
On using Cholesky-based factorizations 
and regularization for solving rank-
deficient sparse linear least-squares 
problems 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Scott, J. ORCID: https://orcid.org/0000-0003-2130-1091 
(2017) On using Cholesky-based factorizations and 
regularization for solving rank-deficient sparse linear least-
squares problems. SIAM Journal on Scientific Computing, 39 
(4). C319-C339. ISSN 1095-7197 doi: 
https://doi.org/10.1137/16M1065380 Available at 
https://centaur.reading.ac.uk/70577/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1137/16M1065380 

Publisher: Society for Industrial and Applied Mathematics 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


SIAM J. SCI. COMPUT. c© 2017 SIAM. Published by SIAM under the terms
Vol. 39, No. 4, pp. C319–C339 of the Creative Commons 4.0 license

ON USING CHOLESKY-BASED FACTORIZATIONS AND
REGULARIZATION FOR SOLVING RANK-DEFICIENT SPARSE

LINEAR LEAST-SQUARES PROBLEMS∗

JENNIFER SCOTT†

Abstract. By examining the performance of modern parallel sparse direct solvers and exploiting
our knowledge of the algorithms behind them, we perform numerical experiments to study how
they can be used to efficiently solve rank-deficient sparse linear least-squares problems arising from
practical applications. The Cholesky factorization of the normal equations breaks down when the
least-squares problem is rank-deficient, while applying a symmetric indefinite solver to the augmented
system can give an unacceptable level of fill in the factors. To try to resolve these difficulties, we
consider a regularization procedure that modifies the diagonal of the unregularized matrix. This
leads to matrices that are easier to factorize. We consider both the regularized normal equations and
the regularized augmented system. We employ the computed factors of the regularized systems as
preconditioners with an iterative solver to obtain the solution of the original (unregularized) problem.
Furthermore, we look at using limited-memory incomplete Cholesky-based factorizations and how
these can offer the potential to solve very large problems.

Key words. least-squares problems, normal equations, augmented system, sparse matrices,
direct methods, iterative methods, Cholesky factorizations, preconditioning, regularization
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1. Introduction. In recent years, a number of methods have been proposed for
preconditioning sparse linear least-squares problems; a brief overview with a compre-
hensive list of references is included in the introduction to the paper of Bru et al. [4].
The recent study of Gould and Scott [20, 21] reviewed many of these methods (specifi-
cally those for which software has been made available) and then tested and compared
their performance using a range of examples coming from practical applications. One
of the outcomes of that study was some insight into which least-squares problems in
the widely used sparse matrix collections CUTEst [19] and University of Florida [10]
currently pose a real challenge for direct methods and/or iterative solvers. In partic-
ular, the study found that most of the available software packages were not reliable
or efficient for rank-deficient least-squares problems (at least not when run with the
recommended settings for the input parameters that were employed in the study). In
this paper, we look further at such problems and focus on the effectiveness of both
sparse direct solvers and iterative methods with incomplete factorization precondi-
tioners. A key theme is the use of regularization (see, for example, [15, 48, 49]). We
propose computing a factorization (either complete or incomplete) of a regularized
problem and then using this as a preconditioner for an iterative solver to recover the
solution of the original (unregularized) problem.

The problem we are interested in is

(1.1) min
x

‖b − Ax‖2,
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C320 JENNIFER SCOTT

where A ∈ R
m×n (m ≥ n) is large and sparse and b ∈ R

m. Our focus is on the case
where A is not of full column rank. Solving (1.1) is mathematically equivalent to
solving the n × n normal equations

(1.2) Cx = AT b, C = AT A.

A well-known issue associated with solving (1.2) is that the condition number of
the normal matrix C is the square of the condition number of A, so that the normal
equations can be highly ill-conditioned [3]. Indeed, if A does not have full column rank,
C is positive semidefinite and computing a Cholesky factorization breaks down: a zero
(or, in practice, a negative) pivot is encountered at some stage of the factorization. In
such cases, a black-box sparse Cholesky solver cannot be applied directly to (1.2). It is
thus of interest to consider modifying C by adding a regularization term to allow the
use of a Cholesky solver; this is explored in section 3 and compared with using a sparse
symmetric indefinite solver (that incorporates numerical pivoting) for factorizing C.
In particular, we look at employing the factors of the regularized normal matrix as a
preconditioner for the iterative method LSMR [14] for solving (1.1).

An alternative approach is to solve the mathematically equivalent (m+n)×(m+n)
augmented system

(1.3) Ky = c, K =
[
γIm A
AT 0

]
, y =

[
γ−1r(x)

x

]
, c =

[
b
0

]
,

where γ > 0, r(x) = b − Ax is the residual vector, and Im denotes the m × m
identity matrix. The condition of K depends on γ and the maximum and minimum
singular values of A; it varies significantly with γ, but with an appropriate choice (see
[1, 3, 48]), K is much better conditioned than C. Important disadvantages of (1.3)
are that K is indefinite and is generally significantly larger than the normal matrix. A
sparse direct indefinite solver computes a factorization of K of the form (PL)D(PL)T ,
where P is a permutation matrix, L is unit lower triangular, and D is block diagonal
with nonsingular 1 × 1 and 2 × 2 blocks on the diagonal corresponding to 1 × 1 and
2 × 2 pivots (see, for example, [11, 27]). Using an indefinite solver may result in a
more expensive (and certainly more complex) factorization process than a Cholesky
solver, and, as reported in [20, 21], for large least-squares problems, the amount of
memory needed may be prohibitive. One reason for this is that the analyze phase of
most sparse direct solvers chooses the pivot order on the basis of the sparsity pattern
of the matrix and makes the assumption that the diagonal is nonzero. When (as in
the augmented system) this is not the case, it can be necessary during the subsequent
numerical factorization to make significant modifications to the pivot order, leading to
much higher levels of fill in the factors (entries in the factor L that were zero K) than
was predicted during the analyze phase (see, for example, [28, 30]). Modifications
to the pivot order are needed when a candidate pivot is found to be too small. The
conditions for deciding whether a pivot is acceptable typically depend on a threshold
parameter (see section 2); choosing this parameter is a compromise between retaining
sparsity and ensuring stability. In section 4, we examine the effects of relaxing the
threshold parameter. We also look at regularizing the problem by modifying the
(2, 2) block of K before performing the factorization and then using the factors as
a preconditioner for an iterative solver (such as GMRES [47] or MINRES [40]) to
restore accuracy in the solution of the original system.

