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The strong-constraint formulation of four-dimensional variational data assimilation (4D-
Var) assumes that the model used in the process perfectly describes the true dynamics of the
system. However, this assumption often does not hold and the use of an erroneous model in
strong-constraint 4D-Var can lead to a sub-optimal estimation of the initial conditions. We
show how the presence of model error can be correctly accounted for in strong constraint
4D-Var by allowing for errors in both the observations and the model when considering the
statistics of the innovation vector. We demonstrate that, when these combined model error
and observation-error statistics are used in place of the standard observation error statistics
in the strong-constraint formulation of 4D-Var, a statistically more accurate estimate of the
initial state is obtained.

The calculation of the combined model error and observation-error statistics requires the
specification of model error covariances, which in practice are often unknown. We present
a method to estimate the combined statistics from innovation data that does not require
explicit specification of the model error covariances. Numerical experiments using the
linear advection equation and a simple nonlinear coupled model demonstrate the success
of the new methods in reducing the error in the estimate of the initial state, even in the case
when only the uncorrelated part of the model error is accounted for.
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1. Introduction

Four-dimensional variational data assimilation (4D-Var) is a
method for combining a time window of observations with
a model. The output, known as the analysis, should provide a
more accurate estimate of the state of the system at the start
of the time window than either the observations or model can
provide alone. 4D-Var is the data assimilation method of choice at
many operational meteorological centres, for example to initialize
numerical weather prediction (NWP) forecasts at the Met Office
(Rawlins et al., 2007) and ECMWF (Rabier et al., 2000) and for
reanalysis (Dee et al., 2011).

The model equations are often implemented as a strong
constraint within the 4D-Var algorithm (SC4DVar). This assumes
that the observations over the time window (accounting for the
observation-error statistics) are consistent with the model if
initialized with the true state. However, the error in the model
is often non-negligible and so a model trajectory initialized from
the truth may not be consistent with the observations. This has
the effect that the 4D-Var scheme is unable to find an analysis in

good agreement with the truth. The problem of model error is
greater as the assimilation window is increased and the error at
each time step accumulates.

There are multiple sources of model error. These include:

• finite model resolution, which means that subgrid-scale
phenomena cannot be modelled explicitly;

• errors in subgrid-scale parametrizations;
• errors in boundary conditions;
• numerical errors arising from temporal discretization.

Weak-constraint 4D-Var (WC4DVar) relaxes the perfect
model assumption by assuming model error is present at each
time step (Sasaki, 1970). This allows WC4DVar to provide an
estimate of both the initial state and the model error over the time
window. However, in its implementation, it requires an estimate
of the model-error statistics throughout the assimilation window
(Trémolet, 2006). It is not simple to estimate the model-error
covariances and in practice many estimates are only available in
the space of the observations rather than the full model space, as
required by WC4DVar (Todling, 2015).

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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An additional difficulty with WC4DVar is how to best use the
estimate of the model error to correct the model in the resulting
forecast. For example, how long is the estimate of model error valid
for beyond the assimilation window? If the model is not corrected,
then it is possible that the forecast will be worse than using strong-
constraint 4D-Var (Trémolet, 2007). In practice, there also exists
a third difficulty in implementing WC4DVar related to separating
out the effects of model and observation bias (Lea et al., 2008).

This article takes an alternative approach to account for model
error in 4D-Var. Instead of trying to correct the model, a method
is developed to account for the model error when comparing the
model evolution to the observations by combining the model-
error and observation-error statistics. In practice, this is seen
to effectively inflate the observation errors over time, giving the
observations nearer the end of the time window less weight in the
analysis. The combined model-error and observation-error statis-
tics can be estimated using samples of observation minus model
differences. This is a similar technique to the use of covariance
matching proposed by Dee (1995) and Desroziers et al. (2005) and
has been used extensively to estimate the observation-error statis-
tics only (e.g. Weston et al., 2014; Waller et al., 2016b). This new
approach has many potential practical benefits over WC4DVar:

• There is no need to explicitly define an estimate of the
model-error covariance matrix. Instead an estimate of the
matrix in observation space is required and can be obtained
on-line.

• The initial state alone is estimated, therefore the size and
complexity of the problem is smaller than WC4DVar.

• Although this method does not try to correct the model, the
analysis of the initial state is consistent with the assumed
(erroneous) model dynamics. Therefore, the chance of an
initialization shock will be reduced.

We develop this new technique using linear theory, consistent
with the assumptions regularly made in 4D-Var. However, we
illustrate this method using two simple dynamical models; firstly a
linear model and then a nonlinear model. We show the novel ideas
developed within the linear model framework can be successfully
applied to both linear and nonlinear dynamical models.

The paper is organized as follows. In section 2 we outline
SC4DVar with a perfect model and then show the impact that
the breakdown of the perfect model assumption has on the
analysis and its error. In section 3, we show that combining the
model-error and observation-error statistics does indeed restore
the optimality of the analysis estimated with SC4DVar in the
presence of model error. This can be shown to give a statistically
more accurate analysis than using the sub-optimal SC4DVar
which does not account for model error. The expression derived
for the combined model-error and observation-error covariances
requires an estimate of the elusive model-error statistics. In
section 4 we formulate a method to estimate the combined
model-error and observation-error statistics using a sample
of observation–model misfits. In section 5 we introduce two
dynamical systems, the linear advection equation and a nonlinear
idealized coupled atmosphere–ocean model. Section 6 involves
use of these numerical models to demonstrate the successful
implementation of the theory developed in this article and
investigate sensitivities of the results. Note that in these numerical
experiments we only consider the effect of the model-error
variances as this is more feasible for larger systems. Finally, we
summarize and conclude our findings in section 7.

2. Strong-constraint 4D-Var

The aim of SC4DVar is to find the most probable state of a
system given a background estimate and a time window of
observations. A key underlying assumption of SC4DVar is that
the model equations perfectly describe the evolution of the
system. In this section we begin by introducing the notation to
be used throughout the article.

2.1. Observations and background

Let the column vector xi ∈ R
m represent the model state vector

at time ti. Observations, yi ∈ R
pi , at time ti are (linearly) related

to the true model state, xt
i , at time ti by

yi = Hix
t
i + εo

i , i = 0, 1, ..., N, (1)

where εo
i ∈ R

pi represents the observation errors at time ti.
These are assumed to be drawn from a normal distribution with
mean zero and error covariance matrix Ri ∈ R

pi×pi . The linear
observation operator Hi : R

m −→ R
pi maps the state from model

space to observation space.
The background, xb, is related to the true state xt

0 at time t0

such that

xb = xt
0 + εb, (2)

where the column vector xb ∈ R
m contains a prior estimate of

each of the model state variables. The column vector εb ∈ R
m

contains errors in the background model state and is assumed to
be drawn from a normal distribution with mean zero and error
covariance matrix B ∈ R

m×m.

2.2. Strong-constraint 4D-Var with perfect model equations

We assume use of a linear model. The evolution of the state at
time i − 1 to time i is given by

xt
i = M{i−1}→ix

t
i−1. (3)

Let us assume we have observations at N + 1 times throughout
the assimilation window and write the 4D-Var cost function as

J(x0) =J b + J o

=1

2
(x0 − xb)TB−1(x0 − xb)

+ 1

2
(̂y − Ĥx0)TR̂−1(̂y − Ĥx0), (4)

where

ŷ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y0

y1
...
...
...

yN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Ĥ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0

H1M0→1
...
...
...

HN M0→N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and

R̂ =

⎛⎜⎜⎜⎜⎜⎜⎝

R0 0 · · · · · · 0
0 R1 0 · · · 0
... 0

. . .
...

...
...

... · · · . . . 0
0 · · · · · · 0 RN

⎞⎟⎟⎟⎟⎟⎟⎠ .

