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A Text Mining Framework for Big Data

Niki Pavlopoulou, Aeham Abushwashi, Frederic Stahl and Vittorio Scibetta

Abstract Text Mining is the ability to generate knowledge (insight) from text. This
is a challenging task, especially when the target text databases are very large. Big
Data has attracted much attention lately, both from academia and industry. A num-
ber of distributed databases, search engines and frameworks have been developed
to handle the memory and time constraints, which are required to process a large
amount of data. However, there is no open-source end-to-end framework that can
combine near real-time and batch processing of ingested big textual data along with
user-defined options and provision of specific, reliable insight from the data. This
is important as this way new unstructured information is made accessible in near
real-time, more personalised customer products can be created and novel unusual
patterns can be found and actioned on quickly. This work focuses on a proprietary
complete near real-time automated classification framework for unstructured data
with the use of Natural Language Processing and Machine Learning algorithms on
Apache Spark. The evaluation of our framework shows that it achieves a comparable
accuracy with respect to some of the best approaches presented in the literature.
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1 Introduction

The automatic classification of unknown text documents is an important problem in
data mining. The amount of text available for business analytics is vast, originating
out of sources ranging from the World Wide Web, social media, e-mails, medical
records, databases etc. Much of this data inherently lacks coherent structure. There
is far too much data for human users to manually process and categorise. Therefore,
methods like Text Mining have emerged to solve this problem [2].

Classification in Text Mining is the ability to automatically attach a label to a
previously unseen documents using models extracted by algorithms from a collec-
tion of known and labelled documents [40]. The acquisition of such a collection of
texts that can be used to train such a model is a challenging task on its own. Most
of the time such a training set is created manually by subject matter experts who
can identify documents that represent each label best. This process is often biased
by the expert and time-consuming. Furthermore, it is often unclear how many text
documents are needed to generate an accurate predictive model. Often the ‘rule of
thumb’ is ‘the more the better’. However, this is not true for all cases [22].

After the training set is gathered, a number of pre-processing techniques are used
[4]. Often one cannot know which method or combination of methods will work best
and ‘blindly’ tries to use some of them to see how good their results are. Evaluation
techniques, such as k-fold cross validation and holdout are typically used to help
optimise this selection process.

Once the input data has been pre-processed, Machine Learning (ML) algorithms
are used in order to build models that can learn from the training set and can later be
used to classify previously unseen documents [4]. There is a plethora of algorithms
to do this and one can determine through experimentation which ones work best for
a specific problem.

There are a number of frameworks and tools for Data Mining [8, 43], but most
are not open-source. RapidMiner [27], Orange [14], KNIME [6], Weka [18] are on
the other hand some of the most popular open-source tools that support a myriad of
algorithms, pre-processing methods and rich GUIs. However, they typically do not
cope with very large amounts of data nor do most of them have support for stream
processing. Whilst these tools and frameworks are perfectly usable in environments
where the data volume is low and streaming capability is not required, these con-
straints tend to limit their applications in industry.

With rising interest in real-time data processing, a lot of attention is given to
streaming Big Data frameworks such as Apache Spark [26], Apache Storm [3] and
Apache Flink [10]. Others, like Azure ML [5], SAMOA [13] and TensorFlow [1] are
also very powerful tools. However, Azure ML supports cloud services only and thus
blocks out users who need the cloud computing capability on premise. SAMOA,
on the other hand, supports only streaming data, which is not applicable for all
applications. Also in our experience Deep Learning frameworks, like TensorFlow
are frequently used for industrial problems where in fact traditional ML techniques
would be sufficient.
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We focused our attention on Apache Spark, which is widely used in production
by many organisations and is actively maintained and extended to support an ever-
increasing list of use cases. Although Spark is a powerful framework with good
support for a number of ML algorithms, it lacks support for pre-processing methods,
native capability to ingest data from different types of data sources and the ability
to store data in databases. In order for the platform to be viable for a large variety
of applications, a more comprehensive workflow is required. This workflow should
ingest data from various sources, pre-process it, use existing or newly-implemented
algorithms and be able to evaluate and visualise results.

This paper addresses the task of building a system that can take advantage of
the batch and streaming capabilities of Apache Spark for a complete Text Mining
application. In order to do this, our method uses a variety of tools, libraries and the
capabilities underlying the Exonar platform.