When memory is an issue for a direct solver, an alternative approach is to use
an incomplete factorization preconditioner in conjunction with an iterative solver.
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RANK-DEFICIENT SPARSE LEAST-SQUARES PROBLEMS C321

Incomplete Cholesky (IC) factorizations have long been used as preconditioners for
the numerical solution of large sparse, symmetric positive definite linear systems of
equations; for an introduction and overview see, for example, [2, 46, 51] and the many
references therein. More recently, a number of authors have considered incomplete
LDLT factorizations of symmetric quasi-definite matrices [39], saddle-point systems
[52], and general indefinite systems [22, 53]. The use of a limited-memory IC factor-
ization combined with LSMR to solve (1.1) is considered in section 5, and in section 6
we explore using incomplete LDLT factorizations to solve (1.3). Our conclusions are
drawn in section 7.

1.1. Test environment. We end this introduction by describing our test envi-
ronment and test problems. The characteristics of the machine used to perform our
tests are given in Table 1.1. All software is written in Fortran, and all reported tim-
ings are elapsed times in seconds. In our experiments, the direct solvers HSL MA87 and
HSL MA97 (see section 2) are run in parallel, using 8 processors. We do not attempt to
parallelize the sparse matrix-vector products used by the iterative solvers; moreover,
the software to compute incomplete factorizations is serial. In each test, we impose
a time limit of 600 seconds per problem. For the iterative methods, the number of
iterations for each problem is limited to 100,000.

Table 1.1

Test machine characteristics.

CPU Two Intel Xeon E5620 quadcore processors
Memory 24 GB
Compiler gfortran version 4.8.4 with options -O3 -fopenmp
BLAS MKL BLAS

Our test problems are taken from the CUTEst linear programme set [19] and
the University of Florida Sparse Matrix Collection [10]. In each case, the matrix
is “cleaned” (duplicates are summed, and out-of-range entries and explicit zeros are
removed along with any null rows or columns); details of the resulting test problems
are summarized in Table 1.2. Here the nullity is computed by running HSL MA97 on
K with the pivot threshold parameter set to 0.5 (see section 2); the reported nullity
is the difference between m + n and the returned estimate of the matrix rank. Note
that this estimate can be sensitive to the choice of ordering and scaling: HSL MA97
was used with no scaling and the nested dissection ordering computed by Metis [32].
In our experiments, if a right-hand side b is provided, it is used; otherwise, we take b
to be the vector of 1’s.

We employ the preconditioned LSMR algorithm of Fong and Saunders [14]. Like
the more established LSQR algorithm [41, 42], it is based on Golub–Kahan bidiagonal-
ization of A. However, while in exact arithmetic LSQR is mathematically equivalent
to applying the conjugate gradient method to (1.2), LSMR is equivalent to applying
MINRES [40], so that the quantities ‖AT rk‖2 and ‖rk‖2 (where xk and rk = b − Axk

are the least-squares solution and residual on the kth step, respectively) are mono-
tonically decreasing. Fong and Saunders report that LSMR may be a preferable
solver because of this and because it may be able to terminate significantly earlier.
Experiments in [20, 21] confirm this view and support our choice of LSMR.

Following Gould and Scott [21], in our experiments with LSMR we use the stop-
ping rule

(1.4) ratio(rk) < δ with ratio(rk) =
‖AT rk‖2/‖rk‖2

‖AT r0‖2/‖r0‖2
.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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C322 JENNIFER SCOTT

Table 1.2

Statistics for our test set. m, n, and nnz(A) are the row and column counts and the number
of nonzeros in A. nullity is the estimated deficiency in the rank, density(A) is the largest ratio of
the number of nonzeros in a row of A to n over all rows, density(C) is the ratio of the number of
entries in C to n2, and max |Cii| and min |Cii| are the largest and smallest diagonal entries in C.
A “ −” denotes insufficient memory to compute the statistic.

Problem m n nnz(A) nullity density(A) density(C) max |Cii| min |Cii|
CUTEst examples

1. BAXTER 30733 27441 111576 2993 0.0017 0.0016 3.2×105 1.0×10−1

2. DBIR1 45775 18804 1077025 103 0.0119 0.0119 8.5×106 1.0
3. DBIR2 45877 18906 1158159 101 0.0123 0.0069 3.0×106 1.0
4. LPL1 129959 39951 386218 44 0.0004 0.0003 5.4×102 1.0
5. NSCT2 37563 23003 697738 287 0.0273 0.0157 3.8×106 1.0
6. PDS-100 514577 156016 1096002 227 0.0000 0.0001 1.0 1.0
7. PDS-90 475448 142596 1014136 227 0.0000 0.0001 9.8 1.0

University of Florida Sparse Matrix Collection examples

8. beaflw 500 492 53403 4 0.8130 0.8945 2.2×105 9.5×10−1

9. 162bit 3606 3476 37118 15 0.0040 0.0195 2.5×101 7.2×10−3

10. 176bit 7441 7150 82270 38 0.0022 0.0103 3.7×101 3.0×10−3

11. 192bit 13691 13093 154303 81 0.0012 0.0057 5.4×101 2.5×10−4

12. 208bit 24430 23191 299756 191 0.0008 0.0036 6.6×10−1 1.2×10−4

13. Maragal 6 21251 10144 537694 516 0.5857 0.7491 1.0×101 1.1×10−2

14. Maragal 7 46845 26525 1200537 2046 0.3604 0.3099 1.3×103 1.4×10−2

15. Maragal 8 60845 33093 1308415 7107 0.0503 0.0356 1.9 3.6×10−2

16. mri1 114637 65536 589824 603 0.0037 0.0003 1.3 1.3
17. mri2 104597 63240 569160 − 0.0660 0.0078 1.3 1.3
18. tomographic1 59360 45908 647495 3436 0.0003 0.0009 4.4 4.5×10−4

Unless indicated otherwise, we set the convergence tolerance δ to 10−6. Note that
(1.4) is independent of the choice of preconditioner.

When solving (1.3) using an indefinite preconditioner, we use right-preconditioned
restarted GMRES [47]. Since GMRES is applied to K, a stopping criterion is applied
to Ky = c. With the available implementations of GMRES, it is not possible during
the computation to check whether the stopping condition (1.4) (which is based on A)
is satisfied; it can, of course, be checked once GMRES has terminated. Instead, in
our experiments involving (1.3), we use the scaled backward error

(1.5)
‖Kyk − c‖2

‖c‖2
< ε,

where yk is the computed solution of the augmented system on the kth step. We
set the tolerance ε to 10−7. This stopping criterion is also applied in experiments
involving MINRES.

2. Sparse direct solvers. Sparse direct solvers have long been used to solve
both (1.2) and (1.3). Here we briefly introduce such solvers, highlighting a number of
features that are particularly relevant to understanding their performance when used
for rank-deficient least-squares problems.

