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Abstract The Antarctic Circumpolar Current is the strongest current in the ocean and has a pivotal
impact on ocean stratification, heat content, and carbon content. The circumpolar volume transport is
relatively insensitive to surface wind forcing in models that resolve turbulent ocean eddies, a process
termed “eddy saturation.” Here a simple model is presented that explains the physics of eddy saturation
with three ingredients: a momentum budget, a relation between the eddy form stress and eddy energy, and
an eddy energy budget. The model explains both the insensitivity of circumpolar volume transport to
surface wind stress and the increase of eddy energy with wind stress. The model further predicts that
circumpolar transport increases with increased bottom friction, a counterintuitive result that is confirmed in
eddy-permitting calculations. These results suggest an unexpected and important impact of eddy energy
dissipation, through bottom drag or lee wave generation, on ocean stratification, ocean heat content, and
potentially atmospheric CO2.

1. Introduction

The Antarctic Circumpolar Current (ACC) is driven by wind and buoyancy forcing [e.g., Rintoul and Naveira
Garabato, 2013] with a modest contribution from remote diapycnal mixing [Munday et al., 2011]. However,
numerous studies have shown that its equilibrium volume transport is much less sensitive to the surface wind
stress in eddy-saturated models with resolved, rather than parameterized, turbulent ocean eddies [Straub,
1993; Hallberg and Gnanadesikan, 2001; Tansley and Marshall, 2001; Hallberg and Gnanadesikan, 2006;
Munday et al., 2013].

Understanding the processes that control eddy saturation is important because the ACC volume transport is
closely tied to global ocean stratification [Gnanadesikan and Hallberg, 2000; Karsten et al., 2003;Munday et al.,
2011] and thereby to ocean heat and carbon storage [Ferrari et al., 2014; Munday et al., 2014; Watson et al.,
2015; Lauderdale et al., 2016]. The majority of ocean circulation models used for climate projections do not
resolve eddies and showmuch greater sensitivity of the ACC volume transport and overturning to the surface
wind stress [Farneti and Delworth, 2010; Farneti et al., 2015; Bishop et al., 2016; Gent, 2016], calling into ques-
tion the ability of current coupled climate models to reliably predict future ocean heat and carbon uptake
[e.g., Le Quéré et al., 2007; Farneti et al., 2010].

The aims of this study are to explain the physics of eddy saturation and to demonstrate that this leads to anti-
frictional control—stronger dissipation results in a stronger ACC—with important implications for ocean heat
and carbon content.

2. Simple Model of Eddy Saturation

The model of eddy saturation requires just three ingredients: a zonal momentum budget, a relation between
the eddy form stress and the eddy energy, and an eddy energy budget. The model is inspired by a previous
model of variability in atmospheric storm tracks [Ambaum and Novak, 2014]. In order to keep the model ana-
lytically tractable, we impose uniform stratification and constant rotation: the key qualitative results do not
appear to be dependent on these assumptions, although the quantitative details will undoubtedly change,
in particular with more realistic stratification profiles.

The first ingredient is the zonal momentum budget (Figure 1). Over the Southern Ocean, the input of east-
ward momentum from the surface wind stress, τs, is balanced by loss of momentum to the solid Earth

MARSHALL ET AL. EDDY SATURATION OF THE ACC 286

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2016GL071702

Key Points:
• The physics of eddy saturation is
explained from first principles

• Enhanced bottom drag increases
eddy energy dissipation and hence
circumpolar volume transport

• Eddy energy dissipation may have an
important impact on ocean heat
tcontent and atmospheric CO2

Supporting Information:
• Supporting Information S1

Correspondence to:
D. P. Marshall,
david.marshall@physics.ox.ac.uk

Citation:
Marshall, D. P., M. H. P. Ambaum,
J. R. Maddison, D. R. Munday, and
L. Novak (2017), Eddy saturation and
frictional control of the Antarctic
Circumpolar Current, Geophys. Res. Lett.,
44, 286–292, doi:10.1002/
2016GL071702.

