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Abstract: Uptake of low carbon technologies could likely lead to increased demand in distribution networks
and consequently could impose additional stress on the networks. Battery energy storage systems (BESS)
are identified as a feasible alternative to traditional network reinforcement. This study analyses two
BESS scheduling algorithms (model predictive control (MPC) and fixed schedule) supplied with forecasts
from five methods for predicting demand on 100 low-voltage feeders. Results show that forecasting
feeders with higher mean daily demand produce lower mean absolute errors and better peak demand
reduction. MPC with simple error improves peak reduction over fixed schedule for feeders with lower mean daily
demand.
1 Introduction

In the transition towards the low carbon economy, increased
electricity demand is expected through the uptake of low-carbon
technologies (LCTs). Operation of heat pumps and uncontrolled
charging of electric vehicles will impose additional stress on the
electricity distribution networks [1]. In the UK, the additional
demand from LCTs typically coincides with the usual evening
peak demand and, therefore, potentially violates the thermal
operational constraints on the networks. Traditionally when the
thermal capacity of the network has reached the limit, distribution
networks are reinforced by replacing the existing assets (e.g.
transformers and feeder cables) with higher rating or installing
additional assets to split the load. However, as well as being
expensive, such reinforcements are inefficient since the thermal
constraints are occurring over relatively short periods of time and
the remaining time these assets remain under utilised.

With the decreasing costs of electro-chemical energy storage,
deployment of battery energy storage systems (BESS) becomes an
effective alternative solution for the deferral of traditional
reinforcement of the distribution networks [2–5]. The control
strategy applied to BESS, and its size, depends on the location and
the purpose of its operation, i.e. peak demand reduction, peak
generation reduction and voltage support [6]. One of the most
popular and versatile control methods is model predictive control
(MPC) which uses a forecast as prior knowledge to plan an
optimal BESS charging and discharging schedule whist adjusting
the schedule based on observed demand [7–9].

Due to individuality of customer behaviour and the number of
customers on low-voltage (LV) feeders, predicting the demand is
much more difficult than on higher voltage levels of the
distribution network.

This paper presents an analysis of a scheduling MPC algorithm
with a fixed error correction method versus a fixed schedule,
applied to a simulated BESS, to reduce peak demand on LV
feeders based on five forecasting methods. The forecasts, the
MPC algorithm and the fixed schedule are assessed on two
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weeks of half-hourly demand data from 100 LV feeders
monitored as part of the New Thames Valley Vision [10] – Low
Carbon Network Fund (LCNF) project, funded by office of gas
and electricity markets (OFGEM) and led by Scottish and
Southern Electricity Networks. The feature of this paper is
application of the fixed schedule and MPC algorithm for a BESS
on demand data from 100 real LV feeders using four advanced
forecasting techniques.
2 Method

The performance of the control algorithm applied to the BESS is
an important factor. Forecast error and poor algorithm
performance could result in scheduling BESS to charge at the
same time as the actual peak. Higher peak would then lead to
further violation of the operational constraints and potentially,
equipment failure.

To investigate the relationship between the achieved peak demand
reduction and the forecast method, two control algorithms are
considered: fixed optimal schedule and MPC with fixed error
demand model update. The algorithms are applied to a simulated
BESS on a LV distribution feeder in a suburban network. The
BESS is sized to deal with 20% reduction of the forecasted
demand aggregated across the three phases.
2.1 Schedule optimisation

The aim of the schedule optimisation is to find a BESS schedule, p,
for the forecasted demand, df over a period of N half-hours (in this
case 48), such that the cost function in (1) is minimised:

F p, df
( ) = jp p, df

( )+ ajcd p
( )
w

+ bjsc c( )
w

+ gjts c( )
w

, (1)
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Fig. 2 Data flow diagram for MPC in this paper

Fig. 1 MPC horizons and error projection within the horizon
Subject to constraints:

Cmin ≤ c t( ) ≤ Cmax, (2)

