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Abstract 14 

Potential applications of a novel system composed of two oppositely-charged (meth)acrylate 15 
copolymers, Eudragit® ЕРО (EPO) and Eudragit® S100 (S100), loaded with indomethacin (IND) in 16 
oral drug delivery were evaluated. The particles based on drug-interpolyelectrolyte complexes 17 
(DIPEC), (EPO-IND)/S100, were prepared by mixing aqueous solutions of both copolymers at fixed 18 
pH. Particles of drug-polyelectrolyte complex (DPC), (EPO-IND) have a positive zeta potential, 19 
pointing to the surface location of free EPO chains and IND bound to EPO sequences. The 20 
formation and composition of both DPC and DIPEC were established by gravimetry, UV-21 
spectrophotometry, capillary viscosity and elemental analysis. The structure and solid state 22 
properties of the formulated DIPEC were investigated using FTIR/NIR, Raman spectroscopy, XRPD 23 
and modulated DSC. DIPEC is a chemically homogenous material, characterized by a single Tg. 24 
DIPEC have an IR absorption band at 1560 cm-1, which can be assigned to the stretching vibration of 25 
the carboxylate groups (S100, IND) that form ionic bonds with the dimethylamino groups of EPO. 26 
XRPD, NIR and Raman-shifts confirm that during the preparation of this formulation, IND is 27 
converted into its amorphous form. The release of IND from DPC EPO/IND (3:1) and DIPEC 28 
EPO/L100/IND (4.5:1:1) is sustained and is completed within 7 hours under GIT mimicking 29 
conditions. However, S100 within DIPEC makes the release process slower making this system 30 
suitable for colon-specific delivery. Finally, DPC and DIPEC with indomethacin were used to 31 
prepare tablets, which can be potentially used as oral dosage forms for their slower 32 
indomethacin release in case of DIPEC which could be suitable for sustained delivery.  33 
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1. Introduction 39 

The advantages of interpolymer complexes as polymeric carriers in oral controlled drug release have been 40 

reported elsewhere (Kemenova et al., 1991; Hartig et al., 2007; Khutoryanskiy, 2007; Lankalapalli and 41 

Kolapalli, 2009; Pillay et al., 2013, Bourganis et al., 2017). In the last years, our research group has developed 42 

polycomplex matrices based on interpolyelectrolyte complexes (IPECs) using different oppositely-charged 43 

Eudragit® copolymer combinations as new oral delivery systems able to deliver the drugs into site-specific 44 

gastrointestinal tract (GIT) regions (Mustafin and Kabanova, 2004, 2005; Moustafine et al., 2005, 2006, 2011, 45 

2013; Moustafine and Bobyleva, 2006; Mustafin et al., 2010a, 2010b, 2011). Moreover, the advantages of 46 

Eudragit® copolymer combinations for controlled drug delivery purposes have been reported elsewhere 47 

(Siepmann et al., 2008; Obeidat et al., 2008; Sauer and McGinity, 2009; Alhnan and Basit, 2011; Bani-Jaber, 48 

et al., 2011; Wulff and Leopold, 2014, 2016). 49 

The comprehensive analysis of the effects of intermacromolecular interactions between chemically 50 

complementary Eudragits® on the drug release from oral drug delivery systems (DDS) was examined in 51 

recently published reviews (Gallardo et al., 2008; Mustafin, 2011, Moustafine, 2014; De Robertis et al., 2015). 52 

However, further studies are needed to address more complex systems involving oppositely-charged 53 

Eudragits® forming IPECs in the presence of ionic drugs. Only a few papers reported the possibility of using 54 

drug-interpolyelectolyte complexes (DIPEC) as three-component systems for development of drug delivery 55 

dosage forms (Palena et al., 2012, 2015; Bigucci et al., 2015). 56 

Recently, a novel self-organized nanoparticulate carrier, based on drug – IPEC Eudragit® E100/L100 57 

combination was successfully prepared using a simple aqueous dispersion method (Palena et al., 2012). In 58 

this study, the authors have reported that freeze-dried complexes were easily redispersed in water and DIPEC 59 

dispersions behaved as zwitterionic macromolecular systems that may change zeta potential values from 60 

negative to positive by changing the polymer composition. The authors have used atenolol, propranolol and 61 

metoclopramide as model drugs, which could be formulated using these nanoparticulate systems. Recently 62 

four additional anti-inflammatory drugs (salicylic acid, benzoic acid, ketoprofen and naproxen) were also 63 

studied (Palena et al., 2015). The DIPECs exhibited interesting properties useful for the design of 64 

nanoparticulate DDS for oral and topical administration.   65 

Furthermore, a similar principle was successfully used in a chitosan/carboxymethylcellulose polyelectrolyte 66 

system via electrostatic interaction between the amino groups of chitosan and chlorhexidine (cationic drug) 67 

with the carboxyl groups of sodium carboxymethylcellulose,  used for the preparation of vaginal inserts 68 

(Bigucci et al., 2015). 69 

The objective of this study was the preparation and physicochemical characterization of drug-70 

interpolyelectrolyte complexes (DIPEC) as micro-sized particles formed between indomethacin and Eudragit® 71 

