), do take it
into account. Both synchronous (blocking) and asynchronous
(non-blocking) I/O subsystems are in use in ESMs. In the
first instance, they will directly contribute to the measured
time to solution, and in the latter, they will contribute to the
cost in terms of additional processors devoted to I/O. In terms
of real performance, it is important to include I/O, as the rel-
ative cost of computation and I/O is essential to defining a
balanced machine suitable for ESMs.

We come to the third axis (see Sect. 1) along which Earth
system modeling consumes computing power, that of ensem-
ble size. The underlying dynamics of an ESM are chaotic,
with a sensitive dependence on initial conditions, as has been
known since the pioneering studies of Lorenz (1963). In
climate and weather modeling, chaotic uncertainty is cap-
tured by running an ensemble of simulations with slightly
perturbed initial conditions and examining the results in the
form of a probability distribution rather than as an exact out-
come. This has serious implications for understanding the
performance of ESMs, as now the science is limited by the
capacity of the computer (i.e., aggregated simulation time
across an ensemble) rather than by its capability (simulation
time of a single instance). ESMs for science may be run in
both capability mode (fastest time to solution for a single in-
stance) or capacity mode (best use of a computer allocation
for an ensemble of runs), depending on need; both need to be
assessed.

A final point regarding Earth system modeling is that runs
may be resident on a system for very long times. Climate
simulations often run for centuries or millennia of simulated
time, taking wallclock time measured in months. This means
that in actual practice, the time to solution is dependent on
many factors, including the stability of the machine, the de-
sign of the queuing system, and the robustness of the work-
flow.

In summary, Earth system modeling has a particular com-
putational and data profile which must be taken into account
in measuring the computational “performance” of a given
model on a given machine. The profile of climate computing
is that of a multi-scale, multi-physics code, organized into a
hierarchy of components that may be scheduled serially or
concurrently, held together by sophisticated coupling algo-
rithms that themselves carry a cost. Individual components

generally exhibit weak scaling, are memory-bound, and may
carry a significant I/O load. The models are executed for very
long periods of time, so that a significant cost is associated
with the workflow and machine policies enabling sustained
sequences of jobs. Finally, the models are sometimes run at
their optimal speed, but quite often require large ensembles
of simulations, so that they are in practice optimized for ca-
pacity rather than capability.

2.3 Real model performance: an alternative approach

The premise of this paper is that existing measures of com-
putational performance do not give the Earth system science
community adequate information about the actual model
performance obtained in running scientific production runs.
Such information is needed for a range of practical applica-
tions which go beyond the prediction of performance for tra-
ditional applications such as benchmarking new machines, to
include the decisions needed to plan scientific experiments
with real codes on specific hardware.

These features, required to assess real model performance
in a scientific domain, require understanding of the particu-
lar domain computational profile – in this case, the profile
summarized at the end of Sect. 2.2 – and development of ap-
propriate metrics to study performance.

Typical questions that ESM users have when they plan or
run an experiment include the following.

– How long will the experiment take (including data
transfer and post-processing)?

– How many nodes3 can be efficiently used in different
phases of the experiment?

– Are there bottlenecks in the experiment workflow, either
from software or from system policies, such as queue
structure and resource allocation?

– How much short-term/medium-term/long-term storage
(disk, tape, etc.) is needed?

– Can/should the experiment be split up into parallel
chunks (e.g., how many ensemble members should be
run in parallel)? What is the best use of my (limited)
allocation?

Although these questions are clearly related to the com-
putational performance of ESMs, they are not answered by
examination of flops or speed-up curves.

We therefore propose an alternative approach. We have
devised a set of computational performance metrics that di-
rectly address the concerns of this domain of science. The
metrics have been chosen to satisfy several conditions:

3Although the number of computational elements is measured in
cores, allocation is usually done in units of nodes of, say, 32 cores
sharing memory.
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Figure 3. Scaling behaviour of a GFDL model. It illustrates that the
model could be run at 50 SYPD in capability, or speed mode, but
in practice is most often run at the shoulder of the curve, at around
35 SYPD, which gives the best throughput.

– they are universally available from current ESMs, and
applicable to any underlying numerics, as well as any
underlying hardware architecture;

– they are representative of the actual performance of the
ESMs running as they would in a science setting, not
under ideal conditions, or collected from representative
subsets of code;

– they measure performance across the entire lifecycle of
modeling, and cover both data and computational load;
and

– they are extremely easy to collect, requiring no special-
ized instrumentation or software, but can be acquired in
the course of routine production computing.

These metrics will form the basis of a framework for rou-
tinely collecting these data from large coordinated modeling
experiments. They are intended to serve as an adjunct to tra-
ditional, more idealized, measures of performance. They will
allow the community as a whole to have a unified basis to
evaluate technological advances through the lens of commu-
nity concerns and to articulate community needs for compu-
tational and data architecture.

3 The CPMIP metrics

We propose below in Sect. 5 a systematic effort to col-
lect metrics for a variety of climate models participating in
common experiments. This proposed model intercomparison
project (MIP) is to be called CPMIP: the computational per-
formance MIP. The metrics proposed take into account the
structure of ESMs and how they are run in production. Issues
addressed include the following.

