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Abstract 

Objective: 

Non-psychoactive phytocannabinoids (pCBs) from Cannabis sativa may represent 

novel therapeutic options for cachexia due to their pleiotropic pharmacological 

activities, including appetite stimulation. We have recently shown that purified 

cannabigerol (CBG) is a novel appetite stimulant in rats. As standardised extracts from 

Cannabis chemotypes dominant in one pCB (botanical drug substances (BDS)) often 

show greater efficacy and/or potency than purified pCBs, we investigated the effects of 

a CBG-rich BDS, devoid of psychoactive ∆9-THC, on feeding behaviour. 

Methods: 

Following a 2 hour pre-feed satiation procedure, 16 male Lister-hooded rats were 

administered CBG-BDS (at 30-240 mg/kg) or vehicle. Food intake, meal pattern 

microstructure and locomotor activity were recorded over 2 hours. 

Results: 

Total food intake was increased by 120 and 240mg/kg CBG-BDS vs vehicle (1.53g and 

1.36g, respectively, vs 0.56g; p<0.05 and p<0.01). Latency to feeding onset was dose-

dependently decreased by all doses (p<0.05-0.01), and 120 and 240mg/kg doses 

increased both the number of meals consumed (p<0.01) and cumulative size of the first 

2 meals (p<0.05 and p<.0.01). No significant effect was observed on ambulatory 

activity or rearing behaviour.  

Conclusions: 

CBG-BDS is a novel appetite stimulant, which may have greater potency than purified 

CBG, despite the absence of ∆9-THC in the extract.  
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AEA: anadamide (arachidonoylethanolamide) 
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CBGA: cannabigerol acid (or: propyl analogue of cannabigerol) 

CBGV: cannabigivarin 

FAAH: fatty acid amide hydrolase 

NAAA: N-acylethanolamine acid amide hydrolase 

pCB: phytocannabinoid 

PEA: palmitoylethanolamide 
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Introduction 

There is an urgent unmet clinical need for well-tolerated pharmacotherapeutics for 

cancer- and chemotherapy-induced cachexia. Phytocannabinoids (pCBs) from 

Cannabis sativa may represent viable candidates for this indication, due to their 

pleiotropic pharmacological activities, including modulation of feeding behaviour, 

metabolic homeostasis and inflammation (Brodie et al. 2015).  

While the appetite-stimulating properties of C. sativa have historically been attributed to 

the psychoactive pCB ∆9-tetrahydrocannabinol (∆9-THC), we have previously shown 

that C. sativa extracts containing little or no ∆9-THC still stimulate appetite in rats 

(Farrimond et al. 2011), and that purified pCBs other than ∆9-THC can modulate 

feeding behaviours (Farrimond et al. 2012). Recent studies have investigated isolated 

non-psychoactive pCBs (with known anti-inflammatory and/or anti-tumour activities) for 

their ability to stimulate feeding, and thus their potential as novel cachexia treatments. 

One such pCB is cannabigerol (CBG), which attenuates inflammatory bowel disease 

and colon carcinogenesis in vivo (Borrelli et al. 2013; Borrelli et al. 2014) and has in 

vitro affinities for molecular targets involved in feeding and metabolic regulation (Cascio 

et al. 2010; De Petrocellis et al. 2011). Using our well-established pre-feed satiation 

paradigm, we have recently shown that purified CBG stimulates multiple components 

of feeding behaviour, without detrimental motoric side-effects (Brierley et al. 2016a). 

These previous data (reproduced here in Table 1 for reference), demonstrated that 

purified CBG (120-240 mg/kg) increased total food intake over a 2 hour test. CBG-

induced hyperphagia was predominantly due to increased appetitive behaviours, 

evidenced by increased frequency of feeding, rather than affects on meal sizes or 

durations.  

