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ABSTRACT: The genetic analysis of complex disorders has undoubtedly led to the identification of a
wealth of associations between genes and specific traits. However, moving from genetics to biochemistry
one gene at a time has, to date, rather proved inefficient and under-powered to comprehensively explain
the molecular basis of phenotypes. Here we present a novel approach, weighted protein−protein
interaction network analysis (W-PPI-NA), to highlight key functional players within relevant biological
processes associated with a given trait. This is exemplified in the current study by applying W-PPI-NA to
frontotemporal dementia (FTD): We first built the state of the art FTD protein network (FTD-PN) and
then analyzed both its topological and functional features. The FTD-PN resulted from the sum of the
individual interactomes built around FTD-spectrum genes, leading to a total of 4198 nodes. Twenty nine
of 4198 nodes, called inter-interactome hubs (IIHs), represented those interactors able to bridge over
60% of the individual interactomes. Functional annotation analysis not only reiterated and reinforced
previous findings from single genes and gene-coexpression analyses but also indicated a number of novel
potential disease related mechanisms, including DNA damage response, gene expression regulation, and cell
waste disposal and potential biomarkers or therapeutic targets including EP300. These processes and
targets likely represent the functional core impacted in FTD, reflecting the underlying genetic architecture contributing to
disease. The approach presented in this study can be applied to other complex traits for which risk-causative genes are known as
it provides a promising tool for setting the foundations for collating genomics and wet laboratory data in a bidirectional manner.
This is and will be critical to accelerate molecular target prioritization and drug discovery.

KEYWORDS: weighted protein network, complex disorders, functional enrichment, frontotemporal dementia,
protein−protein interactions, systems biology

■ INTRODUCTION

The genetic analysis of complex diseases has led to the
identification of a wealth of associations between Mendelian
genes or susceptibility loci (i.e., regions of DNA incorporating
coding and noncoding variants) and specific traits or
endophenotypes.1,2 While genetic association has greatly
aided shedding light on disorders as diverse as heart disease
and leprosy,3,4 such knowledge is still insufficient to fully
explain disease pathogenesis. This is a critical issue considering
that the final goal of biomedical research is that of
understanding disease mechanisms and their associated
molecular underpinnings to identify biomarkers or targets for
disease diagnosis, prevention, or treatment.
In complex disorders many of the established mutations in

Mendelian (familial) genes are rare and may present with
incomplete penetrance.5,6 Conversely, the vast majority of cases
are sporadic and are associated with the gradual and cumulative
effect of susceptibility loci, that is, multiple variants with small
effect size, the severity of which might be modulated, for
example, by environmental factors.7−11 The implication of this

is that in complex disorders a broad underlying genetic
susceptibility architecture contributing to disease risk may be
equally or even more relevant than just Mendelian
inheritance.12,13 In addition the current absence of a
straightforward translation of genetic knowledge into the
functional landscape of biochemistry and cell biology14

represents a challenge that contributes to a substantive gap in
our understanding of the molecular underpinnings of disease.
Moving from genetics to biochemistry one gene at a time has

led to pivotal discoveries only in a limited number of cases, for
example, that of Alzheimer’s disease (AD) with the develop-
ment of the Amyloid cascade hypothesis, following mechanistic
studies of mutations in the APP and the presenilin (PSEN1/2)
genes.15 However, breakthroughs of this magnitude require
decades of intense cell biology and animal-model-based studies,
suggesting these approaches are still not entirely efficient as
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well as underpowered to comprehensively explain disease
mechanisms in a timely manner.16

One way to overcome these limitations and increase
analytical power and resolution is to integrate genetic
information with other types of data.17 In the first instance,
strategies have been and are being developed to better interpret
genome-wide association studies to prioritize genes within
significant loci, such as gene-based burden analyses,14,18,19 as
well as to improve the statistical power of the genetic analysis
by incorporating functional information, such as PINBA20 or
ALIGATOR.21 Building from DNA to mRNA, the possibility
arises of combining genetic with expression data moving from
assessing the effect of single-SNPs on expression levels through
expression quantitative trait loci analysis (eQTL)22 to more
complex approaches such as weighted gene coexpression
network analysis (WGCNA).23 The latter is a powerful
bioinformatics method to cluster genes based on similar
expression patterns and on the assumption that coexpressed
genes are likely to be part of the same functional pathway(s).23

Although there is considerable promise in using different
methods to expand on purely genetic data, validation at the
protein level is necessary and required to understand the
functional consequences of variation in genes. Such validation is
normally carried out directly in the wet laboratory. In this
scenario, bioinformatics coupled to protein−protein interaction
(PPI) analyses represents an emerging and potentially powerful
tool to further fine-tune genetic and expression analyses before
wet laboratory work is performed,24,25 thus constituting a
valuable support to guide cellular and biochemical inves-
tigations.26,27

In the current study, we used frontotemporal dementia
(FTD) as a disease model to explore our proposed approach.
FTD is the second most common form of young-onset
dementia after AD, representing 10−20% of all dementias
worldwide.28 FTD occurs in approximately 3−15/100 000
individuals aged mid/late-50s to early 60s,29 has an insidious
onset, and is inherited in a Mendelian fashion in between 10
and 30% of cases depending on the population studied.30

Clinically, most cases present with behavioral variant syndrome
(bvFTD), while a smaller proportion present with language
impairment called primary progressive aphasia (PPA);31 there
is also phenotypic (and genetic) overlap with motor neuron
disease (FTD-MND) and atypical parkinsonian disorders.30