S100 with oppositely-charged Eudragit® EPO. These microparticles were found to be highly promising 72 

materials for designing pH-controlled systems for oral delivery to target the colon. Colon-specific drug 73 
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delivery systems are of interest for the therapy of different local conditions such as ulcerative colitis, Crohn’s 74 

disease, irritable bowel syndrome, chronic pancreatitis, and colonic cancer (Basit, 2005; Gazzaniga, 2006; Van 75 

den Mooter, 2006, Maroni et al., 2013; Amidon et al., 2015; Hua et al., 2015). Different approaches have 76 

been traditionally used in drug delivery for colon targeting, including the use of prodrugs, pH-responsive 77 

matrix systems, timed-release formulations, bioadhesive materials, microparticulate vehicles and enteric 78 

coatings (Amidon et al., 2015). Our approach involves the use of conventional enteric coating polymer 79 

Eudragit ® S100 that already provides gastric resistance properties; additionally, in our work we utilised the 80 

ability of this anionic polymer to form interpolyelectrolyte complexes with cationic Eudragit ® EPO. The 81 

functionality of both polymers provided an opportunity of forming polycomplex particles with indomethacin 82 

and formulate tablets with sustained drug release.   83 

2. Materials and methods 84 

2. 1 Materials 85 

Eudragit® E PO – a terpolymer of N,N-dimethylaminoethyl methacrylate (DMAEMA) with methylmethacrylate 86 

(MMA) and butylmethacrylate (BuMA),  (PDMAEMA-co-MMA-co-BMA) (mole ratio 2:1:1, MW 150 kDa) was 87 

used in this study as a cationic copolymer. Eudragit® S 100 (a copolymer of methacrylic acid (MAA) with 88 

methylmethacrylate (MMA), P(MAA-co-MMA) (mole ratio 2:1, MW 135 kDa)) was used as a polyanion. 89 

Different types of Eudragit® (EPO, S100) were generously donated by Evonik Röhm GmbH (Darmstadt, 90 

Germany).  The copolymers were used after vacuum drying at 40°C for 2 days. The solutions at different pH 91 

values, simulating the gastrointestinal conditions, were prepared for release tests by using hydrochloric acid, 92 

sodium phosphate tribasic dodecahydrate, potassium dihydrogen phosphate, and sodium hydroxide (Sigma-93 

Aldrich, Bornem, Belgium). IND was used as a model anionic drug and was purchased from Sigma-Aldrich 94 

(Bornem, Belgium).  95 

2.2. Methods 96 

2.2.1 Preparation of solid DPCs and DIPECs with different macromolecular composition 97 

The optimal conditions for the interaction between chemically complementary grades of a polycation 98 

(Eudragit® EPO) and a polyanion copolymer (Eudragit® S100) in the presence of ionized IND molecules were 99 

studied in aqueous salt media. EPO solutions were prepared by dissolving the copolymer in 1 M CH3COOH. 100 

This solution was diluted with demineralized water to the desired volume and titrated with 1 M NaOH to the 101 

required pH 6.5. S100 and IND solutions were prepared by dissolving the copolymer and the drug in 1 M 102 

NaOH. This solution was diluted with demineralized water to the desired volume and titrated with 1 M 103 

CH3COOH to the required pH 7.2. The EPO solutions were slowly poured into S100/IND solutions, and the 104 
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mixture was stirred at 1000 r.p.m. for 2 days using a magnetic stirrer RET control visc-white (IKA®, Staufen, 105 

Germany). The solutions of copolymers and IND were mixed in different molar ratios. The yields of precipitate 106 

formed were first determined gravimetrically after centrifugation for 1 h at 5000 rpm at 5 oC in a SL16R 107 

laboratory centrifuge (Thermo Scientific, U.S.A.). The specific viscosity of the supernatant solution was 108 

determined using an Ubbelohde viscometer (Schott®, Germany) at 25.0±0.1 oC. The quantity of the non-109 

bonded IND present in the supernatant solutions and the encapsulation efficiency (EE) were investigated UV-110 

spectrophotometrically at 266 nm (Evolution 220, Thermo Scientific, U.S.A.). For gravimetric determination, 111 

the sediment was dried under vacuum (vacuum oven VD 23, Binder, Germany) for 2 days at 40 oC until 112 

constant weight.  113 

The optimal composition was prepared in a laboratory reactor system LR 1000 control equipped with pH-114 

/temperature controlling units under continuous and simultaneous agitation at 10,000 r.p.m. using T25-115 

digital Ultra-Turrax® homogenizer (IKA®, Staufen, Germany). The feeding rate was approximately 2 mL/min. 116 

After isolation of the precipitates of DPC and DIPEC particles from solutions, they were washed with ultrapure 117 

water (Smart2Pure UV/UF, Thermo Scientific, U.S.A.), frozen at -18 oC (Labconco® Shell Freezer, MO, U.S.A.) 118 

and subsequently freeze-dried for 2 days (Labconco® Freeze Dry System, FreeZone 1 L, MO, U.S.A.). The solid 119 

samples were stored in tightly-sealed containers at room temperature. 120 

2.2.2 Elemental analysis 121 

The composition of freeze-dried DPC (EPO/IND) and DIPEC (EPO/L100/IND) samples and physical mixtures 122 

were investigated by elemental analysis using a Thermo Flash 2000 CHNS/O elemental analyzer (Thermo 123 

