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Abstract—Induction of descriptive models is one of the most
important technologies in data mining. The expressiveness of
descriptive models are of paramount importance in applications
that examine the causality of relationships between variables.
Most of the work on descriptive models has concentrated on less
expressive approaches such as clustering algorithms or rule-based
approaches that are limited to a particular type of data, such
as association rule mining for binary data. However, in many
applications its important to understand the structure of the
produced model for further human evaluation. In this research
we present a novel generalised rule induction method that allows
the induction of descriptive and expressive rules directly from
both categorical and numerical features.

I. INTRODUCTION

Several descriptive techniques exist, such as neural network
based techniques i.e. KT and RULEX [1] and cluster analysis
i.e. k-means and agglomerative clustering [2]. Cluster analysis
and neural network based techniques are more or less black
box approaches that can categorise or group data based on the
relationship of features. Generalised Rule Induction techniques
aim to address this problem by inducing rules that are more
expressive by describing these relationships between features.

To the best of our knowledge, there is no single optimised
method to deal with numerical features for descriptive rule
induction algorithms. Many algorithms, including Apriori [3],
were developed to work only for categorical values. Most of
the time, the numerical feature needs to be converted into ones
with a discrete set of values. The method of discretisation
is often decided by the user and their justification of the
suitability of the data and the chosen algorithm. This prior
discretisation or binarisation process results in a loss of infor-
mation or over-sensitivity, and thus a loss of expressiveness of
the rule set induced by these algorithms [4]. In this research,
we propose a new method for inducing generalised descriptive
rules that can be induced directly from numerical data without
the loss of expressiveness by inducing expressive rule terms
from numerical data directly, utilising the probability density
of Gaussian distribution.

This paper is organised as follows. Section II describes
our proposed expressive rule based method for descriptive
analytics and Section III provides an empirical evaluation.

Lastly, Section IV provides some concluding remarks and
directions for future work.

II. INDUCTION OF GENERALISED RULES

This section outlines the details of our proposed algorithm to
induce generalised rules directly from training examples. The
induced rules are represented in the form of a set of modular
and expressive ‘IF BODY THEN HEAD’ rules, where HEAD
represents the right hand side of the rule, and BODY is the
left hand side of the rule. The format of BODY and HEAD
will be explained later in this section.

The algorithm consists of three main processes. These
steps include generating all possible HEADs first and then
generating all possible BODYs for each HEAD, and finally
ranking the rules by a chosen criteria.

Typically, both HEAD and BODY are represented by a
conjunction of feature-value pairs (α1,j , α2,j , ..., αn,j), where
each αi,j is a value of feature αj and n is the number of
possible values of the feature αj . A feature can have either a
finite (categorical) or infinite (numerical) set of values.

In this paper, we use the phrase ‘rule term’ as well as αi,j
as a definition for a feature-value of the feature αj to refer to
the logical test describing the properties of the data instances.
The terms for a categorical feature can be presented in the
form of αj = v where v ∈ {α1,j , ..., αn,j}. A numerical
feature is represented in form of vl < αj ≤ vh, where
vl, vu ∈ {α1,j , ..., αn,j} as a result of using probability density
based on a Gaussian distribution approach to induce a rule
term for a numerical feature as described in Section II-B.
The algorithm then appends the rule term that maximises the
conditional probability of a particular HEAD.

A. Covering Strategy

Theoretically, if all possible rules are systematically gen-
erated from a training dataset and each rule is individually
checked for the consistency and validity, then a consistent
and complete model representation of the data should be
realised. At first glance, this seems to be a simple approach to
learning rules from the training data but, unlike classification,
the proposed algorithm in this paper aims to uncover possible



rules to describe an underlying model of the data, and thus
does not limit the right-hand-side or HEAD part to a single
feature.