From the molecular pathology perspective, the majority of
cases present with either tau (FTLD-tau) or ubiquitin/TDP-43
(FTLD-TDP) inclusions (≤40−50%), whereas a minority has
FUS (≤10%; FTLD-FUS) or ubiquitin/p62 (≤1−2%; FTLD-
UPS) inclusions.32 Mutations in three genes (MAPT, GRN, and
C9orf 72) explain ∼7−20% of all cases, while a handful of other
genes (TDP-43, CHMP2B, VCP, FUS, SQSTM1, UBQLN2,
IFT74, OPTN, DCTN1, and CHCHD10) are linked to <5% of
all cases;30,31,33 the remaining cases (∼70%) appear idiopathic
in nature. More recently, two genome-wide association studies
(GWAS) revealed the modifying factor TMEM106B34,35 and
two further novel loci encompassing the HLA locus and the
RAB38 and CTSC genes.36 Clearly, FTD is characterized by a
broad range of clinical manifestations, pathological signatures,
and genetic variability.37 Given the predominantly idiopathic
nature of this disorder and the absence of a clear unidirectional
relationship between the associated genes and the molecular
pathology, the etiology of FTD appears to derive from a
complex web of patho-mechanisms. Unfortunately, there is
currently a critical void in the understanding of these

mechanisms, one of the key reasons why both preventive and
therapeutic strategies are completely absent in FTD.38

Here we present a novel pipeline to generate a weighted PPI
network analysis (W-PPI-NA) to build and analyze the tissue-
specific (brain) interactome (= totality of proteins interacting
with a seed) of the known FTD associated genes/proteins (=
seeds). The current work: (i) represents the development of a
pipeline that uses genes known to be associated with a trait (i.e.,
FTD) and projects them in the protein domain; (ii) is based on
current state of the art genetics and proteinomics; (iii)
generates additional knowledge and fosters cross-disciplinary
work (e.g., genomics, transcriptomics and proteinomics);17 and
(iv) identifies proteins that represent the backbone of biological
processes (BPs) likely impacted in FTD to be validated using
biochemical and functional approaches.

■ EXPERIMENTAL SECTION

The FTD protein network (FTD-PN) was built in a multilayer
fashion. FTD-spectrum genes were identified as seeds, and their
protein−protein interactors (PPIs) were downloaded, filtered,
and scored. The collection of all seeds’ interactors represents
the first layer of the FTD-PN. The proteins in the first layer of
the FTD-PN were then used each as a seed to download a
second layer of PPIs and determine their reciprocal cross-
interactions.
Meaning of terminology: the f irst layer of the FTD-PN

contains all FTD seeds plus the first layer of interactors. The
complete FTD-PN is composed of all FTD seeds, plus their first
layer interactors, plus their second layer interactors. The
complete interactome of each seed is composed of the seed under
investigation, plus its first layer of interactors, plus the second
layer of interactors.
The pipeline for building the network is described hereafter

and is summarized in Figure 1.

Download of the PPIs

PPIs were downloaded as MITAB 2.5 files (first layer on 10-
Oct-2015, second layer on 17-Nov-2015) from the IntAct,39

Biogrid,40 InnateDB, InnateDB-all, InnateDB-IMEx,41 and
MINT42 databases by means of the PSICQUIC platform
(http://www.ebi.ac.uk/Tools/webservices/psicquic/view/
main.xhtml) developed by the IMEX consortium.43 In a
MITAB file, PPIs from peer-reviewed literature are reported
in lists in which each row is an annotation of a binary
interaction (protein A and protein B), reporting both the
features of the interaction and the Pubmed identifier of the
paper in which that interaction was reported. Different
databases classify proteins using different identifiers (Swiss-
Prot or Entrez gene ID), and thus raw data were processed to
convert Entrez to Swiss-Prot identifiers. We created a protein-
ID conversion algorithm by downloading files containing
multiple protein-ID synonyms from the UniProt Web site
(HUMAN_9606_idmapping_selected.tab downloaded from
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/
knowledgebase/idmapping/README, on 04-Sept-2015; Swis-
sProt-UniProtKB-human-results.tab downloaded from http://
www . u n i p r o t . o r g / u n i p r o t / ? q u e r y = h um a n& fi l =
o r g a n i s m % 3 A % 2 2 H o m o + s a p i e n s + % 2 8 H u m a
n%29+[9606]%22+AND+reviewed%3Ayes&sort=score, on 04-
Oct-2015) (Supporting Information File S1). Entrez IDs
matching to multiple Swiss-Prot identifiers (nonunivocal gene
to protein conversions) were removed. Raw PPIs data were run
against this protein-ID conversion algorithm, and nonmatched
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entries were removed (TrEMBL, nonprotein interactors [e.g.,
chemicals], obsolete Entrez, and Entrez matching to multiple
Swiss-Prot identifiers). Raw PPIs annotations from different
databases were finally merged into a single file for each seed.