1. Models can have two optimal points of interest: one for
speed (minimizing time to solution, maximizing simu-
lated years per day or SYPD), the second for best use
of a resource allocation (minimizing compute hours per
simulated year, or CHSY). A single ESM experiment
may contain both phases. For instance, a climate exper-
iment is often initialized from an idealized initial state,
and a long “spinup” phase (measured in centuries for an
AOGCM, millennia if the model includes a carbon cy-
cle for instance; see, e.g., Dunne et al., 2012) where we
would run the model in speed or capability mode (the
two terms are used interchangeably). After the spinup
phase we have a near-equilibrium initial state of the cli-
mate which may be used to seed many experiments in
parallel, in which case we would switch the configura-
tion to throughput or capacity mode. We call these the
S-mode and T-mode, respectively.

Figure 3 illustrates the S- and T-modes from a typical
scaling study, in this case from a GFDL model configu-
ration called c96l32 running on a platform called c3.
We see that the model is capable of running at 50 SYPD
(simulated years per day, a quantity precisely defined
below in Sect. 3.2). However, by then, the scaling is be-
ginning to suffer. In practice, we find that the best use of
a computer allocation is to run the model at 35 SYPD,
where the performance slope starts to change, indicat-
ing loss of scaling. The best throughput, measured in
CHSY (also defined below in Sect. 3.2), is achieved at
the lower processor count (1200 instead of 1600).

2. Computational cost scales with the number of degrees
of freedom in the model. We factorize this number sepa-
rately into resolution (number of spatial degrees of free-
dom) and complexity (number of prognostic variables).
This separation is useful because performance varies
inversely across resolution and complexity in weak-
scaling models.

3. ESMs generally are configured to run more than one
component concurrently: we need to measure load bal-
ance and coupler cost.

4. A vast number of variables is often used in the code,
which is likely to aggravate the memory-boundness of
models. While the theoretical minimum of one word
(usually double-precision, or 8-byte) per variable per
spatial degree of freedom is unavoidable, it is useful to
measure memory bloat and excess copies of data made
by the code, the compiler, or libraries. We do not neces-
sarily consider the word bloat to be pejorative: some of
the extra copies might be needed for scientific reasons,
such as halos (local caches of portions of neighboring
domains in distributed memory), or to provide registers
for accumulating time means of time-step data. But, rea-
sons notwithstanding, these extra copies of data do in-
deed increase the memory requirements. And some data
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copies remain mostly outside user control (e.g., system
I/O buffers).

5. Models configured for scientific analysis bear a signifi-
cant I/O load, which can interfere with optimization of
computational kernels. I/O may be synchronous (block-
ing) or asynchronous (non-blocking). Typical and max-
imum simulation data intensities (GB/CH) are useful
measures for designing system architecture.

6. A full production climate model run, which may last
weeks or months of investigator time, may be subject to
delays not having to do with actual computational per-
formance. We need a measure of these machine policy
or workflow-related issues, a metric which indicates the
need to devote resources to system (including manage-
ment and queuing policies) and workflow issues rather
than optimizing code.

To cover this list of concerns, we propose the following list
of metrics, and indicate how this may be measured. (Recall
that one prime consideration in the choice of metrics is the
ease of collection.)

3.1 The CPMIP metrics: model and platform

We begin with metrics describing the model and the plat-
form. The model is described by two basic characteristics.

Resolution is measured as the number of grid points (or
more generally, spatial degrees of freedom) NX×NY×
NZ per component, denoted by Gc (where the sub-
script denotes a model component with an independent
discretization). The resolution of the ESM is simply
G≡

∑
c

Gc.

Gc ≡ NH×NZ, (1)
G ≡

∑
c

Gc, (2)

where NH and NZ are the spatial degrees of freedom
in the horizontal and vertical dimensions, respectively.
Given the small vertical extent of the atmosphere and
ocean relative to the horizontal extent in any ESM, it
is customary to represent them separately. NZ is thus
the number of model levels; NH represents the hori-
zontal degrees of freedom, which for instance may be
NX×NY in a conventional FD or FV discretization, or
the number of spherical harmonic elements retained un-
der truncation in a spectral model, or the number of hor-
izontal elements in an unstructured FE code.

We also additionally require a representative (noting
that non-uniform grids are the norm) horizontal and ver-
tical cell size for broad comparison purposes, 1xc and
1zc, reported in kilometers. The resolution is static in-
formation about the model and part of its configuration.

Complexity is measured as the number of prognostic vari-
ables per component, Vc. This is also static, but if
not available directly from the model configuration or
code, it can be computed by dividing the size Sc of the
restart file (containing the complete state) per compo-
nent, measured in words (e.g., 8 bytes for double pre-
cision) divided by Gc. The complexity of the model is
C ≡

∑
c

Vc. The total degrees of freedom in the model is

F ≡
∑
c

GcVc.

Vc ≡ Sc/Gc/8 (3)
V ≡

∑
c

Vc (4)

Note that the method of computing it from the restart
file size assumes that only one copy of the model state is
saved (i.e., no intermediate restarts). It further assumes
that only one time level of any variable is saved in the
restart file. For models that use multiple time-level time-
stepping schemes, there could be several time levels
saved in the restart file. For proper restarting of a model
with leapfrog time-stepping, for instance, both the cur-
rent and prior states of a variable need to be saved. Thus,
using the restart file method to estimate complexity is
to be used with caution: it is better to have more di-
rect methods of computing Vc, the number of prognostic
variables.