The paper is organised as follows; Section 2 describes the methods and the ar-
chitecture of the analytics platform/framework, Section 3 provides results using the
20NewsGroups dataset and Section 4 describes conclusions and future work.

2 Methods

Our platform consists of two processes: the model building and the near real-time
prediction of document labels. In order for these processes to take place, a number
of stages need to be supported. These stages are described in this Section.

2.1 Data Collection

The first step in model building is the creation of the training set. In our case Ex-
onar’s search and discovery platform (https://www.exonar.com/platform/) creates
the training set and it can span from publicly available data to client data. This plat-
form collects and analyses enterprise data, stores it in a NoSQL database (HBase)
[15], and enables users to easily identify training sets for a given classification task.

2.2 Text Pre-processing

Raw text is not suitable as direct input to a classification engine. The text needs to be
represented in a way that is suitable as input for ML algorithms. There are a number
of techniques that can be used [40] for this purpose. Below are some of the most
prominent ones that are implemented in our platform and the user has the ability to
choose from these techniques. The implementation is done with a combination of
in-house methods, Spark, Apache Lucene [7] and OpenNLP [21].
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2.2.1 Document Representation

A collection of documents D contains a number of unique words. These words rep-
resent the dictionary. The dictionary is mapped to integers that now represent each
unique word. This reduces memory requirements and it is used during the execution
of the resource-intensive ML algorithms. A document di is then represented as a
vector, where each index corresponds to its unique mapped word and each value is
a weight of this word in the document according to a particular weighting scheme.
Feature extraction techniques are then used to analyse the original words and results
in a concise and more representative dictionary.

2.2.2 Feature Extraction

Texts in general may contain lots of ambiguity, syntactical errors, frequent occur-
rences of certain words or semantic similarity. It helps to separate words that are
syntactically similar but semantically different, as does grouping words that are se-
mantically the same. For example, the word ‘bank’ in the concept ‘Bank of Eng-
land’ or ‘bank of Thames’ is different. Conversely, ‘monkeys’ and ‘apes’ are under
the umbrella of ‘primates’. In order to pinpoint these semantics, filters are used and
their results are shown in Fig. 1.

Tokenisation: transforms a document di to a collection of words (w1, w1, .., wn)
where n is the number of unique words in di, often called ‘bag of words’. Simple
tokenisers, like the whitespace tokeniser illustrated in Fig. 1, are used in addition to
some more specialised tokenisers that can capture specific types of entities, such as
URLs.

Lowercase filter: transforms all words into lowercase characters. Thus words
such as ‘Runner’ or ‘runner’ can be identified as the one token ‘runner’.

Stopword filter: removes words like ‘a’, ‘the’ etc. that may be deemed semanti-
cally insignificant.

Stemming: transforms words into their root form. For example, words like ‘con-
nection’, ‘connecting’, ‘connector’ are transformed to the root ‘connect’. In our
framework the Porter Stemmer [33] for English was used was used, in particular
Lucene’s implementation of the stemmer.

2.2.3 Feature Selection

One of the main challenges in Text Mining is high-dimensionality. Texts often con-
tain a lot of words that can range from very important to highly noisy. Different data
sets can have distinctly different characteristics. It is useful for building a general
purpose text classification system to allow users to choose which features are valu-
able enough to be kept in the dictionary. The techniques that are used range from
option tuning to statistics.
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One option could be to keep all features. However, that would consume a lot of
memory and the ML algorithms will require more time to process the data. Another
option is to discard words (before stemming) that have less than 4 characters as they
are less likely to be significant compared with longer words.

Another option could be to keep the k most important words, where k is user-
defined using some measure to quantify importance.

Words that are extremely rare throughout the collection D may be noise. Our
system has an option for eliminating those words that exist in less than x docu-
ments, where x is user-defined. This is expected to result in removing rare words
and possibly a higher accuracy.