Construction of the PPI Network

Each single file containing the PPIs of a seed underwent
filtering: (i) All the annotations for which interactor A or
interactor B were classified with a nonhuman taxid, or as
chemicals, were removed. (ii) All the annotations with
incomplete fields were removed (i.e., “non-assigned” interaction
detection method or Pubmed-ID). (iii) All the annotations with
misleading/generic specifications were removed (i.e., multiple
Pubmed-ID in a single row, “biochemical”, “biophysical”, or
“experimental” interaction detection method; examples of
removed annotations are reported in Supporting Figure S1).
(iv) All proteins whose entire transcript was not reported in
brain (http://www.braineac.org/) were removed. Filtered files
underwent reassignment of the “Interaction detection method”
field to pool together similar methodologies by following the
ontology at http://www.ebi.ac.uk/ontology-lookup/browse.
d o ? on tName=MI& te rm Id=MI : 0 001& t e rmName=
interaction%20detection%20method and as reported in Sup-
porting Table S1. The interactions were then scored with an in-
house developed pipeline taking into consideration the
following parameters: (i) the number of different publications
(publication score, PS): for the same interaction partners A−B
reported multiple times, the PS score was 1 = only 1 Pubmed-
ID, 2 = multiple Pubmed-IDs; (ii) the number of different
methods (method score, MS): for the same interaction partners
A−B reported multiple times, the MS score was 1 = only 1
method reported, 2 = multiple methods, and; (iii) the
CrapOme (Contaminant Repository for Affinity Purification)44

score (CS) (for the first layer only). CrapOme is a database
that lists proteins known to contaminate affinity purification
coupled to mass spectrometry (APMS) experiments (http://
www.crapome.org/, 411 data sets at the time of this analysis,
27-Oct-2015). In particular, because of high levels of false-
positives that are present in the APMS (Pull Down, Tandem
Affinity Purification, GST Pulldown, Affinity Chromatography,
Affinity Technology, Chromatography technology, His pull
down, and Interactome parallel affinity capture) data, the CS
applies different weightings based on the likelihood of the
protein to be a contaminant in APMS experiments. The CS was
computed as follows: −1 = for a CrapOme ratio >205/411
(>50%) if only APMS has been used; −0.5 = for a CrapOme
ratio >205/411 (>50%) if one other method was used
alongside APMS; 0 = for a CrapOme ratio >205/411
(>50%) if more than two other methods have been used
alongside APMS; −0.5 = for a CrapOme ratio between 123 < x
> 205 (30% < x > 50%) if only APMS has been used. After
computation of the final score (PS+MS+CS), all of the
interactors with a final score of 2 or less were discarded.

Functional Enrichment Analysis and Replication

We performed enrichment analyses for Gene Ontology (GO)
terms in g:Profiler (g:GOSt, http://biit.cs.ut.ee/gprofiler/)45

on 29-Sept-2016. g:Profiler settings were used as follows:
enrichment for GO terms only (BPs, cellular components
(CCs), and molecular functions (MFs)); Fisher’s one-tailed
test as statistical method for enrichment, SCS-threshold as
multiple testing correction; statistical domain size was only
annotated genes; no hierarchical filtering was included. We
repeated this analysis twice using all annotated genes (n =
18 531) or brain-specific expressed genes (n = 13 859) as
statistical background.
The following proteins were excluded from analysis because

they were not identified by g:Profiler: ECM29, LINC00312,

Figure 1. Workflow to generate and build the network.
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and LPHN1. Enriched GO-BP terms were grouped into
custom-made semantic classes. Generic terms (classified in the
semantic classes of: Enzyme − Generic − Metabolism −
Motility − Muscle − Physiology − Protein Modification −
Response to Stimulus, and Virus) were discarded from further
analysis. For each semantic class, all of the contributing single
GO terms were merged to identify the list of proteins within
the network that contribute to the enrichment of that specific
semantic class. The protein list contributing to enrichment
allowed us to calculate the contribution of each interactome to
the enrichment of that specific semantic class. Considering the
largest interactome in the network (i.e., VCP, n = 2247
interactors) as a reference, we fixed a custom threshold at 75%
(= at least 3/4 of the VCP-interactors within the VCP
interactome) to indicate robust contribution of the VCP
interactome to enrichment of that specific semantic class. This
75% threshold was weighted, keeping into account the random
possibility of extracting proteins based on the size of each
complete seed’s interactome (relative ratio percentage). For
example, for the interactome of VCP (n = 2247 interactors),
the threshold was 75%, while for that of TARDBP (n = 1002) it
was 33.4% ( *75 interactome TARDBP

interactome VCP
). The same approach was

adopted for any other complete interactome, leading to the
following relative thresholds: C9orf72 and HLA-DRA 0.2% and
0.3% (thus excluded); CHMP2B 3.6%; DCTN1 5.5%;
UBQLN2 5.2%; GRN 8.9%; ATXN2 10.4%; FUS 30.7%;
OPTN 32.9%; TARDBP 33.4%; SQSTM1 46.2%; and MAPT
53.1%.
To replicate the enrichment analysis results obtained from

g:Profiler (positive control), we used two alternative online
tools such as PANTHER (accessed on October 24, 2016;
overrepresentation test with Bonferroni correction)46 and
Webgestalt (accessed on October 24, 2016; hypergeometric
test with Benjamini−Hochberg [BH] correction).47 Moreover,
we generated the complete protein network for Albinism (A-
PN) in the same fashion as for FTD-PN using TYR, SLC, 45A2,
SLC24A5, TYRP1, OCA2, C10orf11, and GPR143 (https://ghr.

nlm.nih.gov/condition/oculocutaneous-albinism#genes) as
seeds and assessed the associated functional enrichment as a
negative control. (Download and analysis were performed on
May 9, 2016 through g:Profiler.)
Software

Data were handled, filtered, and scored through in-house R
scripts (https://www.r-project.org/). For information and
requests about the code(s), please contact the authors directly.
The final network was visualized through the freely available
Cytoscape 2.8.2 software48 and analyzed by the network
analysis plug-in (http://www.cytoscape.org/). All graphs were
composed through the Prism-GraphPad software (http://www.
graphpad.com/scientific-software/prism/).