Scientific, UK). Physical mixtures were obtained by mixing copolymer powders and IND at EPO:S100:IND 124 

molar ratio of 4.5:1:1. 125 

2.2.3 Fourier Transform Infrared Spectroscopy (ATR-FTIR)  126 

ATR-FTIR-spectra were recorded using a Nicolet iS5 FTIR-spectrometer (Thermo Scientific, U.S.A.) equipped 127 

with a DTGS detector. The untreated freeze-dried samples of solid DPC (EPO/IND), DIPEC (EPO/S100/IND) 128 

and physical mixtures were directly mounted over the iD5 smart single bounce ZnSe ATR crystal. The spectra 129 

were analyzed using OMNIC spectra software.  130 

2.2.4 Near-infrared (NIR) spectroscopy 131 

NIR-spectroscopy of freeze-dried samples of solid DPC (EPO/IND), DIPEC (EPO/S100/IND) and physical 132 

mixtures was performed using a Nicolet iS10 XT NIR/FTIR-spectrometer (Thermo Scientific, U.S.A.) equipped 133 

with Smart DRA diffusion reflection accessory. The spectra were analyzed using OMNIC spectra software. 134 

2.2.5 Particle characterization  135 

Particle sizes and zeta potential (ZP) of DIPEC particles in aqueous dispersion were evaluated using a Zetasizer 136 

Nano ZL (Malvern Instruments Ltd., Worcestershire, UK). Solid state particles characterization of freeze-dried 137 
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DIPEC (EPO/S100/IND) samples was performed on the Morphologi G3SE-ID automated system (Malvern 138 

Instruments Ltd., Worcestershire, UK) equipped with fiber-optics Raman-spectrometry (RamanRxn1TM 139 

Analyzer, Kaiser Optical Systems, INC., Germany). 140 

2.2.6 Thermal analysis  141 

Modulated DSC (MDSC) measurements were carried out using a Discovery DSC™ (TA Instruments, New Castle, 142 

DE, U.S.A.), equipped with a refrigerated cooling system (RCS90). TRIOS™ software (version 3.1.5.3696) was 143 

used to analyze the obtained data (TA Instruments, New Castle, DE, U.S.A.). Tzero aluminum pans (TA 144 

Instruments, New Castle, DE, U.S.A.) were used in all calorimetric studies. The empty pan was used as a 145 

reference and the mass of the reference pan and of the sample pans were taken into account. Dry nitrogen 146 

at a flow rate of 50 mL/min was used as a purge gas through the DSC cell. Indium and n-octadecane standards 147 

were used to calibrate the DSC temperature scale; enthalpic response was calibrated with indium. The 148 

modulation parameters used were: 2 °C/min heating rate, 40 s period and 1 °C amplitude.  Calibration of heat 149 

capacity was done using sapphire. Samples were analyzed from 0 to 250 °C. Glass transitions were analyzed 150 

in the reversing heat flow signals.  151 

Thermogravimetric analysis (TGA) was performed using Discovery TGA™ (TA Instruments, New Castle, DE, 152 

U.S.A.). Samples (10-15 mg) were placed on an aluminum pan and heated from 25 to 190 °C at 10 °C/min. 153 

Resulting weight-temperature diagrams were analyzed using TRIOS™ software (version 3.1.5.3696) to 154 

calculate the weight loss between 25 and 170 °C. 155 

2.2.7 X-ray powder diffraction  156 

X-ray powder diffraction (XRPD) was performed on the freeze-dried samples of solid DIPEC (EPO/S100/IND) 157 

and physical mixtures. An automated XPERT-PRO diffractometer system (PANalytical, Almelo, the 158 

Netherlands) was used in reflection mode. All samples were measured without crushing or any other sample 159 

processing. A copper tube with the generator set at 45 kV and 40 mA was used. Using a transmission spinner, 160 

it was possible to improve the counting statistics by spinning the sample using a rotation time of 4.0 s. In the 161 

incident beam path, 0.04 rad soller slit and a programmable divergence slit of 10 mm were applied. In the 162 

diffracted beam path, 0.04 rad soller slit and programmable anti-scatter slit were installed. The detector used 163 

for data collection was an X’Celerator RTMS detector, with an active length of 2.122o. The data were collected 164 

in continuous scan mode with a scan range of 4.0040-40.001o and a step size of 0.0167o. The counting time 165 

was 499.745 s. X’Pert Data Collector version 2.2a (PANalytical, Almelo, the Netherlands) was used for data 166 

collection and X’Pert Data Viewer version 1.2.a (PANalytical, Almelo, the Netherlands) was used for data 167 

visualization and treatment.  168 

2.2.8 Release of indomethacin from the particles under GIT mimicking conditions 169 

The release of IND from the DDS was performed under sink conditions at 37.0±0.1 oC using the USP II 170 

Apparatus (the off-line dissolution tester DT 828 with an auto sampler ASS-8, a fraction collector FRL 824 and 171 
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a peristaltic pump ICP-8 (Erweka, Heusenstamm, Germany)). The paddles rotation speed was 100 rpm. The 172 

release was investigated for 7 hours under GIT mimicking conditions, where the pH of the release medium 173 

was gradually increased: 1 hour in 0.1 M hydrochloric acid (pH=1.2), 2 hours in phosphate buffer solution 174 

(pH=5.8), 2 hours in phosphate buffer solution (pH=6.8), and finally in phosphate buffer solution (pH=7.4) 175 

until the end of the experiment (Lorenzo-Lamoza et al., 1998).  176 

A weighted amount of the DDS (50 mg; estimated to contain approx. 10 mg IND) was suspended in 400 mL 177 

of 0.1 M hydrochloric acid, then 400 mL of 0.02 M dibasic potassium phosphate trihydrate were added in the 178 

release media after 1 hour. Then the pH of the resulting solution was adjusted to the desired pH (5.8, 6.8, 179 

and 7.4) with sodium hydroxide. Final volume was kept at 850 mL. pH control was carried out in each vessel 180 

with a portable pH meter Orion Star A 325 (Thermo Scientific, U.S.A.) using the Orion™ ROSS Ultra™ low 181 

maintenance pH/ATC Triode™ (Thermo Scientific, U.S.A.). At fixed time intervals, 5 mL of the solution was 182 

withdrawn, filtered through a syringe filter with a pore diameter of 0.45 microns (Supelco Iso-Disc Filters N-183 