While testing the purified forms of pCBs is the rational first step in determining their 

pharmacological activities, in vitro and in vivo studies have shown that their botanical 
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drug substance (BDS) form may have greater efficacy and/or potency (De Petrocellis et 

al. 2011; Hill et al. 2013). Such BDSs (standardised extracts from chemotypes in which 

a particular pCB is dominant (de Meijer and Hammond 2005)), may exert differential 

effects to purified pCBs due to polypharmacology with the other low-abundance pCBs 

and/or terpenoids present, or via altered pharmacokinetics (Wagner and Ulrich-

Merzenich 2009). The present study was thus conducted to investigate the effects of a 

CBG-rich BDS (devoid of ∆9-THC) on feeding behaviours, using an identical pre-feed 

paradigm and dose range as that in our study of purified CBG.  

 

Methods 

The effects of CBG-BDS on feeding behaviour were investigated using our pre-feed 

satiation paradigm, as fully detailed in previous reports (Brierley et al. 2016a; Brierley 

et al. 2016b). All experiments were performed in accordance with UK Home Office 

regulations [Animals (Scientific Procedures) Act 1986].  

Drugs: 

CBG-BDS was supplied by GW Research (Salisbury, UK), containing 72.2% w/w CBG, 

trace additional phytocannabinoids (CBGV: 0.4%; CBGA: 0.3%; CBC: 0.7%) and a 

non-pCB fraction including terpenoids and residual plant matter. Notably, this BDS 

contained no ∆9-THC. CBG-BDS or sesame seed oil vehicle were orally administered 

to 16 Lister-hooded rats (Harlan, UK; 200-225g on delivery), using a within-subjects 

design. Animals thus received doses of 0,30,60,120 and 240mg/kg (absolute mass of 

CBG-BDS) according to a pseudo-random, counterbalanced Latin square protocol, with 

a ≥48 hour washout period.  

Procedure: 
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At dark photoperiod onset, animals began a 2 hour pre-feed procedure, during which 

they had access to highly palatable wet-mash feed. Animals were habituated to this 

procedure until stable pre-feed consumption levels were observed over 4 consecutive 

habituation days, determined by a non-significant effect of day (F3, 63=0.5603, p=0.644).  

On test days, animals completed the pre-feed procedure and were immediately 

administered CBG-BDS or vehicle and returned to home cages for 1 hour drug 

assimilation, during which food was unavailable. They were then placed into custom-

designed feeder cages (270mm x 405mm) for the 2 hour test, during which food 

consumption and locomotor activity were automatically recorded. Food intake monitors 

(TSE Systems, Germany) provided data on the time, duration and size of each feeding 

bout, which were combined into ‘meals’, defined as bouts consuming ≥0.5 g and 

separated by ≥900s. Two levels of infrared activity monitors (Ugo Basile, Italy) were 

arrayed alongside the feeder cages, such that ambulatory locomotor activity was 

quantified by horizontal beam breaks in a plane 20mm above the cage base, and 

rearing behaviour by vertical breaks in a plane 120mm high.  

Data Analysis:  

Data were analysed to provide measures of appetitive and consummatory behaviours, 

using the parameters of latency to first meal and meal number (appetitive) and meal 

size and duration (consummatory). Ambulatory activity and rearing were quantified 

using horizontal and vertical infrared beam breaks. Data were analysed by one-way 

repeated-measures ANOVA, with significant overall effects followed by planned 

comparisons of all dose groups vs vehicle. Non-parametric data were analysed by 

Friedman’s ANOVA and Wilcoxon’s signed rank comparisons. Results were considered 

significant if p<0.05.  

 



CANNABIGEROL-RICH EXTRACT ELICITS HYPERPHAGIA  7 
 

Results  

Consistent with previously reported effects of purified CBG, CBG-BDS significantly 

increased total food intake during the test (Fig. 1A; F2.2, 33.2=3.841, p=0.028). Total 

intake was increased following administration of CBG-BDS  at 120mg/kg (F1, 15=8.230, 

p=0.012) and 240mg/kg (F1, 15=11.097, p=0.005), with animals consuming 1.53g 

(±0.39) and 1.36g (±0.39), respectively, compared to 0.56g (±0.26) vehicle intakes. 