■ RESULTS

Construction of the PPI FTD-PN: First Layer

We selected Mendelian (familial) and GWAS genes associated
with the FTD-spectrum as seeds (Table 1) to build the FTD-
PN. Of note, although pathogenic variants in TARDBP and
FUS are more frequent in ALS (and ALS-FTD) cases, TDP-43
and FUS are pathological hallmarks of FTD subtypes and thus
are likely to hold functional relevance in the pathogenesis of
FTD; for this reason, they were included in the analyses.
Overall, seven seeds were dropped in different stages of the
pipeline (as explained in the following sections), and thus a
total of 13 seeds (ATXN2, C9orf 72, CHMP2B, DCTN1, FUS,
GRN, HLA-DRA, MAPT, OPTN, SQSTM1, TARDBP,
UBQLN2, and VCP) was included in the final FTD-PN.
The first-layer interactome for each seed was built based on

biochemical/physical interactions, as reported in peer-reviewed
literature (see pipeline in Figure 1).
To collect PPI data, we used a set of publicly available,

manually curated databases that annotate published protein
interactions (see the Experimental Section), while we excluded
databases implementing text mining algorithms or de novo
prediction of PPIs. Similarly, we ignored inferred (but not
experimentally validated) spoke expanded cocomplexes.

Table 1. List of Seeds Used for Building the FTD-PN and Associated Features

gene name frequency (Mendelian%) pathology inclusion in PPI network

C9orf72a common (7−20%) FTLD-TDP YES
GRN common (5−11%) FTLD-TDP YES
MAPT common (2−11%) FTLD-Tau YES
ATXN2a rare (<1%) SNCA, polyGIn YES
CHCHD10a rare (<1%) FTLD-TDP NO
CHMP2B rare (<1%) FTLD-UPS YES
DCTN1a rare (<1%) not understood; possibly FTLD-TDP YES
FUSa rare (<1%) FTLD-FUS YES
IFT74a rare (<1%) not known; possibly FTLD-TDP NO
OPTNa rare (<1%) FTLD-TDP YES
SQSTM1a rare (<1%) FTLD-TDP YES
TARDBPa rare (<1%) FTLD-TDP YES
UBQLN2a rare (<1%) FTLD-TDP YES
VCP rare (<1%) FTLD-TDP YES
BTNL2 GWAS not known NO
CTSC GWAS not known NO
HLA-DRA GWAS not known YES
HLA-DRB5 GWAS not known NO
RAB38 GWAS not known NO
TMEM106B GWAS FTLD-TDP NO

aGenes belonging to the FTD-ALS spectrum; ALS = amyotrophic lateral sclerosis.
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Curation procedures in databases within the IMEX consortium
are based on ad hoc and harmonized protocols to guarantee
accuracy and comprehensive literature coverage.43 We down-
loaded PPIs from the unique platform PSICQUIC (the seed
CHCHD10 was dropped in this stage because no human
protein interactors were found), and PPIs for each seed,
gathered from different databases, were merged into a final
library. Of note, despite the effort directed toward harmonizing
annotations within the IMEX databases, they are not yet fully
superimposable; in particular, the most relevant problem is the
type of identifiers through which interaction partners are
annotated. To overcome this issue we developed a protein-ID
conversion algorithm to interconvert Swiss-Prot and Entrez
identifiers. The application of this conversion algorithm led to
the exclusion of annotations reporting TrEMBL identifiers
(nonmanually annotated UniProt codes), obsolete Entrez, and
nonunivocal Entrez. This first pruning step was deliberately
stringent to remove old or inaccurate annotations. Ubiquitin(s)
(UBB-P0CG47, UBC-P0CG48, UBD-O15205) are normally
conjugated to proteins to flag them for degradation (thus likely
to introduce biased interactions); therefore, they were excluded
from the FTD-PN. We performed additional quality control
(QC) by means of in-house developed filters to remove
incomplete or misleading annotations (see the Experimental
Section). Subsequently, we scrutinized the taxid of the
interaction partners to remove nonhuman PPI data; finally,
we applied an additional expression filter (EF) to remove
protein partners that were not documented to be expressed in
human brain. Subsequently, we scored the interactome of each
seed to remove those interactors lacking reproducibility (thus
not sufficiently reliable for further functional analysis) by means
of a publication score (PS; number of publications supporting
the interaction) and a method score (MS; number of different
experimental detection methods). We considered at risk all
interactions detected via mass spectrometry or pull-down
techniques, and thus for these we generated a penalizing score
based on the CrapOme project (CS; see the Experimental
Section). The final score was computed as a sum of PS, MS,
and CS. All of the interactors with a final score ≤2 were
removed for likely low reliability, leading to the exclusion of six
seeds (BTNL2, CTSC, HLA-DRB5, IFT74, RAB38, and
TMEM106B). The merging of the remaining 13 interactomes
generated the first layer of the FTD-PN (Figure 2A)
constituted of 283 single nodes and 307 undirected edges.
Calculating the number of proteins shared across different
interactomes (Figure 2B) revealed overlap between multiple
interactomes. Only the interactomes of C9orf72 and HLA-DRA
appeared as disconnected components of the network, probably
due to the small number of annotated interactors (<4) for
either protein.