Information gain [24] is a statistical method used by Decision Tree (DT) and
Random Forest (RF) for selecting the most significant features throughout the dic-
tionary. A sample si of the collection D is related to documents that belong to a
specific class ci. A word wi may be contained in this sample or not. Entropy H
quantifies how homogeneous si is. The lower the entropy the higher the homogene-
ity. Therefore, the information gain of a word wi for a sample si is:

IG(wi,si) = H(si)−H(si|wi) =−∑
k

p(ci) log p(ci)

+ p(wi)∑
k

p(ci|wi) log p(ci|wi)+ p(w′i)∑
k

p(ci|w′i) log p(ci|w′i),
(1)

where p(wi) is the probability of wi occurring, p(w′i) is the probability of wi not
occurring, p(ci) is the probability of the ith class, p(ci | wi) is the probability of the
ith class given the occurrence of wi and p(ci | w′i) is the probability of the ith class

Fig. 1: Stages of feature extraction from text
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given the absence of wi. As the algorithm traverses all possible words, the ones that
have the highest information gain will be selected in the end.

Chi-square [47] is a statistical method that examines the dependency between a
word wi and a class ci. It is defined as:

χ
2(wi,ci) =

|D|(NwiciNw′ic
′
i
−Nw′ici

Nwic′i
)2

(Nwici +Nw′ici
)(Nwic′i

+Nw′ic
′
i
)(Nwici +Nwic′i

)(Nw′ici
+Nw′ic

′
i
)

(2)

χ
2
avg(wi) =

m

∑
i=1

P(ci)χ
2(wi,ci) (3)

χ
2
max(wi) =

m
max
i=1

[χ2(wi,ci)], (4)

where |D| is the number of documents in the collection D, Nwici is the number
of times wi occurs in documents belonging to class ci, Nwic′i

is the number of times
wi occurs in documents that do not belong to class ci, Nw′ici

is the number of times
ci occurs without the word wi and Nw′ic

′
i

is the number of times neither ci nor wi
occurs. The higher the chi-square the more dependent wi and ci are. In our system
a selection of the k most dependent words for each class are selected, where k is
user-defined.

2.2.4 Feature Representation

A frequently used feature representation model is the bag-of-words or n-grams. In
the bag-of-words the dictionary consists of single words. However, sometimes the
meaning of words, the sequence of them and the phrases that exist play a vital role
[44]. Providing only individual words to the ML algorithm may produce less accu-
rate results. For example, if the text contains the words ‘white house’, then a uni-
gram would split the two words into ‘white’ and ‘house’, whereas a bigram would
retain the token ‘white house’. It is important to evaluate the different feature rep-
resentations and identify the one that yields the best results. The user can either use
unigrams or n-grams of n > 1, where n is user-defined.

When using n-grams it is sometimes better not to proceed with stopword removal
or stemming. For example, if stopwords were removed from the word ‘state-of-the-
art’ then the words ‘of’ and ‘the’ would be eliminated resulting in the bi-gram of
‘state art’, which has a different meaning. Stemming could also alter the original
meaning of phrases. However, n-grams are memory-intensive compared with uni-
grams as more words are created. Also the stopword removal and stemming can be
useful to improve the time performance of the ML algorithms. The choice of using
stopword removal or stemming for n-grams is user-defined, because its usefulness
is ultimately dependent on the dataset.

Part-Of-Speech (POS) tagging is another method that is widely used for repre-
senting features. Texts are as dynamic as the language they are written in. The same
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words could have a totally different concept when used in a specific syntactical way.
For example, ‘my dog is barking’ and ‘the bark of the tree’ refer to the word ‘bark’,
which is a verb in former context and a noun in the latter context. With POS tagging,
the first text segment results in ‘bark[VERB]’ and the second text segment results
in ‘bark[NOUN]’. This means that the uniqueness of the word between these texts
is retained. Therefore, the user of our system has the choice whether to use tagging
or not.

2.2.5 Weighting Scheme

As explained earlier, each document is represented by a vector with indices repre-
senting the mapped words and values of their corresponding weight. This weight
derives from a choice of different weighting schemes with the most popular one
being the Term Frequency - Inverse Document Frequency (TF-IDF) metric.

TF-IDF captures the uniqueness and significance of each word in a collection D
and enables the related documents to be identified. TF is often the number of times
a word is seen in a document. Nevertheless, for our system we have experimented
with other TF metrics, like log normalisation and double normalisation to avoid
introducing bias (due to the length of the document). Log normalisation was found
to be generally acceptable for some of our cases and TF-IDF seemed to work well
in almost all cases. The TF-IDF is calculated as:

T F = 1+ log( fwi,di) (5)

IDF(wi,D) = log
|D|+1

DF(wi,D)+1
(6)

T FIDF = T F× IDF, (7)

where fwi,di is the frequency of the word wi in the document di, |D| is the number
of documents and DF(wi, D) is the number of documents that contain the word wi.