Pmin ≤ p t( ) ≤ Pmax, (3)

c t + 1( ) = c t( ) + p t( )mt, (4)

m =
m if p t( ) ≥ 0
1

m
if p t( ) , 0

⎧⎨
⎩ , (5)

a, b, g [ 0, 1[ ] (6)

where jp (p, df) is the peak-to-average cost component for peak
reduction, self-normalised to the initial conditions, defined as

jp p, df
( ) =

t =max d t( )+p t( )( )
1,N[ ]∑N

t=1 d t( ) + p t( )( )
/N

⎛
⎝

⎞
⎠
2

jp pi, df
( ) (7)

Cost component, jcd, represents the cost of charge dynamics, aimed
at smoothing the charging of BESS and defined as

jcd =
max

dI 0, pmax

[ ] p( )
dt

∣∣∣∣∣
∣∣∣∣∣

( )

pmax
(8)

The storage cycling cost component, jsc, aims to allow at most only
one full charge and discharge cycle per day and defined as

jsc =

∑N
t=1

dI 0, pmax

[ ] c( )

dt

∣∣∣∣∣
∣∣∣∣∣+∑N

t=1

dI −pmax, 0
[ ] c( )

dt

∣∣∣∣∣
∣∣∣∣∣

2
. (9)

At the end of the schedule, the BESS should reach 50%
state-of-charge (SoC), which is achieved with the target SoC cost
component, jts, defined as

jts c( ) = c N( ) − 0.5Cmax

( )2
jts ci
( ) . (10)

Scaling factor, w, ensures that sum of cost components jcd, jsc and jts
is at the same scale as jp

w = a+ b+ g (11)

Constraints in (2) and (3), represent limits on the energy storage
capacity, c(t), and BESS power rating constraints, respectively. A
model for the energy storage is given in (4) where t is the
duration of the time period in hours and μ is the BESS efficiency
defined in (5).
2.1.1 Model predictive control for BESS: MPC, also known
as receding horizon control, computes an optimal schedule for the
duration of the horizon by updating the demand model with recent
observations and deploying only the first control value from the
current horizon. Once the control for the first time step is deployed
and observation for the current time step is received, the controller
moves to the next horizon to compute a new optimal schedule on
the updated demand model.

In this case study, MPC does not have access to the demand model
used in generating the forecasts and so is not able to produce rolling
forecasts. Instead, the demand is modelled by updating the forecast
with the projection of the forecast error from the previous time
step, as depicted in Fig. 1 and it is assumed that all forecast errors
2 This is an open
are strongly positively correlated. This clearly will not be the case
in general.

The length of the horizon is chosen to be 10 half-hourly time steps
[9]. The controller is optimising the same cost function as for the
fixed schedule in (1), reduced to the length of the control horizon.

The input demand profile, df, is replaced for the duration of the
horizon Hk with the forecast, d∗f , shifted by error, e(k+ 1). The
error is based on the observed demand at the previous time step
(excluding the energy exchanged with BESS) and the original
forecast at the previous times step (Fig. 2).

2.1.2 Peak reduction metrics: The case study consists of three
scenarios:

† ‘best possible’ – fixed schedule based on the assuming 100%
accurate forecast,
† ‘fixed’ – fixed schedule based on forecast,
† ‘MPC’ – receding horizon control with fixed error.

For each scenario, the peak reduction metric is given as

PR d∗
( ) = 1−max d∗

( )
max do

( )
( )

× 100%,

where d* denotes the resultant demand on the feeder by applying the
corresponding schedule and do is the observed demand profile. This
metric considers only the overall peak reduction on demand over the
entire day, not just the reduction of the observed peak.

2.1.3 Demand data: The demand data used in this case study is
based on the monitoring of the LV substations in Bracknell,
Berkshire, UK as part of the New Thames Valley Vision project
[10]. The data set is based on energy consumption recorded on
100 LV feeders between 31 March 2014 and 14 November 2015.
The first 83 weeks were used for training the forecast methods and
the last two weeks were used for testing.