Construction of the PPI FTD-PN: Second Layer

To minimize any potential bias associated with the first layer
network due to strong influence of the seeds (i.e., seed
centrality), we built the second layer around each node of the
first layer following the same procedure described in the
previous section. After merging all single interactomes the
complete FTD-PN held 4198 single nodes and 10754 edges
(Figure 3). There were no disconnected components in the
second layer, showing increased cohesion of the FTD-PN. One
important feature of the second layer is that it is not directly
influenced by the seeds because the nodes/interactors within
this layer are extracted on the basis of all proteins of the first

layer but not on the seeds directly as they no longer act as hubs
(with this role being substituted by the first-layer genes/
proteins). Moreover, we identified many cross-interactions
between single interactomes due to a high number of nodes/
interactors shared between interactomes. The mean con-
nections for each single node (n of edges/n of nodes)
increased from 1.08 in the first layer to 2.56 with the addition
of the second layer; similarly, the average number of neighbors
increased from 2.141 to 4.621.
The complete FTD-PN (first + second layers interactors)

represents the state-of-the-art protein interactors gravitating
around the FTD-spectrum genes/proteins. We calculated
overlap between the interactomes considering the number of
interactors shared between each interactome of the single seeds
(Figure 4A). We also extracted inter-interactome hubs (IIHs)
defined as interactors shared across a minimum of eight
different interactomes (8/13 = 50 + 10%), thus bridging at least

Figure 2. Topological features of the first layer of the FTD-PN. (A)
Organic layout of the first layer of the FTD-PN. Seeds are represented
by a white node. The closer their position within the organic layout to
the center, the higher the number of nodes/interactors they share with
other seeds (i.e., number of cross-interactions between single
interactomes). (B) Level of overlap across interactomes. Numbers in
the boxes at the top indicate the total dimension (n of interactors) of
each single interactome. Numbers in the bars identify the number of
shared nodes/interactors between two interactomes (where the
absence of number indicates one shared node only). The interactome
of each seed is color-coded.
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60% of the entire network (= inter-interactome degree) (Figure
4B,C, Table 2, and Supporting Figures S2−27).
Functional Enrichment Analysis

We assessed GO terms for the complete (first + second layers)
FTD-PN using gProfiler and grouped all of the significantly
enriched GO-BP terms (p < 0.05) into semantic classes.
Nonspecific semantic classes were dropped due to their
negligible biological meaning (see Experimental Section),
leading to the removal of 25.6% of all enriched terms. The
analysis of the structure and content of the remainder and more
specific semantic classes (74.4%) revealed notable BPs,
depicted in Figure 5A (and Supporting Figures S28−S40),
collectively implicating: (i) adhesion, (ii) cell cycle, (iii) cell
death, (iv) chromatin metabolism, (v) development, (vi) DNA
metabolism, (vii) RNA metabolism, (viii) immune system, (ix)
signaling, (x) stress, (xi) transport, (xii) protein localization, and
(xiii) waste disposal. The complete list of enriched GO terms
can be found in Supporting Information File S2.
The semantic classes contributing to (ii), (iii), (iv), (vi), and

(x) (see above and Figure 5A) revealed convergent

information, particularly that cell cycle-related activities included
phase transition and DNA damage checkpoints, while stress-related
cell death indicated apoptotic processes subsequent to DNA
damage, ER, or oxidative stress. Concomitantly, chromatin and
DNA metabolism indicated histone modif ication and DNA
damage checkpoints (and associated repair or induction of cell
death). Interestingly, these combinations suggest an univocal
process such as that of DNA damage/integrity check followed
by either DNA damage repair or cell death (apoptosis) as
relevant BPs underlined by elements of the FTD-PN.
The semantic classes contributing to (v) and (xi) indicated

that neuronal and glial development were particularly enriched
for terms indicating axonal and neuronal projection morpho-
genesis, while vesicles transport pointed to vesicle traf f icking along
the cytoskeleton as well as to endocytosis/exocytosis/secretion.
Taken together, these semantic classes suggest the critical
importance of elements of the cytoskeleton (as implied by the
known genes MAPT and DCTN1) for the overall neuronal
development and homeostasis as well as for the support of
vesicle transport, likely indicating an effect on exo/endocytic as
well as secretion (neurotransmission) pathways.49,50

Figure 3. Topological features of the second layer of the FTD-PN. Organic layout of the first layer and second layer of the FTD-PN. The seeds are
represented by green nodes, the first layer interactors are highlighted in blue, and the second layer interactors are evidenced in purple.
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The semantic classes contributing to (vii) RNA metabolism
strongly pointed toward gene expression modulation via RNA
polymerase-I and -II (pol-I, pol-II) and RNA stabilization/
localization that could represent a mechanism that activates
stress-related responses.51

Finally, the semantic classes contributing to (xiii) waste
disposal specifically pointed to degradative pathways referring to
the ubiquitin-proteasome system (UPS) and unfolded protein
response (UPR). Such semantic classes have previously been
highlighted in the context of neurodegenerative disorders,

including FTD,52,53 and the current work confirms and further
expands on this sensitive and critical BP.
Provided the extent of BPs implicated by the entire FTD-PN

(first + second layers), we ran the functional enrichment
analysis exclusively using the IIHs as an input to highlight the
semantic classes driven by proteins shared across the majority
(>60%) of the interactomes. Remarkably, the 29 IIHs globally
replicated the functional annotation analysis of the entire FTD-
PN supporting the following semantic classes: (i) adhesion, (ii)
cell cycle, (iii) cell death, (v) development, (vi) DNA metabolism,
(vii) RNA metabolism, (ix) signaling, (x) stress, (xii) protein
localization, and (xiii) waste disposal (Figure 5B and Supporting
Information File S3). Although we observed a reduction in the
total amount of BP-GO terms (due to the massive reduction in
the number of input terms from 4198 to 29), several semantic
classes including DNA/RNA metabolism and stress were nearly
completely retained.
Of note, when we reran the functional annotation analyses by

reducing the reference panel to genes only expressed in brain (n
= 13 859), we could appreciate almost negligible differences
(see Supporting Tables S2 and S3).