Other methods for evaluating complexity (e.g., Méndez
et al., 2014) are more based on evaluations of the model
code itself, e.g., counting lines of source code. Our ex-
perience is that models of equal complexity in terms of
the range of physical, chemical, and biological process
represented, vary considerably in terms of code, which
appears to us not to provide a useful measure of com-
plexity. We further note that most models are coded with
a plethora of options, most of which are not exercised in
any one model instance, thus resulting in a lot of “dead
code”.

The platform is a description of the computational hard-
ware.

Platform There is a wide variety of machine descriptors,
which can be confusing. With the computing hierar-
chies in place, terms like processor, processing element
or PE, and even computing core, become hard to com-
pare across machines. However, the term core still has
some universality as a concept, as a machine is often
characterized by its core count, though what constitutes
a core may not be strictly comparable across disparate
hardware. With that concept, the two additional mea-
sures universally understood are the clock speed (usu-
ally reported in inverse time, so that larger is faster) in
GHz, and the theoretically possible number of double-
precision operations per clock cycle – which we term
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clock-cycle concurrency. All three measures can be ob-
tained across the span of today’s architectures, includ-
ing GPUs, MICs, BlueGene, and conventional proces-
sors.

Note that there are additional numbers of interest,
such as memory and file-system characteristics. These
are highly configuration-specific and quite often het-
erogeneous. We propose two additional descriptors:
chip name (e.g., Knights Landing) and machine name
(e.g., titan). These should allow one to find links to
configuration-specific information about the platform.

3.2 The CPMIP metrics: computational cost

SYPD are simulated years per day for the ESM in a 24 h pe-
riod on a given platform. This should be collected by
timing a segment of a production run (usually at least a
month, often 1 or more years), not from short test runs.
This is because short runs can give excessive weight to
startup and shutdown costs, and distort the results fol-
lowing Amdahl’s law. This is measured separately in
throughput and speed mode.

ASYPD is the actual SYPD obtained from a typical long-
running simulation with the model. This number may
be lower than SYPD because of system interruptions,
queue wait time, or issues with the model workflow.
This is measured for a long production run by measur-
ing the time between first submission and the date of
arrival of the last history file on the storage file system.
This is measured separately in throughput and speed
mode. For a run of N years in length,

ASYPD≡
N

tN − t0
, (5)

where t0 is the time of submission of the first job in the
experiment, and tN is the time stamp of the history file
for year N .

CHSY are core hours per simulated year. This is measured
as the product of the model runtime for 1 SY and the
number of cores allocated.4 This is measured separately
in throughput and speed mode.

Parallelization is measured as the total number of cores
NP allocated for the run. Note that NP= CHSY×
SYPD/24.

JPSY is the energy cost of a simulation, measured in Joules
per simulated year. Energy is one of the key drivers
of computing architecture design in the current era.

4There may be some “rounding up” involved, as allocations are
usually done on a node basis, and all cores on a node are charged
against the allocation, regardless of whether or not they are used.

While direct instrumentation of energy consumption on
a chip is still something in development, we generally
have access to the energy cost associated with a plat-
form (including cooling, disks, and so on), measured in
kWh (= 3.6×106 Joules) over a month or a year. Given
the energy E in Joules consumed over a budgeting in-
terval T (generally 1 month or 1 year, in units of hours),
and the aggregate compute hours A on a system (total
cores×T ) over the same interval T , we can measure the
cost associated with 1 year of a simulation as follows:

JPSY≡ CHSY×E/A. (6)

Note that this is a very broad measure, and simply pro-
portional to CHSY on a given machine. But it still
is a basis of comparison across machines (as E will
vary). In future years as on-chip energy metering ma-
tures and is standardized, we can imagine adding an
“actual Joules per SY (AJPSY)” measure, which takes
into account the actual energy used by the model and
its workflow across the simulation lifecycle, including
computation, data movement, and storage. These mea-
sures are similar in spirit to some prior measures of “en-
ergy to solution” (Bekas and Curioni, 2010; Cumming
et al., 2014; Charles et al., 2015). The FTTSE metric of
Bekas and Curioni (2010) is very similar to the AJPSY
metric proposed here, and which we believe will replace
JPSY in due course, when direct metering becomes rou-
tinely available.

3.3 The CPMIP metrics: coupling, memory and I/O

Coupling cost measures the overhead caused by coupling.
This can include the cost of the coupling algorithm it-
self (which may involve grid interpolation and compu-
tation of transfer coefficients for conservative coupling)
as well as load imbalance, when concurrent components
finish at different rates, potentially leaving some PEs
idle. It is possible to measure the two separately, but
it involves somewhat subtle instrumentation, and may
not be measurable in a uniform way across the range of
ESM architectures used in the community (Alexander
and Easterbrook, 2015). This is because load imbalance
can manifest itself as time spent in the coupler (which is
actually being spent in a spin-wait loop). We instead just
choose to measure it as the normalized difference be-
tween the time-processor integral for the whole model
vs. the sum of individual concurrent components, or

C ≡

TMPM−
∑
c

TcPc

TMPM
, (7)

where TM and PM are the runtime and parallelization for
the whole model, and Tc and Pc the same for individual
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components. Graphically, it can be seen as the “white
area” for any ESM layout diagram like that of Fig. 2.
It involves a minimum of instrumentation to measure
time spent on each component. These involve inserting
simple timing calipers such as MPI_WTime() around
components, excluding wait. While this may be consid-
ered extra “instrumentation”, these are universally avail-
able basic routines, and indeed it would be a wonder if
any ESM interested in performance did not have these
embedded already.

