
An unconditional proof of the Andre-Oort 
conjecture for Hilbert modular surfaces 
Article 

Accepted Version 

Daw, C. ORCID: https://orcid.org/0000-0002-2488-6729 and 
Yafaev, A. (2011) An unconditional proof of the Andre-Oort 
conjecture for Hilbert modular surfaces. Manuscripta 
Mathematica, 135 (1). pp. 263-271. ISSN 0025-2611 doi: 
https://doi.org/10.1007/s00229-011-0445-x Available at 
https://centaur.reading.ac.uk/70355/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://link.springer.com/article/10.1007/s00229-011-0445-x 
To link to this article DOI: http://dx.doi.org/10.1007/s00229-011-0445-x 

Publisher: Springer-Verlag 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Reading’s research outputs online



An unconditional proof of the André-Oort
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1 Introduction.

The purpose of this paper is to prove the following special case of the André-
Oort conjecture

Theorem 1.1 Let S be a Hilbert modular surface and C ⊂ S an irreducible
algebraic curve containing an infinite set of special points. Then C is a special
subvariety of S.

We refer to [3] for the notions of special points and special subvarieties.
For background on on Hilbert modular surfaces we refer to [3] and [16]. For
generalities, history and results obtained so far on the André-Oort conjecture,
we refer to [14], [15] and [8].

Theorem 1.1 was proved by Edixhoven in [3] under the assumption of
the Generalised Riemann Hypothesis. Recently Klingler, Ullmo and the sec-
ond author proved the André-Oort conjecture in full generality under the
assumption of the GRH (see [13] and [6]). In this paper we give an un-
conditional proof of the André-Oort conjecture for Hilbert modular surfaces
using the ideas of Pila (see [10] and [11]) and results of Peterzil-Starchenko,
Pila-Wilkie, Edixhoven, Ullmo and the second author.

Let us briefly outline the strategy. Let F be a real quadratic field, OF

its ring of integers and Γ := SL2(OF ). By Hilbert modular surface we
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mean S = Γ\H2. This is a connected component of the Shimura variety
ShK(G,X) defined by the Shimura datum (G,X) = (ResF/QGL2,F ,H±2) and

K = GL2(ÔF ). One can also consider quotients of H × H by other congru-
ence subgroups of SL2(OF ). The André-Oort conjecture for such quotients
is equivalent to the one for S (see Proposition 2.1 of [4]). Furthermore, as
a subvariety is special if and only if irreducible components of its images by
Hecke correspondences are special, the statement holds for a curve contained
in any component of ShK(G,X).

Let us outline our strategy. The Shimura variety ShK(G,X) is a coarse
moduli space for pairs (A, i) where A is an abelian surface and i:OF −→
End(A) is a morphism. It admits a canonical model over Q and S is defined
over a certain explicit abelian extension. Let π:H2 −→ S be the uniformisa-
tion map. We choose a certain fundamental set F ⊂ H2 (actually a certain
part thereof) for the action of Γ. Let C be a curve in S containing an infinite
set Σ of special points (in particular C is defined over a number field). We
let Z := π−1C ∩F and Zalg the algebraic part of Z i.e. the union of all real
semi-algebraic subsets contained in Z when H × H is viewed as a subset of
R4. Suppose that C is not special. A result of Ullmo and the second author
then implies that Zalg contains no special points (see section 3). A theorem
of Peterzil and Starchenko shows that Z is definable in a certain o-minimal
structure on R4 (see section 4). Then, by a theorem of Pila and Wilkie, the
number of algebraic points on Z of degree at most four and up to a height T
is�ε T

ε for any ε > 0. For a special point x of S, we let (Ax, ix) be the corre-
sponding pair as above. The ring EndOF (Ax) of endomorphisms commuting
with the action of OF is an order in a totally imaginary quadratic extension
of F . We let dx := |Disc(EndOF (Ax))|. In section 2 we show that the height
of a special point in F is bounded by a power of its discriminant. Hence Pila-
Wilkie’s result shows that the size of the Galois orbit of the special point x is
�ε d

ε
x where dx is the discriminant of x and ε can be chosen arbitrary small.

This contradicts the result of Edixhoven who showed that the size of the
Galois orbit is � d

1/8
x . It seems very likely that the methods of this paper

generalise to the mixed case i.e. the analog of the André-Oort conjecture for
the universal abelian scheme over a Hilbert modular surface. To generalise
the result to the case of Hilbert modular varieties of higher dimension, one
needs unconditional lower bounds for the Galois orbits of special points in
terms of a positive power of the discriminant. Obtaining such bounds seems
to be a very hard problem.
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2 Bounds on the heights of special points.

