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Abstract: A linear model is used to diagnose the onset of rotors in flow over 2D hills, for atmospheres
that are neutrally stratified near the surface and stably stratified aloft, with a sharp temperature
inversion in between, where trapped lee waves may propagate. This is achieved by coupling
an inviscid two-layer mountain-wave model and a bulk boundary-layer model. The full model shows
some ability to diagnose flow stagnation associated with rotors as a function of key input parameters,
such as the Froude number and the height of the inversion, in numerical simulations and laboratory
experiments carried out by previous authors. While calculations including only the effects of mean
flow attenuation and velocity perturbation amplification within the surface layer represent flow
stagnation fairly well in the more non-hydrostatic cases, only the full model, taking into account
the feedback of the surface layer on the inviscid flow, satisfactorily predicts flow stagnation in the
most hydrostatic case, although the corresponding condition is unable to discriminate between rotors
and hydraulic jumps. Versions of the model not including this feedback severely underestimate
the amplitude of trapped lee waves in that case, where the Fourier transform of the hill has zeros,
showing that those waves are not forced directly by the orography.

Keywords: flow over mountains; trapped lee waves; rotors; linear theory; boundary layer; bulk model

1. Introduction

Lee wave rotors are elongated vortices formed beneath trapped lee waves generated downstream
of quasi-2D mountains, with horizontal axes roughly aligned with the orography [1]. These flow
structures, where the flow stagnates and reverses near the surface, are often characterized by flow
unsteadiness and turbulence, constituting a serious aviation safety hazard [2,3]. However, they are
hard to forecast, because their scale is relatively small (at most, a few km across), and therefore, they
are inadequately resolved not only by global, but even by most regional weather prediction models.

The nature of rotors, with flow stagnation and reversal, suggests that they are intrinsically
nonlinear phenomena. For this reason and also because the associated turbulence, which affects
the large-scale flow, is intrinsically 3D, their detailed forecast is probably only possible using
high-resolution numerical simulations, with grid spacings smaller than 1 km and resolving at least
part of the turbulence (e.g., Large-Eddy Simulations – LES) [4–6].

However, the onset of rotors is ultimately triggered by flow stagnation in quasi-steady flow
over quasi-2D orography, a flow configuration that is much simpler than the one arising after the
rotors have become turbulent and which may probably be understood using more rudimentary tools.
Since carrying out high-resolution numerical simulations is computationally expensive, it would be
advantageous if simpler methods could be employed to understand and predict rotor onset.

The fact that the near-surface flow stagnation that is required for rotor onset has been observed
and simulated for relatively modest mountain heights (e.g., [7,8]) suggests that the flow may be nearly
linear outside the boundary layer in many situations of practical interest and only boundary layer
effects induce nonlinearity, with friction facilitating flow stagnation.
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It is well-known that the balance of forces within a boundary layer is different from that outside it.
In the free atmosphere, the flow is approximately inviscid, satisfying Bernoulli’s equation, i.e., the flow
velocity is a minimum where pressure is a maximum. Inside the boundary layer, by contrast,
the balance of forces is such that the flow tends to be partially directed towards lower pressures,
much as occurs in a more pronounced way in flow inside a vegetation canopy [9]. This has implications
for the onset of flow stagnation beneath trapped lee waves, because these waves induce pressure
oscillations at the surface, which therefore lead to the possibility of flow stagnation and recirculation.

An alternative way of seeing the problem is by analogy with flow over hills. Flow over a succession
of hills is in some sense analogous to flow beneath a trapped lee wave, since both are characterized
by an oscillating pressure pattern at the surface, which in the case of hills attains minima over the
hill tops. It is known from studies of flow over hills that the existence of a boundary layer has the
effect of decelerating the mean incoming flow near the surface while concurrently amplifying the
flow perturbation induced by the hill [10]. This is clearly conducive to a higher likeliness of flow
stagnation, since stagnation occurs when the velocity perturbation is of equal value and opposite sign
to the incoming flow velocity.

It was seen in previous investigations that linear theory can give valuable qualitative indications
about the onset of flow stagnation outside the boundary layer [11]. On the other hand, the drag
calculations of Teixeira et al. [12] suggested a significant correlation between trapped lee wave drag,
calculated using an inviscid model, and the onset of rotors. This is not surprising, since flow stagnation
is largely driven by the pressure fluctuations associated with the trapped lee waves, which are also
responsible for the drag, as argued above and supported by the results of Vosper et al. [13].

This suggests the approach adopted here, where the inviscid linear model of trapped lee waves
over 2D orography developed by Teixeira et al. [12] (hereafter, TAM13) is coupled with a very simple
representation of the velocity boundary layer, following Smith et al. [14] (hereafter, SJD06). The idea of
coupling an inviscid trapped lee wave model with a boundary layer model for simulating rotors is
not wholly new, having been followed by Vosper et al. [13], who adopted the linear boundary layer
model of Hunt et al. [15] for that purpose. However, that model is rather complex and turned out to
be too cumbersome for a systematic exploration of parameter space.

The aim here is to develop a simpler model that is easy and quick to use for a wide range of input
conditions and can provide predictions for the onset of rotors that have qualitative and even some
quantitative skill. The main limitation of this model, as formulated here, is that it assumes a specific
type of atmospheric profile (nevertheless fairly typical of well-mixed boundary layers), which supports
lee waves trapped at the inversion capping the well-mixed layer. It should be straightforward, however,
to apply the same kind of approach to other simple types of atmospheric profiles, for example, that of
Scorer [16].

The remainder of this paper is organized as follows: Section 2 presents the simple linear model
used to diagnose rotor onset, based on TAM13, but including a representation of the surface layer;
Section 3 presents the results, where the predictions from this model are explored as a function
of input parameters and compared with results from numerical simulations, including those of
Vosper [8] (hereafter, V04) and Sheridan and Vosper [17] (hereafter, SV06), as well as with the laboratory
experiments of Knigge et al. [18] (hereafter, KEPE10); in Section 4, the main findings of this study
are summarized.