The hat notation represents vectors and matrices that are valid
over the entire assimilation window, not just at individual
time steps. For simplicity of presentation, we assume that the
observation errors are not correlated in time, but the theory we
develop is also applicable to the more general case. The minimum
of (4) should provide the minimum variance estimate of the
true model state at the initial time, xt

0, if the Gaussian and linear
assumptions are correct, and B and R̂ correctly represent the

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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covariances of xt
0 − xb and ŷ − Ĥxt

0 respectively (Lewis et al.,
2006).

The analysis which minimizes (4) is given by

xa
0 = xb + K̂d̂b, (5)

where K̂ is the gain matrix given by K̂ = BĤT(ĤBĤT + R̂)−1 and
d̂b is the innovation vector given by d̂b = ŷ − Ĥxb. Therefore
the gain matrix K̂ determines the appropriate weighting of
the observational information to be added to the background
model state. The error covariance of the analysis in this case is
given by

A = (I − K̂Ĥ)B, (6)

(Lewis et al., 2006).

2.3. The effect of an erroneous model in strong-constraint 4D-Var

Let us now consider the case when the model is no longer perfect.
In this article the erroneous model equations take the form

xi = Me
{i−1}→ixi−1, i = 1, 2, ... (7)

The model matrix Me
{i−1}→i ∈ R

m×m is the best known description
of the evolution of the state vector from the previous time ti−1

to time ti, and is used to assimilate the data and to produce
the subsequent forecast. We assume additive model error of a
random nature is present at each time step, where to acquire the
true model state xt

i ∈ R
m at time ti,

xt
i = M{i−1}→ix

t
i−1

= Me
{i−1}→ix

t
i−1 + ηi, i = 1, 2, ... (8)

where ηi ∈ R
m is a column vector containing the random model

error at time ti. The vector of random model error is assumed
to be unbiased and to have a Gaussian distribution such that ηi
∼ N (0, Qi), where Qi is the model-error covariance matrix at
time ti.

We can extend (8) to relate the true state at time i to the initial
true state evolved using the erroneous model

xt
i =M0→ix

t
0

=Me
{i−1}→i

(
M0→{i−1}xt

0

) + ηi

=Me
{i−1}→i

(
Me

{i−2}→{i−1}
(

M0→{i−2}xt
0

)+ηi−1

)+ηi

...

=Me
0→ix

t
0 +

i∑
j=1

Me
j→iηj. (9)

The linearity of the model (7) allows us to define the erroneous

operator, Ĥe ∈ R
(
∑N

i=0 pi)×m, as

Ĥe =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H0

H1Me
0→1

...

...

...

HN Me
0→N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

When erroneous model matrices of the form Me
{i−1}→i, (7), are

used to evolve the model state, the operator Ĥ which contains
the perfect model dynamics is replaced with Ĥe containing the

erroneous model matrices in the 4D-Var cost function, (4). The
difference between the true state and the observations evaluated
using the erroneous model, ŷ − Ĥext

0, no longer has a variance
consistent with R̂.

Let ε̂o∗ = ŷ − Ĥext
0. This can be evaluated, at time i, in terms

of the observation error, εo, and the model error, η, using (1),
(3), (7) and (9):

εo∗
i = yi − HiM

e
0→ix

t
0

= yi − HiM0→ix
t
0 + HiM0→ix

t
0 − HiM

e
0→ix

t
0

= εo
i + Hi(xt

i − Me
0→ix

t
0)

= εo
i + Hi

i∑
j=1

Me
j→iηj. (10)

Equation (10) explicitly states that, at each observation time
ti, the error in the comparison of observations and the model
state initial conditions evolved with an erroneous model is a
combination of observation error and model error. We next seek
to obtain the statistics of this error term εo∗

i .
By taking the statistical expectation of the error term ε∗

oi (10),
and using the assumptions that both the observation errors and
model errors are distributed with a zero mean, it is clear that
<εo∗

i >= 0. The covariance of the combined error terms at
observation times ti and tk respectively can be evaluated by taking
the statistical expectation

R∗
(i,k) = < εo∗

i (εo∗
k )T >

= <

⎛⎝εo
i +Hi

i∑
j=1

Me
j→iηj

⎞⎠⎛⎝εo
k +Hk

k∑
j=1

Me
j→kηj

⎞⎠T

>

= <εo
i (εo

k )T >

+ Hi <

i∑
j=1

Me
j→iηj

⎛⎝ k∑
j=1

Me
j→kηj

⎞⎠T

> Hk
T, (11)

using (10) and assuming that both the model errors and
observation errors are uncorrelated in time and the model and
observation errors are uncorrelated between them. Evaluating the
expectations in (11) leads to

R∗
(i,k) =

⎧⎪⎨⎪⎩
Ri for i=k=0,

Ri + Q∗
(i,k) for i=k �= 0,

Q∗
(i,k) otherwise,

(12)

where Q∗
(i,k) are the terms present due to the errors in the model,

Q∗
(i,k) = Hi

⎡⎣min(i,k)∑
j=1

Me
j→i Qj Me

j→k
T

⎤⎦ Hk
T. (13)

A more detailed derivation of (12) and (13) is given in Appendix A.
We note that no model evolution is required in the comparison of
observations and the model state at time t0, hence the observation-
error covariance matrix R0 fully describes the error statistics in the
innovation at time t0. We can present the full combined model-
error and observation-error covariance matrix R̂∗, containing the
covariance submatrices R∗

(i,k) (12) as

R̂∗ =

⎛⎜⎜⎜⎜⎜⎜⎝

R0 0 · · · 0
0 R1+Q∗

(1,1) · · · Q∗
(1,N)

... Q∗
(2,1)

. . .
...

...
...

...
...

0 Q∗
(N,1) · · · RN +Q∗

(N,N)

⎞⎟⎟⎟⎟⎟⎟⎠. (14)

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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Note that the inclusion of time-correlated observation errors
could also be included in the off block diagonal elements of (14),
but for convenience we will continue to assume that the time
correlations are only due to the accumulation of model error.

If the analysis scheme were to use R̂∗ to weight the observation
term in (4), we would expect the assimilation system to be
optimal as the correct error statistics are used. (This will be
explored further in section 3.) However, if this model error, Q∗, is
not accounted for, the analysis estimated using SC4DVar is given
by

xae
0 = xb + K̂êde

b , (15)

with the gain matrix given by

K̂e = BĤeT
(ĤeBĤeT + R̂)−1, (16)

and the innovation vector d̂e
b = ŷ − Ĥexb, analogous to (5) in

the perfect model case. The corresponding error in the analysis is
evaluated as

εe
a = xae

0 −xt
0 = xb+K̂êde

b−xt
0 = εb+K̂êde

b . (17)

We take the statistical expectations of εe
a to calculate the mean of

the error in the analysis giving <εe
a >= 0, using the assumptions

that the background error, observation errors and model errors
all have a zero mean. The corresponding analysis-error covariance
matrix is

Ae =<εe
a(εe

a)T > = (I − K̂eĤe)B+K̂eQ̂∗(K̂e)T, (18)

where Q̂∗ = R̂∗ − R̂, using the assumption that the background
errors, observation errors and model errors are uncorrelated
(Appendix B gives a more detailed derivation of (18)).

3. An alternative 4D-Var approach

In this section we derive an alternative 4D-Var approach that
amends the 4D-Var cost function (4) in order to correctly account
for the error statistics when unbiased random error is present
in a model. We demonstrate that, by using a combined model-
error and observation-error covariance matrix to replace the
observation-error covariance matrix in the 4D-Var cost function
(4), we improve the accuracy of the analysis when error of a
random nature is present in a model. Subsequently we use a simple
scalar example to investigate the sensitivity of the improvement
to analysis accuracy with respect to the size of the model error,
background error and observation error.