25-4 Nylon 25 mm) and the amount of IND released was analyzed by UV spectrophotometry (Lambda 25, 184 

Perkin Elmer, U.S.A.). IND presence in all performed tests was detected by recording the full absorption 185 

spectra in the wavelength range from 200 to 400 nm and identifying the peak height closest to 330 nm to 186 

avoid incorrect measurements due to the shift in λmax: a spectrum fitting procedure was adopted instead of 187 

the simple reading of the absorbance at given wavelength, being much more effective to eliminate any 188 

possible interferences due to copolymers (Dalmoro et al., 2016) or DPC and DIPEC formation. An equal 189 

volume of the same dissolution medium was replaced to maintain a constant volume. The experiments were 190 

performed in triplicate. 191 

2.2.9 DIPEC particles characterization under GIT mimicking conditions  192 

Measurements of  the size and zeta potential of the DIPEC particles under conditions, mimicking the release 193 

process was also performed using the Zetasizer Nano ZS equipped with multi-purpose titrator MPT-2 and 194 

degasser accessories (Malvern Instruments Ltd., Worcestershire, UK). Samples of DIPEC particles were 195 

redispersed in 0.1 M hydrochloric acid (pH 1.2). Then 0.1 M sodium hydroxide solution was gradually added 196 

to the dispersion of DPC by using an automatic titrator, until a pH of 7.4 was reached. During the titration, 197 

the zeta potential and size of the polymer-drug complex were measured between pH 1.2-7.4.  198 

All the experimental determinations were performed in triplicate; the results were expressed as average 199 

values with standard deviation (SD). 200 

2.2.10 Tablet preparation and indomethacin release under GIT mimicking conditions  201 

With the aim to study the IND release from tablets as possible oral dosage systems, the produced loaded 202 

particles were used to prepare tablets by the following procedures. Tablets with IND loaded particles (DPC 203 

and DIPEC) were prepared by compressing about 500 mg of lyophilized particles (estimated to contain 204 

approx. 100 mg IND) in a hydraulic press for FTIR (Perkin Elmer, U.S.A.), equipped with flat-faced punches 205 
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with 13 mm diameter (by a Pike Technologies, U.S.A.) with a compression pressure of 2.45 MPa. The same 206 

procedure was applied to 500 mg of physical mixtures and IND powder (the compositions were similar to 207 

DPC and DIPEC ratios, respectively). The two kinds of produced tablets were then subjected to in vitro drug 208 

release studies applying the method used for IND release from uncompressed particles, previously described. 209 

All the experimental determinations were performed in triplicate; the results were expressed as average 210 

values ± standard deviation (SD). 211 

3. Results and discussion 212 

3.1 Preparation and characterization of DPC and DIPEC particles  213 

EPO is soluble in acidic solutions up to pH 7.0 (Mustafin et al., 2011), due to hydration of protonated 214 

dimethylamino groups. On the other hand, S100 is soluble above pH 7.0 due to hydration of ionized carboxyl 215 

groups. IND is a non-steroidal anti-inflammatory drug containing an acidic function with a pKa = 4.5 (Priemel 216 

et al., 2013a, 2013b; De Filippis et al., 1991). The possibility of interaction between these two polyelectrolytes 217 

and IND was investigated between pH 6.8 and 7.2, where both copolymers and the drug are soluble and 218 

partially ionized. 219 

EPO-IND polycomplex formation was first investigated using gravimetric analysis of precipitates and UV-220 

spectrophotometry analysis of supernatant solutions, prepared at different molar ratios at pH 6.5. At this pH, 221 

the degree of ionization and charge density of EPO is very small. In contrast, the reaction capability of the drug 222 

is high. Fig. 1a shows that the maximum of the precipitate yield corresponds to the maximum of bound IND. 223 

The maximum of EPO/IND polycomplex yield was found at the unit molar ratio of 3:1. The observed binding 224 

molar ratio corresponds to the stoichiometry of the obtained DPC EPO/IND, estimated also by elemental 225 

analysis of the dry DPC precipitates.  226 

The next step was to determine the optimal composition in DIPEC (EPO/S100/IND) mixtures. Fig. 1b shows 227 

the results of precipitate and supernatant analysis, which confirm that the stoichiometric composition of 228 

precipitated DIPEC (EPO/S100/IND) corresponds to the molar ratio of 4.5:1:1. 229 

3.1.2 Compositional study  230 

Fig. 2 shows the apparent viscosity of the supernatant in EPO/S100/IND mixtures. The decrease in viscosity 231 

observed in EPO/S100/IND mixtures showed that the insoluble DIPEC was formed in the investigated medium 232 

and was removed by centrifugation (Cilurzo et al., 2000, Moustafine et al., 2005). A minimum in the curve is 233 

observed when the mixture of EPO/S100/IND was 4.5:1:1. Thus, the DIPEC is enriched with the less ionized 234 

component (charge density on EPO chains > 0). On the other hand, an incorporation of the anionic 235 

components (S100 and IND) decreases due to the progressive increase in the fraction of ionized carboxylic 236 

acids. This also increases the drug reactivity. In order to confirm the proportion of each component in the 237 
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solid DIPEC, elemental analysis of the dry precipitates was performed. The results are summarized in Table 1 238 

and clearly indicate that the molar ratio between EPO, S100 and IND in the triple polycomplex is 4.5:1:1.  239 