In this section we give upper bounds on the height of coordinates of special
points contained in a certain fundamental set in terms of ‘their discriminant’.
For an element α of F , we denote by α′ the image of α by the non-trivial
automorphism of F . A point z = (z1, z2) of H2 is called special if π(z) is
a special point of S. Let z = (z1, z2) be a special point in H2. Then z is
fixed by a certain semisimple element of SL2(F ). From this it immediately
follows that z1 satisfies an equation az2

1 + bz1 + c = 0 with a, b, c ∈ OF and z2

satisfies a′z2
2 + b′z2 + c′ = 0. The field K = F (z1) is an imaginary quadratic

extension of F .
We follow [17], section 1.1. Let z = (z1, z2) be a point of H2 and consider

the embedding Lz:F × F −→ C2 sending (α, β) to (αz1 + β, α′z2 + β′). To
a point z = (z1, z2), on associates the complex torus

Az = C2/Lz(OF ⊕ I)

where I is an invertible rank one OF -module contained in O∨F , the Z-dual
of OF with respect to the trace. The action of OF on Az is given by
m(a): (ζ1, ζ2) −→ (aζ1, a

′ζ2). In [17], section 1.1, it is shown that Az is
a polarised abelian variety. By [16], section I.7, corollary 7.3, the abelian
variety corresponding to a point x of the component S of ShK(G,X) is
Az = C2/Lz(OF ⊕OF ) where z ∈ π−1(x).

Suppose that z is a special point. Denoting Λz := Lz(OF ⊕OF ), we have

EndOF (Az) = {k ∈ K : kΛz ⊂ Λz}

The ring EndOF (Az) is an order in K containing OF . We first prove the
following:

Lemma 2.1 The relative discriminant ideal DiscK/F (EndOF (Az))OF is gen-
erated by the b2−4ac where az2

1 +bz1 +c = 0 (with a, b, c ∈ OF ) is a quadratic
equation satisfied by z1.
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Proof. Let R be EndOF (Az) and let I be the ideal in OF generated by
the b2 − 4ac where az2

1 + bz1 + c = 0 (with a, b, c ∈ OF ) be any equation
satisfied by z1. For any such equation, R contains az1 and hence the relative
discriminant ideal DiscK/F (R)OF contains I.

To prove the other inclusion, fix a prime ideal P of OF and let OF,P be
the completion of OF at P . We let M be a maximal ideal of OK above P
and KM the completion of K with respect to the corresponding valuation.
Let az2

1 + bz1 + c = 0 be an equation satisfied by z1 with vP (abc) minimal (vP
denotes the P -adic valuation). It follows, in particular, that a, b and c are
relatively prime in the ring OF,P . Then, the proof of lemma 7.5 of [2] goes
through and shows that the local order {k ∈ KM : k(Λz⊗OF,P ) ⊂ Λz⊗OF,P}
is OF,P [az1]. It follows that DiscK/F (R)OF,P is generated by b2 − 4ac, hence
is contained in IOF,P . As this holds for all primes P , we conclude that
DiscK/F (R)OF = I �

We write zi = xi + iyi and we define

H(z) := max(H(x1), H(x2), H(y1), H(y2))

where H denotes the standard multiplicative height of an algebraic number
(see [1], Chapter I). Our aim is to give an upper bound for H(z) for z in a
fundamental set for Γ in terms of a power of dz := |Disc(EndOF (Az))|.

Choose an equation az2
1 + bz1 + c = 0 where a, b, c are such that the norm

|NF/Q(b2 − 4ac)| is minimal. The above discussion shows that

|NF/Q(DiscK/F (EndOF (Az)))| = |NF/Q(b2 − 4ac)|

In [5], Chapter I, Proposition 2.11, it is proved that there exists a funda-
mental set (that is, a set containing a fundamental domain) for the action of
Γ = SL2(OF ) of the form

K ∪ V1 ∪ . . . ∪ Vh,

where h is the class number of F , K is compact and the Vi are the so-called
cusp sectors.

Here V1 is the cusp sector at infinity∞. By definition, there is a constant
C > 0 and T > 0 such that

V1 = {(z1, z2) ∈ H×H : y1y2 > C, |x1| ≤ T, |x2| ≤ T}
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Noticing that on K, yis are bounded below and the |xi|s are bounded, we
may and do (after possibly altering C and T ), assume that K ⊂ V1. Fur-
thermore, for ε ∈ O∗F , the transformation (z1, z2) 7→ (ε2z1, ε

−2z2) is in Γ. We
can therefore assume that (y1, y2) is in the fundamental set for the action
(y1, y2) 7→ (ε2y1, ε

−2y2), ε ∈ O∗F . We therefore have an inequality

A−1 ≤ y2
i

y1y2

≤ A

where A is a constant depending on F only. For reasons explained in section
five, for our purposes it is enough to consider the special points in K ∪ V1.
According to the discussion above, we consider special points in the set

F = {(z1, z2) ∈ H2 : y1y2 > C,A−1 ≤ y2
i

y1y2

≤ A, |x1| ≤ T, |x2| ≤ T}

Theorem 2.2 There exists a real c1 > 0 such that for any special point
z = (z1, z2) ∈ F we have,

H(z) ≤ c1dz
1/4

Remark 2.3 The proof below generalises to the case of Hilbert modular va-
rieties of arbitrary dimension.