To recapitulate, when a perfect model is used in the SC4DVar
cost function (4), the error to be accounted for in the J o term
is simply the observation-error covariance matrix R̂. However,
when an erroneous model of the form (7) is used in the strong-
constraint 4D-Var cost function (4), the error to be accounted
for in the J o term is the combined model-error and observation-
error covariance matrix R̂∗ given by (14). Compared with R̂, the
matrix R̂∗

• contains an additional term, Q∗
(i,i), as described by (13),

on the block diagonal submatrices R∗
(i,i). From (13) we see

that this is an accumulation of the model error over the
assimilation time window;

• contains off-diagonal block covariance submatrices, Q∗
(i,k),

as described by (13). This is the presence of time
correlations caused by the accumulation of error in the
model trajectory.

We propose that use of the combined model-error and
observation-error covariance matrix R̂∗ (14), as opposed to R̂,
in the cost function (4), will statistically improve the analysis
accuracy when random error is present in the model.

3.1. Improvements to analysis accuracy

The analysis when the erroneous model (7) is used within the
SC4DVar cost function (4) and the error in the model is accounted
for, by using R̂∗ as opposed to R̂, is

xa∗
0 = xb + K̂∗d̂ ∗

b , (19)

with the gain matrix K̂∗ = BĤeT
(ĤeBĤeT+R̂∗)−1 and the

innovation vector d̂ ∗
b = ŷ − Ĥexb, which is the same as d̂e

b defined
previously. The corresponding error in the analysis is evaluated
as

ε∗
a = xa∗

0 −xt
0 = xb+K̂∗d̂ ∗

b −xt
0 = εb+K̂∗d̂ ∗

b . (20)

We take the statistical expectation of ε∗
a to calculate the mean of the

error in the analysis giving <ε∗
a >= 0, using the assumption that

the background errors, observation errors and model errors all
have a zero mean. We next evaluate the analysis-error covariance
matrix,

A∗ =< ε∗
a(ε∗

a)T >= (I − K̂∗Ĥe)B, (21)

using the assumption that the background errors, observation
errors and model errors are uncorrelated (Howes, 2016).

Replacing R̂ by R̂∗ leads to the analysis-error covariance matrix
A∗ (21) having the same form as the analysis-error covariance
matrix of the SC4DVar estimate in the absence of model error,
given by (6). This suggests that the analysis solution (19) is
the optimal minimum variance estimate of the linear strong-
constraint 4D-Var problem, when the model has error of a
random nature at each time step, and therefore implies that the
analysis xa∗

0 (19) is more statistically accurate than the analysis xae
0

(15).
An important point to be noted is that when model error is

not accounted for, the analysis error covariance matrix Ae (18)
is unbounded. As the model error increases, the diagonal of the
matrix term K̂eQ̂∗(K̂e)T present in (18) increases and therefore
the error variances of the analysis variables increase. If the model
error is large, it is feasible that the analysis is less accurate than
the background. However the analysis-error covariance matrix
A∗ (21) is bounded by the background-error covariance matrix B.
As the model error increases, the analysis-error covariance matrix
A∗ tends to the background-error covariance matrix B. Note that,
although A∗ can tend to the background-error covariance matrix
B, it cannot be equal A∗ �= B for non-zero B and R̂∗.

Model error can be regarded as a representivity-like error,
which can be defined loosely as an error in the generalized operator
Ĥ. The method we have developed can therefore be related to
those developed to account for other sources of representivity
error, such as errors that result from the discretized model state
not being able to represent the fine scales that the observation
measures (Hodyss and Nichols, 2015; Li et al., 2015). These two
different types of representivity error can affect the comparison of
observations with the model state mapped to observation space,
although the source and structure of the two errors are very
different, and so need to be treated separately.

3.2. Simple scalar example

We now investigate how changes in the accuracy of the model,
observations and background respectively affect the increase
in accuracy obtained when using combined model-error and
observation-error statistics as opposed to observation-error
statistics alone. Consider an erroneous linear scalar model over
one time step of the form xi = βe

i xi−1, with the erroneous model
constant βe

i ∈ R describing the evolution of the model state from
time ti−1 to time ti. To obtain the true model state at time ti,

xt
i = βe

i xt
i−1 + ηi, (22)

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

Q. J. R. Meteorol. Soc. (2017)



Accounting for Model Error in 4D-Var

β e=0.5

–2 –1 0

log
10

(σ
b
2/σ

o
2)

–2

–1.5

–1

–0.5

0

(a) (b) (c)

lo
g

10
(σ

q2
/σ

o2
)

β e=1

–2 –1 0

log
10

(σ
b
2/σ

o
2)

–2

–1.5

–1

–0.5

0

lo
g

10
(σ

q2
/σ

o2
)

β e=2

–2 –1 0

log
10

(σ
b
2/σ

o
2)

–2

–1.5

–1

–0.5

0

lo
g

10
(σ

q2
/σ

o2
)

1.05

1.1

1.15

1.2

Figure 1. Ratio of analysis error variance, σ e2
a /σ ∗2

a (27), for three different values of the erroneous model, x1 = βex0, with (a) βe = 0.5, (b) βe = 1.0 and (c) βe = 2.0.

where ηi is random error normally distributed around a zero
mean with variance σ 2

qi. Consider a direct observation yi of the
model state (observation operator hi = 1) with error normally
distributed around a zero mean with variance σ 2

oi and a
background model state xb at time ti−1 with error normally
distributed around a zero mean with variance σ 2

b . We consider
only two times; the background time ti−1 and the observation
time ti, therefore to simplify notation we set i = 1. The analysis
when the erroneous linear scalar model x1 = βex0 is used within
the strong-constraint 4D-Var cost function (4) and the error in
the model is not accounted for is

xae
0 = xb + ke db, (23)

where the gain constant ke = σ 2
b βe(σ 2

b βe2+σ 2
o )−1 and the

innovation db = y1−βexb. Using (14), we evaluate the combined
error variance σ ∗2

o = σ 2
o + σ 2

q . When the erroneous linear scalar
model x1 = βex0 is used within the strong-constraint 4D-Var
cost function (4) and the error in the model is accounted for by
replacing σ 2

o with σ ∗2
o , the analysis is

xa∗
0 = xb + k∗db, (24)

where the gain constant k∗ = σb
2βe(σb

2βe2+σo
∗2)−1. Note

k∗ ≤ ke.
In this scalar framework, it is simple to show that the analysis-

error variances when not accounting for model error, σ e2
a , will

always be greater than or equal to the analysis-error variances
when the model error is correctly accounted for, σ ∗2

a . The analysis-
error variances when not accounting for model error can be
evaluated using (18):

σ e2
a = (1 − keβe)σ 2

b + (ke)2σ 2
q . (25)

The analysis-error variances when the model error is correctly
accounted for can be evaluated using (21):

σ ∗2
a = (1 − k∗βe)σ 2

b . (26)

The ratio of the error variance in the analysis outputs, σ e2
a /σ ∗2

a , is

σ e2
a

σ ∗2
a

= r2
b − keβer2

b + (ke)2r2
q

r2
b − k∗βer2

b

≥ 1 (27)

where r2
b = σ 2

b /σ 2
o , and r2

q = σ 2
q /σ 2

o . This ratio (27) is plotted in

Figure 1 as a function of r2
b and r2

q. We see that, as the magnitude
of the model error variance increases, the difference between
σ e2

a and σ ∗2
a also increases as expected. We also see that the

difference between σ e2
a and σ ∗2

a increases initially as r2
b increases.