A rule can have up to n rule terms where n is the number
of features in the dataset. Each feature can only appear once
in a single rule term per rule and the HEAD and BODY must
each have at least 1 rule term. Therefore, if a HEAD is limited
up to a fixed length l, then the solution of the algorithm for
searching all possible HEADs is polynomial in the number of
steps to find a solution.

In this paper covering or ‘Separate-and-Conquer’ search
strategy is used to induce new rule terms for both BODY and
HEAD. The concept of covering algorithms was first utilised
in the 1960s by Michalski [5] for the AQ family algorithms.
The separate part induces a rule that covers a part of the
training data and the conquer part recursively learns another
rule that covers some of the remaining data examples until no
more data examples remain.

B. Using Gaussian Distribution for Inducing Rule Terms from
Numerical Features

For each numerical feature in a dataset, we generate a
Gaussian distribution to represent all possible values of that
numerical feature for a given HEAD. This method is inspired
by earlier works of one the author’s on classification rule
induction algorithms [6]. The generation of possible HEADs
is explained in Section II-C.

Assume a dataset with a set of generated HEADs,
h1, h2, ..., hi. If we have a vector of feature-values then we
can compute the feature-value that is the most relevant one to
a particular HEAD based on the Gaussian distribution of the
values associated with this HEAD. The Gaussian distribution
is calculated for a numerical feature αj with mean µ and
variance σ2 from all feature-values associated with HEAD,
hi. The conditional density probability is then given by:

Pdensity(αj = v|hi) = p(αj = v|µ, σ2
) =

1
√
2πσ2

exp(−
((αj = v)− µ)2

2σ2
)

(1)

Then a heuristic measurement of the posterior class prob-
ability, p(hi|αj = v), or equivalently log(p(hi|αj = v)) can
be calculated and used to determine the probability of a target
class for a valid value of a numerical feature.

log(p(hi|αj = v)) = log(p(αj = v|hi))+ log(p(hi))− log(p(αj = v)) (2)

We calculate the probability of regions Ωi for these feature-
values such that if v ∈ Ωi then v belongs to a hi. This
approach may not necessarily capture the full details of the
intricate continuous distribution, but it is highly efficient in
computation and memory perspectives. The reason is that the
Gauss distribution only needs to be calculated once and can
then be updated when data instances are deleted by simply
recalculating mean µ and variance σ2. The real values of
a numerical feature are assumed to be normally distributed
in this paper. As stated in central limit theorem [7], [8],
if the sample size is large enough (> 30 or 40) then the

sampling distribution tends to be normal, regardless of the
actual underlying distribution of the data.

C. Inducing Possible Rule Terms for the HEAD

Let n be the number of features in the data and k be the
number of all possible terms from all features. The users or
domain experts should determine the real usefulness of HEAD
length and may decide to select a group of the most interesting
rules according to some subjective measure of interestingness.
Thus n can also be a subset of the features defined by the user.
The number of possible rule term conjunctions in the HEAD

is
(n+ k − 1)!

k!(n− 1)!
.

Note that a feature can only be used once in a rule in order to
avoid contradictory rule terms. Producing every single possible
conjunction of feature-value pairs can guarantee to uncover
all the underlying knowledge, but this can be computationally
very expensive. Thus, for each feature, only one value is
considered for the HEAD. In the current implementation we
simply choose the candidate rule term of a feature with the
highest coverage of the training data.

D. Induce Complete Generalised Rules

For each HEAD generated in, all possible BODYs (condi-
tional parts) are searched by a covering strategy as described
in Section II-A. The conditional probability with which the
BODY covers a given HEAD is used as a metric (to be
maximised) to select a new rule term for the BODY. The
algorithm always tries to induce a complete rule, this may
lead to a low coverage and thus overfitting. This is because
the usefulness of a complete rule with low coverage may be
very limited in the case of prediction. However, this may not
be the case for descriptive rules.