The concept behind this metric is the more a word is used in a document, the
more representative it is for this document. However, the more the term is used in
collection D, the less discriminative it is.

2.2.6 Avoiding Bias

Often a dataset will contain a number of bias-inducing documents. Bias is a chal-
lenging factor as it can result in overfitting a model, that is the model may learn very
well from a dataset, but it might fail to generalise for new data. Algorithms such as
DT [35] and RF [9] that rely on information gain for feature selection can overfit
significantly when trained on biased data. Therefore, specific features need to be
eliminated in order to avoid this bias when the dataset is created. It is important that
the dataset is balanced for all classes. If the dataset contains too many documents of
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one class and only a few of another, then a model is bound to be biased towards the
class with the most documents, hence, overfitting of the model is likely. In our plat-
form, if there is sufficient data for all classes, then balancing is done automatically
through a user specified number of documents per class.

2.3 Evaluation

In our platform, once the training set has been pre-processed, it is fed into either an
evaluation process or a model building process with default algorithmic parameters.
The algorithm, its parameters and whether evaluation is required or not are defined
by the user through a configuration file. In general, during evaluation, the training
set D is split into a subset of the training set Dtr and a test set Dte. Dtr is used to
build the model and Dte to predict the documents. There are two types of evaluation
that are supported by our platform, k-fold cross validation and holdout validation,
with the choice of which one is used being configurable.

Once the user starts an evaluation, the accuracies for each class are calculated
and averaged and all evaluation metrics are stored. The implementation has been
done from scratch in Spark.

The evaluation methods are described in Sections 2.3.1 to 2.3.3.

2.3.1 k-fold Cross Validation

This method splits D randomly into k mutually exclusive subsets of equal size,
which are called folds. Then an iteration procedure begins, where in the first round
the first fold is used as Dte and the rest as Dtr, in the second round the second fold is
used as Dte and the rest as Dtr and so on until each fold has been used as Dte exactly
once. The final evaluation metric consists of the average value of the metrics of all
rounds. This is considered to be a robust evaluation method, although it can take a
considerable amount of time depending on the data volume and the algorithm that
is used. k=10 is often considered to be a good setting for cross validation [38].

2.3.2 Holdout

This method splits D into 70% as Dtr and 30% as Dte (using random sampling
without replacement). The method is not considered to be as robust as the k-fold
cross validation, however, it is useful when there is a large amount of data and the
user needs fast and approximate evaluation metrics [20].
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(a) Confusion matrix (b) A DT of a binary classification problem PUB-
LIC vs CONFIDENTIAL

Fig. 2: Confusion Matrix and a DT

2.3.3 Evaluation Metrics

Since Dte contains the real classes, one is able to estimate how well the model be-
haves by comparing the true class label versus the predicted ones. A confusion ma-
trix [34] as shown in Fig. 2a is useful for binary predictions where the class label
is either positive or negative and it contains all True Positives (TP), True Negatives
(TN), False Positives (FP) and False Negatives (FN).

There are more specific evaluation metrics that can be used to cater for the
model’s performance using the TP, TN, FN and FP values from the confusion ma-
trix. The following more specific evaluation metrics are implemented in our plat-
form:

Accuracy =
T P+T N
|D|

(8)

Accuracy is the proportion of documents that were predicted correctly.

Precision = PPV =
T P

FP+T P
(9)

Precision is the proportion of the predicted positives that are indeed positives.

Recall = TruePositiveRate(T PR) = sensitivity =
T P

FN +T P
(10)

Recall is the proportion of positives that are correctly predicted as such.

F−measure = 2× precision∗ recall
precision+ recall

(11)

F-measure is the weighted harmonic mean of precision and recall.

FalsePositiveRate(FPR) = f all−out =
FP

T N +FP
(12)
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FPR is the proportion of negatives that are predicted as positives
In an ideal case, the user would expect the first four metrics to hit 100% and the

last one 0%.
The user has the ability of not using evaluation and proceed into building a model

with default settings.