This is because, as the observation error becomes smaller than

the background error, the difference between the two schemes
and the weight they give the observations is more apparent. The
peak in the value of σ e2

a /σ ∗2
a as a function of r2

b is seen to depend
on the value of βe, because the observation is at a different time
to the background, e.g. a dispersive model (βe < 1, Figure 1(a))
reduces the apparent background error at the observation time.
However, as r2

b tends to infinity, we see from (27) that σ e2
a /σ ∗2

a
tends to 1 as in this case the Kalman gains for methods ke and k∗
both tend to 1/β and so the analyses are identical.

The proposed method relies on the specification of the model-
error covariance, which is assumed to change throughout time. In
practice model-error statistics are difficult to estimate. However, a
key advantage of the proposed method is that an explicit estimate
of Qi is not needed, as the algorithm only needs the combined
observation- and model-error covariances in the (often reduced)
observation space. Therefore, we next present a method for
estimation of the combined model-error and observation-error
statistics required for specification in R̂∗ (14).

4. Estimation of the combined model-error and observation-
error statistics

We now return to the general multi-dimensional problem. The
definitions of observation error (1) and background error (2)
along with (9) enables the innovation involving the erroneous
model at each time ti to be defined as

(d ∗
b )i = yi − HiM

e
0→ix

b

= εoi − HiM
e
0→iεb + Hi

i∑
j=1

Me
j→iηj. (28)

We calculate the expectation of the following innovation product,

E[(d ∗
b )i(d ∗

b )k
T]

=< (yi−HiM
e
0→ix

b)(yk−HkMe
0→kxb)T >

=< (εoi−HiM
e
0→iεb+Hi

i∑
j=1

Me
j→iηj)

(εok−HkMe
0→kεb+Hk

k∑
j=1

Me
j→kηj)

T >, (29)

for times ti and tk using (28). The definition of R∗
(i,k) as defined

in (11) allows us to deduce

E[(d ∗
b )i(d ∗

b ) T
k ] = R∗

(i,k)+HiM
e

0→iBMe
0→k

THk
T. (30)

Assembling the entries at all observation times into the vector d̂ ∗
b

we have

E[̂d ∗
b (̂d ∗

b )T] = R̂∗ + ĤeB ĤeT
, (31)
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where R̂∗ is defined by (14). Therefore if the evolution of the
background-error covariance matrix throughout the assimilation
time window can be computed, we have a way to explicitly
estimate R∗:

R̃∗ = E[̂d ∗
b (̂d ∗

b )T] − ĤeBĤeT
, (32)

where the tilde indicates that this is an estimate.
For a more detailed derivation of the estimated combined

model-error and observation-error covariance matrix R̃∗ (32), we
refer to Howes (2016). Note that this estimation R̃∗ (32) assumes
an accurate specification of the background-error statistics in B.
To gain a sample of innovation vectors d ∗

b we require a sample
from the observation error and background error (distributions
of both can be assumed to be known) and from the model
error (distribution unknown). One possible way to gain a sample
of model error is to make use of ensemble prediction systems,
such at those that have been developed at the Met Office and
ECMWF, which represent random error in the model forecast
using stochastic physics (Buizza et al., 1999; Shutts, 2015; Brankart
et al., 2015). However, this alone may not be enough to represent
the full model error.

To evolve the B-matrix to the time of the observations, we
propose using the randomization technique to estimate the
diagonal elements of HMBMTHT, as conducted previously in
experiments at ECMWF using the atmospheric forecasting model
(Andersson, 2003). This same methodology can be extended and

applied to evaluate the diagonal elements of ĤeBĤeT
required

in (32). Therefore use of (32) is potentially operationally feasible
in areas of high observational frequency, as long as we restrict
ourselves to estimating the diagonal elements of the combined
error matrix R̂∗ only. In section 6, it is shown that neglecting
the effect of model-error covariances still leads to more accurate
analysis than not accounting for model error at all.

5. Dynamical models

In this section we introduce two dynamical models which will be
used to demonstrate the methods we have developed in this article.
Specifically we present the linear advection equation, followed by
a nonlinear idealized coupled atmosphere–ocean model.

5.1. Linear advection equation

The one-dimensional linear advection equation is used to model
the transportation of a scalar quantity u(x, t) carried along by a
flow with constant speed v in one direction,

∂u

∂t
+ v

∂u

∂x
= 0, (33)

where x and t are independent variables representing space and
the time respectively. Although this model is far more simplistic
than any operational model representing the dynamics of the
atmosphere or ocean, the model dynamics (33) can be interpreted
to represent an idealized description of a passive tracer transported
in the atmosphere in one direction by a constant flow, e.g. water
vapour carried along by a constant light breeze. The partial
differential equation (PDE) (33) does not describe the shape of
the passive tracer, only its movement in space and time. We
use the spatial domain x ∈ [0, 10) and describe the shape of the
passive tracer u(x, t0 = 0) at the initial time as (Causon and
Mingham, 2010),

f (x) =
{

exp
{−(x − x0)2

}
for 2.5 ≤ x ≤ 7.5,

0 otherwise,
(34)

which is an exponential function centred around x0 = 5. The PDE
(33) can be solved analytically, subject to the initial conditions

(34). Equation (33) is solved numerically over the time domain
t ∈ [0, 1] with periodic boundary conditions. The Crank and
Nicolson (1947) scheme is an implicit method that computes
a second-order approximation of the spatial derivative and a
first-order approximation of the time derivative. We use this
unconditionally stable method, with the spatial step �x = 0.1 and
time step �t = 0.1 resulting in a time-stepping approximation
of the PDE (33).

5.2. Idealized coupled atmosphere–ocean model

The idealized coupled atmosphere–ocean model we use was
developed by Molteni et al. (1993) and is given by

dx

dt
= −σx + σy + αv,

dy

dt
= −xz + rx − y + αw,

dz

dt
= xy − bz,

dw

dt
= −	v − k(w − w∗) − αy,

dv

dt
= 	(w − w∗) − kv − αx,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(35)

with parameter values σ = 10, r = 30, b = 8/3, k = 0.1, 	 =
π/10, w∗ = 2 and coupling parameter α = 1 as specified by
Dubois and Yiou (1999). With the coupling parameter α = 0, the
atmosphere is represented by the Lorenz 63 equations (Lorenz,
1963) with the state variables x, y and z and the ocean is
represented by two linear equations with the state variables
w and v. However, with the coupling parameter α = 1, the
atmosphere variables x and y are coupled with the ocean variables
v and w. The coupled model (35) describes the relationship
between convection in the atmosphere and the influences that
the sea surface temperature (SST) has on the convection in the
atmosphere, as interpreted by Dubois and Yiou (1999). The
atmospheric variables describe properties in a layer of fluid
of uniform depth in the atmosphere. The atmospheric state
variable x is proportional to the intensity of convective motion.
The temperature difference between ascending and descending
currents is proportional to the atmospheric state variable y. The
atmospheric state variable z is proportional to the distortion of the
vertical temperature profile from linearity. The model variables w
and v represent equatorial SST anomalies’ influence on the global
system. The coupling parameter α can be interpreted as heat flux
at the atmosphere–ocean interface. We apply the Runge–Kutta
second-order scheme (Stuart and Humphries, 1998) to provide a
time-stepping approximate solution to the coupled ordinary
differential equations (ODEs) (35) with the fixed time step
�t = 0.01.

6. Numerical experiments

6.1. Linear advection equation

We first perform experiments using the linear advection equation
to demonstrate the success of the sampling method to estimate
the combined observation- and model-error covariances. In this
linear system, this matrix can also be calculated explicitly using
(12) and (13).