Memory bloat is the ratio B of the actual memory size to
the ideal memory size Mi , defined below. The measured
runtime memory usage M on the system (often called
“resident set size”, or RSS) is divided between instruc-
tions and data, of which we are interested mainly in the
latter. The RSS high-water mark is often published in
the job epilog, failing which we supply a small code (26
lines of C; see Sect. 6), which can be called at the end of
a model run and which will report the RSS high-water
mark on any Linux-derived operating system. The por-
tion of memory devoted to instructions is measured by
taking the size of the executable files X produced during
compilation, of which one copy is stored on every pro-
cessor. This may be an overestimate on systems where
instructions are paged in, or shared between applica-
tions, so the correction for instruction size is to be ap-
plied with care. The ideal memory size is the size of the
complete model state, which in theory is all you need to
hold in memory, the rest being in principle computable
from the state variables. Thus,

Mi ≡

∑
c

Sc, (8)

B ≡
M −NP×X

Mi

. (9)

Note that the “ideal” memory size is truly a utopian
measure, and we never expect to get close in prac-
tice. Rather, it serves as a normalization factor allow-
ing us to compare across different model characteristics
(Sect. 3.1) and platforms. As we shall see, the value of
B is found to be O(10− 100).

Unusually large numbers relative to other configura-
tions can alert us to excessive buffering and other is-
sues. Also, we generally aspire to have memory scaling
codes, where memory usage remains roughly constant
across PE counts. It will generally not stay exactly con-
stant because of the presence of halos. For instance, for
a logically rectangular grid with a halo size of 2 in X

and Y , and a 20× 20 domain under decomposition, the
2-D array area including halos is 576 instead of 400, for
a bloat factor of 1.44. The same model decomposed to
a 10×10 domain will have an array area of 196 instead
of 100, increasing the bloat to 1.96. This number might

be somewhat larger for algorithms that use “wide ha-
los” (Balaji, 2001). However, these factors are still small
compared to the bloat caused by global arrays, which
will cause memory to grow on a curve quadratic with
the PE count (assuming 2-D domain decomposition).
Avoiding the use of global arrays is generally consid-
ered a useful approach in an era where memory move-
ment is considerably more expensive than arithmetic.

Data output cost is the cost of performing I/O, and is the
difference in cost between model runs with and with-
out I/O. This is measured as the ratio of CHSY with
and without I/O. This is measured differently for sys-
tems with synchronous and asynchronous I/O. For syn-
chronous I/O where the computational PEs also perform
I/O, it requires a separate “No I/O” run where we mea-
sure the fractional difference in cost:

D ≡
CHSY−CHSYno I/O

CHSY
. (10)

For models using asynchronous I/O such as XIOS, a
separate bank of PEs is allotted for I/O. In this case, it
may be possible to measure it by simply looking at the
allocation fraction of the I/O server, without needing a
second “no I/O” run.

D ≡
PM−PI/O

PM
(11)

However, there may be additional computations per-
formed solely for diagnostic purposes; thus, the method
of Eq. 10 is likely more accurate. Note also that if the
machine allocates by node, we need to account for the
number of nodes, not PEs, allocated for I/O.

Data intensity is the measure of data produced per compute
hour, in GB/CH. This is measured as the quotient of data
produced per SY, easily obtained from examining the
output directories, divided by CHSY.

4 Results from several ESMs

We present a spectrum of results from several ESMs to il-
lustrate the power of the CPMIP approach. These are to be
considered preliminary or suggestive findings.

Some of the metrics we collect are properties of the model
which do not change however the model is run, but some are
properties of the exact experiment for which it is used. In par-
ticular, the I/O properties (data output cost and data intensity)
will depend on the diagnostics required by the experiment.

Similarly, ASYPD is simulation dependent, depending not
only on the model configuration, but also on the background
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Table 1. Results from several ESMs. Not all the cells are currently filled, but we propose to collect these systematically in the full-scale
CPMIP project. See the text for an explanation and a discussion of the terms.