3.1.3 Morphological and dimensional analysis  240 

The particle size of freshly prepared DIPEC particles was determined by photon correlation spectroscopy. 241 

DIPEC particles showed a mean diameter (MD) of 497±51 nm with a positive value of zeta potential (+17.4 242 

mV), pointing to the surface location of free EPO chains and IND bound to EPO sequences. 243 

Additionally, particle size distribution and morphological analysis of the DIPEC samples was estimated.  Three 244 

main groups of particle size were observed (Fig. S1a, Supporting Information): small (mean diameter (MD) ≤ 245 

300 nm; 98.06%), medium (300 nm ≥ MD ≤ 10 µm; 1.90%) and large (MD ≥ 10 µm; 0.04%). Fig. S2b (Supporting 246 

Information) summarized the results of the morphological analysis, in the case of the “large” group, and 247 

shows nearly spherical morphology (according to the circularity measurements) of the particles and a low 248 

degree of aggregation. Similar morphology was found for the other two groups of particles (data not shown). 249 

All of the evaluated particles have circularity values close to 1 indicating nearly perfect spheres. Moreover, 250 

identification of the particles included from the “small” group (making up the majority of particles) by Raman-251 

spectrometry showed that these particles consist of DIPEC (94%) and do not contain free IND (Fig. S2c, 252 

Supporting Information).   253 

3.1.4 Drug encapsulation 254 

Direct encapsulation of IND was achieved by preparing particles in the presence of EPO and S100 and 255 

formation of IPEC between these oppositely-charged copolymers. The residual amount of IND at the end of 256 

the particles preparation was evaluated by UV-spectrophotometry. The data showed that encapsulation 257 

efficiency (EE) was 75.6% (Table 2). The high EE is most likely the consequence of strong interactions between 258 

IND molecules and EPO which is simultaneously bound to the countercharged S100 sequences.  259 

3.2 Evaluation of the DIPEC structure 260 

3.2.1 Mid-infrared spectroscopy 261 

FTIR spectra indicate that IND is present as the γ-form showing absorption peaks at 1714 and 1690 cm-1 (Fig. 262 

3a) (Liu et al., 2010, 2012; Chokshi et al., 2005, 2008; Sarode et al., 2013a, 2013b). The FTIR spectra of the 263 

physical mixture of IND and copolymers (EPO and S100) in the same as in DIPEC ratio, is virtually a superposition 264 

of the spectra of all components (Fig. 3b). However, the DPC and DIPEC show a different absorption band at 265 

1560 cm-1, which is due to the stretching vibration of the carboxylate groups that form the ionic bonds with the 266 

protonated dimethylamino groups of EPO (Fig. 3c,d). Although Liu et al. (2010) reported that ionic interactions 267 

between ionized carboxylic groups of IND and oppositely charged dimethylamino groups of EPO in IND/EPO solid 268 

dispersions result in a broad absorption band at 2479 cm-1 which corresponds to ionized amino groups, we did 269 

not observe this in spite of similar levels of drug loading. This can be explained since the charge density of the 270 
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EPO macromolecules decreases smoothly at the pH of DIPEC preparation. Moreover, in this study, we have a 271 

system with a significantly higher complexity since the amino groups of EPO can interact not only with IND but 272 

simultaneously with S100. The existence of non-ionized dimethylamino groups (2770 and 2820 cm-1) in DIPEC 273 

indicates that in this structure, they are localized mainly in ‘defects’ together with ionized bound groups of EPO 274 

which is largely dependent on the conditions of the DIPEC preparation. The ratio of non-ionized and ionized 275 

dimethylamino groups depends on the charge density of EPO macromolecules that is relatively low at pH 276 

6.8–7.2. 277 

The peak of the carbonyl stretching vibration (belonging to the carboxyl group) of IND at 1714 cm-1 completely 278 

overlapped with a strong band of carbonyl stretching vibration of EPO and S100 at 1730 cm-1. Therefore, we 279 

focused on the region of near-infrared spectroscopy in order to evaluate potential IND transformations (from 280 

γ-form to α-form or to the amorphous form) (Tanabe et al., 2012; Heinz et al., 2007; Nielsen et al., 2012). 281 

3.2.2 Near-infrared spectroscopy 282 

Due to the complexity of DPC and DIPEC systems, the main differences between the crystalline and 283 

amorphous forms were observed from 1650 nm to 1900 nm (Heinz et al., 2007). Indeed, a peak at 1860 nm 284 

resulting from the vibrations of the carboxylic group observed in the spectra of γ-form IND was absent both 285 

in physical mixtures, DIPEC and DPC (Fig. 4a).  Therefore, in the ternary physical mixture and DIPEC, IND could 286 

not exist in a γ-form. Moreover, the peak at 1666 nm in IND powder confirms the presence of amorphous 287 

form too, which also appeared in DPC and DIPEC, but not in a physical mixture.  In case of IND and physical 288 

mixture a peak maximum at 1696 nm confirms the existence of γ-form IND, which is absent in DPC and DIPEC. 289 