Received 23 OCT 2016
Accepted 19 DEC 2016
Accepted article online 21 DEC 2016
Published online 9 JAN 2017

©2016. The Authors.
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.



through a bottom form stress [Munk and
Palmén, 1951]. The bottom form stress
involves high and low pressures forming
to either side of the Drake Passage and
other topographic barriers, and hence
deceleration of the abyssal flow. To con-
nect the surface wind and bottom form
stresses, momentum must be trans-
ferred down from the surface to the sea-
floor. This is achieved primarily through
an eddy form stress, S [Johnson and
Bryden, 1989; Olbers, 1998]; analogous
to the bottom form stress, fluid in more
buoyant layers pushes against fluid in
less buoyant layers. In addition, momen-
tum is transferred vertically by the
Coriolis forces associated with any resi-
dual overturning [Marshall, 1997;
Marshall and Radko, 2003], ! ρ |f| ψ,
where ψ is the streamfunction for the
residual overturning, ρ is the density of
seawater, and f is the Coriolis parameter
(negative in the ACC). In equilibrium, the
surface wind stress equals the sum of
the eddy form stress and the residual
Coriolis force,

τs ¼ S! ρ fj jψ: (1)

The second and key new ingredient, fol-
lowing Marshall et al. [2012], is that the dimensional magnitude of the eddy form stress is set by the eddy
energy, E,

S ¼ α1
fj j
N

E; (2)

where N is the buoyancy frequency and α1 ≤ 1 is a nondimensional parameter. Substituting (2) into the
momentum balance (1), it follows that the eddy energy is set by the surface wind stress, with an offset due
to residual overturning:

E ¼ 1
α1

N
fj j
τs þ

ρN
α1

ψ: (3)

The third and final ingredient is the eddy energy budget. The dominant source of eddy energy in the
Southern Ocean is baroclinic instability of the ACC [e.g., Rintoul and Naveira Garabato, 2013]. For an ocean
with uniform stratification and shear, the source of eddy energy scales with the mean vertical shear ∂u/∂z
and the eddy energy, i.e.,

eddy energy source ¼ α2
fj j
N
∂u
∂z

∫
0

!H
E dz; (4)

where the integral is from the seafloor, z=!H, to the sea surface, z=0 (seeMarshall et al. [2012] for a deriva-
tion) and α2 ≤ 1. Note that the growth rate of eddy energy is equal to the Eady energy growth rate for linear
instability if α2 = 0.61 [Eady, 1949].

The physics of eddy energy dissipation remains hotly debated [e.g., Naveira Garabato et al., 2004; Molemaker
et al., 2005; Sen et al., 2008; Zhai et al., 2010; Nikurashin and Ferrari, 2010; Melet et al., 2015]. Here we sidestep
the detailed physics by introducing an eddy energy damping rate, λ, which multiplies the depth-integrated
eddy energy, i.e.,

Figure 1. Schematic of the zonal momentum balance of the ACC. Along a
time-mean streamline (thick black lines), the eastward surface wind stress
(thick red arrow, rectangular insert) is balanced by a bottom form stress
(thick blue arrows), associated with a high (p+) and low (p!) pressure
forming upstream and downstream of topographic obstacles such as
Drake Passage. Momentum is transferred down from the surface to the
seafloor through an eddy form stress, by fluid in upper buoyant layers
pushing against the fluid in deeper dense layers (thin red and blue arrows,
the undulating black line representing the interface between the buoyant
and dense layers), and additionally by the Coriolis forces associated with
any residual overturning (not shown).
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eddy energy sink ¼ λ ∫
0

!H
E dz: (5)

Equating the source and sink of eddy energy, (4) and (5), and noting that both depend on the eddy energy
which therefore factors out, the eddy energy balance reduces to

α2
fj j
N
∂u
∂z

¼ λ: (6)

Assuming that the zonal velocity vanishes at the seafloor, the mean velocity is ½H ∂u/∂z. Integrating across
the channel, of width L, the circumpolar volume transport is therefore

T ¼ λ
N
fj j
H2L
2α2

: (7)

Note that, in reality, the bottom velocity may account for up to 25% of the total ACC volume transport [Peña-
Molino et al., 2014], and hence, (7) should be interpreted as a prediction for the thermal wind volume trans-
port relative to the seafloor.

Thus, in this simple model, both the vertical shear and the circumpolar volume transport are independent of
the surface wind stress and set by the damping rate of eddy energy. In the Southern Ocean, eddy energy is
dissipated primarily by bottom drag [Sen et al., 2008] and scattering into lee waves [Naveira Garabato et al.,
2004; Nikurashin and Ferrari, 2010; Melet et al., 2015], and it is these two processes that we infer may set
the ACC volume transport.