Model Resol Cmplx SYPD CHSY Coupling I/O DI MBloat ASYPD Platform

CM2.6 S 4.9× 108 18 2.2 2.12× 105 26 % 0.005 1.6 gaea/c2
CM2.6 T 4.9× 108 18 1.1 1.81× 105 62 % 24 % 0.005 0.4 gaea/c2
CM2.5 T 8.3× 107 18 10.9 14 327 17 % 6.1 gaea/c2
FLOR T 9.8× 106 18 17.9 5844 57 % 5 % 0.015 12.8 gaea/c2
CM3 T 4.2× 107 124 7.7 2974 42 % 15 % 4.9 gaea/c2
ESM2G S 3.9× 106 63 36.5 279 10 % 6.5 % 0.028 42 25.2 gaea/c1
ESM2G T 3.9× 106 63 26.4 235 25 % 6.5 % 0.028 42 11.4 gaea/c1
CM4H T 1.2× 108 57 6.9 7729 10 % 11 % 0.011 16 4.0 gaea/c3
CM4L T 3.3× 107 57 16.8 3277 20 % 0.009 66 4.6 gaea/c3
ESM4L T 3.3× 107 104 10.1 5340 30 % 0.013 40 7.7 gaea/c3
ARPEGE5-NEMO T 1.2× 108 18 5. 5190 1 % 1 % 0.021 8.0 1.5 curie
EC-Earth3.2 T 1.4× 108 34 1.3 12 126 6.4 % 4 % 0.012 18 1.28 beskow
EC-Earth3.2 S 1.4× 108 34 4.0 21 481 11.0 % 1 % 0.007 2.65 beskow
CESM1.2.2-NEMO T 1.2× 108 103 .86 59 100 8.1 % 1 % 1.4× 10−3 9.1 0.04 athena
MPI-ESM1 T 2.× 107 73 18.5 3363 10 % 6 % 0.07 105 10 mistral
NorESM1 S 5.× 106 17.2 1369 vilje
IPSL-CM6-LR S 1.× 107 144 6 2166 5 % 10 % 0.01 9 5.5 curie
HadGEM3-GC2 T 1.8× 108 66 1 6504 15 % 0.57 archer

workload on the machine, which is the reason why we require
this to be obtained from a long model run (so the background
differences are averaged out).

For model intercomparison, the best understanding of
model differences will be obtained when the differing mod-
els are being used for the same experiment. Hence, the full
power of the method will only be apparent when we have
systematically collected these metrics in conjunction with a
major multi-center modeling project. A plan to do so in as-
sociation with CMIP6 is outlined below in Sect. 5.

4.1 Speed and throughput modes

Performance results from HPC codes are often presented in
the form of scaling curves, with time to solution plotted at
various processor counts. A typical inference from such a
plot is to identify models that scale well, i.e., close to an ideal
scaling curve that points to the “strong scaling” limit. Recall
that under strong scaling, the time to solution decreases in-
versely with the number of processors, i.e., half the time to
solution for twice the assigned processing.

Most models scale less than perfectly, so in general sci-
entific projects make compromises. There are two poten-
tial optima: one is to optimize time to solution by apply-
ing the maximum resource possible (the point at which the
scaling curve saturates, so that adding more PEs does not
improve time to solution); or alternately, pick a spot lower
down the scaling curve for the maximum aggregate simu-
lated years for an ensemble of model runs within a given al-
location. In terms of the metrics defined in Sect. 3, we refer
to these modes as the speed (S) or capability mode which
maximizes SYPD, and the throughput (T) or capacity mode,

which minimizes CHSY. Table 1 gives examples of GFDL
high-resolution model CM2.6 (Griffies et al., 2015), for in-
stance, which can be run at 2 SYPD, but in practice is most
often run at 1 SYPD, which is the CHSY optimum. An ESM
example is also shown (ESM2G, Dunne et al., 2012), where
the 26 SYPD T configuration is usually run, but during model
spinup (which is a single instance running, not an ensem-
ble) the S configuration is used. ESM spinup often requires
O(1000) years (Dunne et al., 2013), where raw speed is of
the essence: we see that even at 40 SYPD a time on the order
of months is needed simply to generate an equilibrated initial
condition for a set of experiments.

4.2 Complexity, resolution, and performance

We assume in the rest of the discussion that the runs being
analyzed are in T-mode, as they would be run in production.
In this section we show a comparison across several ESMs.
The comparisons here necessarily have considerable scatter
as they represent codes with differing levels of performance,
and different hardware as well. Nonetheless, the inverse re-
lationship between resolution and time to solution is seen in
the scatter plot of Fig. 4. Complexity, a second major deter-
minant of performance, is shown as the size of the square on
the scatter plot. Broadly, on similar performing hardware, we
expect to see one group of models of limited complexity in
one cluster on the resolution–SYPD slope, and another simi-
lar cluster for high-complexity models. Models lying consid-
erably below the cluster representing their complexity class
may indicate a need for performance improvement, either in
the code or in hardware. In general, we can identify the low-
complexity models as AOGCMs, and the high-complexity
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Figure 4. Performance, resolution, and complexity for a subset of
ESMs from Table 1, in throughput mode.

models as ESMs, which add chemistry and carbon to the mix.
These results will of course be significantly clearer when we
have a substantial database of results, allowing us to subse-
lect based on platform, for example.

4.3 Energy consumption

We present here the JPSY metric for select models, with the
caveats mentioned above in Sect. 3.2, namely that the energy
costs are based on representative machine averages.

Table 2 shows the energy costs of the various model sim-
ulations in Table 1. The current results show that they are
drawn from platforms with rather similar energetic profiles,
and most of the variance in energetic costs comes from vari-
ations in CHSY. Below in Sect. 4.7 we show a comparison
of the same model on different platforms, with a substantial
difference in energy profile. This will be seen to have signif-
icance in machine evaluation.