2. Linear Rotor Model

The decrease of the mean wind speed towards the ground over the depth of the atmospheric
boundary layer due to the no-slip boundary condition crucially influences flow stagnation and, hence,
rotor onset. The inviscid model of 2D trapped lee waves developed by TAM13, which does not
incorporate this effect, is coupled here with the bulk boundary layer model of SJD06, which represents
it in the simplest possible way. The model of SJD06 is essentially a model of the surface layer,
coupling the wind velocity at the ground to that in the atmosphere above the surface layer using
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Rayleigh damping coefficients. It contains a single velocity scale for the mean flow and a single scale
for the flow perturbation within the surface layer (that do not depend on height), as well as a single
length scale (of the order the surface layer depth). These velocity scales quantify, with some degree of
arbitrariness, the wind speed at a representative height within the surface layer. In the lowest layer
considered in the model of TAM13, the flow is approximated as inviscid, and turbulence has no impact
on the mean static stability and velocity profiles, which are taken as constant. It should be noted that
in the real atmosphere, this well-mixed layer constitutes a major part of the full atmospheric boundary
layer (namely, a convective or residual layer), whereas the surface layer beneath it, represented by the
model of SJD06, is much thinner.

Since above the surface layer the flow is assumed to be inviscid, the point of departure to the
calculations in this region is the Taylor–Goldstein equation for 2D flow,

ŵ′′ + (l2 − k2)ŵ = 0 (1)

Here, ŵ is the Fourier transform of the vertical velocity perturbation; l = N/U is the Scorer
parameter (where N and U are the background Brunt–Väisälä frequency and wind velocity); k is the
horizontal wavenumber of the waves; and the primes denote differentiation with respect to height, z.
Equation (1) assumes inviscid, non-rotating flow with the Boussinesq approximation linearized with
respect to a background mean state characterized by l. Since U is assumed to be constant, U′′ = 0, and
so, the wind curvature term does not appear in the definition of l.

The two-layer atmosphere considered by TAM13 is adopted here, where:

l =

{
l2 > 0 if z > H
l1 = 0 if 0 < z < H

(2)

with a potential temperature discontinuity of magnitude ∆θ at z = H. This corresponds to
neutral stratification in the lower layer and stable stratification in the upper layer, separated by
a temperature inversion.

The boundary conditions to be satisfied by the flow between the two layers and in the upper layer
as z→ +∞ are similar to those prescribed by TAM13, namely:

ŵ1(z = H) = ŵ2(z = H) (3)

ŵ′1(z = H)− ŵ′2(z = H) =
g′

U2 ŵ1(z = H) (4)

where g′ = g∆θ/θ0 is the reduced gravity at the inversion, g is the gravity acceleration, θ0 is a reference
constant potential temperature and the subscripts 1 and 2 refer to ŵ (and its derivative) evaluated in
the lower and upper layers, respectively. Equations (3) and (4) express the continuity of mass and
pressure at z = H, respectively. In addition, if ŵ2 corresponds to a vertically-propagating wave, it
must radiate energy upwards as z→ +∞, whereas if it corresponds to an evanescent wave, it must
decay to zero in the same limit.

The impact of the surface layer as treated in the model of SJD06 leads to a modified surface
boundary condition,

ŵ1(z = 0) = iUkĥ +
HBRU

UB
ŵ′1(z = 0) (5)

where i =
√
−1, ĥ is the Fourier transform of the ground elevation function h(x), HB is a height

proportional to the thickness of the surface layer (presumed to be much smaller than H), UB is the
representative mean velocity within the surface layer and:

R =
iUk + CT

iUBk + CB + CT
(6)
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Underlying Equations (5) and (6) is a representation of friction in its simplest possible form via
Rayleigh damping (for details, see SJD06). Here, CT is the Rayleigh coupling coefficient between the
surface layer and the inviscid atmosphere treated by the model of TAM13, and CB is the corresponding
coupling coefficient between the surface layer and the ground. All impact of the surface layer on the
atmosphere above occurs via the second term on the right-hand side of Equation (5), which changes
the effective orography shape that forces the mountain waves. Since the surface layer is thin and the
flow is linearized, this boundary condition is still formally applied at z = 0 (cf. SJD06).

Solutions to Equation (1) in the two model layers described by Equation (2) take the form:

ŵ1 = a1e−|k|z + b1e|k|z (7)

ŵ2 =

{
a2eim2z if |k| < l2
a2e−n2z if |k| > l2

(8)

where m2 = (l2
2 − k2)1/2sgn(Uk) is the vertical wavenumber of upward propagating waves in the

upper layer, n2 = (k2 − l2
2)

1/2 is the decay rate of evanescent waves and a1, b1 and a2 are unknown
coefficients to be determined by the boundary conditions. Note that the solutions for ŵ2 in Equation (8)
already incorporate the radiation and decay boundary conditions as z→ +∞, respectively.

Using Equations (3)–(5), a1, b1 and a2 are found to take the form:

a1 =
1
2

iUkĥ

(
g′

U2 + im2 − |k|
)

e|k|H

T1
(9)

b1 = −1
2

iUkĥ

(
g′

U2 + im2 + |k|
)

e−|k|H

T1
(10)

a2 = −iUkĥ
|k|e−im2 H

T1
(11)

where:

T1 =

(
g′

U2 + im2 −
HBRU

UB
|k|2
)

sinh(|k|H)− |k|
{

1− HBRU
UB

(
g′

U2 + im2

)}
cosh(|k|H) (12)

if |k| < l2, whereas if |k| > l2:

a1 =
1
2

iUkĥ

(
|k| − g′

U2 + n2

)
e|k|H

T2
(13)

b1 =
1
2

iUkĥ

(
|k|+ g′

U2 − n2

)
e−|k|H

T2
(14)

a2 = iUkĥ
|k|en2 H

T2
(15)

where:

T2 =

(
n2 −

g′

U2 +
HBRU

UB
|k|2
)

sinh(|k|H) + |k|
{

1 +
HBRU

UB

(
n2 −

g′

U2

)}
cosh(|k|H) (16)

This totally defines the solution to the linearized problem. Note that in the inviscid approximation
CT = CB = 0 (where HB = 0 and R = 1), the denominator T2 in Equations (13)–(15) becomes purely
real, which means that it may become zero for a given value of k = kL, called the resonant wavenumber.
Physically, this corresponds to the existence of resonant wave modes, leading to an infinite train of
trapped lee waves downstream of the mountain. However, when friction is included, R is in general
complex (see Equation (6)), which suppresses this perfect resonance. As SJD06 showed, this situation
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corresponds to a train of trapped lee waves with their amplitude decaying exponentially downstream
of the orography.