Increased intake was predominantly driven by stimulation of appetitive feeding, 

evidenced by the dose-dependently decreased latency to feeding onset (Figs. 1B and 

2; Χ2
4=10.4221, p=0.034). All doses of CBG-BDS significantly decreased this latency, 

with maximal effects observed at 120mg/kg (Z=-2.805, p=0.005), which advanced 

feeding onset by approximately 40 minutes. Frequency of feeding was also increased, 

demonstrated by significantly increased number of meals (Fig. 1C; F4, 60=3.761, 

p=0.009). In contrast, while an increase in the cumulative size of the first two meals 

was observed (Table 1; F2.1, 32.7=3.353, p=0.044), the duration of meals, another 

measure of consummatory behaviour, was not significantly affected, including the 

cumulative duration of the first two meals (F1.8, 26.4=2.575, p=0.101) or of all meals 

combined (F1.9, 27.7=3.099, p=0.065). Corroborating the previously observed lack of 

detrimental motoric side-effects of purified CBG, CBG-BDS had no effect on either 

ambulatory activity (F4, 60=1.894, p=0.123) nor rearing (F4, 60=0.876, p=0.484) over the 2 

hour test (Table 2).  

 

Discussion 

CBG-BDS, at doses matched to our study of purified CBG, had similar effects on 

feeding patterns, despite the effective doses of CBG itself being approximately 30% 

lower. Overall, animals administered CBG-BDS began feeding sooner, consumed more 
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meals and consumed more within these meals. However, subtle differences were 

evident indicating that while CBG-BDS has similar efficacy in this paradigm, it has 

apparently greater potency than purified CBG in stimulating feeding behaviours. Total 

intake over the test duration was maximally increased by ~1g following doses of 

120mg/kg, a three-fold increase vs vehicle. Purified CBG elicited a similar maximal 

increase of ~1g, however this only represented a two-fold increase and was seen 

following 240 mg/kg doses. Appetitive feeding behaviour, measured by decreased 

latency to feeding onset, was dose-dependently stimulated by all doses of CBG-BDS, 

with a maximal reduction at 120mg/kg of ~40 minutes. In contrast, purified CBG only 

significantly advanced feeding onset at 240mg/kg, by ~30 minutes. Both the number of 

meals and cumulative size of the first two meals were approximately doubled by both 

120 and 240 mg/kg CBG-BDS, in this case demonstrating a consistent pattern of 

feeding stimulation to purified CBG. It is thus apparent that CBG-BDS is similarly 

efficaceous to purified CBG at stimulating feeding behaviours, but as the maximal 

effects were seen following doses of 120 mg/kg, it may be more potent, and 

demonstrates a ceiling effect not seen following purified CBG.     

Although determining the mechanism of action for this hyperphagia was beyond the 

scope of these studies, we have previously speculated on putative mechanisms based 

on the published in vitro affinities and activities of CBG (Brierley et al. 2016a). In light of 

the apparent greater potency of CBG-BDS, such speculation can be extended based 

on the differential affinities and activities reported in comparative in vitro studies of the 

purified and BDS forms (De Petrocellis et al. 2011). While both have little affinity or 

activity at cannabinoid 1 or 2 receptors, they have similar efficacy as inhibitors of 

anandamide (AEA) reuptake, and may thus elicit hyperphagia via upregulation of 

orexigenic endocannabinoid tone. CBG-BDS has four-fold greater potency as an 

inhibitor of monoacylglycerol lipase (De Petrocellis et al. 2011), the hydrolytic enzyme 
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for 2-arachidonoylglycerol (2-AG). Given that 2-AG also elicits hyperphagia (Kirkham et 

al. 2002), it is possible that the increased potency of CBG-BDS is due to concurrent 

elevation of 2-AG and AEA.  The apparent ceiling effect of CBG-BDS at 120 mg/kg, not 

observed for purified CBG, also points to the potential involvment of another 

mechanism, involving the endocannabinoid-degrading enzyme N-acylethanolamine 

acid amide hydrolase (NAAA). While neither forms of CBG have appreciable activity as 

fatty acid amid hydrolase (FAAH) inhibitors, CBG-BDS alone is a potent inhibitor of 

NAAA, which would result in a selective inhibition of palmitoylethanolamine (PEA) 

hydrolysis over AEA. Given that PEA attenuates hyperphagia (Mattace Raso et al. 