Sparse direct methods are designed to solve symmetric linear systems Az = f
(A = {Ai,j}) by performing a factorization

A = LDLT ,

where L is a unit lower triangular matrix and D is a block diagonal matrix with
nonsingular 1 × 1 and 2 × 2 blocks. In practice, a more general factorization of the
form

SAS = (PL)D(PL)T

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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RANK-DEFICIENT SPARSE LEAST-SQUARES PROBLEMS C323

is computed, where S is a diagonal scaling matrix and P is a permutation matrix
that holds the pivot (elimination) order. If A is positive definite, D is diagonal
with positive diagonal entries, and in this case, L may be redefined to be the lower
triangular matrix L ⇐ LD1/2, giving the Cholesky factorization

SAS = (PL)(PL)T .

For efficiency in terms of both time and memory it is essential to choose P to exploit
the sparsity of A. The structure of the factor L is the union of the structure of
the permuted matrix PT AP and new entries known as fill. The amount of fill is
highly dependent on the choice of P . Direct solvers choose P in an analyze phase
that precedes the numerical factorization and generally works solely with the sparsity
pattern of A. Observe that there is no one scaling algorithm that provides the best
scaling for all possible matrices A, and so some direct solvers offer different options
for computing S, while others require (or optionally allow) the user to supply S.

For positive definite systems, the chosen pivot order can be used unaltered by
the numerical factorization. However, for indefinite systems, it may be necessary to
make modifications to maintain numerical stability. This is done by delaying the
elimination of variables that could cause instability until later in the factorization
when the associated pivot (that is, the 1 × 1 or 2 × 2 block used to eliminate one,
respectively, two variables) can be safely used. The exact method used to select pivots
during the numerical factorization varies from solver to solver, but essentially each
seeks to avoid dividing a large off-diagonal entry by a small diagonal one. If the
elimination of variable k is delayed, either an update from another elimination will
increase the magnitude of the diagonal entry Ak,k, or column k will become adjacent
to column k+1 with the property that Ak,k+1 is large and hence can be incorporated
into a stable 2 × 2 pivot.

There are several modern sparse direct solvers available for solving positive
definite problems. Some are designed exclusively for such systems (for example,
CHOLMOD [6] and HSL MA87 [25]), while others can also be used to solve indefinite
systems (notably, MA57 [11], HSL MA97 [27], MUMPS [38], WSMP [23], PARDISO [43],
and SPRAL SSIDS [24]). We employ the packages HSL MA87 and HSL MA97 from the
HSL Mathematical Software Library [31]; an overview of both packages together with
a numerical comparison is provided by Hogg and Scott [29].

The Cholesky solver HSL MA87 is designed to run on multicore architectures. It
splits each part of the computation into tasks of modest size but sufficiently large that
good level-3 BLAS performance can be achieved. The dependencies between the tasks
are implicitly represented by a directed acyclic graph (DAG). This solver requires the
user to supply both the pivot order P and the scaling S (other HSL packages are
available for computing these).

By contrast, HSL MA97 is a parallel multifrontal code that is able to solve both
positive definite and indefinite systems (although its performance on positive definite
systems is generally not competitive with that of HSL MA87). HSL MA97 offers a range
of ordering and scaling options and also allows the user to supply P and/or S. In a
multifrontal method, the factorization of A proceeds using a succession of assembly
operations of small dense matrices, interleaved with partial factorizations of these
matrices. The assembly operations can be recorded as a tree, known as an assembly
tree. The assembly proceeds from the leaf nodes up the tree to the root node(s).
Typically, most of the flops are performed at the root node and the final few levels
of the tree. For the efficient and stable partial factorization of the dense submatrices,
HSL MA97 uses separate computational kernels for the positive definite and indefinite
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C324 JENNIFER SCOTT

cases. For the latter, HSL MA97 employs the sufficient (but not necessary) conditions
given by Duff et al. [12] for threshold partial pivoting to be stable. Let A(k) denote
the Schur complement after columns 1, . . . , k − 1 of A have been eliminated, and let
u ∈ [0, 0.5] be the pivot threshold. The criteria for stability are the following:

• A 1 × 1 pivot on column k is stable if

(2.1) max
i>k

|A(k)
i,k | < u−1|A(k)

k,k|.

• A 2 × 2 pivot on columns k and k + 1 is stable if

(2.2)

∣∣∣∣∣∣
(

A(k)
k,k A(k)

k,k+1

A(k)
k+1,k A(k)

k+1,k+1

)−1
∣∣∣∣∣∣
(

maxi>k+1 |A(k)
i,k |

maxi>k+1 |A(k)
i,k+1|

)
≤ u−1

(
1
1

)
,

where the modulus of the matrix is interpreted elementwise. Additionally, it
is required that the pivot be nonsingular and inverted stably.

In the case where u is zero, this is interpreted as requiring that the pivot be non-
singular. Observe that these conditions imply that each entry in L is bounded in
modulus by u−1. The choice of u is a compromise between stability and sparsity: the
larger u is, the more stable the factorization will be, but the fill in L may increase
as more pivots may fail the stability test, causing them to be delayed. The default
value within HSL MA97 is u = 0.01, and, unless stated otherwise, this value is used
in our experiments. Note that including pivoting in an indefinite sparse direct solver
is necessary for stability, but it has the major disadvantage of hindering parallelism.
Note also that HSL MA97 is designed to handle the case where the system matrix A is
singular. The code holds D−1, and when a zero pivot is encountered, the correspond-
ing entry of D−1 is set to zero. The corresponding components of the solution vector
are thus set to zero.

Both HSL MA87 and HSL MA97 employ a technique known as node amalgamation.
This has become well established as a means of improving the factorization speed
at the expense of the number of entries in the factor L and the operation counts
during the factorization and subsequent solve phase. During the analyze phase, a
child node in the tree is merged with its parent if both parent and child have fewer
than a prescribed number nemin of variables that are eliminated, or if merging parent
and child generates no additional nonzeros in L. The value of the parameter nemin
determines the level of node amalgamation, with a value in the range of 8 to 32
typically recommended as providing a good balance between sparsity and efficiency
in the factorize and solve phases (see [25, 44]). In our experiments, we set nemin equal
to 32.

3. Solving the normal equations with a sparse direct solver.

3.1. Using a direct solver as a preconditioner for LSMR. If A does not
have full column rank, C = AT A is symmetric and positive semidefinite, and thus
attempting to compute a Cholesky factorization will suffer breakdown. Breakdown
happens when a zero (or negative) pivot is encountered; if this happens, a Cholesky
solver will terminate the computation with an error flag. In this section, we consider
using a regularization term to allow a Cholesky factorization to be used and compare
this approach with employing a symmetric indefinite solver to factorize C. The former
requires an iterative method to recover the required accuracy in the solution, while
the latter involves the overhead of pivoting; numerical results are used to explore
which approach is the most efficient.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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RANK-DEFICIENT SPARSE LEAST-SQUARES PROBLEMS C325

When C is positive semidefinite and breakdown of a Cholesky factorization occurs,
a simple remedy is to employ a global shift α > 0 and then compute a Cholesky
factorization of the scaled and shifted matrix

(3.1) Cα = SAT AS + αI.