2.1.4 Forecasting methods: We consider five basic load
forecast to apply in our control method, summarised below:

(i) 7Sav is our benchmark method and forecasts each time period,
e.g. 10:00 a.m. on Thursday is simply the average of the previous
5:10 a.m.’s on Thursday.
(ii) ST is a simple seasonal model for each hour. It is the same as
that as presented in [11] but there is now a dummy variable for
each day type (Monday, Tuesday etc).
(iii) SnT is as ST but no annual linear trend is modelled.
CIRED, Open Access Proc. J., 2017, pp. 1–5
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Fig. 4 Comparison of the daily peak reduction for each forecasting method
and each scenario: PR d∗o

( )
, PR d∗f

( )
and PR d∗m

( )
(iv) GAM, which stands for generalised additive model, is a simple
generalised model based on that in [12, 13] which estimates the
electricity load using a piecewise smooth function determined
from the predictor variable(s). Here we consider only one predictor
variable to forecast the electricity load, that is, the electricity load
from the half hour two days prior. Note that we do not include
weather variables.
(v) ARWD is a simple autoregressive method, which is typically
used for electricity price forecasting [14]. It is based on a two-step
approach. In the first one, the weekly load profile μt is estimated
for every hour of the week. A residual time series rt is then
created by subtracting the time series from the historical load
rt = Lt− μt, where Lt is the load at time t. In the second step an AR
(p) process (autoregressive process of order p) which satisfies
(vi) rt = w0 +

∑p
k=1 wkrt−k + 1t with parameters jk and error term

ɛt is estimated by solving the Yule–Walker equations. The p is
chosen so that the Akaike information criterion is minimised with
a maximal possible value of pmax = 48 × 15.

3 Results

3.1 Forecast

On average over all 100 feeders the best performing methods were the
ARWD method and the simple average 7SAV with mean absolute
percentage error (MAPEs) of 17.72 and 18.60, respectively, the
seasonal methods Snt and ST also performed well with average
MAPEs of 18.76 for the ST method and 19.05 for the Snt method.
The worst performing method was the GAM with a MAPE of
27.54. We note that the ST and Snt methods have very similar
performances. It was also found that certain methods performed
better than others for different feeders. For instance, the best scoring
method for 48 of the feeders was the ARWD method, followed by
Snt and ST with 14 and 31, respectively. Finally, the 7SAV method
was best for the remaining seven feeders. This indicates that
different forecasts methods should perhaps be used for different
feeders. Identification of why this is the case will be future work.

The relationship between mean daily demand (for the last year)
and the errors are shown in Fig. 3 for ARWD and ST. It clearly
shows the methods have smaller relative errors for the larger
substations as expected.

From these results, we therefore expect the best methods to be the
ARWD, the ST and the Snt. We would also expect bigger peak
reductions for larger feeders since the demands are more
predictable and therefore the control can be more effective.

3.2 Peak reduction

Fig. 4 shows the boxplot for peak reduction for each control method,
each forecast method and the best possible peak reduction, PR d∗a

( )
.

Overall, on average all forecast methods and control techniques
Fig. 3 Relationship between MAPE and mean daily energy demand for
each feeder for two of the forecast methods
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achieved some peak reduction. The least increase on the peaks was
achieved by ARWD. Yet, on average Snt provided best peak
reduction for both fixed and MPC, closely followed by ARWD.
Fig. 5 shows Snt forecast against observed demand and resultant
demand with BESS schedules.

Comparison of Fig. 6 and the overall mean peak reduction in
Table 1 show that there is no clear performance improvement of
MPC with simple error over the fixed schedule averaged for all
feeders day-wise and feeder-wise comparison in Table 2 shows
that MPC with fixed error performs better than fixed schedule
about half-of the time.