A complete rule can be an indication of something that is
unusual and interesting for the analyst. Therefore, a descriptive
model will retain all the rules, and the user can rank the rules
by their coverage, accuracy, interestingness, or other metrics.
The algorithm is not forced to produce complete rules all
the time, and a pre-pruning can be applied to generalise the
induced rules and avoid overfitting. In our proposed algorithm,
a pre-pruning method was used to avoid overfitting during rule
construction.

III. EXPERIMENTAL EVALUATION

A. Experimental Settings and Datasets

The purpose of this experimental evaluation was to find
out whether rule evaluation measures based on different con-
straints can be used to select K best rules from the proposed
algorithm. To this end, we used ROC (Receiver Operating
Characteristic) [9] space to evaluate a set of rules based on
different criteria. There are two properties to determine the
goodness of a ruleset statistically:
• Completeness - determines the number of positive data

instances that are covered by the ruleset and this should
be maximised.



(a) Cmc dataset without pruning (b) Cmc dataset with pruning

(c) Car dataset without pruning (d) Car dataset with pruning

(e) Nursery dataset without pruning (f) Nursery dataset with pruning

Fig. 1. Difference in accuracy compared with other classifiers for synthetic data streams.

• Consistency - determines the number of negative data
instances that are covered by the ruleset and this should
be minimised.

Generally, an induced rule labels a data instance as either
positive or negative. Additionally, a rule can label a data
instance as shown in Table I.

TABLE I
COVERED AND UNCOVERED POSITIVE AND NEGATIVE DATA INSTANCES.

BODY cover BODY not cover

HEAD cover True positives
P̂

+
False Negatives

P̄
= P

HEAD not cover False positives
N̂

+
True Negatives

N̄
= N

Consequently, most rule evaluation measures are calculated
based on P̂ , N̂ , P and N . The used evaluation measures in
this section are Support, Confidence and Weighted Relative
Accuracy (WRA). Support and Confidence are commonly used
in the literature to evaluate association rules, while WRA is a
potentially more suitable metric to measure the interestingness
of a descriptive model: WRA(Rset) = P̂+N̂

P+N ∗( P̂
P̂+N̂

− P
P+N )

We selected datasets with both numerical and categorical
values from the UCI machine learning repository [10] in order
to evaluate the efficiency of our Gaussian based technique.
We preferred datasets with clear descriptions of the data and
features to allow a better understanding of the rules. We used
Car, CMC and Nursery datasets.

The measures used in the evaluation are primarily intended
for ranking and filtering rules’ output by induction algorithms.
These heuristics are of particular importance in descriptive
induction algorithms since they can easily output several
thousands of rules. We studied the resultant rule sets when
ranked by Support, Confidence and WRA. The K top rules,
where K = {5, 10, 15, . . . , 50} were plotted in ROC space.

B. Results and Discussion

The primary objectives of our experimental evaluation are
to study the behaviour and performance focussing on the fol-
lowing evaluation questions: How the induced rules performed
in ROC space? How pruning can effect the rule quality? How
to pick the K best rules from the induced ruleset?

Figure 1a, 1b, 1c, 1d, 1e and 1f show the ratio between
Tpr (True positive rate) and Fpr (False positive rate) for



TABLE II
Tpr AND DISTANCE FROM THE DIAGONAL LINE FOR CAR, CMC AND NURSERY DATASETS. BOTH BEFORE & AFTER MEASURES ARE INCLUDED.