Here S is again a diagonal scaling matrix. The shift α is also referred to as a Tikhonov
regularization parameter. The choice of α should be related to the smallest eigenvalue
of SAT AS, but this information is not readily available. Clearly it is always possible
to find an α so that Cα is positive definite; if the initial choice α is too small (that
is, Cα is positive semidefinite), it may be necessary to restart the factorization more
than once, increasing α on each restart until breakdown is avoided. If the regularized
normal equations

(3.2) Cαxα = SAT b, x = Sxα,

are solved, the computed value of the least-squares objective ‖rα‖2 = ‖b − ASxα‖2
may differ from the optimum for the original problem. We can seek to obtain the
solution x to (1.1) by applying a refinement process. The standard approach for
linear systems is to employ a small number of steps of iterative refinement. However,
iterative refinement is not effective when applied to the normal equations if the normal
matrix is ill-conditioned [3]. We thus propose using the Cholesky factors LαLT

α of Cα

as a preconditioner for LSMR applied to the original (unshifted) problem.

shift α
10 -14 10 -12 10 -10 10 -8 10 -6 10 -4 10 -2

LS
M
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Fig. 3.1. The effect of the shift α on the number of LSMR iterations (left) and the time (right)
for problem Maragal 6. HSL MA87 is used to compute a preconditioner for LSMR.

In our experiments, we use l2-norm scaling of A, that is, Sii = 1/‖Aei‖2 (where
ei is the ith unit vector) so that each column of A is normalized by its 2-norm.
The diagonal entries of SAT AS are then all 1. In the positive definite case, van der
Sluis [55] proved that if all the diagonal entries of SCS are equal, then it has condition
number close to the optimal among diagonal scalings of C. In Figure 3.1, we plot the
number of iterations required by preconditioned LSMR and the total time for solving
problem Maragal 6 using values of the shift α in the range 10−14 to 10−2; here Lα is
computed using the positive definite solver HSL MA87 with Metis [32] nested dissection
ordering. Similar patterns are observed for other problems, although for some of our
test examples (including DBIR2 and mri2) we found with the l2-norm scaling of A
that we needed to use α ≥ 10−12 to avoid breakdown. In Table 3.1, we report results

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

11
/3

0/
17

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



C326 JENNIFER SCOTT

Table 3.1

Results for solving the least-squares problem using the Cholesky solver HSL MA87 to compute
a preconditioner for LSMR. The shift is α = 10−12. nnz(Lα) denotes the number of entries in
the HSL MA87 factor, time is the total solution time (in seconds), and itn is the number of LSMR
iterations. The value of the least-squares objective before and after applying LSMR is ‖rα‖2 and
‖r‖2, respectively. Results are also given for HSL MA97 run in indefinite mode (with no shift).

Problem HSL MA87 (positive definite) HSL MA97 (indefinite)
nnz(Lα) time ‖rα‖2 ‖r‖2 itn nnz(L) time ‖r‖2

BAXTER 6.83×106 0.35 6.683×101 5.929×101 6 7.02×106 0.48 5.929×101

DBIR1 4.27×106 0.71 1.667×102 1.667×102 1 4.59×106 0.89 1.667×102

DBIR2 4.94×106 0.79 1.665×102 1.665×102 1 4.86×106 0.97 1.665×102

LPL1 7.44×106 0.31 7.088×101 7.088×101 1 7.94×106 0.38 7.088×101

NSCT2 8.81×106 1.54 1.838×102 1.838×102 1 8.42×106 1.88 1.838×102

PDS-100 5.91×107 2.03 2.849×102 2.849×102 1 5.79×107 2.11 2.849×102

PDS-90 5.23×107 1.79 2.685×102 2.685×102 1 5.14×107 2.27 2.685×102

beaflw 1.17×105 0.04 4.376 4.305 7 1.15×105 0.05 4.200
162bit 2.82×106 0.10 1.177×101 1.177×101 1 2.85×106 0.28 1.177×101

176bit 1.02×107 0.37 1.842×101 1.842×101 1 1.03×107 1.73 1.842×101

192bit 2.85×107 1.37 2.485×101 2.485×101 1 2.97×107 7.55 2.485×101

208bit 8.60×107 6.81 3.850×101 3.850×101 1 8.54×107 35.1 3.850×101

Maragal 6 4.96×107 10.8 1.069×101 1.069×101 3 5.06×107 17.8 1.069×101

Maragal 7 1.43×108 30.6 1.369×101 1.369×101 3 1.39×108 40.8 1.369×101

Maragal 8 8.85×107 9.57 2.383×102 2.378×102 27 9.88×107 25.3 2.379×102

mri1 8.27×106 0.50 2.674×101 2.674×101 1 8.69×106 0.63 2.674×101

mri2 3.43×107 2.65 1.413×102 1.413×102 1 3.78×107 4.94 1.413×102

tomographic1 2.96×107 1.20 4.185×101 4.185×101 3 3.20×107 2.37 4.185×101

for α = 10−12. In many cases, the requested accuracy is achieved with a single step
of LSMR. We did experiment with running HSL MA97 in positive definite mode, but,
as reported in [29], it is generally slower than HSL MA87, and so detailed results are
omitted.

3.2. Comparison with using a general indefinite solver. An alternative
to computing a Cholesky factorization of the regularized normal equations and using
the factor to precondition LSMR is to solve the original (unshifted) normal equations
using a sparse symmetric indefinite direct solver that allows the system matrix to
be singular, provided that the equations to be solved are consistent; this is always
true for the normal equations. The latter has the advantage of not requiring the
selection of a shift α, but allowing pivoting for numerical stability (as discussed in
section 2) adds to the factorization cost. Results for our test problems run with the
solver HSL MA97 in indefinite mode are included in columns 7–9 of Table 3.1 (using
the l2-norm scaling of A, Metis ordering, and default threshold parameter u = 0.01).
No refinement is used. We see that the positive definite solver applied to the scaled
and regularized normal equations results in a faster total solution time compared to
the indefinite approach.

4. Solving the augmented system with a direct solver. In this section, we
look at using a direct solver to solve the augmented system (1.3). We first consider
employing a general-purpose symmetric indefinite solver that incorporates pivoting.
We report on the effects of the choice of scaling on the fill in the factors and compu-
tation time and show that either a matching-based scaling or l2-norm scaling of A is
generally the method of choice. We also examine whether the tactic that is sometimes
used in optimization problems of reducing the threshold parameter u can improve the
solver performance without resulting in instability. Then, in section 4.2, we consider
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regularizing the augmented system. The factors of the regularized matrix are used
to provide a preconditioner for an iterative method. Numerical results are compared
with those for the regularized normal equations presented in the last section.