Interestingly, the appearance of a new peak at 1702 nm for DIPEC is also observed in NIR-spectra of the 290 

individual copolymers – EPO and S100, but not in their physical mixture (Fig. 4b). NIR-spectroscopy thus 291 

confirmed the presence of individual copolymers (EPO and S100) in the structure of DIPEC, due to the 292 

appearance of the peaks at 1702 nm, and the amorphous form of IND (the peak at 1666 nm). 293 

3.2.3 Raman spectroscopy 294 

Raman-spectra were recorded to further characterize the solid-state of IND in DIPEC, and the possible 295 

interactions between sequences of countercharged copolymers (EPO, S100) and anionic drug (IND). For 296 

characterization of IND, the 1715–1100 cm-1 spectral range was used (Figure S2a, Supporting Information).  297 

The vibrational mode occurring at 1699 cm-1 confirmed the existence of γ-form of IND (Heinz et al., 2007; Kao 298 

et al., 2012; Hedoux et al., 2008), which is also present in a physical mixture. The spectrum of the physical 299 

mixture can be regarded as the superposition of the spectra of IND, EPO and S100. However, in the DIPEC 300 

particles, a new peak appeared at 1680 cm-1, which corresponds to the amorphous form of IND (Heinz et al., 301 

2007; Kao et al., 2012). Both peaks are assigned to the benzoyl carbonyl stretching vibration (Hedoux et al., 302 

2008). Molecules of γ-form of IND are mostly organized in cyclic dimers linked by hydrogen bonds (Chokshi 303 

et al., 2005; Hedoux et al., 2008). The absence of low frequency mode at 200 cm-1 (Fig. S2a, Supporting 304 



10 
 

Information) in the Raman spectrum of DIPEC (which is present in IND spectrum) is also a confirmation of the 305 

formation of an amorphous phase since this peak corresponds to the phonon of γ-form with long-range 306 

crystalline order (Hedoux et al., 2008). 307 

Therefore, both methods (NIR- and Raman- spectroscopy) confirm the transformation of the γ- form of IND 308 

into the amorphous form during the preparation of DIPEC particles. However, Raman spectroscopy was not 309 

suitable for establishing inter-macromolecular interactions between the copolymers (Fig. S2b, Supporting 310 

Information). 311 

3.2.4 Thermal and XRPD analysis  312 

In order to further support the observed appearance of the amorphous IND form established with FTIR-, 313 

NIR- and Raman spectroscopy and to bring further evidence that the formation of DIPEC between EPO and 314 

IND in the presence of S100 is the result of an electrostatic interaction between these copolymers and the 315 

drug, MDSC experiments were performed.  316 

The γ-form of IND shows an endothermic peak at 160.2 °C, corresponding to the melting point (Tm). The glass 317 

transition temperature (Tg) of the amorphous form is located at ca. 46.0 °C which is in accordance with the 318 

literature (Liu et al., 2010, 2012; Sarode et al., 2013a, 2013b).  Eudragit® copolymers are amorphous 319 

substances and have a characteristic Tg: EPO (52.1°C) and S100 (160.7 °C). 320 

Physical mixtures made of EPO/S100/IND showed two Tg values, one at 50.81.1°C and a second one at 321 

152.51.3°C °C related to EPO and S100. Transitions belonging to IND were not observed (data not shown).  322 

Moreover, MDSC was used to confirm the structural differences between DIPEC and physical mixtures 323 

identified by FTIR spectroscopy, as well as to evaluate the chemical homogeneity of the copolymer-drug 324 

systems by the absence of microdomains of free copolymers and IND. The thermal characteristics of DIPEC 325 

vary with their composition and are given in Table 3. The data recorded for DIPEC demonstrates the 326 

amorphous nature of this system and copolymer miscibility since a single Tg (70.8 °C) was observed (Sipos et 327 

al., 2008). Also, the DPC (IND/EPO) is a miscible amorphous system displaying a single Tg at 43.7 °C.  328 

To ensure that IND did not degrade during the heating, the DIPEC was studied using thermogravimetric 329 

analysis. No appreciable weight loss was observed after heating at 170 °C for 10 min in a nitrogen 330 

environment (data not shown). Liu et al. also reported that no significant degradation was observed upon 331 

heating to prepare solid dispersions of IND and EPO at 170 °C (Liu et al., 2012). 332 

XRPD analysis (Fig. S3, Supporting Information) confirmed the MDSC data that IND is present in the 333 

amorphous form in PDC and DIPEC.  334 

3.3 Pharmaceutical evaluation of DPC and DIPEC  335 

3.3.1 Indomethacin loaded particles: release tests 336 

In a further set of experiments, we tested the potential of DPC to be used in drug delivery systems to control the 337 

release of IND.  338 
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In vitro IND release experiments within 7 hours in GIT mimicking conditions for pure IND, DPC and DIPEC 339 

showed the potential of DIPEC (EPO/L100/IND 4.5:1:1) to be used as a carrier, suitable for colon-specific drug 340 

delivery (Fig. 5).  341 

The results could be understood if we consider the structure of the formed DIPEC in depth. It is well known, that 342 

there are two main classes of IPECs: stoichiometric IPECs, which include the polymers in equimolar ratio and 343 

non-stoichiometric IPECs that have excessive amount of one of the polyelectrolytes. The last one is also called 344 

soluble IPECs because of their solubility in water (Philipp et all., 1989; Tsuchida, 1994; Thünemann et al., 345 