Let the erroneous linear model be the time-stepping solution of
the linear advection equation over the spatial domain x ∈ [0, 10),
as described in section 5.1. The true model state at each time
ti differs from the erroneous model state by random error
ηi, as defined by (8). For simplicity, we define the structure
of the model-error covariance matrix Qi to be diagonal with
variance σq

2 = 0.01 at each model time step. The background-
error correlations are given by the second-order auto-regressive
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Figure 2. Combined model-error and observation-error covariance matrix R∗
(i,i) ∈ R

100×100 at each observation time ti: (a) i = 2, (b) i = 4, (c) i = 6, and (d) i = 8,
calculated explicitly using (14). (e)–(h) show the central (51st) row of R∗

(i,i) calculated explicitly using (14) –black line – and the central row of R̃∗
(i,i) estimated from

(32) using sample data – red dotted line – both for the corresponding observation times ti (i = 2, 4, 6, 8).

(SOAR) function with correlation length-scale L = 0.4, where
the SOAR correlation function is given by

ck = (1 + rk/L)e−rk/L, (36)

where rk is the separation of two points. The background-
error variances are set to σ 2

b = 0.04. We assume we have direct
observations yi of all spatial points every two time steps over an
assimilation window length of eight time steps. The observation-
error covariance matrices are specified to be Ri = σ 2

o I (for
i = 2, 4, 6, 8) with variance σ 2

o = 0.04.

6.1.1. Estimation of the combined error statistics

In this example, the combined model-error and observation-error
statistics R∗

(i,i) ∈ R
100×100 at observation times ti (i = 2, 4, 6, 8)

are calculated using the explicit equation (14), with the results
shown in Figures 2(a)–(d)). These matrices maintain a diagonal
structure at all observation times, due to the diagonal structure
of Q and R and the linear nature of the model. At each
subsequent observation time, the variances in the combined
error matrix increase, in this case σ ∗2

o = 0.06 at t2, σ ∗2
o = 0.08

at t4, σ ∗2
o = 0.10 at t6 and σ ∗2

o = 0.12 at t8. This represents the
increase in uncertainty of the model trajectory throughout the
assimilation window, due to the errors present in the model.

We next estimate the same error covariance matrices R̃∗
(i,i)

(i = 2, 4, 6, 8) with (32). To do this we need to set up a numerical
environment where the required sample innovation data are
available. We take the true initial conditions of the model state
as defined in (34) and from this compute the true trajectory
which contains an additive stochastic term as in (8). We repeat
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Table 1. The RMSE of the matrix elements between R∗
(i,i) and R̃∗

(i,i) for each
observation time ti (i = 2, 4, 6, 8).

Time step RMSE

t2 0.0014
t4 0.0017
t6 0.0020
t8 0.0023

the following steps 5000 times to produce a sample size of 5000
background values, model error vectors and observations:

1. Produce a background vector xb by adding noise, consistent
with the statistics prescribed in B, to the true initial state
xt

0.
2. Produce a random model error vector ηi for each time

t1, ..., t8 using the statistics specified in the model error
covariance matrices Qi.

3. Produce a vector of observations yi at each observation
time ti (i = 2, 4, 6, 8) by evaluating the true model state
vector xt

i with (8) and adding noise consistent with the
error statistics specified in Ri.

This process gives us a sample size of 5000 innovation vectors
(d ∗

b )i for the estimation of R̃∗
(i,i) ∈ R

100×100 at each observation
time ti (i = 2, 4, 6, 8) in (32). The estimation is found to be
very successful in representing the structure and values of the
combined error covariance matrix. For example, the difference
between the central (51st) row of R∗

(i,i) and R̃∗
(i,i) for each time ti

(i = 2, 4, 6, 8) can clearly be seen in Figures 2(e)–(h). The overall
root mean square errors (RMSEs) between R∗

(i,i) and R̃∗
(i,i) for

each time ti (i = 2, 4, 6, 8) are shown in Table 1. These RMSEs are
of an order of magnitude less than the specified error variances
in B, Ri and Qi and are only non-zero due to sampling error.
Note that the larger the sample size, the smaller sampling error.
Although the R̃∗ matrix we are estimating at each observation
time only contains diagonal elements, we are not making use of
this information and so a sample size of 5000 is relatively small in
comparison to the 10 000 entries we are estimating.

6.1.2. Use of combined error statistics in 4D-Var

We now demonstrate that the replacement of the observation-
error covariance matrix R̂, with combined error statistics in R̂∗,
leads to an analysis of greater statistical accuracy when random
error is present in the linear advection equation. Note that
in these experiments the time correlations in the accumulated
model error are not taken into account. We use the numerical
set-up as described previously at the start of section 6.1. We

Table 2. List of data assimilation conditions for error covariance matrices used in
strong-constraint 4D-Var with the linear advection equation with random error.
Both Qi and Ri are diagonal matrices, whereas B is constructed using the SOAR

function with correlation length-scale L = 0.4.

Conditions Covariance Variance
matrix

A Qi 0.01
B 0.04
Ri 0.04

B Qi 0.01
B 0.04
Ri 0.0016

C Qi 0.04
B 0.04
Ri 0.04

define two data assimilation methods which will be performed
and compared.

• Method 1: the evaluation of the analysis xae
0 using (15), i.e.

not accounting for model error,
• Method 2: the evaluation of the analysis xa∗

0 by replacing
R̂ in the 4D-Var cost function (4) with the block
diagonal combined error covariance matrices R∗

(i,i) (14)
for observation times i = 2, 4, 6, 8.

We conduct the following steps 100 times to produce a sample
size of 100 analysis values xa

0 for Methods 1 and 2:

1. Produce a background vector xb by adding noise, consistent
with the statistics prescribed in B, to the true initial state
xt

0.
2. Produce a random model error vector ηi for each time

t1, ..., t8 using the statistics specified in the model error
covariance matrix Qi (i=1,...,8).

3. Produce a vector of observations yi at each observation
time ti, (i =2, 4, 6, 8) by evaluating the true model state
vector xt

i with (8) and adding noise consistent with the
error statistics specified in Ri (i=2, 4, 6, 8).

4. Compute both the analysis xa∗
0 and the analysis xae

0 as
described by Method 1 and Method 2 respectively.

The RMSE for the sample of analysis outputs from Method 1 and
Method 2 are calculated and compared. The resulting analysis
RMSEs, using the three conditions as specified in Table 2, are
shown in Figure 3(a). When accounting for the model error, in
Method 2 with R∗

(i,i) (i = 2, 4, 6, 8), a more accurate analysis is
obtained in each case. The combined error covariance matrix at
each observation time is diagonal with the increasing variances, as
can be seen in Figures 2(a)–(d) for conditions A. This represents

C
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Figure 3. Analysis RMSE from a sample of 100 data assimilation runs, for both Method 1 (not accounting for the model error) and Method 2 (accounting for model
error with the combined error covariance matrix R̂∗ (14)): (a) at the beginning of the assimilation window and (b) at the end of the assimilation window.
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Figure 4. Comparison of the analysis from both Method 1 (not accounting for the
model error) and Method 2 (accounting for the model error with the combined
error covariance matrix R̂∗ (14)) for Conditions B. [Colour figure can be viewed
at wileyonlinelibrary.com].

the increase in uncertainty of the model trajectory throughout
the assimilation window, due to the errors present in the model.
Therefore the data assimilation scheme puts less weight on the
comparison of the observations with the model evolved state as
time increases and hence allows a more accurate estimation of the
initial conditions. We illustrate the analysis outputs (Method 1
and Method 2) from one data assimilation cycle (from the
sample) in Figure 4 for conditions B. From this figure we see that
by accounting for model error (comparing dashed and dash-dot
lines) the shape of the initial function is smoother.