Positive and Negative Control

Replication in Webgestalt and Panther (Positive
Control). The results of the functional enrichment analysis
were replicated to a large extent when applying different portals
(which use different statistical algorithms); in particular, 98.3
and 73.1% of GO terms found in PANTHER (the Web site is
updated to 2014) and WebGestalt (the Web site is updated to
2012), respectively, were completely superimposable with those
of gProfiler (the Web site is updated to 2016) (Supporting
Table S4).

Specificity Control (Negative Control). To evaluate the
sensitivity and specificity of the BPs associated with the FTD-
PN, we sought to apply the same pipeline to a group of genes
associated with a different trait (albinism). On the basis of
literature reports, we selected seven seeds (TYR, SLC45A2,
SLC24A5, TYRP1, OCA2, C10orf11, and GPR143; see the
Experimental Section) and built the albinism-PN that included
79 proteins (first + second layers). Functional enrichment
analysis for the albinism-PN versus the 29 FTD-IIHs led to
substantially different GO terms (Supporting Table S5), as no
reference to adhesion, cell cycle, DNA damage control, cell death,
regulation of gene expression, stress, and waste disposal was seen.
The only overlapping terms were referring to signaling, protein
localization, and intracellular transport (including, however, only
very general terms). Conversely, 27.3% of the GO enriched
terms were exclusive to the albinism-PN, including pigment
metabolism and biosynthesis. This indicates that the pipeline
per se is likely a sensitive and specific tool to perform trait-
specific functional assessments on the basis of known genes
associated with that trait.

Portions of the Network Contributing to the Functional
Enrichment

We scrutinized and collapsed all GO-BP terms supporting the
semantic classes derived from the IIHs and compared them
with the corresponding semantic classes from the FTD-PN
(first + second layers). We then extracted the complete list of
proteins directly responsible for those BPs (Supporting Table
S6). Subsequently, we then assigned the proteins to their
original seed-specific interactome and determined the percent-
age by which each interactome contributed to the enrichment
calculating the relative ratio (see Experimental Section)

Figure 4. Level of overlap across interactomes in the first and second
layers. (A) Level of overlap across interactomes with two different
resolutions to appreciate the architecture of both the large (top) and
small (bottom) interactomes. Numbers in the boxes at the top indicate
the total dimension (n of interactors) of each single interactome.
Numbers in the bars identify the number of shared nodes between two
interactomes (where the absence of number indicates <230 [top] and
70 [bottom] shared nodes). (B) Inter-interactomes degree distribu-
tion: number of nodes (x axis) as a function of the number of
interactomes they belong to (y axis): 29 inter-interactome hubs are
shared among 8 to 9 interactomes out of 13 total interactomes
(>60%). (C) Example of the IIHs with their surrounding interactors
and degree of connectivity across the interactomes of multiple seeds.
Color code: green, seeds; blue, first-layer interactors; orange, other
IIHs.
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between the size of each seed-specific interactome and the
entire FTD-PN. The size of the C9orf72 and HLA-DRA
interactomes was too small to possibly contribute to any
enriched term, and, similarly, CHMP2B only had one interactor
in the first layer; therefore, these seeds were excluded to
prevent unspecific functional annotation results. For all of the
other seeds (ATXN2, DCTN1, FUS, GRN, MAPT, OPTN,
SQSTM1, TARDBP, UBQLN2, and VCP) results are fully
shown in Supporting Figures S41−S45, while the most
interesting semantic classes (see Discussion) are shown in
Figure 6.
It is noteworthy that, on one hand, the contribution of some

seed’s interactomes to specific semantic classes confirmed
expected BPs based on previous knowledge (e.g., growth factor
signaling [interactome of GRN], gene expression regulation, and
translation [interactomes of FUS and TARDBP] or waste/ER
stress [interactomes of VCP and UBQLN2]), showing that our
pipeline is specific and sensitive. On the other hand, it indicated
association of novel BPs with FTD as we observed: (i) cell
death (apoptosis) through the interactomes of ATXN2,
DCTN1, GRN, UBQLN2, OPTN, SQSTM1, and TARDBP;
(ii) DNA damage response through the interactomes of ATXN2,
FUS, UBQLN2, MAPT, OPTN, and SQSTM1; and (iii) DNA
damage repair through the interactomes of ATXN2, TARDBP,
and UBQLN2.

Biological Meaning(s)

To gather the biological message of all of the analyses shown
above, we first grouped similar or convergent semantic classes
into “functional blocks”, as follows (Figure 7A): (i) “DNA
damage response” (made of DNA damage response, DNA
damage checkpoint G1, cell cycle checkpoint, DNA damage
checkpoint, and intrinsic apoptosis af ter DNA damage); (ii)
“apoptosis” (made of apoptotic signaling and cell death intrinsic
apoptosis); (iii) “phase transition” (made of mitotic phase
transition, G2-M phase transition, and G1-S phase transition);
(iv) “DNA repair” (made of DNA damage repair); (v)
“development/proliferation epithelium” (made of epithelial
cell proliferation, cell-matrix adhesion, and growth factor signal-
ing); (vi) “waste disposal/ER stress” (made of ER transport, ER
stress, ER ubiquitin-proteasome, UPR, response to oxidative stress,
and response to ionizing radiation); (vii) “gene expression
regulation” (made of gene expression, translation, transcription,
and transcription-RNA pol II); and (viii) “protein localization”
(made of protein localization to nucleus and protein localization to
membrane).
Second, we calculated the relevance of each single