Mathematically, the solutions for the trapped lee wave perturbation velocity, pressure and drag
are given in closed analytical form in the inviscid limit for the resonant wave component and may be
evaluated using contour integration (see TAM13). This no longer happens when the effect of friction is
included, because the singularity corresponding to T2 = 0 no longer exists for a real value of k.

Flow Stagnation Condition

The existence of rotors beneath trapped lee waves is signalled by flow reversal near the ground,
presumably in various regions downstream of the mountains that generate the waves. The onset of
rotors is preceded by the onset of flow stagnation, where the wind velocity becomes zero at points
within these regions. In a linearized framework, this corresponds to a streamwise velocity perturbation
u that is equal and opposite to the mean background velocity U. While this condition pushes linear
theory beyond its formal range of validity, since the flow perturbation is no longer much smaller than
its background state, there are indications that it may still be useful qualitatively and to a certain
extent even quantitatively [11].

In the model of SJD06, the Fourier transform of the streamwise velocity perturbation within the
surface layer ûB is related to its value outside that layer û1 (which in the present situation is at the
bottom of the lower layer in the model of TAM13) by:

ûB = Rû1(z = 0) (17)

and the background velocity within the surface layer UB is related to its value outside that layer by:

UB =
CT

CB + CT
U (18)

Since CT and CB are both positive and taking into account Equation (6), it can be seen that in
general UB < U and |ûB| > |û1| for sufficiently short waves (i.e., sufficiently high values of k). As the
streamwise velocity perturbations in physical space uB and u1 are related to ûB and û1 by:

uB(x, z) =
∫ +∞

−∞
ûB(k, z)eikxdk (19)

u1(x, z) =
∫ +∞

−∞
û1(k, z)eikxdk (20)

this implies that |uB| > |u1|. Hence, stagnation will necessarily become more likely within the surface
layer than outside it (as indicated by more complex models, e.g., [15]).

The flow stagnation condition within the surface layer is:

min(uB) = −UB (21)

where it is implied that min(uB) is negative, to balance UB > 0. By the above arguments, this may
correspond to a situation where |u1| � U and, thus, where linear theory remains valid in the bulk of the
atmosphere (and even within the boundary layer outside the surface layer). To express Equation (21) in
terms of a minimum number of model input parameters, this equation may be made dimensionless as:

min
(

uBH
Uh0

)
= −UBH

Uh0
= − CT

CB + CT

H
h0

(22)

where h0 is the maximum height of the mountain that generates the waves, and in the second equality,
Equation (18) was used. This allows one to define a threshold or critical (minimum) value of the
dimensionless mountain height h0/H above which flow stagnation begins:
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(
h0

H

)
crit

= − CT

CB + CT

{
min

(
uBH
Uh0

)}−1
(23)

where it should be noted again that min[uBH/(Uh0)] is negative. In general, this minimum must be
calculated numerically. For that purpose, Equation (19) must be used in conjunction with Equation (17),
mass conservation, ikû1 + ŵ′1 = 0 (which allows û1 and ŵ1 to be related), and the solution for ŵ1

Equation (7) along with the definitions of the relevant coefficients, given by Equations (9), (10), (13)
and (14).

In the inviscid approximation (i.e., CT = CB = 0), it is possible to make further progress
analytically, namely if only the resonant contribution to u1, u1L, is taken into account, it can be
shown that:

u1L(z = 0)H
Uh0

= 2π a
H k′Lĥ′(k′L) sin(k′Lx′) {Fr−2 − n′2(k

′
L)} cosh(k′L) − k′L sinh(k′L)

k′L{1 + n′2(k
′
L)
−1} sinh k′L + {1 + n′2(k

′
L) − Fr−2} cosh k′L

(24)

where all primed variables have been normalized using H, and Fr = U/(g′H)1/2 is a Froude number
of the flow. Note that u1L(z = 0) oscillates sinusoidally, corresponding to an unattenuated trapped
lee wave. Taking the minimum of Equation (24) and applying Equation (22) (now with uB replaced
by u1L(z = 0) and UB = U) yields the following expression for the critical dimensionless mountain
height for flow stagnation:(

h0

H

)
crit

=
1

2π

(
H
a

)
k′2L
{

1 + n′2(k
′
L)
−1}+ {1 + n′2(k

′
L)− Fr−2} {Fr−2 − n′2(k

′
L)
}

k′L|ĥ′(k′L)|
[{

Fr−2 − n′2(k
′
L)
}2 − k′2L

] (25)

It is clear that, in this inviscid approximation, the critical mountain height is inversely proportional
to the Fourier transform of the ground elevation function at the resonant wavenumber. If this Fourier
transform has a small magnitude at that wavenumber, (h0/H)crit may be severely overestimated by
assuming that direct forcing by the orography is the only mechanism forcing the waves. This may be
one of the reasons why V04 found that their linear model of trapped lee waves severely underestimated
the amplitude of the waves for a case where the Fourier transform of the ground elevation at the
resonant wavenumber was particularly small. V04 attributed this deficiency to the neglect of nonlinear
processes. However, the fact that inclusion of a surface layer changes the effective orography “seen”
by the atmosphere (as noted above) may be another possible explanation. In this effective orography,
the wavenumbers contributing to the trapped lee waves are no longer limited to a single value,
but possess a continuous distribution (albeit fairly concentrated near the inviscid resonant wavenumber
for weak friction). This has the effect of smoothing the Fourier transform of the effective ground
elevation function, reducing the weight of any wavenumbers where it may be especially small.

