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ABSTRACT 
We are looking at the impact of electric vehicles (EV) 
charging from low voltage (LV) networks. Based on the 
data obtained from two different pilot projects: 

1. Mini-E trial where EV users were incentivised to 
charge during the night; 

2. My Electric Avenue trial where there were no 
similar incentives, 

we want to quantify the impact of EV charging, 
presuming that the number of home-charging EV users 
will increase significantly in the near future. 
By assuming that the current load at individual 
household level is known or inferred, simulations are 
performed to estimate the future load. We look at 
different percentages of EV uptake and model clustered 
scenarios, where the social networking effect is imposed - 
users adopt an EV with a higher probability if their 
neighbour already has one. 
Our simulations demonstrate that incentivising night-time 
charging can create large new peaks during the night, 
which could have negative effects on low voltage 
networks. On the other hand, simulations based on the 
data with no incentives shows that naturally occurring 
diversity in charging behaviour does not automatically 
result in comparable network stress at the same 
penetrations. 

INTRODUCTION 
The current trends in per-household domestic demand on 
low voltage (LV) networks in developed countries (in the 
UK they have remained relatively stable or decreased in 
the last 11 years) reveal that the increase in domestic 
demand will be due mainly to new builds and the uptake 
of electric vehicles and heat pumps. Given the ratio of 
EV charging to other parts of the load, static and 
uncontrolled time of use tariffs could result in new large 
peaks developing. This situation will worsen on local 
networks if these new loads are clustered. Several recent 
studies have explored in detail the impact of EVs on the 
network [1,2,3,4,5,6]. Whilst these investigations do 
suggest that there are benefits of demand side response, 
uncontrolled applications of time of use tariffs or direct 
action mechanisms could be extremely detrimental to low 
voltage networks, which were designed with behavioural 
diversity taken into account.  
In this paper, we analyse a low voltage network with 
realistic demand profiles and compare the impact of 

charging electric vehicles with real data from two trials. 
In the first trial, EV users were incentivised to charge 
their vehicles during the night and in the second, there 
were no incentives. We simulate a clustered uptake of 
electric vehicles through neighbourhoods. Consequently, 
social influences on human behaviour are captured, 
which are sometimes interpreted as imitating or keeping 
up with your neighbours. Using realistic data for the 
base-load (daily household electricity load not including 
EV demand), simulated electric vehicle charging is 
added. Then, probabilistic techniques are applied to 
obtain confidence bounds at a feeder level for different 
electric vehicle charging scenarios. 
In the next section, the datasets used for our analysis are 
described, followed by Methodology and Results. 
Finally, in the Discussion, we propose the steps that can 
mitigate unwanted impacts of synchronized EV charging, 
whilst avoiding over-complicated technical solutions. 

DATASETS 
Our LV network is based on a real network in Bracknell, 
UK and comprises of 98 feeders and 26 substations with 
4073 households and 121 commercial properties in total.  
We model an LV network on a winter, spring and 
summer day, and on a half-hourly basis (only the results 
for summer are shown here). Therefore, there are 48 
values in kW for each household, on each day. 

Base-load 
Each household is assigned an initial base-load, which 
varies for the three modelled days. The base-load is 
obtained from smart metered data of sample households 
in the real LV network. The sample points are then 
coupled with non-metered households using a genetic 
algorithm [7] that optimizes the match between the 
aggregated coupled loads and the measured substation 
feeder level loads. 

Mini-E trial 
The Mini-E trial was an EV charging trial that ran in 
2009 and 2010. The data consists of half-hourly charging 
profiles of 19 EVs collected by Scottish and Southern 
Electricity Networks. The users were incentivised to 
charge overnight, which is evident from the data. Box 
plots of charging patterns over winter, spring and summer 
can be found in [5]. 
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My Electric Avenue 
The My Electric Avenue data comprises various EV 
charging profiles that were collected between the 23rd 
January 2014 and the 11th February 2015. Although there 
were 228 EVs in total taking part in this trial, after 
choosing ones that consistently participated between the 
weeks 16-52 of the trial in order to collect winter, spring 
and summer sets, 79 daily profiles per season were 
obtained. Profiles have readings every half hour and 
consist of ‘0’ when they are not charging and ‘3.7kW’ 
when charging. The My Electric Avenue profiles vary 
over the seasons, weekdays and weekends. Moreover, 
they can be grouped by charging behaviour into several 
different clusters of comparable sizes, thus representing 
diverse charging behaviour. Here, only the results 
associated with summer are presented. Unlike other 
typical UK domestic loads, EV charging does not reduce 
in the summer and therefore coincides with lower 
network capacity as reduced cable and transformer 
ratings apply. To examine more extreme scenarios, only 
the non-zero EV profiles were used from the summer set. 
This gave 24 profiles that are depicted in Figure 1, where 
the black squares represent a half hour when EV is 
charging. 