The results here confirm firstly that the more accurate forecasting
methods produce the greatest peak reduction. Secondly, we can also
see there is a clear relationship between peak reduction and the mean
daily demand of the feeder. As expected, due to the volatility of
small feeders, in these cases the control methodologies on average
actually increases the size of the peak. Fig. 7 suggests a potential
relationship between improved peak reduction with MPC and
mean daily demand, with smaller feeders to have better peak
reduction than the fixed schedule.
4 Discussion

Comparison of MAPE for a range of feeder sizes shows that some
forecast perform better for certain types of feeders. Hence, there
Fig. 5 Observed, forecasted demand and profiles resulting from best
possible, fixed and MPC schedules based on Snt forecasting method
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Table 2 Percentage of all days on all 100 feeders when MPC achieved
better peak reduction than fixed schedule

7SAV,% ARWD,% GAM,% ST,% Snt,%

46.6 50.1 50.2 49.1 52.5

Table 1 Overall mean peak reduction, PR d∗
f

( )
and PR d∗

m

( )
, for fixed and

MPC algorithms, respectively over all feeders and days for each
forecasting method

7SAV,% ARWD,% GAM,% ST,% Snt,%

fixed 2.85 5.63 2.87 5.53 5.57
MPC 2.77 5.68 3.00 5.57 6.17

Fig. 7 Percentage of days when MPC performed better than fixed schedule
in daily peak reduction for the worst and the best forecasts, 7SAV and Snt,
respectively

Fig. 6 Daily peak reduction against ascending mean demand per feeder for
each forecasting method based on ‘MPC’ scenario
was no one forecast that suited all feeders. We tested a number of
forecast methods against a competitive benchmark. An advantage
of all methods is their simplicity and computational speed in being
implemented.

Forecast accuracy is a strong driver for potential peak reduction
but accuracy was driven strongly by mean daily demand on the
4 This is an open
feeder. Hence, the effectiveness of storage is linked to the number
of customers on a feeder and the size of these customers. As the
result, better peak reduction was achieved with fixed schedule and
MPC with simple error correction for the feeders with greater
mean daily demand. For small feeders, BESS with fixed schedule
actually increases the peak demands. Hence, there should be a
minimum size threshold when deciding if a feeder is suitable for
BESS with scheduling algorithms. However, MPC with the fixed
error demand update method, performed better than fixed
schedule, particularly on smaller feeders. Further investigation is
required on the correlation of forecast errors and demand
characteristics on smaller feeders. More sophisticated error
modelling techniques (e.g. rolling forecast) are expected to
improve the performance of MPC, especially on larger feeders.

In case of operational implementation of BESS on a LV
distribution feeder, the control system is typically based on
multiple stages: planning and real-time operation. The real-time
operation control is happening at a much higher resolution than
the half-hourly planning stage. The half-hourly demand represents
an average power within the half-hour meaning that the actual
peaks measured at the higher-resolution (e.g. 5 s or one minute)
would be significantly greater that the half-hourly average.

Furthermore, this paper only considered aggregated demand
across three phases at half-hourly resolution. Due to the number of
customers on each phase and their individual behaviour, the
demand is likely to be unbalanced. Although balancing the
demand on the phases would not decrease the aggregated
half-hourly demand, peaks on each phase measured at higher
resolution are likely to be significantly reduced, assisting with
managing the thermal constraints on the feeder.
5 Summary

The paper has presented a comparison of five forecasting techniques
for prediction of LV feeders and their role in the reduction of peak
demand using two energy storage control techniques: fixed
schedule and model predictive control. The forecasting techniques
and control algorithms have been assessed on demand data for 14
days from 100 LV feeders.

Results show that certain type of forecasts perform better for
certain sizes of feeders and consequently lead to better
performance of the peak reduction algorithms. Both fixed schedule
and MPC with simple error achieved better peak reduction for
larger feeders. However, MPC with simple error correction have
performed better on smaller feeders compared to the fixed schedule.

In future work, integration of advanced demand models and
rolling forecast for the model predictive control will be considered.
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