2.4 Machine Learning Algorithms

Once the evaluation process is done, the platform picks the best combination of
parameters and builds a model, otherwise a model is built according to default pa-
rameters which work well for most cases. The model is then saved in a distributed
data store.

A number of algorithms have been evaluated during the course of the project
and it has been decided to support a few of these, namely DT, RF, Support Vector
Machines (SVM) and Naı̈ve Bayes (NB) that are available on Spark.

2.4.1 Decision Trees

A DT [35] shown in Fig. 2b is a tree-structured model that can predict the class of
a new document. The algorithm uses information gain to select the most important
features of a collection D and creates a binary tree, where each leaf is a class and
each branch is a feature with a TF-IDF weight threshold. The root of the tree is
the most significant feature (according to some metric such as information gain)
followed by the less significant features until a user-defined depth is reached or no
further branches are possible. During model building and for each branch level, the
algorithm checks if all documents that apply to this branch belong to the same class.
If they do then a leaf is created with this class, if they do not then more features are
examined that satisfy the branch to create new branches etc. The prediction of a new
document can be done when its features traverse the tree from the root until a leaf
is reached, which represents the class of the document. A DT is easily interpretable
by users, but its main disadvantage is that it can easily overfit.

2.4.2 Random Forests

A RF [9, 25, 41] is a collection of DTs. The main difference with DTs is that each
tree is created by a method called bootstrapping, which is a random selection of the
original training set D and the best features are selected by different random subsets
of the features. The prediction of a new document is the most frequently predicted
class among all the trees the document’s features have traversed. The advantage of
RF is that it is less prone to overfitting compared with DTs, but it is has a much
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higher computational cost especially if the number of trees is high. The user can
select the number of trees and the depth of each tree.

2.4.3 Support Vector Machines

SVM [19, 28] is a linear model for binary classification that tries to find the Max-
imum Margin Hyperplane (MMH) that best separates the two classes. Documents
that are the closest to the MMH are called support vectors.

In order to cater for multi-class models, our platform creates a model for each
class by considering the corresponding class as the positive one and the rest as the
negative ones (one-versus-all classifier). A new document collects its predictions
from all models and the one that responds to a positive one will win.

One of the main advantages is that SVM can reach a global optimum and is less
prone to overfitting. It has been shown that it can handle high-dimensional data [4].
However, one of the main issues is the computational cost, especially for non-linear
SVM and the parameter selection of non-linear SVMs [11, 12].

2.4.4 Naı̈ve Bayes

NB is a probabilistic model that is based on Bayes’ Theorem. It is called naı̈ve ,
because it observes all features as independent to one another, which is not the case
for texts in general. For example, it assumes that the order of the features or the
existence of features to the same text play no significant role. On the other hand, it
is one of the fastest ML algorithms in terms of classification.

In our platform the multinomial NB [37] version is used. The likelihood of a
document is defined as:

p(di | θ ′c) =
(∑i fwi,di)!
∏i fwi,di !

∏
i
(θci)

fwi ,di , (13)

Fig. 3 An SVM for a binary
classification of stars versus
circles that are linearly sep-
arable. The thick black line
is the optimal hyperplane
and the circled points on the
dashed line are the support
vectors for circles and stars
respectively
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where c is a class, θ ′c is the vector of a class c with values of θci that is the
probability that word wi occurs together with class ci; and fwi,di is the frequency
count of word wi in document di.

The predicted class will be the one with the highest posterior probability, which
is defined as:

l(d) = argmaxc[log p(θ ′c)+∑
i

fwi,di logθci]

= argmaxc[bc +∑
i

fwi,diWci],
(14)

where bc is the threshold term and Wci is the weight of class ci for word wi.
The user can select the smoothing parameter in θ , which is responsible for ad-

ditive smoothing in case one encounters words that did not exist in a training set or
that do not appear in a specific class, in order to avoid conditional probabilities of 0.

2.5 Multi-type model building

The Exonar platform supports processing data in near real-time. Consequently, the
classification engine must support two modes of operation for model building;
batch-processing of existing data and on-demand for new data as it is ingested.
The capabilities of Spark are suited for both modes. Creating new models from
fresh data is essential, because new data might have highly related topics that are
themselves unrelated to old data; therefore, existing models may be obsolete. Fur-
thermore, streaming could also be used for real-time user demands to build differ-
ent (and new) models. For example, a number of users might need to build dif-
ferent models for different training sets or cases; therefore these requests could be
streamed in near real-time in order to cater for these demands.