This physical process cannot be incorporated into inviscid theory, but the amplification of uB and
the attenuation of UB within the surface layer can, by applying Equation (23) along with Equation (17)
with u1(z = 0) replaced by the u1L given by Equation (24). Then:(

h0

H

)
crit

=

(
h0

H

)I

crit

CT

CT + CB

1
|R(k′L)|

(26)

where (h0/H)I
crit is the inviscid critical mountain height given by Equation (25). This can be seen as

an improved version of the inviscid model, where the impact of the atmosphere above the surface
layer influences the atmosphere within the surface layer, but not the other way around (since the lower
boundary condition ignores frictional effects).
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It is also instructive to note that the trapped lee wave drag DL calculated by TAM13
(their Equation (25)) is closely related to the streamwise velocity perturbation associated with these
waves, namely in the inviscid limit, it can be shown that:

DL = 2πρ0kLH|ĥ(kL)|U|min {u1L(z = 0)} | (27)

where ρ0 is a constant reference density. This relation is not fortuitous, resulting from the fact that u1L

is linked via Bernoulli’s equation to the pressure perturbation associated with the trapped lee waves,
which is what causes this part of the drag. It is not surprising then (as will be seen later) that the
pattern of (h0/H)crit in parameter space (which is based on uB or u1L(z = 0)) shows some qualitative
resemblance to that of the drag, as was hinted by the results of TAM13 linking trapped lee wave drag
and rotor onset.

3. Results

In addition to the input parameters contained in the model of TAM13 (Fr, l2H and l2a), the present
model has the following dimensionless input parameters, introduced by the surface layer model of
SJD06: CT/CB, CBH/U and HB/H. The normalization used in the first and last of these parameters is
fairly obvious, but the second one is different in SJD06 and [19], with a instead of H used to scale CB,
as CBa/U. Obviously, the behaviour of the model depends on which of those parameters is kept fixed.
It was found here that use of CBH/U improved the performance of the present model.

The values taken by the input parameters in the tests that follow are either extracted directly or
inferred from the studies of V04, SV06 and KEPE10, with which the results will be compared (in the
case of Fr, l2H and l2a), or estimated to optimize comparison with V04 and SV06 (in the case of CT/CB,
CBH/U and HB/H). For these latter surface layer parameters, which are kept fixed throughout the
present study (for maximum generality and lack of more detailed information), the best fit was found
for CT/CB = 0.36, CBH/U = 0.21 and HB/H = 0.06. These values are not inconsistent with those
adopted in previous studies.

No previous estimate of HB/H is available, since an atmospheric profile with an inversion was
not considered in previous studies using the boundary layer model of SJD06, but a value of 0.06
seems reasonable for the height of a representative wind velocity (UB) that lies within the surface layer,
whose thickness is typically about 10% of the well-mixed layer. Concerning the other two parameters,
for example in SJD06, CT/CB > 0.5 was assumed, whereas in Smith [19] CT/CB took values of 0.5,
1 and 2, while from the values of HB presented in his Table A1, CBH/U varied between 0.1125 and
2.25, assuming HB/H = 0.06. Although the value of CT/CB adopted here is smaller, the difference is
modest, and the value of CBH/U falls within the interval considered by [19].

3.1. Diagnosing Flow Stagnation

For the purposes of this study, flow stagnation downstream of the orography will be equated
with rotor onset, although, as will be seen, that equivalence may be questionable. Comparisons of
predictions from the present model with the numerical simulations of V04 and SV06 and the laboratory
experiments of KEPE10 require slightly adapting the flow stagnation condition Equation (23). In the
numerical simulations of V04 and SV06, a truncated-cosine hill is assumed,

h(x) =
h0

2

{
1 + cos

(
2πx

a

)}
for |x| ≤ a

2
(28)

and l2h0 is held constant at 0.5, whereas in KEPE10, a Gaussian hill is employed instead,

h(x) = h0 exp
(
− x2

2a2

)
(29)
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with its slope h0/a held constant at 0.57, as described by Eiff et al. [20] for experiments using the same
kind of model orography.

It is convenient to express the flow stagnation condition in terms of the quantities held constant
in each case. From Equation (23), this yields:

(l2h0)crit = −
CT

CB + CT

{
min

(
uB

Ul2h0

)}−1
(30)

for the cases addressed by V04 and SV06, or equivalently:(
h0

a

)
crit

= − CT

CB + CT

{
min

(
uBa
Uh0

)}−1
(31)

for the cases addressed by KEPE10. When comparing results from the present model to the regime
diagrams of V04 or SV06, the inverse of the quantity given by Equation (30) will be plotted (so that
a higher likeliness of flow stagnation corresponds to higher values, i.e., a lower critical value of
(l2h0)crit), with special emphasis on the contour of two, corresponding to the value of (l2h0)crit = 0.5.
The region of parameter space enclosed by this contour corresponds to a flow regime where stagnation
has occurred (because l2h0 > (l2h0)crit) and, hence, where rotors should exist. Similarly, when
results are compared with the regime diagram of KEPE10, the inverse of the quantity given by
Equation (31) will be plotted, with special emphasis on the contour of 1.754 (corresponding to the
inverse of (h0/a)crit = 0.57, assumed by those authors). The region enclosed by that contour delimits
a parameter range where h0/a > (h0/a)crit, where stagnation and, hence, rotors are expected.

3.2. Numerical Simulations of Vosper (2004)

Figure 1 shows [(l2h0)crit]
−1 as a function of (l2H)−1 and Fr, superposed on the regime diagram

of V04 (his Figure 9). In accordance with V04, it is assumed that l2a = 12.5. Note that, due to the fact
that l2h0 = 0.5, the nonlinearity parameter that appears at the bottom horizontal axis in Figure 9 of
V04 (h0/H in the present notation) can be related to l2H through h0/H = (l2h0)/(l2H) = 0.5/(l2H).
Only thus can the linear model presented here be compared with the numerical simulations of V04,
since both Fr and (l2H)−1 (but not h0/H) are accessible to linear theory (as noted by TAM13).

Figure 1a shows results from the inviscid model expressed by Equation (25), where the critical
mountain height for flow stagnation can be expressed in terms of (l2h0)crit via mere multiplication
of Equation (25) by l2H. Although the highest values of [(l2h0)crit]

−1 are located directly over the
region where rotors are diagnosed in the regime diagram of V04, the magnitude of this quantity that is
necessary for flow stagnation is severely underestimated. Maximum values are just above 0.2, and the
contour of two obviously does not appear in the graph.