 
Figure 1: Non-zero EV profiles recorded on Thursday, 10/07/14. 
The first column has the half hours and the black squares indicate a 
half hour of EV charging. 

METHODOLOGY 
Simulations were undertaken with a time step of one year 
to assign EVs to households in a clustered manner. The 
EV datasets from the two trials were applied and then the 
results compared. 
To obtain clusters, in each year of the simulation, we 
assigned a probability of acquiring an EV to be 
proportional to the score s, where 𝑠 = 100 !!"

!
, 𝑛!"  is 

the number of neighbours – households on the same 
feeder that already have an EV, and 𝑛 is the total number 
of households on that feeder. Households were randomly 
allocated an EV using s. The number of assigned EVs 
increased linearly each year until the predetermined final 
number of EVs was attained. 
Initially, a small proportion of EVs were assigned 
randomly with a probability that corresponded to the 
household’s council tax band. This ensured that the early 
EV adopters in our model lived mostly in larger 
properties, with off road parking assumed. 
The final percentages of households that were assigned 
EVs by the simulations were 10%, 30% and 50% of the 
total population (4073 households). These models ran 
over 8 years, as this is a single price control review 
period set by the UK regulatory authority for gas and 
electricity markets, OFGEM in 2015. Distribution 
Network Operators (DNOs) in the UK have to develop 
detailed investment plans using this time horizon, which 
informed our choice. The uptake during this time horizon 
was linear as only the final result was of interest – the 
geographical spread of EVs after 8 years. As the assumed 
penetration percentages are given in advance, this model 
then allowed us to explore confidence bounds obtained 
from 500 runs using different clustered geographical 
distributions of EVs. In contrast, prominent clusters of a 
comparable size do not occur after 500 runs when social 
influence is not enforced within the model (uniformly at 
random assignments). For both EV datasets, the assigned 
EV profiles were chosen from a sample of profiles that 
correspond to the same season and the same weekday. 
See [6] for further detail on the clustering method and the 
calculation of confidence bounds. 

Results using the Mini-E trial dataset  
As the customers were incentivised to charge during the 
night throughout this trial, night-time peaks were 
expected with a clustered distribution. The results for 
50% EV uptake are shown in Figures 2 and 3. The 10%, 
50% and 90% quantile load are depicted at feeders 67 and 
72, which have 35 and 99 households respectively. These 
were computed from 500 runs, with the EV profiles 
randomly selected from the Mini-E dataset. The lower 
and upper bound correspond to the 10% (green) and 90% 
(red) quantile respectively. The red curve in particular in 
Figures 2 and 3 reveal the potential prominent peaks that 
result due to heavily incentivised night-time charging. 
 

HH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0
2 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
3 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
4 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
5 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
6 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
18 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
19 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
20 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
21 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
22 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0
24 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1
25 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1
26 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1
27 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
31 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
32 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0
35 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
36 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0
37 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0
38 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0
39 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 0 0
40 1 1 0 1 0 0 0 0 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0
41 1 1 0 1 0 0 0 0 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0
42 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0
43 1 1 1 1 0 0 1 0 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0 0
44 1 1 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0
45 1 1 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0
46 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
47 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0
48 1 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0

Profile	Number
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Figure 2: Mini-E 50% summer penetration at feeder 67 with 35 
households. Red: 90% quantile, blue: 50% quantile, green: 10% 
quantile.  

 
Figure 3: Mini-E 50% summer penetration at feeder 72 with 99 
households. Red: 90% quantile, blue: 50% quantile, green: 10% 
quantile. 