4.4 Coupler overhead and load imbalance

One area of concern in coupled modeling is the cost of the
coupling itself. There are two aspects to this.

– When components are running concurrently there are
synchronization costs which arise when the components
must exchange data; i.e., a component that finishes early
must wait for its boundary condition received from an-
other component. Also, components may have restric-
tions on the layout (i.e., the PE count can only be dis-
cretely altered). Second, the load is often a function of
the actual narrative of events taking place in the model
(e.g., convective activity). Thus it may not be possible

to maintain an exact load match between components.
This is usually done by trial and error and left fixed for
the duration of an experiment.

– A second cost is that of the coupler itself: this includes
the cost of conservative interpolation between indepen-
dent model grids, as well as any other computations per-
formed during the transfer. This can include computing
fluxes, transforming quantities (for instance, different
components may have differing units or sign conven-
tions for certain variables). In some cases transfer co-
efficients are computed on an intermediate “exchange
grid” (e.g., Balaji et al., 2006).

These are both unavoidable costs of coupling; therefore,
as outlined in Sect. 3, we have chosen to measure them as
one: the coupling cost is the processor-time integral of the
difference between the total cost of the coupled system and
the integrated cost of individual components, depicted graph-
ically as the white area outside any component in Fig. 2.

One area of concern is whether the coupler costs rise
with resolution. A comparison of two models built from the
same modeling system (the low-resolution ESM2G vs. high-
resolution CM2.6) in Table 1 shows that the coupler cost, in-
cluding load imbalance, increases from 1 to 25 % with the in-
crease in resolution. This comparison is made in the S-mode.
At lower PE counts (T-mode) it is more difficult to estab-
lish load balance because of layout restrictions as described
above. Here the cost comparison across low and high reso-
lutions rises from 25 to 62 %. Further examination indicates
that this is an example of a model configuration that was in-
sufficiently tuned for performance before starting a produc-
tion run, and indeed a much better load balance could have
been achieved. This inference is given a boost when we com-
pare CM4H and CM4L, which are differentiated by high and
low ocean resolution. Here in fact the coupling cost is lower
in the high-resolution configuration. We therefore conclude
that there is no evidence of a loss in coupling performance
with resolution, and the anomalous result for CM2.6 is prob-
ably due to an imperfect configuration. We present this as
evidence that systematic collection of the CPMIP metrics
would help identify such cases during setup for production,
rather than post facto, as in this table.

4.5 I/O issues

As noted in Sect. 3, I/O load is measured here by comparing
a production run with no diagnostic output against a regular
production run. We see a generally modest cost ranging from
6.5 % for low-resolution models up to 24 % at high resolu-
tion. (The CM2.6 run shown here contains an eddy-resolving
ocean, and the high cost of I/O in that run is associated with
high-frequency output for analyzing eddy statistics: Griffies
et al., 2015).

In other modeling systems with asynchronous I/O
(such as the XIOS system developed in France; see
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Table 2. Energy cost per simulated year (Joules) in several of the configurations listed in Table 1. See Sect. 4.3 for an explanation of the
terms. Energy and aggregate core hours are reported for 1 month.

Model CHSY E A JPSY Platform

CM2.6 S 2.12× 105 3.14× 1012 5.64× 107 1.17× 1010 gaea/c2
CM2.6 T 1.81× 105 3.14× 1012 5.64× 107 1.00× 1010 gaea/c2
CM2.5 T 14 327 3.14× 1012 5.64× 107 7.99× 108 gaea/c2
FLOR T 5844 3.14× 1012 5.6× 1074 3.26× 108 gaea/c2
CM3 T 2974 3.14× 1012 5.64× 107 1.66× 108 gaea/c2
ESM2G S 279 1.97× 1012 3.02× 107 1.82× 107 gaea/c1
ESM2G T 235 1.97× 1012 3.02× 107 1.53× 107 gaea/c1
CM4H T 7729 1.68× 1012 3.47× 107 3.75× 108 gaea/c3
CM4L T 3277 1.68× 1012 3.47× 107 1.59× 108 gaea/c3
ESM4L T 5340 1.68× 1012 3.47× 107 2.59× 108 gaea/c3
ARPEGE5-NEMO T 5190 5.92× 1012 5.88× 107 5.22× 108 curie
EC-Earth3.2 T 12 126 1.62× 1012 3.86× 107 5.08× 108 beskow
EC-Earth3.2 S 21 481 1.62× 1012 3.86× 107 8.99× 108 beskow
CESM1.2.2-NEMO T 59 100 9.00× 1012 6.76× 107 7.87× 109 athena
MPI-ESM1 T 3363 1.30× 1012 2.65× 107 1.64× 108 mistral
NorESM1 S 1369 1.41× 1012 1.64× 107 1.18× 108 vilje
IPSL-CM6-LR S 2166 5.92× 1012 5.88× 107 2.18× 108 curie
HadGEM3-GC2 T 6504 4.27× 1012 8.5× 107 3.27× 108 archer

http://forge.ipsl.jussieu.fr/ioserver and Joussaume et al.,
2012), the same cost is measured by seeing how many PEs
are assigned to I/O relative to the rest of the model.