Figure 1b shows results from the improved model where the effects of the amplification of uB and
attenuation of UB in the surface layer are taken into account, but no feedback on the outer flow exists
(Equation (26)). The results are substantially improved, but the magnitude of [(l2h0)crit]

−1 is still too
small to be consistent with the occurrence of rotors in the regime diagram of V04. One of the reasons for
this, as pointed out before, is that [(l2h0)crit]

−1 is directly proportional, through Equation (25), to the
Fourier transform of the orography at the resonant wavenumber of the trapped lee waves k′L and is thus
zero at the points in parameter space where ĥ(k′L) = 0. As the Fourier transform of Equation (28) has
several zeros (at ak/(2π) = n, where n is an integer; see Figure 14 of V04 and Equation (29) of TAM13),
the oblique troughs that can be observed in the contours in Figure 1a,b result from these zeros.

Figure 1c shows the results from the full model, including the effect of the boundary layer on the
outer flow, in addition to the direct boundary layer effects described above, and also including the
contribution to flow stagnation of waves propagating vertically or evanescent in the upper layer in
addition to trapped lee waves. It can be seen that the region of parameter space where [(l2h0)crit]

−1 > 2
encompasses almost perfectly the region with rotors in the regime diagram of V04. However, it also
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includes most of the region where a hydraulic jump was observed to occur in those numerical
simulations. Figure 8b of KEPE10 shows that at least some types of hydraulic jumps are characterized
by localized flow stagnation on the lee slope of the orography, although this does not seem to occur in
the case illustrated by Figure 8 of V04. On the other hand, Sachsperger et al. [21] recently noted that
hydraulic jumps may be a source of trapped lee waves (which are a prerequisite for rotors). This idea
seems to be supported also by the inviscid results presented in Figure 7 of V04. It would be useful
to develop a procedure to discriminate between rotors and hydraulic jumps in the present model,
but that is beyond the scope of this study.
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Figure 1. Inverse of the critical dimensionless mountain height [(l2h0)crit]
−1 as a function (l2H)−1 and

Fr for l2a = 12.5, superposed on V04’s regime diagram (adapted from Figure 9 of V04). Contours:
5, 2, 1, 0.5, 0.2, 0.1, and so on. The contour of two is denoted by a thick red line. (a) Inviscid model
Equation (25); (b) improved model Equation (26); (c) full model.

An interpretation of the behaviour of the flow stagnation condition in the regime diagrams may
be facilitated by plotting the velocity perturbation associated with these flows. This only needs to be
done for the model that produced the results of Figure 1c, as the models that produced the results of
Figure 1a,b assume by design a train of sinusoidal waves downstream of the orography (since they
only take into account the trapped lee wave component of the flow). Figure 2 presents u/U and uB/UB

(the normalized streamwise velocity perturbations outside and inside the surface layer, respectively)
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from the present model, for the cases analysed in more detail by V04. It should be noted that u/U = −1
and uB/UB = −1 correspond to flow stagnation outside and inside the surface layer, respectively.
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Figure 2. Velocity perturbation normalized by the mean velocity outside (u/U) and inside (uB/UB) the
surface layer (see legend), as a function of downstream distance from the orography (assumed to be
centred at x = 0) normalized by its width, calculated from the full model for l2a = 12.5. Horizontal
dotted line: flow stagnation threshold. (a) Fr = 0.6, (l2H)−1 = 0.5; (b) Fr = 0.6, (l2H)−1 = 1;
(c) Fr = 0.4, (l2H)−1 = 1.

The results in Figure 2a were calculated for Fr = 0.6 and (l2H)−1 = 0.5, corresponding,
according to V04, to a situation with trapped lee waves (although of relatively modest amplitude,
at least in terms of their streamwise velocity perturbation; see their Figure 4), but no rotors. It can
be seen that both outside and inside the surface layer, the velocity perturbation displays a maximum
(much amplified for uB/UB with respect to u/U), centred roughly over the hill. Inside the surface
layer, where this maximum is slightly displaced upstream, it is followed by a minimum downstream
of the hill, but no stagnation is produced anywhere.

Figure 2b shows results for the situation with Fr = 0.6 and (l2H)−1 = 1, which according to V04
corresponds to a case with rotors, displayed in his Figure 5. While in that figure, there is a very strong
acceleration of the flow near the ground downstream of the hill and a very pronounced pattern of
trapped lee waves with several stagnation points near the surface, the flow pattern from the present
model is quite different. Essentially, the velocity perturbation behaves qualitatively similarly to that
in Figure 2a, but with a larger amplitude, with amplification of the maximum over the hill and
intensification of the downstream minimum, which now is sufficient to induce flow stagnation inside
the surface layer, but only once. uB/UB shows a very weak trapped lee wave oscillation, which is
consistent with the weakness of this flow component inferred from the inviscid results of Figure 1a,b.
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This suggests that the trapped lee wave shown in Figure 5 of V04 is highly nonlinear and not
directly forced by the orography, unlike assumed in the present model. The relatively modest effect
of the surface layer on the outer flow appears to be insufficient to force such a wave. However,
it must be recognized that the behaviour of uB/UB in the present model makes sense physically:
the flow deceleration zone downstream of the hill is due to the effect of friction, corresponding to
an incipient flow separation bubble. An upstream migration of the velocity perturbation maximum and
a deepening of the velocity perturbation minimum downstream of the hill (which are attenuated, but
qualitatively similar, versions of the processes produced by the present model) can be seen, for example,
in Figure 3 of Smith [19] or Figure 5 of Jiang et al. [22]. It might be argued that although the present
model does not faithfully reproduce the flow structure produced by the numerical simulations directly,
the flow stagnation it predicts might act as an indirect trigger for the trapped lee waves and, hence, for
the rotors.