2004; Kabanov, 2005; Pergushov et al., 2012). Moreover, in the structure of IPECs two types of chains can be 346 

distinguished: the interacting chains, which belong to both interacting polymers; and the loops, which are 347 

also called “defects” of non-interacting chains due to steric hindrances (Kabanov et al., 2005). According to 348 

this, the process of DIPEC formation may be divided into three main steps: (1) drug-interpolyelectrolyte 349 

complex formation by simultaneous interactions of EPO with oppositely-charged IND and S100; (2) 350 

transformation to a thermodynamically stabilized system by migration of ionic bonds; (3) drug-351 

interpolyelectrolyte complex aggregation process and formation of microparticles. The first step is realized 352 

through binding via electrostatic attraction forces. The second step involves the formation of new bonds 353 

and/or the correction of the distortions of the polymer chains. The third step involves the aggregation of 354 

polycomplex particles, possibly through hydrophobic interactions.  355 

The structure “defects” formed during the preparation of DIPEC do not only contain non-ionized dimethylamino 356 

groups of EPO and ether groups of both copolymers, as it could be in a stoichiometric IPEC structure, but also 357 

ionized dimethylamino groups that interact with carboxylate groups of IND and S100. Moreover, due to the non-358 

stoichiometric structure of DIPEC, containing three-fold excess of EPO, additional sequences of EPO are able 359 

to interact with oppositely-charged IND molecules and S100. As a result, the structure of IPEC is changed 360 

because the ionic bonds are not fixed and they can migrate from one electrostatic site to another (Kabanov et 361 

al., 2005). The only problem is that at a pH between 6.8 and 7.2, the charge density of EPO macromolecules is 362 

low. This means that more sequences of EPO are needed to achieve optimal encapsulation efficiency of IND 363 

molecules. Moreover, equimolecular amounts of S100 could bind a similar molar amount of EPO during 364 

formation of microparticles.  Thus, ionized dimethylamino groups are interacting with ionized carboxylic acid 365 

groups of IND in the sequences included in the loops and can also form new interpolymer contacts with S100.  366 

The carboxylic groups of S100 that are present in “defects” are ionized at pH 7.0 and consequently increase the 367 

degree of ionization, but the dimethylamino groups present in the loops are losing their charge at this pH and 368 

lead to an increase in the contribution of the hydrophobic units in the total DIPEC structure. Aggregation of the 369 

interacting chains and non-charged fragments in “defects” lead to the formation of hydrophobic entities within 370 

the particles. Schematic structures of DPC and DIPEC particles are shown  in Fig. 6. 371 

According to the chemical structure of IND we can expect IND-EPO interactions, which will influence the drug 372 

release rate (Kindermann et al., 2011, 2012; Quinteros et al., 2011a, 2011b; Gusman et al., 2012). 373 
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Based on these results, the explanation of drug release from this system can be understood as follows. In acidic 374 

medium (pH 1.2 and 5.8), macromolecules of EPO hydrate and the copolymer partially dissolves.  The solubility 375 

of the EPO/IND complex is also relatively high, but in the presence of S100 the release of the drug will decrease 376 

significantly. The remaining amount of ionized EPO and EPO/IND complex after transfer to a medium with higher 377 

pH will continuously lose charges on dimethylamino groups of the polycation chains, leading to the formation of 378 

insoluble fibers in the structure of the particles. At pH 6.8, most of the carboxyl groups of IND are deprotonated 379 

but sequences of S100 are still insoluble. Therefore, the repulsive forces between the negative charges of IND in 380 

DIPEC structure result in the continuous drug release.  381 

The release rate of IND increases when the DPC and DIPEC are transferred into the final medium. According to 382 

the above-mentioned explanation, the increase in the release rate in this case at pH 7.4, could be due to the 383 

modification of the structure of DIPEC particles during the penetration of dissolution medium into the system. 384 

IND molecules, which cannot compete in the interpolyelectrolyte reaction, cannot find free sequences of 385 

charged dimethylamino groups in the insoluble fibers of EPO sequences, which will increase drug release. 386 

According to FT-IR results observed for polycomplex matrices based on Eudragit® EPO – Eudragit® S100 (Mustafin 387 

et al., 2011) we believe that similar processes are possible in the present DIPEC composed of the same 388 

copolymers. 389 

In order to prove this, measuring the size and zeta potential of DIPEC particles under conditions, mimicking 390 

the release process was performed. During the titration, zeta potential and size of DIPEC clearly changed 391 

(Fig. 7). Zeta potential values increased up to pH 3.2 (+27.75 mV) followed by a gradual decrease with 392 

increasing pH. On the other hand, the particle size was minimal below pH 4.4 and then it increased up to pH 393 

5.4 and 6.8 and decreased again at pH 7.4. In our opinion, the behavior of DIPEC particles in acidic medium 394 

(the largest size, zeta potential value +26.45 mV) corresponds to the dissolved DIPEC with minor release of 395 