In summary, the simple model of the ACC suggests that the momentum budget sets its eddy energy (3) and
the eddy energy budget sets its momentum (7). Physically, the equilibrium volume transport is controlled by
the ACC requiring sufficiently unstable vertical shear to overcome the stabilizing role of the eddy energy dis-
sipation, a balance that is independent of the wind forcing in this simple model. This behavior is analogous to
the interplay between wave activity and baroclinicity in atmospheric storm tracks [Ambaum and
Novak, 2014].

3. Numerical Calculations

Themodel makes the counterintuitive prediction that the ACC volume transport increases with increased dis-
sipation. To test this result, a series of eddy-resolving calculations are presented in an idealized channel with
an imposed surface wind stress and single topographic barrier.

The numerical model is an idealized eddy-resolving (10 km grid spacing) configuration of the MITgcm
[Marshall et al., 1997], previously used to study the impact of the Drake Passage and Tasman Gateway on
the ACC [Munday et al., 2015], to which the reader is referred for full model details and parameters. The con-
figuration used in this study is that with a single topographic obstacle in the form of a 1.5 km high topo-
graphic ridge; the channel is otherwise 3 km deep, 9600 km long, and 2000 km wide. The ridge is
sufficiently high so as to block all f/H contours where H is ocean depth.

A sinusoidal wind stress is imposed at the surface, varying from zero at the southern and northern boundaries
to a maximum in the center of the channel. The surface temperature is restored to a linear surface profile,
which ranges from 0°C at the southern boundary to 15°C at the northern boundary. Diapycnal mixing is weak,
except near the northern boundary where it is enhanced to represent diapycnal mixing in Atlantic and Pacific
basins [Munday et al., 2011]. Linear bottom friction with a constant coefficient is applied in the locally deepest
level which away from the ridge is the bottom level; over the ridge, the deepest level is higher in the water
column and may have reduced thickness due to the use of partial bottom cells and the variable layer thick-
ness, from 10m at the surface to 250m in the deepest level. Each of the calculations is run for sufficiently long
to reach statistical equilibrium.

The results are shown in Figure 2. These confirm that for all but the smallest bottom drag, the eddy energy
increases with wind stress but is independent of bottom drag; in contrast, the volume transport is relatively
independent of wind stress and increases with bottom drag. The strengthening of the ACC with larger bot-
tom drag is due to the latter suppressing the growth of turbulent eddies. A similar result was obtained by
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Nadeau and Ferrari [2015] and was implicit in Cessi [2008], although its climatic significance appears to have
been overlooked. The broad consistency of these numerical results with the simple theoretical predictions
(equations (1) and (2)) is remarkable given the large spatial variations in eddy energy obtained in the numer-
ical solutions (see supporting information).

4. Implications for Ocean Stratification and Heat Content

The strength of the ACC is coupled to the slope of the density surfaces across the Southern Ocean which, in
turn, assuming that the sea surface temperature and density are strongly constrained by air-sea surface

Figure 2. Numerical calculations exploring sensitivity of circumpolar volume transport and eddy energy to surface wind
stress and bottom drag. (a) Snapshot of the relative vorticity revealing an energetic field of mesoscale eddies. (b) Eddy
kinetic energy as a function of wind stress for different values of bottom drag (10!3m s!1). (c) Eddy kinetic energy as a
function of bottom drag for different values of wind stress (Nm!2). (d) Volume transport as a function of wind stress for
different values of bottom drag. (e) Volume transport as a function of bottom drag for different values of wind stress. (The
bottom drag coefficients are equal to the damping rate of momentum within the lowest layer multiplied by 250m, the
latter representing the default lowest layer thickness.)

Geophysical Research Letters 10.1002/2016GL071702
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fluxes, sets the depth of the density surfaces in the basins to the north [Gnanadesikan, 1999; Gnanadesikan
and Hallberg, 2000; Karsten et al., 2003; Nikurashin and Vallis, 2011;Marshall and Zanna, 2014], as sketched in
Figure 3a. Thus, a corollary of the results presented in sections 2 and 3 is that eddy energy dissipation in the
Southern Ocean, through bottom drag [Sen et al., 2008] and scattering into lee waves [Naveira Garabato et al.,
2004; Nikurashin and Ferrari, 2010; Melet et al., 2015], may play an important role in setting global ocean stra-
tification and heat content [also see Cessi et al., 2006].