2.6 Near real-time Prediction

After the model building phase (training) is complete, the prediction process can
start. It is essential for the prediction to be very fast and allow users to classify
previously unseen documents in near real-time. The user defines through a config-
uration file, which model needs to be used. User requests are queued in a message
queueing service, the new documents are collected and the same pre-processing pro-
cedure as the one applied during the model generation process is executed. Then the
user-defined model is read from the distributed data store and is used to classify
these documents. In the end, the user sees only the label of the document and a
confidence score, which gives an indication of how reliable the prediction is. This
whole process was implemented from scratch in Apache Spark.
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The confidence scores are used in our system to establish confidence in the qual-
ity of predictions. We observed that some ML algorithms can be well-calibrated,
that is the prediction probability matches the confidence score closely, but there are
others that perform poorly in this regard. Other algorithms do not support extraction
of confidence scores at all. There are many studies [29, 32, 39, 42, 46, 48, 49] that
aimed to address this issue.

2.6.1 Decision Tree Confidence Score

DTs create tree-structured models, where each leaf contains a class. The creation of
the leaf means that the majority or all of the instances that fall under this leaf belong
to the leaf’s class. Therefore:

P =
k
n
, (15)

where k is the number of training instances under that leaf that matches the leaf’s
class and n is the total number of training instances under the leaf.

The authors of [48] suggest that this score is biased since DTs tend to create
homogeneous leaves or are statistically unreliable when the instances that fall under
a leaf are small in numbers.

2.6.2 Random Forests Confidence Score

RF is a collection of DTs, where each of the trees creates a confidence score, as
suggested above. Therefore:

P=
∑(con f idence scores o f trees voting f or the winning class )

∑(con f idence score o f all trees)
(16)

where the ‘winning class’ is the majority vote and ‘all probabilities’are all the
probabilities of all classes of all trees.

2.6.3 SVM confidence score

SVM is the only ML algorithm that exists in our platform that does not provide any
confidence scores. There are studies [29, 32, 42, 46, 49] suggesting different ways
to tackle this issue, but the most prominent one is Platt Scaling [32].

Platt Scaling is designed for binary classification, as well as SVMs. The main
concept is to pass the SVM scores to a sigmoid function that can result in a confi-
dence score of the SVM score. Therefore:
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P(y = 1 | f ) =
1

1+ e(A f+B)
, (17)

where P(y = 1 | f ) is the probability of the SVM output to belong to the positive
class, f is the SVM score. A and B are constants by using maximum likelihood from
a training set of ( fi, yi), where fi is the SVM score of a document di and yi is its true
target. Gradient descent is used to find A and B subject to the solution:

argminA,B[−∑
i

yi log(pi)+(1− yi) log(1− pi)] (18)

where
pi =

1
1+ e(A fi+B)

(19)

In order to avoid bias, we split our training set into 90% for model building and 10%
for Platt Scaling.

2.6.4 NB Confidence Score

NBs are known for being good predictors but bad estimators as they tend to push
their prediction probabilities towards 0 or 1 [29, 39]. There are many studies that
have tried to address this issue [29, 39, 42, 46, 48]. One of the most prominent
solutions is Isotonic Regression [49]. Therefore:

m′ = argminz∑(yi− z( fi))
2, (20)

where fi is the NB score, yi is the target class, m is an isotonic (monotonically
increasing) function that satisfies:

yi = m( fi)+ εi (21)

The solution of Eq.20 can be provided by the Pair-Adjacent Violators (PAV)
algorithm [29, 42].

In order to avoid bias, we split our training set into 90% for model building and
10% for Isotonic Regression. Since we support multi-class classification for NB, we
split the outputs into separate binary ones in order to use Isotonic Regression by
creating one model for each class.

The binning method [42, 48] has been considered for NB in our system and found
not to be effective enough because there is no ideal method to define the number of
bins nor could we uniformly split our probability scores into different bins, since
our scores were pushed close to either 0 or 1.