4.1. Using a direct solver for Ky = c. Consider applying HSL MA97 to the
augmented system (1.3). The computed factorization is

SKS = (PL)D(PL)T ,

with S a diagonal scaling matrix, P a permutation matrix, and D block diagonal (with
1×1 and 2×2 blocks). During the factorization of K, the zero (2, 2) block can lead to
many modifications being made to the analyze pivot order to preserve stability; this
is reflected in the number of delayed pivots reported by HSL MA97 (ndelay). It is well
known that for some sparse indefinite problems, the choice of the scaling S can have
a significant impact on reducing the number of delayed pivots and hence the fill in L
and overall performance (see, for example, [26]). When developing HSL MA97, Hogg
and Scott [30] studied pivoting strategies for tough sparse indefinite systems. The
scaling options offered by HSL MA97 (1) generate a scaling using a weighted bipartite
matching (MC64) [13]; or (2) generate an equilibration-based scaling (MC77) [45]; or
(3) use a matching-based ordering and the scaling that is generated as a side effect
of this process (MC80); or (4) generate a scaling by minimizing the absolute sum of
log values in the scaled matrix (MC30). Note that these scalings do not exploit the
block structure of K but treat K as a general indefinite sparse symmetric matrix. In
addition to the built-in HSL MA97 options, we compute and input the l2-norm scaling
of K and compute the l2-norm scaling of A. In the latter case, we input the scaling
matrix

(4.1) S =
[
Im

S̃

]
,

where S̃ii = 1/‖Aei‖2. We illustrate the effects of scaling on a subset of our problems
in Table 4.1. Here we use the default threshold parameter u = 0.01 and Metis ordering
and set the parameter γ = 1 in (1.3). These examples were chosen because they were
found to be sensitive to the scaling; for some of our other test examples, it had a much
smaller effect. Closer examination shows that if we compute the diagonal entries of
C, the ratio of the largest to the smallest diagonal entry for these examples is large
(see Table 1.2), indicating poor initial scaling. As expected, no single scaling gives
the best results on all problems. The matching-based MC64 scaling can lead to sparse
factors, but it can be expensive to compute. Based on our findings, we use l2-norm
scaling of A for our remaining experiments with HSL MA97 applied to K, and we set
γ = 1 [1].

Results for solving the augmented system are given in Table 4.2. Compared to
employing a direct solver to factorize the normal equations (Table 3.1), we see that,
in general, factorizing the augmented system with the default threshold parameter
u = 0.01 results in significantly more entries in the factors plus slower computation
times. In some optimization applications (see, for example, [17, 49]), it is common
practice to try to make the factorization of indefinite systems more efficient in terms
of time and memory by employing a relaxed threshold parameter u and to increase
u only if the linear system is not solved with sufficient accuracy. Thus in Table 4.2
we also include results for u = 10−8. With the exception of problems BAXTER and
NSCT2, this gives only a modest reduction in the number of entries in the factors and
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C328 JENNIFER SCOTT

Table 4.1

The effects of scaling on the performance of HSL MA97 for solving the augmented system (1.3)
(u = 0.01, Metis ordering, and γ = 1). nnz(L) denotes the number of entries in the factor, ndelay
is the number of delayed pivots, and time is the total solution time (in seconds). l2(K) and l2(A)
denote l2-norm scaling of K and A, respectively. For each problem, the sparsest factors and fastest
times are in bold.

Problem Scaling nnz(L) ndelay time

BAXTER none 8.36×106 2.74×104 0.50
MC30 1.62×106 5.66×103 0.24
MC64 1.13×106 1.08×103 0.26
MC77 2.12×106 6.00×103 0.29
MC80 1.49×106 1.37×102 0.27
l2(K) 5.72×106 2.00×104 0.38
l2(A) 1.38×107 3.41×104 0.73

DBIR1 none 9.79×107 1.73×105 47.6
MC30 1.16×108 1.88×105 52.6
MC64 9.02×106 5.02×103 1.44
MC77 1.58×108 2.33×105 140
MC80 2.03×107 3.93×104 3.62
l2(K) 1.05×108 1.80×105 62.1
l2(A) 8.76×106 1.12×103 1.15

DBIR2 none 1.23×108 1.23×105 26.6
MC30 2.68×107 3.37×104 3.79
MC64 8.54×106 4.00×102 1.41
MC77 1.33×108 1.27×105 61.2
MC80 1.96×107 1.12×104 3.17
l2(K) 1.00×108 1.04×105 18.5
l2(A) 8.85×106 9.62×102 1.14

Table 4.2

Results for solving the augmented system (1.3) using the direct solver HSL MA97 with threshold
parameter u set to 0.01 and 10−8. nnz(L) denotes the number of entries in the factor, ndelay
is the number of delayed pivots, time is the total solution time (in seconds), and the value of the
least-squares objective is ‖r‖2.

Problem u = 0.01 u = 10−8

nnz(L) ndelay time ‖r‖2 nnz(L) ndelay time ‖r‖2

BAXTER 1.38×107 3.41×104 0.73 5.929×101 1.49×106 4.75×103 0.22 5.929×101

DBIR1 8.76×106 1.12×103 1.15 1.667×102 8.75×106 1.08×103 1.13 1.667×102

DBIR2 8.85×106 9.62×102 1.13 1.665×102 8.46×106 1.11×102 1.12 1.665×102

LPL1 1.45×107 4.34×103 1.02 7.088×101 1.38×107 3.0 0.97 7.088×101

NSCT2 1.07×107 5.73×103 0.79 1.838×102 7.60×106 1.05×103 0.69 1.838×102

PDS-100 1.05×108 0.0 6.67 2.849×102 1.05×108 0.0 6.61 2.849×102

PDS-90 1.00×108 0.0 8.06 2.685×102 1.00×108 0.0 8.07 2.685×102

beaflw 2.65×105 2.95×102 0.05 4.162 2.51×105 6.70×101 0.03 4.162
162bit 4.25×106 3.42×102 0.33 1.177×101 4.23×106 1.59×102 0.31 1.177×101

176bit 1.52×107 2.33×103 2.07 1.842×101 1.50×107 1.07×103 1.98 1.842×101

192bit 4.51×107 9.00×103 7.85 2.485×101 4.44×107 3.80×103 7.59 2.485×101

208bit 1.30×108 2.45×104 44.1 3.850×101 1.28×108 1.09×104 42.1 3.850×101

Maragal 6 2.30×107 4.18×104 3.02 1.069×101 2.30×107 4.17×104 2.75 1.069×101

Maragal 7 7.03×107 3.48×104 9.32 1.369×101 7.03×107 3.47×104 8.41 1.369×101

Maragal 8 1.75×108 2.92×105 89.2 2.378×102 1.77×108 2.89×105 58.0 2.379×102

mri1 1.71×107 1.70×104 1.42 2.674×101 1.65×107 1.48×104 1.33 2.674×101

mri2 1.48×108 1.79×105 74.7 1.413×102 1.44×108 1.75×105 38.7 1.413×102

tomographic1 5.10×107 7.62×104 5.98 4.185×101 4.68×107 6.00×104 4.78 4.185×101

in the number of delayed pivots, but there can be a significant reduction in the time
(including problems Maragal 8 and mri2). Further examination reveals that pivots
are still being rejected at the nonroot nodes and passed up the assembly tree to the
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root node, where a dense factorization is performed. The delayed pivots result in the
root node being much larger than was predicted by the analyze phase, and, in this
case, the factorization of the root node accounts for most of the operations and time.
Using a small value of the threshold parameter significantly reduces the time for the
root node factorization, and it is this that leads to the overall reduction in the time.