Another useful metric here is the data intensity defined in
Sect. 3. It shows the rate of data production per hour of pro-
cessing, in units of GB/CH. We see the data intensity de-
creasing as resolution increases, but staying proportional to
increases in complexity.

4.6 Workflow costs

We see examples in Table 1 where there is a substantial
discrepancy between ASYPD and SYPD; for instance, the
ESM2G T-mode only achieves 11 SYPD in practice against
an expected 26 SYPD. This indicates a need for closer exam-
ination. There could be several reasons for this.

– The workflow system could be introducing inefficien-
cies. This would be identified by a detailed examination
of the run logs, or whether the delays are induced during
data transfer or post-processing, for instance.

– the queuing system could be introducing delays. Sched-
uler logs would identify whether there is excessive
queue wait time, in which users may seek to change
the queuing policies at their compute site, or else find a
“sweet spot” for the T-mode that best aligns with those
policies.

– The run might have been interrupted by the scientist
for various reasons; for example, they might choose to
“pause” the run to perform some preliminary analysis.

In this case, we indeed discovered that there were sig-
nificant gaps between output file timestamps at several
points in the run, indicating that these were deliberate
pauses.

These results indicate the utility of the CPMIP metrics for
diagnosing problems associated with model workflow, which
have as much impact on realized performance as algorithms
and computational hardware.

4.7 Hardware comparison

One of the most impactful uses of the CPMIP metrics is
in getting comparisons of actual performance improvements
from new hardware. As we have emphasized in this paper,
nominal measures of performance provided by vendors such
as clock speed in GHz, or maximum theoretical flops, do not
provide clear indications of what actual increase in perfor-
mance will be realized in practice on the actual applications
run on the machine. In Table 3, we provide a direct com-
parison of the same codes on the current machine and on
a new acquisition. NOAA has recently upgraded the tech-
nology on its flagship climate computer Gaea. The results
of Table 1 were acquired on Gaea’s c1 and c2 partitions
in 2014, when it was a Cray XE6 (120 320 AMD Interlagos
cores rated at 3.6 GHz on a Cray Gemini fabric). In early
2016, a c3 partition was added, a Cray XC40 consisting of
48 128 Intel Haswell cores rated at 2.3 GHz but with higher
clock-cycle concurrency, and the next-generation Aries inter-
connect fabric (see Table 4). Given the higher rated proces-
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Table 3. Results comparing the same model in both speed (S) and
throughput (T) mode on different hardware.

Model Machine Resol SYPD CHSY JPSY

CM4 S gaea/c2 1.2× 108 4.5 16 000 8.92× 108

CM4 S gaea/c3 1.2× 108 10 7000 3.40× 108

CM4 T gaea/c2 1.2× 108 3.5 15 000 8.36× 108

CM4 T gaea/c3 1.2× 108 7.5 7000 3.40× 108

sors and smaller number of cores, what is the true compari-
son across these machines?

Table 3 provides some answers. The CM4 model currently
in development at GFDL shows a modest increase in cost as
we increase the PE count, beginning to saturate in perfor-
mance as we get to 4.5 SYPD (indicated by the increase in
CHSY between rows 1 and 3). Over the same range, we are
able to demonstrate an increase on the new hardware c3 from
7.5 to 10 SYPD, at no increase in CHSY. We can infer three
things.

– Core for core, the new machine shows a speedup of
2.2X, which one could not have inferred from the clock
ratings. However, the total number of cores has dropped
by 2.5X. Thus, in aggregate, c3 provides about 87 %
(2.2 / 2.5) of the capacity of the older c1 and c2 par-
titions combined, for the GFDL workload. Note, how-
ever, that the PF rating of c3 (the product of columns
3, 4, and 5 in Table 4) is considerably higher than c1
and c2 combined (1.77 PF vs. 1.12 PF). This shows the
pitfalls of using petaflop ratings to infer the aggregate
performance of a machine.

– A second inference is that the next-generation network
(Cray Aries over Gemini) is showing a manifest in-
crease in performance, with the same CHSY in both
configurations (i.e., with different numbers of PEs),
whereas there was a drop in performance on the older
hardware. Additional data on very high-resolution mod-
els, not shown here, show that the scaling increase re-
sults in vastly increased performance at very high PE
counts, pushing the per-core performance difference to
nearly 3X.

– A third and equally intriguing result is apparent from the
energy analysis in the JPSY column. We see substantial
decreases in the energy cost of simulation, with JPSY
dropping by 60 % in migrating from c2 to c3, partly
due to the lower CHSY, but also partly attributable to
energy efficiency of the hardware. This translates into
a very concrete and substantial fall in the total cost of
simulation science over the lifetime of the machine.

Comparisons of this nature based on CPMIP metrics can
yield extremely useful material for comparing hardware and

for interpreting benchmark results. A broad database of re-
sults across models and machines will also allow centers to
gain useful insights about their own workload from acquisi-
tions at other centers.

In future, modeling centers are likely to be distributing
work across heterogeneous systems: this information could
additionally aid in matching model configurations (e.g., res-
olution and complexity) to hardware.

The platforms used in this study are listed in Table 4.