Proof. On F , we have

y2
1, y

2
2 ≥ U = A−1C

Let az2
1 +bz1 +c = 0 with a, b, c ∈ OF be the equation satisfied by z1 with

|NF/Q(b2−4ac)|minimal. Then z2 satisfies a′z2
2 +b′z2+c′ = 0 and we let D1 =

|b2 − 4ac| and D2 = |b′2 − 4a′c′|. We have |NF/Q(DiscK/F (EndOF (Az)))| =
D1D2 and

dz = D1D2∆2
F

where ∆F = |Disc(OF )|.
Note that we have

|b| = 2|a||x1| ≤ 2T |a|, |b′| = 2|a′||x2| ≤ 2T |a′|

Secondly, since D1 = 4a2y2
1 and D2 = 4a′2y2

2, we have

|a| ≤
√
D1

4U
, |a′| ≤

√
D2

4U
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We have

H(x1)2 ≤ |4aa′ bb
′

4aa′
| = |bb′| ≤ 4T 2|aa′| ≤ T 2

√
D1D2

U

hence

H(x1) ≤ T√
U

(D1D2)1/4 =
T√
U∆F

d1/4
z

Finally,

H(y1)4 ≤ 16a2a′2 ≤ D1D2

U2
.

Hence

H(y1) ≤ 1√
U∆F

d1/4
z .

The argument proceeds identically for x2 and y2. For c1 it suffices to take
max( T√

U∆F
, 1√

U∆F
). �

3 Characterisation of special subvarieties.

In this section we show that proper special subvarieties of S may be char-
acterised by the property that the ‘algebraic part’ of their preimages in H
contains no special points.

Let C be an irreducible algebraic curve in S and let Z := π−1C. Let
(τ1, τ2) be a point of H2. Writing τ1 = x + iy and τ2 = u + iv, we can view
H2 as a subset of R4. A semi-algebraic subsets of H2 ⊂ R4 is by defini-
tion the intersection of a semi-algebraic subsets of R4 with H2. Following
Pila, we define Zalg to be the union of all connected positive dimensional
semi-algebraic subsets of Z. We also define Zca to be the union of positive
dimensional complex algebraic subsets contained in Z. The argument of the
proof of Proposition 2.2 of [10] shows that

Zalg = Zca

The characterisation we are going to use is the following.

Theorem 3.1 If C is not special then Zalg contains no special points.

Proof. As remarked above Zca = Zalg. Suppose that Zca is not empty
(otherwise there is nothing to prove). Let Z ′ be an analytic component of
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Zca. As the dimension of Z is one, π(Z ′) = π(Z) = C. In particular π(Z ′)
is an algebraic subvariety of S. By [12], π(Z ′) = C is a weakly special
subvariety of S. By [7], theorem 4.3, a weakly special subvariety (or totally
geodesic in Moonen’s terminology) of a Shimura variety is special (or Hodge
type) if and only if it contains a special point. Therefore, if C is not special,
then C, and hence Zalg, contains no special points. �

4 Definability.

We refer to section 3 of [10] and references contained therein for notions
of o-minimal structures and definability. We just mention here that an o-
minimal structure on Rn is a collection of subsets of Rn which contains all
semi-algebraic subsets, stable under the natural set-theoretic operations and
satisfy certain geometric finiteness properties.

In what follows we consider the o-minimal structure Ran,exp which is gen-
erated by Ran and Rexp. Here Ran is the structure afforded by the so-called
globally subanalytic sets and Rexp is the structure consiting of the sets de-
fined by the exponential. In what follows by ‘definable’ we mean definable
in Ran,exp. A function from A ⊂ Rn to B ⊂ Rm is said to be definable if its
graph in A×B ⊂ Rn+m is definable.

We will use recent results of Peterzil-Starchenko (see [9]) which we now
describe. We follow section 6.3 of [9]. Let Sp2g be the algebraic group
(over Q) of symplectic 2g × 2g matrices with determinant one. The group
Sp2g(Z) acts on the Siegel upper half space Hg. There exists a semi-algebraic
subset Fg ⊂ Hg which contains finitely many representatives for each orbit
of Sp2g(Z) (hence Fg contains a fundamental domain). For (a, b) ∈ Rg, let
ϑ(a,b) be the corresponding theta function on Hg, using the notations of [9].
By definition

ϑ(a,b)(τ, z) =
∑
m∈Zg

eiπ((m−a)tτ(m+a)+2(m−a)t(z+b))

for τ ∈ Hg and z in the fundamental domain of the lattice in Cg defined by
τ .