4.2. Regularized augmented system. To attempt to reduce the number of
entries in the factors of the augmented system resulting from delayed pivots, we
consider the regularized system

(4.2) Kβyβ = c, Kβ =
[
Im A
AT −βIn

]
, yβ =

[
r(xβ)
xβ

]
, c =

[
b
0

]
,

where r(xβ) = b − Axβ and β > 0 (see, for example, [16, 48]). This is a symmetric
quasi-definite (SQD) system. Vanderbei [56] shows that, in exact arithmetic, SQD
systems are strongly factorizable, i.e., a signed Cholesky factorization of the form
LDLT (with D diagonal having both positive and negative entries) exists for any
symmetric permutation P . Thus P can be chosen to maintain sparsity. However, the
signed Cholesky factorization may be unstable. A stability analysis is given by Gill,
Saunders, and Shinnerl [17] (see also [15, 18]), which shows the importance of the
effective condition number of Kβ for the stability of the factorization.

We note that other regularizations of the augmented system have been proposed.
In particular, Saunders [48, 49] and George and Saunders [15] use the SQD matrix

Kβ1β2 =
[
β1Im A
AT −β2In

]
,

with β1, β2 > 0, and in their experiments they set β1 = β2 = 10−6. Saunders suggests
that this may be favorable when A is ill-conditioned.

We apply our sparse symmetric indefinite solver HSL MA97 to the scaled regu-
larized augmented matrix SKβS with the threshold parameter u set to 0.0 and S
given by (4.1). With β > 0, the computed value of the least-squares objective
‖rβ‖2 = ‖b − AS̃xβ‖2 may differ from the optimum for the original problem, and
if the stopping criterion (1.4) is not satisfied, we propose using the factors as a pre-
conditioner for an iterative method [15]. Here we use right-preconditioned GMRES
applied to the original augmented system (1.3) (with γ = 1). Here GMRES is used
without restarting, as only a small number of iterations are required. An alternative
would be to use the symmetric solver MINRES [40]. This requires a positive definite
preconditioner, and so we could employ the method presented by Gill et al. [16] to
modify Dβ and Lβ (note that this approach has been used recently by Greif, He, and
Liu [22]).

Our results using GMRES are given in Figure 4.1 and Table 4.3. The figure looks
at the effects of varying the regularization parameter β on the number of iterations
and the solution time for problem Maragal 6. As β increases, so too do the iteration
count and time; similar patterns are seen for our other test examples. For the results
in Table 4.3, we set β = 10−8. For our test set, this gives no delayed pivots. While
the precise choice of β is not important, if β is “too small,” some pivots may get
delayed and the factorization become less stable, resulting in more GMRES iterations
being needed for the requested accuracy than for a larger β. Comparing Tables 4.2
and 4.3, we note that we obtain much sparser factors than previously, and, as the
number of iterations of GMRES is generally modest (indeed, often we did not need
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Fig. 4.1. The effect of the regularization parameter β on the number of GMRES iterations
(left) and the time (right) for problem Maragal 6 (threshold u = 0.0).

Table 4.3

Results for solving the regularized augmented (SQD) system with β = 10−8 using the direct
solver HSL MA97 with threshold parameter u = 0.0. nnz(Lβ) denotes the number of entries in the
factor, timef and timet are the HSL MA97 and total solution times (in seconds), the value of the least-
squares objective before and after applying preconditioned GMRES is ‖rβ‖2 and ‖r‖2, respectively,
and itn is the number of GMRES iterations.

Problem nnz(Lβ) timef timet ‖rβ‖2 ‖r‖2 itn

BAXTER 1.07×106 0.22 1.84 7.496×101 5.929×101 234
DBIR1 8.38×106 1.12 1.16 1.667×102 1.667×102 1
DBIR2 8.44×106 1.11 1.12 1.665×102 1.665×102 0
LPL1 1.38×107 0.97 0.97 7.088×101 7.088×101 0
NSCT2 7.38×106 0.67 0.67 1.838×102 1.838×102 0
PDS-100 1.05×108 6.64 6.66 2.849×102 2.849×102 0
PDS-90 1.00×108 8.18 8.20 2.685×102 2.685×102 0

beaflw 2.32×105 0.04 0.04 4.180 4.162 4
162bit 4.16×106 0.29 0.31 1.179×101 1.177×101 2
176bit 1.46×107 1.95 2.07 1.844×101 1.842×101 4
192bit 4.32×107 7.30 7.54 2.489×101 2.485×101 3
208bit 1.25×108 41.2 42.7 3.865×101 3.850×101 8
Maragal 6 1.50×107 1.28 1.50 1.069×101 1.069×101 8
Maragal 7 2.29×107 2.27 2.27 1.369×101 1.369×101 0
Maragal 8 2.31×107 3.74 4.62 2.388×102 2.386×102 17
mri1 1.34×107 1.00 1.01 2.674×101 2.674×101 0
mri2 8.72×106 1.06 1.08 1.413×102 1.413×102 0
tomographic1 3.16×107 2.70 3.08 4.206×101 4.194×101 5

to use GMRES to obtain the requested accuracy), we have significantly faster total
solution times (note, in particular, problems Maragal 8 and mir2). We observe that
for problem BAXTER, we can reduce the number of GMRES iterations if we use a
smaller β: with β = 10−11, only 11 iterations are needed.

The number of entries in the factors and the total solution times using HSL MA97
to solve the regularized augmented system (4.2) and HSL MA87 applied to the regu-
larized normal equations are compared in Figure 4.2. A point above the line y = 1
indicates that using the normal equations is the better choice; the converse is true for
a point below the line. We see that in many cases there is little to choose between the
approaches in terms of the size of the factors, but that for a small number of exam-
ples (including the Maragal problems) the augmented system factors are significantly
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Fig. 4.2. Ratios of the number of entries in the factor (left) and the time (right) for the
regularized augmented system solved using HSL MA97 in indefinite mode and the regularized normal
equations solved using the positive definite solver HSL MA87.

sparser. However, the normal equation approach with the positive definite solver is
faster for most of the remaining problems.