Results using the My Electric Avenue trial 
dataset  
The results at feeders 67 and 72 for 50% EV uptake that 
used the My Electric Avenue dataset on the same 
networks are given in Figures 4 and 5. The depicted 
quantiles were also computed from 500 runs, with the 
same method applied. Since now the EV charging is 
unrestricted, the significant night-time peaks that were 
previously exhibited are no longer observed. Instead, the 
addition to the base-load is somewhat more evenly 
distributed throughout the day. Although, the unrestricted 
charging does increase the early evening load, which is 
the most popular charging period in the My Electric 
Avenue dataset. This is typically the time of highest 
national electricity demand and consequently the time of 
highest electricity prices. On a national level, shifting 
demand outside this period is desirable. However, over-
incentivising this shift through stark time of use pricing 
or direct action could cause the much larger and 
potentially damaging local LV network peaks shown in 
Figures 2 and 3. 

 
Figure 4: My Electric Avenue 50% summer penetration at feeder 
67 with 35 households. Red: 90% quantile, blue: 50% quantile, 
green: 10% quantile.  

 
Figure 5: My Electric Avenue 50% summer penetration at feeder 
72 with 99 households. Red: 90% quantile, blue: 50% quantile, 
green: 10% quantile. 

Results for all feeders 
In Figure 6, a summary of the results for all 98 feeders is 
displayed. The blue and red trends relate to the Mini-E 
trial and the My Electric Avenue trial respectively. These 
curves represent a feeder index that is calculated by 
taking the maximum value of the 90% feeder quantile 
(the base-load has been subtracted) and then dividing this 
by the number of households along the feeder. The 98 
feeders have been sorted according to each feeder’s 
proportion of larger homes, where the concentration of 
larger homes increases with the feeder number. We have 
used the households’ council tax bands to determine this 
ranking. Overall, the feeder load and the feeder number 
appear to be correlated. This is the result of influencing 
the selection of initial EV properties using council tax 
band information, as previously discussed. More 
importantly from Figure 6, when comparing the loads at 
each feeder due to non-incentivised and incentivised 
charging, we see a substantial increase, further 
highlighting the negative impact of synchronised EV 
charging. Note that feeder 1 possesses zero households 
(only commercial properties, which are not assigned EVs 
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in our simulations) and therefore, receives zero load.   

 
Figure 6: A comparison of the feeder index (50% EV uptake). Blue: 
Mini-E trial, red: My Electric Avenue trial.  Note that an 
adjustment is made to the My Electric Avenue dataset to reflect 
7.4kW chargers being used, which is consistent with the Mini-E 
trial. This adjustment applies the same start-of-charge times as the 
3.7kW chargers from the My Electric Avenue trial and the ‘on-
time’ is reduced by approximately half (rounded up to the nearest 
half hour) 

DISCUSSION 
We compared the effects that restricted and unrestricted 
EV charging patterns will have on low voltage networks. 
More specifically, our focus was the impact of heavily 
incentivised EV charging during the normally low load, 
night-time period. Such incentives may be used in a 
targeted time-of-use tariff scheme. By simulating this 
more extreme charging behaviour, our results revealed 
significant additions to the base-load. The large peaks 
that were exhibited could potentially cause extensive 
problems for network operators. In contrast, such sizeable 
peaks were avoided when EV charging was unrestricted, 
allowing for a variety of charging activity. 
The problems discussed here have some similarities to 
the network issues associated with Economy 7 customers 
in the UK. Economy 7 is a restrictive tariff that 
encourages household electric storage heating to occur 
during the night and consequently, large night time loads 
result. The predominance of electric storage heating is 
known when the network is designed, and therefore this 
undiversified load is accounted for at this stage. This 
results in networks with a greater concentration of 
Economy 7 customers having higher capacity than those 
without. 
Since EV demand is instead being retrofitted to the 
network, certain mechanisms that reintroduce diversity 
into the system will be required to prevent extreme cases 
of simultaneous charging. Techniques that could be 
employed include the use of storage and cyclical demand 
control. However, it is important that the impact of all 
strategies at both national and local levels is considered. 
From a national perspective, it is necessary to encourage 
off-peak charging to shift load away from periods of 

marginal capacity. Whereas at a local level, as 
demonstrated here, over-incentivised customers cause a 
loss of natural diversity, which can result in significant 
peaks and potential network damage, where new, large 
LV loads cluster. On networks susceptible to EV 
clustering, moderating mechanisms will be required to be 
employed to prevent local overloads due to undiversified 
charging, whilst still allowing customers to benefit from 
future national demand response initiatives.  
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