A special case of the result of Peterzil and Starchenko (theorem 6.5 of
[9]), relevant to us, is the following:

Theorem 4.1 (Peterzil-Starchenko) For every (a, b) ∈ Rg, ϑa,b(z, 0), z ∈
Fg is definable.
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For a subset Z ⊂ Rn, as in the previous section, the algebraic part of
Z, denoted by Zalg, is the union of all connected positive-dimensional semi-
algebraic subsets of Z. Following Pila, we also denote for T ≥ e,

Z(k, T ) = {z ∈ Z(k) : [Q(zi) : Q] ≤ k,max
i
H(zi) ≤ T} and Nk(Z, T ) := |Z(k, T )|

Theorem 4.2 (Pila-Wilkie) Let Z ⊂ Rn be a set definable in an o-minimal
structure over R. Let k ≥ 1 and ε > 0, there exists c(Z, k, ε),

Nk(Z\Zalg, T ) ≤ c(Z, k, ε)T ε

The consequence of the results of Peterzil-Starchenko and Pila-Wilkie
relevant to us is the following:

Theorem 4.3 Let C be an irreducible algebraic curve contained in S. Let F
be the set as in section 2. Suppose that Z := π−1C∩F is positive dimensional.

Then for k ≥ 1 and ε > 0, there exists c(Z, k, ε),

Nk(Z\Zalg, T ) ≤ c(Z, k, ε)T ε

Proof. Let
S = Γ\H2 −→ Sp2g(Z)\H2

be the modular embedding (see [16], Chapter IX, §1). This embedding is
induced by an equivariant embedding φ:H2 −→ H2. After, if necessary
replacing the set Fg with a finite union of its images by some γ ∈ Sp2g(Z)
(this does not affect the conclusion of Peterzil-Starchenko’s theorem), we
assume that φ(F) ⊂ Fg. The set F is definable (it is semi-algebraic).

The functions ϑa,b(τ, 0) restricted to H2 induce a Γ-equivariant holomor-
phic embedding of S into some PN(C). As C is an algebraic curve, its image
in PN(C) is given by a collection of polynomial equations in the ϑ(a,b)(τ, 0)
with θ ∈ F . It follows from the Paterzil-Starchenko theorem, that the set Z
is definable. The conclusion now follows from the Pila-Wilkie theorem 4.2.
�

5 Proof of the main result.

Let C be a curve in S containing an infinite set Σ of special points. Suppose
that the closure of C in S (Baily-Borel compactification of S) contains a cusp
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P . After, if necessary, replacing C by a component of its image by suitable
Hecke correspondence (which does not affect the property of C being special),
we assume that P =∞. Let F be the subset of H×H as in section 2. Our
assumption that P =∞ implies that after possibly replacing Σ by an infinite
subset, the preimages of the points in Σ lie in F . Suppose that C is not
special. Let Zalg be as in section 3 i.e the algebraic part of Z := F ∩ π−1C.
Then Zalg contains no special points of H×H by 3.1.

Let z be a point in F such that x := π(z) ∈ Σ. We write dx for the
discriminant dz and Ax for the isomorphism class of the abelian variety Az
as in section 2. Notice that dx and Ax depend on x only and not on the
choice of a point in π−1(x).

As special points are Q-valued, C is defined over Q and we can choose a
number field L such that C is defined and geometrically irreducible over L
Hence for all x ∈ Σ, Gal(Q/L) · x is contained in C.

Let x be a point in Σ. By theorem 6.2 of [3],

|Gal(Q/L) · x| ≥ c2d
1/8
x

for some absolute constant c2 > 0.
As the points in Gal(Q/L) · x have the same discriminant dx, for any

z ∈ Z such that π(z) ∈ Gal(Q/L) · x, we have by 2.2

H(z) ≤ c1d
1/4
x

On the other hand, by the theorem 4.3, we have for every ε > 0,

N4(Z\Zalg, c1d
1/4
x ) = N4(Z, c1d

1/4
x ) ≤ cεc

ε
1d
ε/4
x

for some cε depending on Z and ε only. It follows that

cεc
ε
1d
ε/4
x ≥ c2d

1/8
x

i.e

d
1−2ε

8
x ≤ cεc

ε
1

c2

Notice that dx tends to infinity when x ranges through Σ. Indeed there are
only finitely many orders of degree two over OF with a given discriminant
and for each of these orders there are finitely many special points x with
EndOF (Ax) isomorphic to it.

Choose any 0 < ε < 1
2
. Then the left hand side of the last inequality goes

to infinity as x ranges through Σ while the right hand side remains bounded.
This yields a contradiction, hence C is a special subvariety.
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