Figure 2c shows model results for Fr = 0.4 and (l2H)−1 = 1, which in V04 corresponds to
a situation with a hydraulic jump (his Figure 8). The model results differ relatively little from those
displayed in Figure 2b, but substantially from those of V04. The maximum in the velocity perturbation
over the hill has decreased relative to Figure 2b, but the minimum remains equally low, corresponding
to flow stagnation. The very weak trapped lee wave pattern that was barely discernible in Figure 2b
is now absent. This contrasts with the strong downslope wind that can be found near the surface in
the numerical simulations. Note, however, that downstream of the hydraulic jump, the flow almost
stagnates in those simulations, and the same happens a short distance above the top of the hill.

The cases analysed in detail by V04, mentioned above, are rather close to the threshold conditions
for the occurrence of rotors in parameter space. Figure 3 shows results where flow stagnation is
fulfilled by a wider margin, at least according to the present model.
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Figure 3. Similar to Figure 2, except that (a) Fr = 0.7, (l2H)−1 = 2; (b) Fr = 0.8, (l2H)−1 = 2;
(c) Fr = 0.9, (l2H)−1 = 2.
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In Figure 3, it is assumed that (l2H)−1 = 2. In Figure 3a, Fr = 0.7; in Figure 3b, Fr = 0.8; and in
Figure 3c, Fr = 0.9. Perhaps the main difference relative to the results presented in Figure 2 is that the
maximum of the velocity perturbation over the hill is substantially increased, both outside and inside
the surface layer, and the minimum downstream of the hill is also more pronounced. Additionally,
there is a clearly noticeable (though spatially attenuated) trapped lee wave signature downstream of
the hill (detectable only in uB/UB) and also a minimum of the velocity perturbation upstream of the
hill. Both of these features are especially salient in Figure 3b, for Fr = 0.8. However, in all cases (as in
Figure 2), the signature of non-trapped waves (with velocity perturbations confined to the vicinity of
the hill) are largely dominant with respect to the signature of trapped lee waves.

3.3. Numerical Simulations of Sheridan and Vosper (2006)

SV06 performed numerical simulations essentially similar to those of V04, except that
l2a = 3.125 (i.e., more non-hydrostatic flow) was assumed, to produce an analogous regime diagram
(their Figure 4). [(l2h0)crit]

−1 calculated from the present model is superimposed on this regime
diagram in Figure 4. As in Figure 1, Figure 4a corresponds to results from the inviscid model given by
Equation (25), Figure 4b to the improved model given by Equation (26) and Figure 4c to the full model.
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Figure 4. Similar to Figure 1, except that l2a = 3.125, and the contour plots are superposed on the
regime diagram of SV06. Adapted from Figure 4 of SV06.
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In this case, Equation (25) still underestimates very substantially the region of parameter space
where [(l2h0)crit]

−1 is larger than two, but the contour of two appears in the graph, as that quantity
slightly exceeds this value (see Figure 4a). The improved model (Equation (26)) does a reasonably
good job of predicting the region of parameter space where rotors occur (Figure 4b), but slightly
underestimates its range, especially for the lowest and highest values of Fr. This better agreement than
in Figure 1b occurs largely due to the fortuitous fact that the region where flow stagnation is more
likely corresponds to trapped lee wave resonant wavenumbers that do not coincide with the zeros
of the Fourier transform of ĥ. Mathematically, the reason for this is the following: the dimensionless
resonant wavenumber k′L = kLH is only a function of l2H and Fr (not l2a) (see Equation (22) of TAM13).
Hence, it takes the same values as in V04. However, this wavenumber, as it enters in Equation (28),
is normalized instead by a. This means that kLa = k′L(a/H) = k′L(l2a)/(l2H) is smaller in SV06, being
centred in a part of the normalized Fourier transform of Equation (28) mostly to the left of the existing
zeros (cf. Figure 14 of V04). What this means physically is simply that the forcing a narrower hill
provides at the resonant wavenumbers (which tend to be short) is stronger than the forcing provided
at the same wavenumbers by a wider hill.

Figure 4c shows results from the full model, where it can be seen that the region of parameter
space where [(l2h0)crit]

−1 > 2 encompasses all cases with rotors observed in the numerical simulations,
as well as most of the cases with hydraulic jumps (as in the situation with l2a = 12.5). The agreement is,
however, not as good as in Figure 1, since this region includes some cases classified by SV06 as simply
corresponding to trapped lee waves (without rotors) or even no trapped lee waves, particularly for the
highest values of Fr. The extent of the region of parameter space where flow stagnation is detected
in the numerical simulations appears to be slightly overestimated by the full model, although it is
impossible to check whether the separate region with the highest values of Fr, at the top of the graph,
is correct, due to the lack of simulations covering that part of the parameter space.

Figure 5 shows the structure of the normalized velocity perturbation in the downstream
direction outside and inside the surface layer. SV06 only analyse in more detail two idealized cases:
one dominated by rotors, with Fr = 0.6 and (l2H)−1 = 1 (their Figure 3a) and another one dominated
by a hydraulic jump, with Fr = 0.4 and (l2H)−1 = 1 (their Figure 3b). Figure 5a,b shows the flow
perturbations associated with each of these two cases, respectively, obtained from the present model.

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

 u/U

 u
B
/U

B

 

u
/U

, 
u

B
/U

B

x/a

(a)

-10 -8 -6 -4 -2 0 2 4 6 8 10
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

 u/U

 u
B
/U

B

 

u
/U

, 
u

B
/U

B

x/a

(b)

Figure 5. Similar to Figure 2, except that l2a = 3.125. (a) Fr = 0.6, (l2H)−1 = 1; (b) Fr = 0.4,
(l2H)−1 = 1.

Clearly, in Figure 5a, there is a strong signature of trapped lee waves (especially inside, but
also outside, the surface layer). In this sense the model behaviour differs from that displayed in
Figure 2b, but is consistent with the behaviour of the inviscid and improved models in Figure 4.
The trapped lee waves are weaker than those displayed in Figure 3a of SV06, since flow stagnation
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only occurs at the first trough (which seems to be intensified by a non-trapped wave component).
Nevertheless, the wavelength is not too different (though slightly smaller) than that seen in Figure 3a
of SV06, being roughly λ/a ≈ 1.33, or equivalently λ ≈ 3.33 km, against λ/a ≈ 1.6, or λ ≈ 4 km from
SV06. In contrast, in Figure 5b, corresponding in SV06 to a hydraulic jump, there is a total absence of
trapped lee waves and only one stagnation zone downstream of the orography, much as happened in
Figure 1b,c. This is not consistent with the behaviour of the flow perturbation near the ground in the
numerical simulations, where Figure 3b of SV06 shows considerable flow acceleration downstream of
the mountain, but is perhaps more consistent with the flow higher up, slightly above the top of the hill.