2014), it is plausible that at CBG-BDS doses >120mg/kg, PEA is elevated to 

physiologically-relevant levels, attenuating CBG-induced hyperphagia mediated by 

other mechanisms. While neither the minor pCBs nor terpenoids present in CBG-BDS 

have known appetite-stimulating properties per se, they may improve the bioavailability 

of CBG and hence contribute to the apparent greater potency of the BDS via 

pharmacokinetic effects (Wagner and Ulrich-Merzenich 2009). Indeed, a recent study 

of the anticonvulsant effects of cannabidivarin-BDS demonstrated that a pCB-free BDS 

was without intrinsic effect, but apparently slightly increased efficacy of the purified 

pCB, supporting such a pharmacokinetic effect (Hill et al. 2013). While no direct 

pharmacokinetic comparison of purifed CBG and CBG-BDS has been published to 

date, it should be noted that purified forms of several major pCBs have shown 

differential brain concentrations dependent on route of admininistration, with CBG 

reaching higher concentrations via the intraperitoneal route, in contrast to cannbidiol 

and CBDV for which the oral route was more effective (Deiana et al. 2012). Further 

studies investigating the effects of intraperitoneal purified CBG and CBG-BDS on 

feeding behaviours may thus be warranted to determine which form, dose level and 

route of administration may have the greatest translational potential for cachexia.    
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Conclusion 

Here we report for the first time that a CBG-rich BDS, devoid of ∆9-THC or other pCBs 

with known hyperphagic activity, stimulates appetite in pre-satiated rats. CBG-BDS 

appears to have similar efficacy but greater potency than purified CBG, and warrants 

investigation as a potential novel treatment for cachexia. 
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CBG-BDS Behavioural Pharmacology Full Report – Figures 

 

 

Figure 1. Total food intake (A) and meal pattern microstructure parameters of 

latency to feeding onset (B) and number of meals consumed (C). Data 

presented as group mean ± SEM, analysed by one-way repeated measures 

ANOVA (latency by Friedman’s ANOVA) and planned comparisons of all dose 

groups vs vehicle. * p < 0.05, ** p < 0.01. 
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Figure 2. Graphical summary of group mean meal pattern microstructure 

parameters for meals 1 and 2. Boxes are positioned along x-axis according to 

meal latencies, box widths are scaled to meal durations and meal sizes are 

given above. Where individual animals did not consume a second meal, 

minimum (size and duration) or maximum (latency) values were imputed. 

Asterisks indicate significantly decreased latencies compared to vehicle, * p < 

0.05, ** p < 0.01.    
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 CBG-BDS (mg/kg, p.o.) Purified CBG (mg/kg, p.o.)† 

 0 30 60 120 240 0 30 60 120 240 

Hour 1 Consumption (g) 
0.21 

(± 0.18) 
0.29 

(± 0.20) 
0.52 

(± 0.26) 
0.70 

(± 0.27) 
0.57 

(± 0.22) 

0.47 
(± 0.22) 

0.40 
(± 0.25) 

0.55 
(± 0.25) 

1.06 
(± 0.30) 

0.89 
(± 0.25) 

Hour 2 Consumption (g) 
0.35 

(± 0.18) 
0.64 

(± 0.23) 
0.08 

(± 0.06) 
0.83 

(± 0.21) 
0.78 

(± 0.27) 

0.38 
(± 0.18) 

0.49 
(± 0.20) 

0.46 
(± 0.17) 

0.59 
(± 0.15) 

  0.99 ** 
(± 0.19) 

Total Consumption (g) 
0.56 

(± 0.26) 
0.93 

(± 0.29) 
0.60 

(± 0.27) 
  1.53 * 
(±0.39) 

    1.36 ** 
(±0.39) 

0.85 
(± 0.28) 

0.89 
(± 0.40) 

1.01 
(± 0.29) 

  1.66 * 
(± 0.37) 

  1.89 ** 
(± 0.38) 

Latency to 1st Meal (min) 
108.9 
(± 7.4) 

   95.1 * 
(± 9.0) 

   84.1 * 
(± 11.9) 

   71.1 ** 
(± 12.7) 

    74.3 * 
(± 11.8) 