5 Summary and future work

Computational performance is one of the most important
constraints in the design of Earth system modeling experi-
ments. These constraints force compromises between resolu-
tion, complexity, and ensemble size, all of which have serious
scientific implications. This paper proposes several metrics
for assessing real computational performance of ESMs, and
as an aid in experimental design and strategic planning, in-
cluding future computer acquisitions consistent with a mod-
eling center’s mission.

It is our contention that traditional measures of computa-
tional performance do not provide the necessary input for ex-
perimental design and planning. The kinds of questions sci-
entists face include the following.

– For a given experimental design, what can I afford to
run?

– If I add complexity (such as adding a biogeochemistry
component to an AOGCM), what will I have to sacrifice
in resolution?

– How much computing capacity do I need to participate
in a campaign like CMIP6 (Meehl et al., 2014)? How
much data capacity?

– Do the queuing policies on the machine hinder the sus-
tained run of a long-running model?

– During the spinup phase, how long (in wallclock time)
before I have an equilibrium state?

The metrics we propose are designed to address questions
such as these, not easily answered from flops and scaling
curves. They are specifically designed to be universal (i.e.,
not based on a specific component hierarchy), very easy to
collect (no specialized software or instrumentation), and re-
flective of actual performance in production.

As the energy cost of computing (Cumming et al., 2014;
Charles et al., 2015) is increasingly becoming the limiting
factor in large-scale computing, we expect that our machine-
average measure of model energy consumption JPSY will
need to be replaced by a more accurate measure of energy
consumption AJPSY, using fine-grained hardware energy
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Table 4. Details of platforms used in this study. The product of cores, clock speed, and clock-cycle concurrency should yield theoretical peak
speed, but as we see in the results of, and discussion around, Tables 1 and 3, the actual performance is rather different.

Machine Chip Cores Clock Clock-cycle URL
speed (GHz) concurrency

gaea/c1 Interlagos 41 984 3.6 4 https://goo.gl/MYMPqD
gaea/c2 Interlagos 78 336 3.6 4 https://goo.gl/MYMPqD
gaea/c3 Haswell 48 128 2.3 16 https://goo.gl/o0xzIz
curie Sandy Bridge 80 640 2.7 8 http://goo.gl/RR5kfc
mistral Haswell 36 840 2.5 16 https://goo.gl/RKjC2g
vilje Sandy Bridge 22 464 2.6 8 https://goo.gl/ntxBPw
athena Sandy Bridge 7712 2.6 8 https://goo.gl/Z2CSvB
beskow Haswell 53 632 2.3 16 https://goo.gl/ufDBBy
archer Ivy Bridge 118 080 2.7 8 http://goo.gl/dCU2uJ

metering. In doing so, we will need to track energy consump-
tion across the entire modeling lifecycle, including computa-
tion, data movement, and storage. Regardless of how energy
per simulation unit is measured, we believe these metrics
will play a substantial role in selecting technologies, as we
will be able to demonstrate direct benefits in operating costs
per “unit of science”, such as a simulated year. Technolo-
gies that appear weaker in “core-for-core” comparisons may
show up as stronger in energy comparisons. Across machines
and models, we can imagine debates about certain choices of
hardware being “slower but greener”, or algorithms that are
“less accurate but more eco-friendly”. We believe these con-
siderations will enrich the landscape of design of both hard-
ware and simulation software and workflow.

Other questions may be asked as well, which are more
project-specific. For instance, the CMIP experimental pro-
tocol is fundamentally dependent on an extensive process
of data standardization, using tools such as the Climate
Model Output Rewriter (CMOR, http://www2-pcmdi.llnl.
gov/cmor). While the standardization is a tremendous boon
to data consumers, the data producers often chafe at the
somewhat onerous process of standardization. We could
imagine project-specific metrics such as measuring the time
spent making the CMIP runs, the total computational load
of CMIP, and the time spent in post-model data standardiza-
tion. The set of metrics may thus evolve in the future, with
project-specific addenda.

We propose a systematic campaign to collect the basic
metric set in this paper routinely for CMIP6 before consid-
ering its growth and evolution. This will be done using cur-
rently planned systems of model documentation such as ES-
DOC (http://es-doc.org) (Lawrence et al., 2012). This com-
parative study of computational performance across models
and machines, a CPMIP, will be an invaluable resource to the
climate modeling community. Each center will individually
be able to identify inefficiencies in their modeling lifecycle
and seek to address them. The comparative data will allow
one center to predict the performance it will achieve on a ma-
chine available at another center. We propose to build such

an emulator tool backed by the CPMIP database for this pur-
pose. It will allow centers to define the optimal compute–data
balance on future acquisitions. Finally, it will allow the Earth
system modeling community as a whole to identify machine
configurations and policies most apt to the kinds of science
we hope to undertake in the future.

6 Data and code availability

The code for computing memory usage within the model
(see Sect. 3.3) is provided in memuse.c (https://github.com/
NOAA-GFDL/FMS/blob/master/memutils/memuse.c). It is
to be run on each PE and will provide the resident set size
for that PE on any Linux-based operating system.

All the data used in the tables and figures of this study
are available in raw form in a public Dropbox folder (see
https://goo.gl/Fxl5XX). As stated in the paper, the ESDOC
project will be collecting and publishing the data systemati-
cally during CMIP6 from all participating models.
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