As in Figure 3, Figure 6 presents the velocity perturbation predicted by the model for a parameter
combination where flow stagnation is predicted to be fulfilled by a wider margin. The values of Fr
and (l2H)−1 are the same assumed in Figure 3. In these cases, there is an overwhelmingly dominant
trapped lee wave pattern within the surface layer, leading to flow stagnation in three separate regions
downstream of the hill. Therefore, these are cases where the model actually predicts rotors, as usually
understood, not just flow stagnation. Interestingly, the flow outside the surface layer never approaches
stagnation, showing relatively low nonlinearity (as predicted by the model), in contrast with the strong
amplification it undergoes within the surface layer. The wavelength of the trapped lee waves increases
from Figure 6a–c, as this is a strong function of Fr, and increases as Fr increases (see Figure 8 of
TAM13). In Figure 6c, for Fr = 0.9, the model predicts that flow stagnation occurs even upstream of
the hill inside the surface layer.
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Figure 6. Similar to Figure 5, except that (a) Fr = 0.7, (l2H)−1 = 2; (b) Fr = 0.8, (l2H)−1 = 2;
(c) Fr = 0.9, (l2H)−1 = 2.

The main conclusion to take from the above results is that, despite the fact that not only the regime
diagram presented by SV06, but also the flow structure associated with rotors and hydraulic jumps
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bear a strong resemblance to the equivalent results produced by V04, they are much more directly
forced by the orography in the former case than in the latter. This is demonstrated by the fact that the
present model is able to reproduce the flow structure with greater accuracy and that the improved
version of the inviscid model is much more consistent with the regime diagram of SV06 than with that
of V04.

3.4. Laboratory Experiments of Knigge et al. (2010)

Finally, KEPE10 considered even more non-hydrostatic and nonlinear flows in their laboratory
experiments. In the cases treated by them, it is not possible to obtain figures akin to Figure 1 or Figure 4,
where uniformly valid results from the present model are superposed on a regime diagram, their Figure
9. Although, as in V04 and SV06, the variable h0/H on the horizontal axis of that figure can be related
to a parameter that is accessible to linear theory, i.e., a/H = (h0/H)/(h0/a), where h0/a = 0.57 is
fixed in the experiments, the value of l2a is not provided for each data point in the regime diagram.
Hence, comparisons must be limited to the particular cases analysed in more detail by these authors
(their Figures 4–8), where all flow parameters are specified.

Figure 7 shows results for the case displayed in Figures 4a and 5a of KEPE10, where l2a = 1.426
(derived from their data as l2a = (l2h0)/(h0/a), given that the inverse of the internal Froude number
used by them was l2h0 = 1/1.23 and h0/a = 0.57), Fr = 0.64 and a/H = 0.807 (also derived from
their data via a/H = (h0/H)/(h0/a), with h0/H = 0.46).

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a/H

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

F
r

(a)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a/H

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

F
r

(b)

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

a/H

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

F
r

(c)

-20 -15 -10 -5 0 5 10 15 20
-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

 u/U

 u
B
/U

B

 

u
/U

, 
u

B
/U

B

x/a

(d)

Figure 7. (a–c) Inverse of the critical dimensionless mountain height [(h0/a)crit]
−1 as a function of

a/H and Fr for l2a = 1.426, superposed on KEPE10’s regime diagram (adapted from Figure 9 of
KEPE10). Contours: 5, 2, 1, 0.5, 0.2, 0.1, and so on. The contour of 1.754 is denoted by a thick red line.
(a) Inviscid model Equation (25); (b) improved model Equation (26); (c) full model; (d) u/U and uB/UB

as a function of x/a for l2a = 1.426, Fr = 0.64, a/H = 0.807.
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Note that, unlike in Figures 1 and 4, results from the present model superimposed on the regime
diagrams in Figure 7a–c are only valid for the specific conditions quoted above, not for the full range
of a/H and Fr. Hence, the essential information contained in the contour plots overlaid on the regime
diagrams is whether the point corresponding to those conditions is enclosed by contours where flow
stagnation is predicted or not. Figure 7a shows results from the inviscid model, Figure 7b from the
improved model and Figure 7c from the full model. Figure 7d shows the velocity perturbation derived
from the full model, for the same specific conditions.

In Figure 7, it can be seen that both the inviscid and the improved model do not diagnose any flow
stagnation, which is consistent with the absence of rotors reported by KEPE10 in this case. The full
model, however, marginally predicts flow stagnation, as shown by the fact that the region of parameter
space enclosed by the contour of 1.754 contains the point with a/H = 0.807 and Fr = 0.64, albeit at
its edge. This is confirmed by the fact that in Figure 7d, the flow perturbation minimum just exceeds
the stagnation limit. The trapped lee waves that can be detected in uB/UB are, however, of relatively
low amplitude.

Figure 8 shows similar results, but for the case displayed in Figures 4b, 5b, 6 and 7 of KEPE10,
where trapped lee wave rotors were detected. The parameters that can be derived in the same way as
described above from their data now take the values: l2a = 1.271, Fr = 0.9 and a/H = 1.93. In this
case, all versions of the model except the inviscid one (Figure 8a) diagnose the occurrence of flow
stagnation, although for the improved model (Figure 8b), this occurs by a relatively small margin.
Stagnation is exceeded more significantly in the full model (Figure 8c), as shown by the fact that the
point Fr = 0.9 and a/H = 1.93 lies well within the contour of 1.754. The flow perturbation is also
dominated by a high-amplitude trapped lee wave signature (Figure 8d), with three zones downstream
of the orography where the flow stagnates.
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Figure 8. (a–c) Similar to Figure 7a–c, except that l2a = 1.271; (d) similar to Figure 7d, except that
l2a = 1.271, Fr = 0.9, a/H = 1.93.
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Finally, in Figure 9, the case displayed in Figure 8 of KEPE10 is analysed, where l2a = 2.278,
Fr = 0.37 and a/H = 1.14, and a hydraulic jump was detected in the laboratory experiments. Both
the inviscid and the improved model do not predict flow stagnation (Figure 9a,b), but the full model
(Figure 9c) predicts it, again by a wide margin. However, the velocity perturbation (Figure 9d) does
not show any trapped lee wave signature, but rather flow stagnation is achieved as a single zone of
flow deceleration that must be caused by non-trapped waves.