interactome toward the enrichment of each single functional
block considering as relevant an enrichment of at least half of
the semantic classes within the functional block. Results are
summarized in Figure 7A. On the basis of this analysis, these
functional blocks (see Figure 7A) indicated susceptibility
processes shared by at least 60% of the FTD-PN, highlighting
processes of critical relevance and clearly worthy of attention as
well as further investigation and characterization at the
molecular level. To put these data better into context, we
evaluated the groups of genes contributing to the enrichment of
similar functional blocks in our previous WGCNA study53

searching for overlaps with the list of proteins found in the
current W-PPI-NA (Figure 7B). We identified the highest level
of overlap for three critical functional blocks: DNA damage
response, gene expression regulation, and cell waste disposal.
The identical nodes defining the overlapping genes/proteinsT
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Figure 5. Functional enrichment analysis. Functional enrichment for the entire network (A) and for the inter-interactome hubs (B) to extrapolate
the functions that are driven by proteins shared at least by 60% of the interactomes.

Figure 6. Graphs showing the contribution of the interactome (first + second layers) of each seed toward the enrichment of specific semantic classes.
The semantic classes are part of functional processes indicating DNA damage response, gene expression regulation, apoptosis, and waste disposal/ER
stress. The gray bars indicate the weighted threshold for each single interactome. Points above that threshold are considered to highly contribute
toward enrichment. Interactomes contributing to enrichment are indicated by the arrows.
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between WGCNA and W-PPI-NA (Supporting Table S7)
represent the elements where the transcriptome (WGCNA)
and the proteome (W-PPI-NA) fully match in a cross-
supportive fashion, lending support to the inference that
those very elements are key functional factors in FTD to be
carried forward in the cell biology setting for hypothesis-driven
functional validation.
Of note, four IIHs (cross-supportive between WGCNA and

W-PPI-NA data) were found among those three critical
functional blocks: (1) EP300 (DNA damage control and
gene expression regulation), (2) APP and ELAVL1 (gene
expression regulation), and (3) VCP (waste disposal).

■ DISCUSSION

In this study, we report on a coherent pipeline, W-PPI-NA, that
we developed to filter and combine knowledge generated
within the related yet distinct fields of genomics and
proteinomics. Our approach is based on the analysis of the
BPs implied by known PPIs of genes associated with a trait or
disease (FTD in the current work). This is an important step to
better understand the function(s) of disease-associated genes
and highlight potential risk processes as well as pertaining key
functional proteins.
As reported above, we constructed the FTD-PN incorporat-

ing 4198 interactors for 13 seeds (ATXN2, C9orf 72, CHMP2B,
DCTN1, FUS, GRN, HLA-DRA, MAPT, OPTN, SQSTM1,
TARDBP, UBQLN2, and VCP). We first analyzed the FTD-PN
to identify IIHs, the nodes that bridge ≥60% of the complete
network identifying 29 IIHs (Table 2) that likely hold
functional significance in the disease context. Interestingly, we
were able to verify that several of such IIHs (COPS5, ESR1,
FN1, HSPA8, TP53, VCP, APP, FSCN1, GNB2L1, HDAC1,
HTT, PIN1, VCAM1, CDK2, ELAVL1, EP300, TCP1, and
TRIM32; 18/29 [60%]) have already been reported to be
broadly associated with dementia (across the spectrum of AD,
vascular, and HIV-1-induced dementia). It is remarkable to

note that evidence of association was based on either genetic
studies for TP53, VCP, APP, HTT, and PIN154−57 or proven
molecular mechanisms for COPS5, VCP, APP, GNB2L1,
HDAC1, HTT, EP300, and TRIM3254,55,57−63 or verified
protein expression changes for COPS5, HSPA8, FSCN1, PIN1,
CDK2, ELAVL1, and TCP1.56,62,64−68 In addition, some IIHs
such as FN1, VCAM1, and CDK2 were reported for a role as
biomarkers for disease onset and progression,66,69,70 while
ESR1, HDAC1, and EP300 were reported for a role as potential
therapeutic targets.60,61,71 Provided all this, we expect that the
remainder of the IIHs (HSP90AB1, STUB1, EGFR,
HSP90AA1, PDCD6EP, HSPA4, YWHAZ, MCM7, PML,
RPS3, and TUBA1A, for which no link to dementia is
established yet) might hold relevance to FTD or dementias and
thus should be prioritized in both genetic reassessments as well
as cell biology work to explore and validate this possibility. Of
further note, we not only here observed that five IIHs (COPS5,
HSPA8, APP, ELAVL1, and EP300) replicated results from our
previous WGCNA study (Table 2),53 but also intriguingly
noted that ELAVL1 and EP300 appeared to be important
elements among the relevant functional blocks (i.e., DNA
damage control and gene expression regulation; see further
below) associated with the FTD-PN. This supports their
relevance as core key regulators of FTD-associated processes
and makes them likely functional biomarkers as well as
potential targets for therapeutic intervention. In this respect,
all the more, EP300 is among the targets of curcumin, which is
currently undergoing clinical evaluation for mild cognitive
impairment (MCI) (clinical trial no. NCT01383161).60,72

As a further intrinsic validation of the inference power of our
approach, we found that newly reported genes (that we did not
include as seeds in our W-PPI-NA because the current study
design was developed prior their disclosure) such as TBK1
(TANK binding kinase 1)73 and CCNF (cyclin F)74 are indeed
part of the FTD-PN and fall within the interactomes of seeds
including OPTN (first layer), SQSTM1 (second layer), and