6.1.3. Sensitivity of results

Work in section 3.2 showed that, for a scalar model, there is a more
significant increase in analysis accuracy (of xa∗

0 compared with xae
0 )

when the observations increase in accuracy (in comparison with
the background accuracy) and when the size of the model error
increases. These conclusions are not limited to models of a scalar
nature and we demonstrate that these properties also hold when
using the linear advection equation with random error in 4D-
Var. Firstly, if we reduce the standard deviation of the observation
errors by a factor of five so that Ri = 0.0016I (i =2, 4, 6, 8), as
shown by conditions B in Table 2, the corresponding combined
error covariance matrix at each observation time is diagonal with
the variances in the combined error matrix increasing with time.
In this case σ ∗2

o = 0.0216 at t2, σ ∗2
o = 0.0416 at t4, σ ∗2

o = 0.0616
at t6 and σo

∗2 = 0.0816 at t8. The resulting analysis RMSE for
Method 1 and analysis RMSE for Method 2 are shown in the
central two bars of Figure 3(a). These results demonstrate that
an increase in observation accuracy leads to a more significant
increase in analysis accuracy, when accounting for the model
error as opposed to not (in comparison to conditions A). An
interesting remark is that, when the model error is not accounted
for, this increase in observation accuracy causes a degradation in
the analysis xae

0 , as can be seen comparing Method 1 results from
experiment B with Method 1 results from A. When Method 1
is used, a decrease in observation variance results in an analysis
in which the trajectory of the erroneous model is confined to
be closer to the observations, even at the end of the assimilation
window, and so the effect of the model error is magnified.
However, when accounting for the model error in the analysis
xa∗

0 in Method 2, an improvement is made to the analysis when
the observations are of increased accuracy. With Method 2 the
analysis is able to benefit from the increased accuracy of the
observations.

Next we increase the standard deviation of the model error
variance by a factor of two so that Qi = 0.04I (i = 1, ...., 8), as
stated by conditions C in Table 2. The corresponding combined
error covariance matrix at each observation time is diagonal with
the variances in the combined error matrix increasing over time.
In this case σ ∗2

o = 0.12 at t2, σ ∗2
o = 0.20 at t4, σ ∗2

o = 0.28 at t6

and σ ∗2
o = 0.36 at t8. The resulting analysis RMSEs are shown in

Figure 3(a) (right two bars), where the analysis xa∗
0 from Method 2

is again more accurate than when not accounting for the model

error in the Method 1 analysis xae
0 . When not accounting for this

significant increase in model error, there is a notable decrease in
analysis accuracy. However, when accounting for this significant
increase in model error, using the combined error covariance
matrix, this has minimal effect on the accuracy of the analysis xa∗

0 ,
as can be seen comparing the analysis RMSE from experiment A
with the analysis RMSE from experiment C.

In Figure 3(b) it is seen that, despite the increased accuracy of
the analysis, the RMSE at the end of the assimilation window is
slightly worse for Method 2 than for Method 1. This is because
the analysis derived using Method 1 is more constrained to the
observations at the end of the assimilation window than the
analysis derived using Method 2. In the next section we will show
the implications of this for the accuracy of a forecast beyond the
assimilation window using the nonlinear model.

We have demonstrated the work in section 3.2 for a
scalar model, showing that there is a significant increase in
analysis accuracy when the observations increase in accuracy (in
comparison with the background accuracy) and when the size of
the model error increases; this also holds when using a non-scalar
erroneous linear model. We next extend our investigation to use
an erroneous model of a nonlinear nature.

6.2. Idealized coupled atmosphere–ocean model

We now demonstrate that use of combined model-error and
observation-error statistics can account for random error in a
model of a nonlinear nature and hence improve the analysis
accuracy. We use the discretized solution to the idealized coupled
atmosphere–ocean model, as described in section 5.2, as our
nonlinear erroneous model of the form

xi = Me{i−1}→i(xi−1), i = 1, 2, .., 50, (37)

where xi = (xi yi zi wi vi)T is the model state vector. The true
model state can be obtained at time ti as

xt
i = Me{i−1}→i(xt

i−1) + ηi, (38)

where the vector of model error ηi ∼ N (0, Qi). The forms of the
erroneous model (37) and true model (38) are the same as (7)
and (8) used in derivation of both the combined model-error and
observation-error covariance matrix R̂∗ (14) and the estimated
combined error covariance matrix R̃∗ (32), with the exception
that here nonlinear model equations are used, as opposed to linear
model matrices. One of the key objectives in this section is to show
that the theory developed with linear models is also successfully
applicable using models of a nonlinear nature. We have discussed
the capabilities of NWP centres, such as ECWMF, to estimate
the diagonal entries of the background model-error covariance
matrix evolved using the model matrix and subsequently mapped
to observation space using the randomization method. If our
developed method to compute R̃∗ (32) were to be implemented
operationally using similar randomization techniques, then only
the diagonal elements would be specified in the combined error
covariance matrix. Therefore, we wish to show in our numerical
experiments with the idealized erroneous model (37) that, even
when only the diagonal elements of the combined error covariance
matrix are calculated and used within the data assimilation
process, improvements to the analysis accuracy can be obtained.
Specifically, this ignores the presence of time and multivariate
cross-correlations in both the observation error and model error.

For experiments in this section we use an assimilation window
length of 50 time steps. We define the true initial conditions:
xt

0 = −3.4866, yt
0 = −5.7699, zt

0 = 18.341,
wt

0 = −10.7175 and vt
0 = −7.1902,

which are on the coupled model attractor. We initially specify the
model-error covariance matrix Qi at each time ti (i = 1, 2, ..., 50)
to be diagonal, with variances along the diagonal set to 0.02,
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Figure 5. Diagonal elements of R̂∗ (red stripes) and R̃∗ (green diamonds), compared with the observation-error covariance matrix Ri (blue), at all observation time
steps t10, t20, t30, t40, t50, for each of the variables in the idealized coupled nonlinear model: (a) x, (b) y, (c) z, (d) w, and (e) v.

0.02, 0.2, 0.01, 0.01. With this level of model error variance, the
general behaviour of the coupled model is maintained, but there
are significant variations in the model trajectories of both the
atmospheric and oceanic model state variables throughout the
time window. We initially specify a diagonal background-error
covariance matrix B with standard deviations approximately 10%
of the true initial conditions (specifically variances 0.1, 0.3, 3.4, 1.1
and 0.52 along the diagonal). We have direct observations of each
model state variable present every 10 time steps with observation
operator Hi = I. The observation-error covariance matrix Ri is
diagonal at each observation time ti in the assimilation window,
initially set with standard deviations approximately 2% of the
maximum absolute value of each respective variable. Specifically
Ri contains the values 0.09, 0.09, 0.81, 0.04, 0.04 along the
diagonal.

6.2.1. Estimation of the combined error statistics

We compare the diagonal entries of the combined error covariance
matrix R̂∗ computed using (14) with the diagonal entries of R̃∗
estimated using (32) with sample innovation data. The elements
of R̂∗ calculated directly with (14) require linearization of the
nonlinear model (37) around the true model state trajectory, while
the diagonal entries of R̃∗ are estimated with (32), which requires
linearization of the nonlinear model (37) which is conducted
around the background model state trajectory. The estimation of
R̃∗

i uses a sample size of 1000 innovations at each observation time
ti (i = 10, 20, 30, 40, 50). Figure 5 compares the diagonal entries
(variances) of the three matrices R̂, R̂∗ and R̃∗ at the observation
times ti (i = 10, 20, 30, 40, 50). The observation error covariance
matrix Ri is static throughout the window, whereas the variances
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Figure 6. Analysis RMSE (left column), the subsequent RMSE of the analysis trajectories over the assimilation window (middle column) and the RMSE of the forecast
trajectories beyond the assimilation window over 50 time steps (right column). Results are from applying Methods 1, 2 and 3 over a sample of 100 data assimilation
runs using the covariance specified in Table 3 for (a) Conditions I, (b) Conditions II, (c) Conditions III, (d) Conditions IV, and (e) Conditions V.