The main conclusion to draw from these results is that rotors appear to be, also in this case directly,
rather than indirectly, forced, and the full model appears to slightly overestimate the conditions
for flow stagnation. However, the comparison of a linear model with these experiments is perhaps
more questionable than in the preceding cases, since the laboratory experiments of KEPE10 depart
substantially more from the assumptions of linear theory than the numerical simulations of V04 and
SV06. Namely, the nonlinearity is stronger (h0/a = 0.57 and l2h0 = 0.81, 0.72, 1.30, against h0/a = 0.04
and l2h0 = 0.5 in V04 and h0/a = 0.16 and l2h0 = 0.5 in SV06). Additionally, the inversion is thicker
(in relative terms) than in the numerical simulations; the velocity boundary layer is thinner and less in
equilibrium (since it is only generated by the leading edge of the obstacle); reflection of propagating
mountain waves in the layer further away from the hill could not be totally prevented; and the flow
structures were diagnosed subjectively (see KEPE10).

Nevertheless, it is remarkable that, even in these far-from-ideal conditions, the fields of
[(h0/a)crit]

−1 presented in Figures 7–9 still show shapes consistent with the zones in parameter space
where different types of flow structures are detected. The contours of this quantity in Figures 7b–9b
display roughly the same shape as the region in parameter space with rotors, and in Figures 7c and 8c,
the contours roughly follow the regions of parameter space containing rotors or hydraulic jumps.
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Figure 9. (a–c) Similar to Figure 8a–c, except that l2a = 2.278; (d) similar to Figure 8d, except that
l2a = 2.278, Fr = 0.37, a/H = 1.14.
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4. Conclusions

A model has been developed to predict flow stagnation associated with rotors produced by
trapped lee waves in a way that is computationally inexpensive and affords maximum physical insight
into the flow behaviour. This was done by coupling the inviscid trapped lee wave model of TAM13
with the bulk boundary layer model of SJD06. The inviscid model of TAM13 considers an atmosphere
with constant wind and a neutrally-stratified layer near the surface, topped by a sharp temperature
inversion, above which the static stability is constant, an idealized atmosphere adopted by a number
of previous authors (V04, SV06, KEPE10). The boundary layer model of SJD06 is essentially a model
for representing friction associated with wind shear within the atmospheric surface layer.

The onset of rotors is predicted based on the flow stagnation condition, i.e., that the streamwise
velocity component becomes zero. This condition is necessary, but not sufficient, for the existence
of rotors. Three versions of the model, with an increasing degree of complexity, are tested. The first
one excludes all frictional effects, and flow stagnation is diagnosed from the (analytic) expression
for the streamwise velocity component, assuming that only the trapped lee waves are important for
this process. In the second version of the model, the flow stagnation condition is corrected for the
attenuation of the mean wind and amplification of the flow perturbation within the surface layer.
Finally, the full model accounts additionally for feedback of the boundary layer on the outer flow,
through a modified surface boundary condition, and for the contribution to flow stagnation given by
non-trapped waves. The solution can then only be obtained numerically.

These models were tested against data from the numerical simulations of V04 and SV06 and the
laboratory experiments of KEPE10. The main conclusions are the following: when adequately
calibrated, both the improved inviscid model and the full model have some ability to predict rotors as
corresponding to the regions of parameter space where the flow stagnation condition is fulfilled or
exceeded. While the improved model underestimates the occurrence of rotors in the more hydrostatic
case treated by V04, it is able to diagnose them in an essentially correct way in the more non-hydrostatic
cases treated by SV06 and KEPE10. On the other hand, the full model, via a more complete treatment
of frictional effects, is able to predict fairly well the occurrence of both rotors and hydraulic jumps in all
cases considered here, although the flow stagnation condition is unable to discriminate between these
two flow structures and appears to slightly overestimate the occurrence of flow stagnation in the more
non-hydrostatic cases of SV06 and KEPE10. However, the velocity perturbations obtained from the
full model clearly show that flow stagnation in situations characterized by previous authors as having
hydraulic jumps is not associated with any trapped lee waves, being caused instead (at least in the
model) by non-trapped waves. This could form the basis of a methodology to discriminate between
rotors and hydraulic jumps, but that is beyond the scope of the present contribution.

The flow structure calculated from the full model shows that, although this version of the model
apparently can be calibrated to produce good results, the physical reasons for flow stagnation appear
not to be always correct, especially for hydraulic jumps and for the rotor cases treated by V04. In V04’s
numerical simulations, this turns out to be due to the rather fortuitous fact that the direct forcing
of trapped lee waves by the orography is very weak, owing to the existence of zeros in the Fourier
transform of the surface elevation chosen by him. In these numerical simulations, the trapped lee
waves appear to be indirectly generated by nonlinear processes (as pointed out originally by V04),
since the linear model, despite being able to produce flow stagnation in the correct regions of parameter
space when frictional effects are included, does not produce it for the right reasons. The model shows
the potential to perform globally better for orographies whose Fourier transforms do not have zeros
(as happens in the laboratory experiments of KEPE10) or when the resonant wavelength of the trapped
lee waves does not coincide with these zeros (as in SV06). In those cases, the present study suggests
that even the improved inviscid model could have substantial predictive power.

The input parameters of the surface layer model adopted here take values selected among
an ample range of suitable choices and cannot be considered definitive. It is possible that the model
performance could still be optimized further by adopting a different set of values.
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