IND from the system.  396 

With increasing pH values the zeta potential begins to decrease, due to gradually decreasing the charge 397 

density of the positively charged EPO sequences, but the particles became larger indicating swelling and the 398 

start of IND release as a consequence of the dissociation of DIPEC structure. Additionally, drug molecules could 399 

simply diffuse through less swollen particles.  400 

3.3.2 Indomethacin loaded tablets: release tests 401 

As described in section 2.2.10, two kinds of tablets were produced: the first by compressing lyophilized DPC 402 

or DIPEC particles (encapsulated IND tablet) and the latter by compressing physical mixtures with the similar 403 

compositions (dispersed IND tablet). 404 

Both types of dispersed tablets prepared from the physical mixtures disintegrated rapidly after 15 min. The 405 

explanation can be found in the fact that the copolymers are acting individually and no inter-polymer and 406 

drug-polymer interactions occurs. Indeed, EPO which is used as a gastric soluble film coating material, was 407 

already dissolved after 30 min in acidic medium and S100 is not soluble in this medium; tablets prepared 408 
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from this copolymer almost immediately disintegrated. Therefore, tested physical mixtures (dispersed IND 409 

tablets) are clearly not suitable as oral sustained release systems for IND. Our findings are in the line with to 410 

those previously reported by our group (Moustafine et al., 2005, 2013).  411 

Fig. 8 shows the release profile obtained from DPC and DIPEC tablets with IND (encapsulated IND tablet): in 412 

the gastric environment IND was not released at all instead of its release from the particles at about 5%. In 413 

case of DPC tablets, after 7 hours, the pH change from pH=1.2 to pH=7.4 caused gradual release of the drug 414 

up to its 50% amount due to the dissolution of the particles and further continuous dissociation of the DPC 415 

structures (the complete tablet disintegration was observed within the first 2 hours). So, in this case the 416 

release profile of IND is the same as we observed with DPC particles due to the fast disintegration of the 417 

tablet (very low stability of the matrices) in acidic environment and similar mechanism of the drug release 418 

after the dissociation of the DPC starts. The different release profiles in case of DIPEC systems between 419 

tableted (Fig. 8) and powdered particles (Fig. 5) with IND, is obviously due to the reduction of surface area 420 

exposed to the dissolution medium: particles, having a greater surface area than the tablets, are more 421 

exposed to the dissolution medium and then the release of the drug is more rapid compared to tablets with 422 

IND, in which, instead, the fluid must first penetrate the interstices between the particles placed in close 423 

contact to each other, which is in accordance with the literature (Dalmoro et al., 2017). Moreover, a visible 424 

transparent hydrogel layer is formed around the less swollen matrix DIPEC tablets in acidic medium (in the 425 

first hour). However, the front of the external layer appeared turbid at pH=5.8 as the pH rises. This is in 426 

agreement with our previous findings, concerning oppositely charged systems made of Eudragit EPO/L100 427 

matrices during swelling in GIT mimicking conditions (Moustafine et al., 2013). The reason for it is the 428 

influence of gastroresistant S100 copolymer, which plays an important role as additional hydrophobic layer 429 

forming component. This makes it less penetrable to drug diffusion from the swollen DIPEC matrix, stable 430 

until the end of the experiment. Additionally, the rate of the drug dissociation within swollen matrices is also 431 

significantly decreased under these conditions.   432 

Based on the results generated, we can conclude that unique properties of the EPO-S100 interpolyelectrolyte 433 

complexes, which could be easily regulated by changing their composition and charge density, should be 434 

applicable for the design of precisely pH-controlled drug-interpolyelectrolyte ternary systems for colon-targeting 435 

of the encapsulated drugs. 436 

4. Conclusions 437 

The results of the present investigation confirm the formation of a novel particulate system composed of 438 

interpolyelectrolyte complexes between EPO and S100 in the presence of anionic IND. The formation and 439 

chemical composition of ternary systems based on drug-interpolyelectrolyte complex (DIPEC) was established 440 

by gravimetry, UV-spectrophotometry, capillary viscosity and elemental analysis and confirms that DIPEC is 441 

formed in molar ratio EPO/L100/IND of 4.5:1:1. The particles are spherically shaped with a mean particle size 442 
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of 500 nm and with a positive zeta potential. Spectroscopic (FTIR, NIR and Raman) and solid state analytical 443 

methods (MDSC, XRPD) confirm that IND, included in DIPEC, was in the amorphous state.  These particles are 444 

able to strongly protect the drug from the gastric environment and could be suitable for colon-targeting 445 

purposes. Finally, particles loaded with indomethacin were used to prepare tablets, with a slower IND release, 446 

which can potentially be used as oral pH-controlled drug delivery systems for sustained indomethacin release. 447 
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Fig. 1. Gravimetric analysis of precipitates and UV-spectrophotometry  analysis of supernatant solutions prepared at 649 
different molar ratios: a) EPO/IND systems, b) EPO/S100/IND systems (n=3; ±SD).  650 
 651 
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 658 

Fig. 2. Relative viscosity of the supernatant solutions of EPO/S100/IND systems as a function of the molar ratio (n=3; 659 
±SD).  660 
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Fig. 3. ATR-FTIR-spectra of Indomethacin (a), physical mixture (b) DIPEC (c) and PDC (d).   670 
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Fig. 4. NIR-spectra of: IND, physical mixture, DIPEC and DPC (a); IND, EPO and S100 (b).  676 
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Fig. 5. IND release profiles in GIT mimicking conditions of the pure IND and from particles based on DPC EPO/S100 and 687 
DIPEC EPO/S100/IND systems (n=3; SD).  688 
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Fig. 6. Schematic representation of DPC (a) and DIPEC (b) structures.  705 
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Fig. 7. Zeta potential (blue line) and particle size (red line) of DIPEC dispersions as a function of the pH values during 711 
automatic titration technique in GIT mimicking conditions (n=3; SD). 712 
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 718 

Fig. 8. IND release profiles in GIT mimicking conditions from tablets based on DPC EPO/IND and DIPEC EPO/S100/IND 719 
systems (n=3; SD). 720 
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