This hypothesis can be tested in the eddy-permitting model calculations by examining the sensitivity of the
potential temperature profile at the north of the channel to the surface wind stress and bottom drag. We find
that this northern potential temperature profile varies weakly with surface wind stress (Figure 3b) but
strongly with bottom drag (Figure 3c). Higher bottom drag leads to deeper stratification and increased ocean
heat content, consistent with a stronger ACC.

5. Conclusions

A simple theoretical model has been presented that explains the physics of eddy saturation from first princi-
ples. Themodel explains both the insensitivity of circumpolar volume transport to surface wind stress and the
increase of eddy energy with wind stress. The model further predicts that circumpolar transport increases
with increased bottom friction, a counterintuitive result that has been confirmed qualitatively in eddy-
permitting calculations.

Figure 3. Relation between ocean stratification, surface wind stress, and bottom drag. (a) Schematic illustrating the relation
between global stratification and the ACC volume transport, set by the slope of the density surfaces (thick black lines) in the
Southern Ocean (blue shading). Increased bottom drag leads to a stronger ACC, steeper density surfaces, and deepened
stratification. In contrast, the stratification is relatively insensitive to the wind stress. (b) Variation of potential temperature
with depth at the northern edge of the numerical model, corresponding to the red dashed line in Figure 3a, for different
values of wind stress. (c) Variation of potential temperature with depth at the northern edge of the numerical model for
different values of bottom drag. The line colors in Figures 3b and 3c are the same as in Figure 2.

Geophysical Research Letters 10.1002/2016GL071702
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Despite the qualitative agreement between the theoretical model and the eddy-permitting calculations, the
theoretical model has a number of shortcomings, including the assumption of constant buoyancy frequency,
the assumption of a linear eddy energy damping, and the neglect of lateral variations in eddy energy. For
example, it is clear that the simple theory breaks down in the limit of low bottom drag where the eddy energy
is far greater in the eddy-permitting calculations than the theory predicts. A further limitation is that residual
overturning is not independent of the surface wind stress: a detailed physical explanation of eddy compen-
sation, and its relation to eddy saturation, remains outstanding.

Perhaps the most acute limitation of the theoretical model is the assumption that the dissipation of eddy
energy through bottom friction (or other processes) can be related in a simple manner to the depth-
integrated eddy energy. For example, the results of Jansen et al. [2015] demonstrate that the bottom drag
and damping rate of depth-integrated eddy energy can become decoupled in baroclinic flow since the eddy
energy dissipation rate due to bottom drag depends on the bottom, rather than the depth-integrated,
eddy energy.

A novel aspect of the theoretical model is that it bypasses the need for a diffusive eddy closure. Nevertheless,
the approach taken here can be used to infer an eddy diffusivity for use in an eddy closure based on Gent and
McWilliams [1990]. The predicted eddy diffusivity is tested against diagnosed eddy fluxes for a nonlinear bar-
oclinic instability problem in Bachman et al. [2017]: good agreement is obtained across 4 orders of magnitude
of variation in the eddy diffusivity, suggesting that it may be possible to capture the physics of eddy satura-
tion in models with parameterized eddies (work in progress).

Due to the close relation between the volume transport of the ACC and the stratification in the basins north, a
corollary of this study is that eddy energy dissipation in the Southern Ocean plays a major role in setting glo-
bal ocean stratification and ocean heat content. To the extent that ocean stratification influences the ocean
carbon cycle [Ferrari et al., 2014;Munday et al., 2014;Watson et al., 2015; Lauderdale et al., 2016], these results
may point to a further unexpected impact of bottom drag and lee wave generation on equilibrium
atmospheric CO2.
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Fig. S1. Variation of the 20-year time averaged depth-integrated streamfunction (lines) and 
surface eddy kinetic energy density (colors) with wind stress. The thick white contour is at 0 Sv 
(1 Sv = 106 m3 s-1) with grey/thin white contours representing negative/positive values of 
streamfunction spaced 25 Sv apart. The peak surface wind stress is labelled on each panel. 



 
 

3 
 

 
Fig. S2. Variation of the 20-year time averaged depth-integrated streamfunction (lines) and 
surface eddy kinetic energy density (colors) with bottom friction coefficient. The thick white 
contour is at 0 Sv with grey/thin white contours being negative/positive values of streamfunction 
spaced 25 Sv apart. The bottom friction coefficient is labelled on each panel. 
 