83.3 
(± 12.5) 

93.7 
(± 11.0) 

78.9 
(± 11.2) 

59.1 
(± 12.0) 

  54.3 * 
(± 13.2) 

Latency to 2nd Meal (min) 
112.9 
(± 5.1) 

107.7 
(± 7.3) 

105.6 
(± 8.2) 

95.6 
(± 9.4) 

95.8 
(± 8.7) 

105.3 
(± 8.7) 

108.2 
(± 6.8) 

106.4 
(± 5.4) 

95.7 
(± 8.3) 

92.1 
(± 8.5) 

Number of Meals 
0.50 

(± 0.22) 
0.69 

(± 0.24) 
0.63 

(± 0.20) 
    1.13 ** 
(± 0.24) 

   1.19 ** 
(± 0.31) 

0.63 
(± 0.20) 

0.75 
(± 0.32) 

1.00 
(± 0.26) 

 1.44 * 
(± 0.33) 

   1.44 ** 
(± 0.29) 

Meal 1 Size (g) 
0.29 

(± 0.12) 
0.59 

(± 0.19) 
0.32 

(± 0.11) 
0.86 

(± 0.22) 
0.59 

(± 0.16) 

0.65 

(± 0.23) 

0.38 

(± 0.16) 

0.57 

(± 0.19) 

0.93 

(± 0.18) 

1.04 

(± 0.23) 

Meal 2 Size (g) 
0.19 

(± 0.13) 
0.26 

(± 0.14) 
0.29 

(± 0.17) 
0.59 

(± 0.21) 
0.57 

(± 0.21) 

0.20 

(± 0.11) 

0.30 

(± 0.15) 

0.22 

(± 0.09) 

0.57 

(± 0.23) 

0.64 

(± 0.18) 

Meal 1 + 2 Size (g) 
0.48 

(± 0.21) 
0.85 

(± 0.26) 
0.61 

(± 0.27) 
  1.45 * 
(± 0.37) 

   1.16 ** 
(± 0.32) 

0.85 

(± 0.28) 

0.68 

(± 0.30) 

0.79 

(± 0.24) 

1.51 

(± 0.31) 

  1.68 * 

(± 0.34) 

Meal 1 Duration (min) 
0.9 

(± 0.5) 
2.8 

(± 0.9) 
1.4 

(± 0.7) 
4.7 

(± 1.7) 
3.9 

(± 1.6) 

5.9 

(± 2.7) 

1.1 

(± 0.7) 

3.1 

(± 1.2) 

4.0 

(± 1.1) 

5.9 

(± 1.9) 

Meal 2 Duration (min) 
0.8 

(± 0.7) 
0.9 

(± 0.7) 
1.1 

(± 0.6) 
3.0 

(± 1.6) 
2.0 

(± 0.9) 

0.3 

(± 0.2) 

0.8 

(± 0.5) 

0.5 

(± 0.3) 

2.4 

(± 1.5) 

2.9 

(± 1.1) 

Meal 1 + 2 Duration (min) 
1.7 

(± 0.9) 
3.6 

(± 1.1) 
2.5 

(± 1.2) 
7.7 

(± 2.9) 
5.9 

(± 2.0) 

6.2 

(± 2.7) 

1.9 

(± 1.1) 

3.6 

(± 1.3) 

6.4 

(± 1.8) 

8.7 

(± 2.3) 

All Meals Duration (min) 
1.8 

(± 0.9) 
3.7 

(± 1.1) 
2.5 

(± 1.2) 
8.5 

(± 2.9) 
6.4 

(± 2.2) 

6.2 

(± 2.7) 

3.0 

(± 1.5) 

3.6 

(± 1.3) 

8.7 

(± 2.7) 

9.1 

(± 2.3) 

Table 1. Hourly food consumption and meal pattern analysis data. Data presented as 

group mean ± SEM, analysed by one-way repeated measures ANOVA and planned 

comparisons of all dose groups vs vehicle. All groups n = 16, * p < 0.05, ** p < 0.01. † 

Data for purified CBG has been previously published (Brierley et al. 2016a), and is 

reproduced here for comparison with CBG-BDS.  

 