There is no specific method that could yield the best possible outcome. Platt
Scaling is best when the predicted probabilities follow a sigmoid shape, whereas
Isotonic Regression caters for any monotonic distortion [29]. Nevertheless, Isotonic
Regression is more prone to overfitting for data of small volume than Platt Scaling.
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Therefore, both methods are considered for the calculation of confidence scores for
SVM and NB and this can be defined by the user in the developed system.

2.7 Analytics Platform Architecture

The architecture of the analytics platform is shown in Fig. 4. Our architecture con-
sists of three stages: the model building process, the evaluation process and the
prediction process. During the model building process, a dataset that is relevant to
the classification task is collected by the Exonar platform and then the data is then
pre-processed with in-house, Lucene or Spark MLlib methods. Then the analysed
(pre-processed) data is used to create different (predictive) models that are in turn
stored into HBase for future use. If evaluation does not take place, then the default
parameters in the configuration file, both for pre-processing and algorithms are taken
into consideration. On the other hand, if evaluation takes place, then the analysed
data is split into two separate datasets, the training set and the test set. The training
set is then used to create the models and the test set is used to find the best models.
The set of different parameters for the evaluation process, as well as whether the
evaluation will be done with cross-validation or random-split are specified in the
configuration file. The best models are then stored into HBase for future use. The
last process is the prediction. In this process the data (document) IDs that need to
be categorised are pushed into RabbitMQ and their contents is then retrieved from
HBase. The same pre-processing techniques as in the model building process are
used to extract the most important information from these documents and then the
predicted class and the confidence score for the class is calculated by retrieving spe-
cific models from HBase that again are defined in the configuration file. Then the
result of the predicted class and its confidence score for specific data (document)
IDs are presented through the Exonar platform’s user interface.

3 Results

We used the 20NewsGroups ‘by date’ version that has already been split into a train-
ing set and a test set. This is more realistic because the documents in the training
set are older than the documents in the test set. The data is sorted by date and du-
plicates and some headers are removed. We have separated 5 of the 20 classes that
exist in the dataset, because we observed that they are not so highly related to one
another. The classes are atheism, crypt, baseball, med and space. The training set
consists of 2859 documents and the test set of 1900 documents equally split among
all classes. Our platform showed very promising results for these classes. The pre-
processing methods used are shown in Table 1 and the evaluation results are shown
in Table 2 and Fig. 5. Table 3 shows the best parameters that were found via eval-
uation for each algorithm and Table 4 shows the time that each algorithm takes for
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model building and prediction. All tests were done on a computer with Intel Core
i7-4720HQ 2.60GHz CPU 32GB RAM.

Table 1: Pre-processing settings for 20NewsGroups

PRE-PROCESSING TECHNIQUE SETTING
Keep all features no
Delete features that are numbers no
Delete features that are numbers or contain numbers yes
POS tagging on features no
Eliminate features that do not exist in < X docs no
Keep analysed features with length ≥ 2 yes
Keep K most important features in each document yes, K = 1000
Keep non-analysed features with length ≥ 3 no
Keep all analysed features no
Feature selection with chi-square no
n-grams no

Fig. 4: Platform architecture
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Table 2: Evaluation results of 20NewsGroups

ALGORITHMS CLASSES PRECISION RECALL F-MEASURE TPR FPR ACCURACY

DT

atheism 0.9 0.6 0.7 0.6 0
baseball 0.2 1 0.4 1 0.86
space 0 0 0 0 0
crypt 0 0 0 0 0
med 0 0 0 0 0
AVERAGE 19.79% 30.53% 19.79% 30.53% 18.28% 30.53%

RF

atheism 0.96 0.76 0.85 0.76 0
baseball 0.92 0.96 0.94 0.96 0
space 0.93 0.92 0.93 0.92 0
crypt 0.99 0.88 0.93 0.88 0
med 0.74 0.93 0.82 0.93 0.1
AVERAGE 90.76% 89.47% 89.63% 89.47% 2.74% 89.47%

SVM

atheism 0.91 0.88 0.9 0.88 0
baseball 0.99 0.9 0.94 0.9 0
space 0.95 0.91 0.93 0.91 0
crypt 0.99 0.93 0.95 0.93 0
med 0.96 0.84 0.9 0.8 0
AVERAGE 96.08% 89.37% 92.58% 89.37% 0.88% 89.37%