5. Incomplete factorization of the normal matrix C. Having explored
in section 3 complete factorizations of the (regularized) normal equations, in this
section we look at computing an incomplete Cholesky (IC) factorization for use as
a preconditioner for LSMR. An IC factorization takes the form LLT in which some
of the fill entries that would occur in a complete factorization are ignored. The
preconditioned normal equations become

(AL−T )T (AL−T )z = L−1CL−T z = L−1AT b, z = LT x.

Performing preconditioning operations involves solving triangular systems with L and
LT . Over the years, a wealth of different IC variants have been proposed, including
structure-based methods, those based on dropping entries below a prescribed thresh-
old, and those based on prescribing the maximum number of entries allowed in L (see,
for instance, [2, 46, 51] and the references therein). Level-based methods (IC(k)) that
are based on the sparsity pattern of A plus a small number of levels of fill are popular
and straightforward to implement. However, they are best suited to linear systems
arising from discretized partial differential equations. Here we use the limited-memory
approach of Scott and Tůma [50, 51], which generalizes the ICFS algorithm of Lin
and Moré [35]. The scheme is based on a matrix factorization of the form

(5.1) C = (L + R)(L + R)T − E,

where L is the lower triangular matrix with positive diagonal entries that is used for
preconditioning, R is a strictly lower triangular matrix with small entries that is used
to stabilize the factorization process but is subsequently discarded, and E = RRT .
On the jth step of the factorization, the first column of the Schur complement is
decomposed into a sum of two vectors lj + rj , such that |lj |T |rj | = 0 (with the
first entry in lj nonzero), where lj (respectively, rj) contains the entries that are
retained in (respectively, discarded from) the incomplete factorization. In the next
step of a complete decomposition, the Schur complement of order n − j would be
updated by subtracting the outer product of the pivot row and column, that is,
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by subtracting (lj + rj)(lj + rj)T . In the incomplete case, the positive semidefinite
term Ej = rjr

T
j is not subtracted. Moreover, to further limit the memory required,

drop tolerances are (optionally) used. If at some stage a zero or negative pivot is
encountered, the factorization suffers breakdown and, as in section 3, a shift is applied
and the incomplete factorization of the shifted matrix (3.1) is computed.

A software package HSL MI35 that implements this limited-memory IC algorithm
for least-squares problems has been developed. This code is a modification of HSL MI28
[50], which is designed for symmetric positive definite systems. Modifications were
needed to allow the user to specify the maximum number of entries allowed in each
column of the incomplete factor L (in HSL MI28 the user specified the amount of fill
allowed, but as columns of the normal matrix C may be dense, or close to dense, this
change was needed to keep L sparse). Furthermore, there is no need to form and store
all of C explicitly; rather, the lower triangular part of its columns can be computed
one at a time and then used to perform the corresponding step of the incomplete
Cholesky algorithm before being discarded. HSL MI35 includes a number of scaling
and ordering options so that an incomplete factorization of

Cα = PT SCSP + αI

is computed, where P is a permutation matrix chosen on the basis of sparsity, S is
a diagonal scaling matrix, and α ≥ 0.0. Based on extensive experimentation in [50],
the default ordering is the profile reduction ordering of Sloan [54]. We experimented
with using the l2-norm scaling of A and also, as discussed in section 3, applying the
l2-norm scaling of A, forming CS = SAT AS, and then applying the l2-norm scaling
of CS (in practice, this requires us to compute only one column of CS at a time).
We found that for some examples this “double” scaling resulted in a smaller shift α
being needed and hence gave a higher quality preconditioner. Thus we use this for our
reported results. In the following, lsize and rsize denote the parameters that control
the maximum number of entries in each column of L and R, respectively. In each
test, the initial shift α is 0.001. In the event of breakdown, it is increased until the
incomplete factorization is successful (see [50] for details). The recorded times include
the time to restart the factorization following any breakdowns.

Figure 5.1 illustrates the potential benefits of employing intermediate memory R
in the construction of L (note that the ICFS software [35] employs no intermediate
memory). Here we set lsize = 200 and vary rsize from 0 to 1000; the drop tolerances
are set to 0.0. For each value of rsize, the number of entries in L is nnz(L) =
6.63×106. We see that increasing the intermediate memory stabilizes the factorization,
reducing the shift and giving a higher quality preconditioner that requires fewer LSMR
iterations and less time. Observe that because the number of restarts following a
breakdown decreases as rsize increases, the time for computing the IC factorization
does not necessarily increase with rsize.

In Table 5.1, we report results for HSL MI35 applied to our test set; default set-
tings are used for the ordering and dropping parameters. We experimented with a
range of values for the parameters lsize and rsize that control the memory, and for
each example we chose values that perform well. While the preconditioner quality
improves and the number of LSMR iterations decreases as the memory increases, the
factorization times generally increase and, because nnz(L) increases, each application
of the preconditioner becomes more expensive. Thus the best values of lsize and rsize
in terms of the total time are highly problem dependent (in particular, we found that
using rsize > 0 is not always beneficial); the results given in Table 5.1 illustrate this.
We struggle to solve problem BAXTER: a large number of iterations are required, and
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Fig. 5.1. The effect of increasing the amount of intermediate memory used in the construction
of the HSL MI35 IC preconditioner on the size of the shift (left), the number of LSMR iterations
(center), and the total time in seconds (right) for problem Maragal 8.

Table 5.1

Results for LSMR with the IC factorization preconditioner from HSL MI35 applied to C = AT A.
lsize and rsize control the memory used by HSL MI35, nnz(L) denotes the number of entries in the
factor L, α is the shift, timef and timet are the factorization and total solution times (in seconds),
the value of the least-squares objective is ‖r‖2, and the number of LSMR iterations is itn.

Problem lsize rsize nnz(L) α timef timet ‖r‖2 itn

BAXTER 100 100 5.35×105 0.001 0.14 105 5.990×101 42410
DBIR1 100 0 5.05×105 0.002 0.50 0.68 1.667×102 40
DBIR2 100 0 5.34×105 0.002 0.55 0.79 1.665×102 50
LPL1 100 0 9.15×105 0.001 0.15 0.54 7.088×101 70
NSCT2 100 0 8.28×105 0.002 1.23 1.40 1.838×102 40
PDS-100 20 20 2.89×106 0.001 1.09 3.18 2.849×102 90
PDS-90 20 20 2.62×106 0.001 0.99 2.90 2.685×102 90

beaflw 100 200 4.01×104 0.016 0.07 1.89 4.533 9570
162bit 20 20 7.04×104 0.001 0.05 0.14 1.177×101 220
176bit 20 20 1.46×105 0.001 0.12 0.48 1.842×101 440
192bit 20 20 2.66×105 0.004 0.41 2.08 2.485×101 1070
208bit 20 20 4.69×105 0.002 0.64 4.92 3.850×101 1430