Figure 7. Contribution of each interactome (first + second layers) toward the enrichment of functional blocks. (A) Each gray box indicates high
contribution toward enrichment. The interactome contributes to the enrichment of at least half of the semantic classes within the functional block.
(B) Overlaps between functional blocks in W-PPI-NA and WGCNA.53 The number of identical nodes (proteins or genes) in the W-PPI-NA and
WGCNA contributing to the enrichment of each semantic class was calculated (number in red). The percentage of common nodes was computed
against W-PPI-NA (percentage on the left) and against WGCNA (percentage on the right). (BLACK) and (PURPLE) refer to the modules of the
WGCNA analysis.53
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VCP (second layer) for TBK1 and VCP (second layer) for
CCNF.
This all together reinforces the view that our pipeline is able

to extract, integrate, and order scattered or isolated multi-
disciplinary types of data contributing to the generation of
novel and more comprehensive awareness about the
implication of genes/proteins in the pathobiology of a trait.
From a functional perspective, we assessed BPs for the entire

list of 4198 nodes and subsequently the 29 IIHs. The first
analysis revealed up to 13 global BPs (Figure 5A); the
secondary analysis supported these results (Figure 5B), strongly
implying the following susceptibility processes: (i) DNA
damage response (related to DNA damage checks, cell death
[induced apoptosis] and DNA repair); (ii) regulation of gene
expression; and (iii) waste disposal/ER stress (particularly,
referring to the ubiquitin/proteasome and unfolded protein
response). Even more strikingly, we observed that these three
functional blocks (DNA damage response, gene expression
regulation, and waste disposal/ER stress) highlighted by our
current W-PPI-NA replicated results previously obtained by
gene coexpression data through WGCNA (Figure 7B).53 We
therefore gather that those three functional blocks are,
collectively, the most common BPs associated with the FTD-
PN and are therefore likely to represent the core functional
architecture impacted in FTD (reflecting the underlying genetic
architecture contributing to disease).
DNA damage response is probably the most biologically

intriguing of the functional blocks that we identify here. DNA
damage response is highly related to terms such as DNA
damage checkpoint, DNA repair, and damage-associated cell
death to name a few. DNA damage response controls the
detection of DNA damage (e.g., single- and double-strand
breaks as consequence of oxidative stress) and activates the
protection signaling cascade prior to determining whether a cell
undergoes damage repair or apoptosis;75 the signaling cascade
is clearly mediated by the activation or modulation of a
particular pattern of ad hoc expression of genes, an observation
that might explain why we find regulation of gene expression to
be one of the other major impacted functional blocks. This is
relevant because it highlights a link between DNA damage
response and neuronal homeostasis and longevity, reiterating a
concept recently promoted.53 Finally, we found novel insight
into additional supportive disease-associated processes such as
(i) ubiquitin-mediated labeling of damage within DNA damage
response signaling cascades52,76,77 and (ii) the DNA damage
response (again) likely associated with neuronal death through
abortive re-entering in cell cycle.78,79 This suggests the
possibility that the three major functional blocks, which at
first appear to be separate and acting independently to
influence disease pathobiology, might instead be acting in a
synergistic fashion.
It is important to note the limitations that apply to W-PPI-

NA. PPI data are gathered from wet-lab approaches that are
neither high-throughput nor hypothesis-free and are therefore
biased by a restricted selection of proteins chosen for the
investigation based on research-driven priorities. This may lead
to an increased rate of type-I errors, with some protein
interactions reported incorrectly. To minimize the impact of
this issue, we built the first layer of the network as a basis for
the second layer to (i) increase the dimension of the network
(and therefore increase the power to infer functional enrich-
ment), (ii) dilute the above-mentioned bias, and (iii) minimize
the impact of seed-centrality, an issue that is intrinsic in

networks of this kind (i.e., built on the basis of trait-specific
known associated genes). At the same time, however,
introducing the second layer may also lead to a potential
specificity issue for the trait under study. To address this
concern, we successfully implemented: (i) a positive control
(replication of enrichment results by means of multiple
enrichment portals) and (ii) a negative control (applying the
same approach to a different trait, with different seeds, to
evaluate the extent of potential spurious functional enrichment
annotations). In addition, we are aware that the bias applying to
the PPIs also applies to the functional enrichment analysis
because GO is founded on the current literature, and some
proteins might not be comprehensively annotated, and thus the
enrichment analysis is based on partial annotation data. Finally,
our findings are in silico; therefore, they will need to be
assessed and validated via functional analysis of the putative
susceptibility processes and pathways.

■ CONCLUSIONS
The current study indicates that the W-PPI-NA pipeline can be
adopted to study, in silico, the protein network (and associated
biological functions) of a trait (i.e., FTD) starting from disease-
associated genes/loci (as designated seeds). W-PPI-NA
contributes to address major challenges in biomedicine, vide
the need to identify susceptibility processes and prioritize
molecular targets provided by modern genetics for functional
validation.
All this taken together opens the way for at least two further

opportunities: The first is pathways analysis as W-PPI-NA
highlights not only susceptible processes but also the associated
key players (i.e., specific proteins). These can then be further
explored using in silico approaches to identify risk-pathways
through the use of ad hoc portals (including KEGG, Reactome,
to name a few) and validating such pathways in vitro through
hypothesis-driven cell biology investigations. The second is the
integration of risk-pathways with pharmacogenomics data: In
this scenario, any drug or compound that already modulates a
particular target (or process) might represent a potential
therapeutic measure for the trait under study.
In summary, the current work is promising for multiple

reasons, not only for setting the basis to start understanding
human disease passing from the genomic suite to the laboratory
but also for supporting drug discovery and prospective
implementation for patient benefit.
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