NB

atheism 0.95 0.96 0.95 0.96 0
baseball 0.97 0.99 0.98 0.99 0
space 0.95 0.97 0.96 0.97 0
crypt 0.98 0.97 0.97 0.97 0
med 0.97 0.94 0.95 0.94 0
AVERAGE 96.54% 96.53% 96.52% 96.53% 0.86% 96.53%

Table 3: Best parameters for each algorithm for classification results in 20News-
Groups

ALGORITHM PARAMETERS BEST VALUE
DT TREE DEPTH 10

RF TREE DEPTH 29
NUMBER OF TREES 300

SVM NUMBER OF ITERATIONS 150
NB SMOOTHING PARAMETER 1

Many studies [16, 17, 23, 30, 31, 36, 45] have experimented on the publicly avail-
able 20NewsGroups dataset. According to these there is no specific pre-processing
technique that can lead to the best evaluation results. Some [23] used the 5000 most
frequent words, while others [45] used those words that are not contained in less
than 10 documents. Some [16] also kept all words without using stemming and oth-
ers [36] did not only use all words, but also suggested that feature selection increased
error.
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Table 4: Time for model building of 2859 20NewsGroups documents and prediction
of 1900 documents

DT RF SVM NB

Model building
time

43.91s 228.61s 51.01s 8.04s

Prediction time 1.62s 2.02s 2.78s 1.97s

In most of these studies SVM and NB were used, as they provide the best results.
Their F-measure ranges from 80% - 86% for both algorithms, but this depends on
the pre-processing methodology that has been used or which version or subset of
the 20NewsGroups has been used.

We have observed that keeping all features creates a dictionary of 33763 unique
words, deleting numbers gives 29768 words and deleting words containing numbers
results in 25643. Since all of these options give similar results, we chose the option
that creates the smallest vocabulary as shown in Table 1. NB is our best algorithm
and we see a 4% drop in all of its evaluation metrics when very rare words that do
not exist in more than 2 documents are eliminated or when chi-square for K most
important words is selected. Keeping all analysed words or keeping analysed words
with length > 2 or non-analysed words with length ≥ 3 gives similar results. So we
chose the one that creates the smallest vocabulary (analysed words with length≥ 2).
Keeping K most important words ranging from 200 to 1000 gives the best results.
On the other hand, when POS tagging or n-grams is used not only they demand
more memory and time, but the evaluation metrics drops by 10% for NB as well.

Fig. 5: Best weighted evaluation metrics in 20NewsGroups
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According to Table 2 and Fig. 5 DT achieves very low metrics and an analysis
of its predictions confirms that DT is only able to predict 2 out of 5 classes well.
The set of different DT parameters that are used do not prove any different in terms
of results, but the best one is shown in Table 3. On the other hand, RF behaves very
well. An analysis of its predictions shows that its only significant error is a result of
a trade-off between the recall and precision of atheism and med classes respectively.
Also we observe the deeper the trees the better RF performs. SVM performs very
well, but their precision is higher than their recall. When changing the number of
iterations the results are not very different to one another, but the best results are
obtained for 150 iterations. The best algorithm is NB even though it assumes that all
words are independent to one another. A wide range of smoothing parameters are
used, but the results are almost identical.

NB is not only the most accurate model, but the fastest one as well according to
Table 4 followed by DT, SVM and RF. The time of prediction is almost the same
for the different algorithms.

The confidence scores during prediction work well for the majority of the pre-
dictions, but they can miscalculate a small percentage of the final results.

4 Conclusions

In this project we created a platform for multi-class document classification with
the use of Apache Spark. We have supported a number of pre-processing and eval-
uation techniques on this platform ranging from POS tagging to n-grams, as well
as a number of algorithms, like DT, SVM, RF and NB for building a classification
model. We have also supported a near real-time prediction process that creates confi-
dence scores for each prediction ranging from methods, like Platt Scaling to Isotonic
Regression. Our experiments on the 20NewsGroups dataset showed promising re-
sults. As future work, we are going to benchmark these tests on a clustered Spark
system for better throughput. We also plan to implement more parallel ML algo-
rithms beginning with K-Nearest Neighbour as many studies [17, 31] have shown
its significance. Finally, more pre-processing techniques will be implemented and
evaluated.
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