in the combined error covariance matrix R̂∗ computed directly
with the formulae (14) are significantly larger as time increases,
accounting for the uncertainty in the model state trajectories
caused by the errors in the model. Note that the variances
estimated in the combined model-error and observation-error
covariance matrix R̃∗ do not always increase with time, as can be
seen for the atmospheric variables x, y and z in Figure 5. Whether
R̂∗ or R̃∗ contain the most appropriate combined model-error and
observation-error statistics to use in the 4D-Var cost function is an
area of future work. The estimate R̃∗ uses a sample of innovations
and therefore better recognises the spread of the model error at
each specific observation time. However, the estimate R̃∗ also uses
the linearization of the nonlinear model around the background
model state trajectory (as opposed to the true model trajectory)
and this could have a detrimental effect on the estimation of
the combined statistics. Another key point to note is that the
variances evaluated in R̂∗ and estimated in R̃∗ are much closer in
value for the ocean variables than the atmospheric variables. The
reason for this is that the theory for the derivation of R̂∗ (14) and
estimation of R̃∗ (32) is based on the use of linear models and
the ocean variables w and v are of a less chaotic nature than the
atmospheric variables x, y and z, which are of a highly nonlinear
chaotic nature. In the next section we perform strong-constraint
4D-Var, firstly not accounting for the error in the erroneous
idealized coupled model, and compare the analysis outputs with
strong-constraint 4D-Var performed when accounting for the
error in the model.

6.2.2. Use of combined error statistics in 4D-Var

We define three data assimilation methods that vary depending on
the error covariance matrix used in the J o term of the nonlinear
4D-Var cost function.

• Method 1: the evaluation of the analysis xae
0 using the

nonlinear 4D-Var cost function with no changes;
• Method 2: the evaluation of the analysis xa∗

0 by replacing
R̂ in the nonlinear 4D-Var cost function with the diagonal
entries of the combined error covariance matrix R̂∗ (14);

• Method 3: the evaluation of the analysis xa∗
0 by replacing

R̂ in the nonlinear 4D-Var cost function with the diagonal
entries of the estimated matrix R̃∗ (32) from sample
innovation data.

In the left column of Figure 6, the analysis RMSE from a
sample of 100 analyses is plotted when using the three different
methods for each state variable. The five different covariance
conditions are specified in Table 3 (note that Conditions I
correspond to the covariances used in the previous subsection).
The results show, in general, a significant reduction in analysis
error for all model state variables when combined model-error
and observation-error statistics are used in the strong-constraint
4D-Var cost function, compared with observation-error statistics
only. When compared with the observation-error variances (used
in Method 1), both the error variances in R̂∗ (Method 2) and
the estimated error variances in R̃∗ (Method 3) give less weight
to the comparison of the model evolved state with observations,
due to the uncertainty in the model trajectory. Let us focus
first on Figure 6(a), Conditions I. The reduction in analysis
RMSE, when accounting for the model error, is largest for the
atmospheric variables y and z. We hypothesise that this is down
to two factors: the first is the ratio between the background-error
and observation-error variances and the second is the size of the
model error. We will investigate this further in section 6.2.3. We
find that accounting for errors in the model with the combined
error statistics reduces the number of minimization iterations
required to reach the tolerance level. This is demonstrated in this
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Table 3. List of error covariance matrices used in strong-constraint 4D-Var with the erroneous idealized coupled atmosphere–ocean model.

Covariance Variance Variance Variance Variance Variance
matrix for x for y for z for w for v

Conditions I Qi 0.02 0.02 0.2 0.01 0.01
B 0.1 0.3 3.4 1.1 0.52
Ri 0.09 0.09 0.81 0.04 0.04

Conditions II: Qi 0.005 0.005 0.05 0.0025 0.0025
decrease in model error B 0.1 0.3 3.4 1.1 0.52

Ri 0.09 0.09 0.81 0.04 0.04
Conditions III: Qi 0.08 0.08 0.8 0.04 0.04
increase in model error B 0.1 0.3 3.4 1.1 0.52

Ri 0.09 0.09 0.81 0.04 0.04
Conditions IV: Qi 0.5 0.5 5.0 0.25 0.25
further increase in model error B 0.1 0.3 3.4 1.1 0.52

Ri 0.09 0.09 0.81 0.04 0.04
Conditions V: Qi 0.02 0.02 0.2 0.01 0.01
decrease in observation accuracy B 0.004 0.012 0.136 0.044 0.0208
and increase in background accuracy Ri 2.25 2.25 20.25 1.0 1.0

case with the number of minimization iterations reducing from
12 for Method 1, to 10 for both Method 2 and Method 3. This
is because the increase in variances in the 4D-Var cost function
leads to the erroneous model trajectory no longer being so tightly
constrained to the observations, and therefore a solution is more
easily found. This work can be related to that of Haben et al.
(2011), where it was shown that the 4D-Var problem becomes
better conditioned, and therefore involves fewer minimization
iterations, with increased observation error variances.

An increase in analysis accuracy does not necessarily lead to an
increase in forecast accuracy. This is demonstrated in Figure 6,
which shows the RMSE of the analysis trajectories throughout
the assimilation window (middle column) and the RMSE of
the forecast trajectories beyond the assimilation window over 50
time steps (right column). When we include the model-error
statistics in the combined error covariance matrix, we are letting
the analysis model trajectory depart further from the observations
(which are measuring the truth). Even if the true initial conditions
were used, we would expect a poor forecast due to the use of the
erroneous model. In contrast, SC4DVar when not accounting for
model error tries to fit all observations throughout the window,
and so the poor analysis at the initial time compensates for the
model error to give an improved forecast at a later time; this effect
has also been noted by Fowler and Lawless (2016) and Griffith
and Nichols (2000).

6.2.3. Sensitivity of results

Work with an erroneous scalar model in section 3.2 showed that
there was the most improvement to the analysis accuracy when
replacing the observation-error statistics in the cost function with
combined error statistics, in the presence of large model-error
variance and a large background-error variance in comparison
with the observation-error variance. Next we investigate whether
these characteristic features hold with use of the erroneous
nonlinear model (37) in SC4DVar.

We investigate the effect of increasing and decreasing the size of
the model error on the analysis accuracy. We previously defined
Qi at each time ti using Conditions I in Table 3. We reduce the
standard deviations of the model error for each of the model
state variables by a factor of two and label these Conditions II,
whereas in Conditions III we increase the model error standard
deviations by a factor of two. Conditions IV are the initial model
error standard deviations increased by a factor of five. For each of
the Conditions II, III and IV we recalculate the diagonal entries in
R̃∗

i at observation times (i =10, 20, 30, 40, 50) with a sample size
of 1000 and subsequently conduct 100 strong-constraint 4D-Var
runs. Each individual data assimilation run uses independent
model error vectors, vectors of observations and background

vectors and minimizes the nonlinear 4D-Var cost function using
Methods 1, 2 and 3. This produces 100 analysis vectors for each
method. The results are shown in Figures 6(b)–(d).

Comparing the levels of model error within the data
assimilation process, where Conditions II is lowest and is
Conditions IV highest, we demonstrate that the larger the model
error, the more significant the increase in accuracy is when
accounting for the model error (Methods 2 and 3), as opposed
to when not (Method 1). The number of iterations that the
minimization algorithm performs is lower when accounting for
model error than when not accounting for model error. We
also note, similarly to the previous experiment, that an increase
in analysis accuracy does not necessarily lead to an increase in
forecast accuracy. In Figures 6(b)–(d), it is seen that the larger
the model error, the greater the degradation in the forecast when
using Methods 2 and 3 than with Method 1.