Support Confidence WRA
Non Prunning With Pruning Non Prunning With Pruning Non Prunning With Pruning

Tpr p-distance Tpr p-distance Tpr p-distance Tpr p-distance Tpr p-distance Tpr p-distance
CMC

10 rules 8.36 -12.52 5.50 -18.56 10.76 -6.89 22.24 3.85 13.40 -2.40 22.23 3.54
20 rules 8.1 -2.50 6.16 -12.16 10.76 -6.90 18.70 4.95 8.86 -3.66 20.13 6.00
30 rules 8.1 -2.15 7.93 -7.11 10.76 -6.90 12.10 -1.75 8.52 -0.84 15.87 3.39
40 rules 8.1 -2.15 8.27 -4.22 10.76 -6.90 12.10 -1.75 8.25 0.21 13.69 2.68
50 rules 8.1 -2.15 8.58 -2.12 10.76 -6.90 12.10 -1.75 8.25 0.36 11.93 1.87

Car
10 rules 12.66 1.98 15.74 2.86 9.06 -6.10 16.36 -2.47 8.98 -7.68 16.88 -3.56
20 rules 12.77 4.80 17.10 8.07 9.04 -3.54 14.78 2.01 8.16 -2.57 14.10 -1.03
30 rules 12.77 4.80 17.10 8.07 9.04 -3.54 14.78 2.36 8.28 0.18 13.38 0.78
40 rules 12.77 4.80 17.10 8.07 9.04 -3.54 14.78 2.36 8.34 0.75 12.13 0.84
50 rules 12.77 4.80 17.10 8.07 9.04 -3.54 14.78 2.36 8.34 0.75 11.85 1.87

Nursery
10 rules 5.04 -3.40 6.04 -6.73 9.90 -3.08 14.22 -2.91 12.47 -0.33 12.09 -7.45
20 rules 5.11 0.09 6.37 -2.03 9.44 0.58 14.83 2.66 9.44 0.61 13.19 -0.54
30 rules 5.11 0.26 6.69 0.04 9.44 0.58 13.54 3.26 9.40 2.65 12.69 1.32
40 rules 5.11 0.26 7.01 1.36 9.44 0.58 12.09 2.99 9.40 3.24 12.78 2.84
50 rules 5.11 0.26 7.01 1.46 9.44 0.58 11.38 3.33 9.40 3.64 12.52 3.57

each selected K best rules. Any points plotted in the ROC
space that are above the diagonal line should be considered as
useful because the probability with which the BODYs cover
the HEADs is higher than random. In all cases, the rules
with pruning are better compared with the un-pruned rules
as shown in the figures. Please note the data for the plots in
Figure 1 can be found in Table II. We discovered that the
selection criteria performed differently on different datasets,
and there is no single best heuristic for filtering the K best
rules. Therefore, we believe that there is no universal heuristic
that can provide precise information about the quality of an
induced model and the ruleset. Thus, instead of relying upon
a specific selection criteria, we evaluate the induced rules in
the ROC space and select the K best rules no matter what
selection criteria was used. By using Tpr and Fpr we are also
reassured that the measures do not depend on the total number
of training examples. We determine if a set of rules is better
than another when its corresponding point in the ROC space
is further away from the diagonal line positively. Thus, for
each point in ROC space we also calculate its perpendicular
distance to the diagonal and called it ‘p-distance’, which is
also listed for our experiments in Table II. As diagonal line
is used, the equation for calculating ‘p-distance’ is revised as:
p− distance = |Ax0+By0+C|√

a2+b2
= −x0−y0√

2
The ‘p-distance’ can be positive and negative which indi-

cates if the plotted point in the ROC space is above or below
the diagonal line respectively. For example: if a ‘p-distance’
is positively greater than another then its ratio between Tpr
and Fpr is better (which is desirable) compared with another
point. In contrast, if a ‘p-distance’ is negatively smaller than
another then this is undesirable.

IV. CONCLUSION AND FUTURE WORK

This paper presented the work on a novel descriptive rule
induction algorithm that produces highly expressive rules. The
rule induction method is based on a covering approach and

the algorithm uses several selection heuristics to select the
best K rules. The induced rulesets are evaluated using ROC
space to estimate a rulesets’ usefulness. The produced rulesets
show a usefulness better than random. A basic pruning method
has also been employed and compared with the algorithm’s
rulesets induced without using a pruning method. The results
in Section III indicate that a pruning method can improve the
quality of the induced rules.
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