The last of these experiments was conducted with very large
model error variances (Conditions IV in Table 3). The decrease
in analysis RMSE, when using the estimated combined error
variances in Method 3, is very significant (Figure 6(d)). We
re-emphasise that this remarkable improvement to the analysis
accuracy is due to the specification of the diagonal entries in the
estimated matrix R̃∗ (32) which did not require explicit knowledge
of the model-error statistics in Qi. We also have disregarded any
cross-covariance information in R̃∗, as we are only using the
diagonal entries in these experiments. The impact of including
this information in R̃∗ could produce even further improvement
in the analysis accuracy and is an area of further work.

The ratio between the accuracy of the background error
and observation error is also important when investigating the
difference between the accuracy of the analysis obtained when
accounting for model error, as opposed to not. We demonstrate
this property by both increasing the accuracy of the background
model state (by reducing the standard deviations in B by a
factor of five) and decreasing the accuracy of the observations
(by increasing the standard deviations in Ri by a factor of five;
Conditions V in Table 3). The observations are now far less
accurate than the background. We set Qi back to Conditions I
as stated in Table 3. We recalculate the diagonal entries of R̃∗

i ,
with the error covariance matrices as specified in Conditions V
using a sample size of 1000. We subsequently conduct 100
strong-constraint 4D-Var runs for Methods 1, 2 and 3. Each
individual data assimilation run uses independent model error
vectors, vectors of observations and background vectors. This
produces 100 analysis vectors for each method. Figure 6(e) shows
that, in general, accounting for the error in the model can
still produce an analysis of higher statistical accuracy, however
the significance of this increase is minimized when the ratio
r = σ 2

b /σ 2
o is significantly reduced for each of the model state
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variables. For Conditions I, the ratio r = σ 2
b /σ 2

o for each of the
model state variables x, y, z, w and v is 1.11, 3.33, 4.20, 27.5 and
13 respectively. However, for Conditions V the ratios r are far
smaller at 0.002, 0.005, 0.007, 0.044 and 0.0208 for each of the
respective model state variables x, y, z, w and v.

7. Conclusion

In this article we have developed a SC4DVar method which is
able to account for model error over the assimilation window.
Unlike WC4DVar, this method does not need an explicit estimate
of the model-error covariances and does not try to estimate the
model error but instead allows the analysis to be less constrained
by observations at the end of the assimilation window. In doing
so, this new method is able to find a more accurate analysis than
SC4DVar when model error is not accounted for.

The new method accounts for model error by weighting the
mismatch between the observations and the evolved model state
using a combined model- and observation-error covariance, R̂∗
rather that the observation-error covariances alone, R̂. In theory
this provides an optimal estimate of the true initial conditions,
satisfying the assumption that this is the minimum variance
estimate for a linear system.

Use of these combined error covariance statistics requires
specification of the model-error statistics, which are often
unknown. Therefore, in section 4 we formulated a method
to estimate the combined model-error and observation-
error covariance matrix using a sample of backgrounds and
observations. This follows a similar methodology to the use
of covariance innovation consistency diagnostics (Dee, 1995;
Desroziers et al., 2005; Ménard, 2016) for estimating observation-
error variances alone. The difference here is that we need a
window of observations to allow also for an estimate of model
error. There are many potential difficulties to using such estimates
of the error covariances in practice. To use the sampled estimate
of the combined model- and observation-error covariance it is
necessary to subtract an estimate of the evolved background-
error covariances. This could potentially be estimated using
the randomization method in which a sample from a standard
normal distribution is transformed using the square root of
the background-error covariances matrix and than propagated
forward to the time of interest using the (potentially nonlinear)
model. The sensitivity of the new method to this estimate of

ĤBĤ
T

should be investigated. Another potential issue is that the
estimate of R̂∗ relies on the accuracy of B which itself is difficult
to quantify. This is a known issue when attempting to estimate R
alone using samples of background minus observations (Ménard,
2016; Waller et al., 2016a). The sampling method also relies on a
sample of the model error. We anticipate that the use of stochastic
physics alone may not be enough to represent all sources of model
error. Assuming some degree of homogeneity and isotropy in the
model error, an alternative approach could be to estimate R̂∗
off-line allowing for averaging over time and space. This will be
investigated in future work.

This new method was demonstrated on two dynamical systems,
the linear advection equation and a nonlinear idealized coupled
atmosphere–ocean model. In these numerical experiments, only
the accumulated model-error variance was accounted for, as
this is more feasible. However, it was shown that, when model
error of a random nature is present at each time step, replacing
the observation-error covariance matrix with combined model-
error and observation-error variances statistically improves the
analysis accuracy over a number of sample experiments. It was also
demonstrated that an improved analysis does not necessarily lead
to improvements in the forecast accuracy, due to the erroneous
model. Therefore, this methodology could be best suited to the
application of reanalysis, as opposed to forecasting.

In the experimental set-up, only the diagonal elements of
R̂∗ were estimated and used. Future work should look at the

sensitivity of the method to the use of spatial/multivariate cross-
covariances, and to temporal cross-correlations.
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Appendices

Appendix A: Derivation of Q∗

In (12) and (13) the covariance between the accumulation of
model error at time step i and k is defined as

Q∗
(i,k) = Hi

〈
i∑

j=1

Me
j→iηj

⎛⎝ k∑
j=1

Me
j→kηj

⎞⎠T〉
Hk

T. (A1)

It is assumed that the model error ηj ∼ N(0, Qj) is uncorrelated
in time. Using this assumption we can write Q∗

(i,k) in terms of
the model error covariance at each time step i, Qi.

Q∗
(i,k) =Hi

〈
i∑

j=1

Me
j→iηj

⎛⎝ k∑
j=1

Me
j→kηj

⎞⎠T〉
Hk

T

=Hi
〈
(Me

1→iη1+...+ηi)(Me
1→kη1+...+ηk)T

〉
Hk

T

=Hi

[
Me

1→iQ1Me
1→k

T+...+Me
j→iQjM

e
j→k

T+...

+Me
min(i,k)→iQmin(i,k)Me

min(i,k)→k
T
]

Hk
T

=Hi

⎡⎣min(i,k)∑
j=1

Me
j→iQjM

e
j→k

T

⎤⎦Hk
T.

Appendix B: Derivation of Ae, (18)

The error covariance of the analysis when the model error is not
accounted for is given by

Ae = 〈
εe

a(εe
a)T

〉
. (B1)

Equation (17) defined εe
a as

εe
a = εb + K̂êde

b. (B2)

Recall d̂e
b = ŷ − Ĥexb. At time i this can be written in terms of

the observation error, εo
i , the model error, η, and the background

error, εb
i , using (1), (2) and (8).

d̂e
bi = yi − Hix

t
i + Hix

t
i − HiM

e
0→ix

b

= εo
i + HiM

e
0→ix

t+Hi

i∑
j=1

Me
j→iηj−HiM

e
0→ix

b

= εo
i − HiM

e
0→iε

b
i + Hi

i∑
j=1

Me
j→iηj . (B3)

Therefore εe
a = εb + K̂e

(̂
εo + η̂ − Ĥeεb

)
, where

η̂ =

⎛⎜⎜⎜⎝
0

H1η1
...

HN
∑N

j=0 Me
j→NηN

⎞⎟⎟⎟⎠ . (B4)
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From Appendix A we see that Q∗ =< η̂η̂T >.
We can now evaluate Ae. If we substitute (B2) into (B1), and

use the definition of Q∗, it can be shown that

Ae =B + K̂eĤeBĤeTK̂eT + K̂eRK̂eT + K̂eQ∗K̂eT

− BĤeTK̂eT − K̂eĤeB. (B5)

The last two terms in the above equation can be shown to be
equal (by substituting K̂e from (16)).

Ae =K̂e(ĤeBĤeT + R)K̂eT + K̂eQ∗K̂eT

+ (I − 2K̂eĤe)B. (B6)

Substituting (16) for the second occurrence of K̂e only it can be
shown

Ae = (I − K̂eĤe)B + K̂eQ∗K̂eT. (B7)
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