Maragal 6 20 20 2.12×105 0.256 6.43 7.59 1.069×101 590
Maragal 7 100 0 2.56×106 0.256 17.6 19.5 1.369×101 170
Maragal 8 200 1000 1.39×106 0.001 13.8 59.8 2.387×102 5110
mri1 100 100 1.10×106 0.001 0.55 1.41 2.674×101 100
mri2 20 20 7.83×105 2.048 3.13 18.4 1.413×102 2530
tomographic1 100 0 3.29×106 0.001 0.78 8.74 4.192×101 590

the computed ‖r‖2 is (slightly) larger than reported elsewhere. However, if we com-
pare the results for the other examples with those in Table 3.1 for the direct solver
applied to the normal equations, we see that for many examples, the IC times are
competitive with the direct solver times. Moreover, the IC factorization produces sig-
nificantly sparser factors, giving it the potential to be used successfully for much larger
problems than can be tackled by a direct solver. Observe that the shift α for the IC
factorization is significantly larger than that used by the direct solver. Consequently,
the number of iterations needed for convergence can be large.

6. Preconditioning strategies for the augmented system. In this section,
we consider using an incomplete factorization as a preconditioner for an iterative
method applied to the augmented system (1.3). One possibility is to extend the
positive definite limited-memory approach outlined in section 5. This was proposed
by Scott and Tůma, who presented a limited-memory signed IC factorization [52].
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We discuss the signed IC approach and compare it to the recent LLDL approach of
Orban [39].

Scott and Tůma compute an incomplete factorization of the form LDLT, where L
is a lower triangular matrix with positive diagonal entries and D is a diagonal matrix
with entries ±1. In practice, an LDLT factorization of

K = PT SKSP +
[
α1I

−α2I

]

is computed, where α1 and α2 are nonnegative shifts chosen to prevent breakdown of
the factorization. The preconditioner is taken to be LDL

T
, with L = S−1PL. Scott

and Tůma choose the permutation P not only on the basis of sparsity, but also so
that a variable in the (2, 2) block of K is not ordered ahead of any of its neighbors in
the (1, 1) block. The idea here is to try to prevent a small (or zero) pivot candidate
from being chosen; see [52] for details of this so-called constrained ordering.

An implementation is available as the HSL package HSL MI30. As with the IC
code HSL MI35, intermediate memory (R) is optionally used in the construction of
the factor L and is then discarded. The user controls the amount of fill allowed in
each column of L (lsize) and the number of entries in each column of R (rsize). The
code also includes a range of ordering and scaling options as well as optional dropping
parameters (to control the discarding of small entries from L and R).

HSL MI30 is related to the recent LLDL software developed independently by Or-
ban [39]. The latter extends the ICFS code of Lin and Moré [35] to SQD matrices and
thus can be applied to the regularized augmented system (4.2). The main differences
between HSL MI30 and LLDL are the following:

1. LLDL uses a single shift (that is, α1 = α2).
2. LLDL does not employ intermediate memory (that is, rsize = 0).
3. The HSL MI30 factorization suffers breakdown and is restarted with an in-

creased shift whenever a candidate pivot is not of the expected sign (or is
zero). In LLDL there is breakdown only if a pivot is zero; in this case, the
shift is increased and the factorization restarted.

4. LLDL does not use a constrained ordering but advises the user to preorder K
using a sparsity-preserving ordering, such as approximate minimum degree
(AMD) (there is no built-in option for ordering K).

5. LLDL does not include an option to drop small entries during the factorization.
6. HSL MI35 allows “spare” space from one column of L to be used for the next

column (so that if, after dropping, column j of L has p < lsize fill entries,
then column j + 1 may have up to 2 ∗ lsize − p fill entries).

For our experiments, we modified HSL MI30 to implement the same algorithm as
LLDL; this facilitates testing using the same ordering and scaling. We refer to this as
the LLDL option (although note that if Orban’s LLDL package is used, it will return
similar but not identical results). Numerical results are given in Tables 6.1 and 6.2.
The memory parameters lsize and rsize were chosen after testing a range of values
(with the same lsize used for HSL MI30 and the LLDL option). Recall that ratio(r) is
given by (1.4); it enables us to see whether the LSMR stopping criterion is satisfied.
We employ l2-norm scaling of A and AMD ordering; the iterative solver is restarted
GMRES (with the restart parameter set to 1000). For tests using the LLDL option, we
set α1 = α2 = 1.0; this choice was made on the basis of experimentation. We set the
regularization parameter β to 10−6 (recall (4.2)), but our experience is that, for our
test set and chosen settings, using a nonzero value has little effect on the quality of the
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Table 6.1

Results for the signed IC factorization preconditioner HSL MI30 run with GMRES to solve the
augmented system. lsize and rsize control the memory used by HSL MI30, nnz(L) denotes the number
of entries in the factor L, α2 is the shift for the (2, 2) block (in all cases, α1 = 0.0), timef and timet

are the factorization and total solution times (in seconds), the value of the least-squares objective is
‖r‖2, ratio(r) is given by (1.4), and the number of GMRES iterations is itn.

Problem lsize rsize nnz(L) α2 timef timet ‖r‖2 ratio(r) itn

DBIR1 20 0 1.69×106 0.004 0.54 0.80 1.667×102 3.315×10−7 24
DBIR2 50 0 1.83×106 0.008 0.81 1.19 1.665×102 2.481×10−7 36
LPL1 20 20 1.05×106 0.001 0.59 0.87 7.088×101 2.865×10−5 28
NSCT2 100 0 1.80×106 0.004 0.65 0.83 1.838×102 1.159×10−7 18
PDS-100 20 0 5.21×106 0.000 1.65 2.65 2.849×102 1.890×10−6 21
PDS-90 20 0 4.87×106 0.000 1.56 2.34 2.685×102 1.529×10−6 21

beaflw 100 0 9.39×104 0.008 0.06 0.24 4.549 1.112×10−6 438
162bit 20 20 1.42×105 0.001 0.14 0.28 1.177×101 9.558×10−6 161
176bit 20 20 2.95×105 0.004 0.35 1.91 1.842×101 8.399×10−6 435
192bit 20 50 5.35×105 0.000 0.74 1.12 2.485×101 9.441×10−6 119
208bit 50 50 1.53×106 0.001 3.06 8.42 3.851×101 4.564×10−6 460

Maragal 6 20 20 6.44×105 0.512 2.25 5.62 1.069×101 1.249×10−6 456
Maragal 7 20 20 1.52×106 1.024 4.07 7.86 1.369×101 1.597×10−6 276
Maragal 8 100 0 3.68×106 0.016 1.95 23.1 2.388×102 5.237×10−6 676
mri1 20 20 2.25×106 0.001 0.95 1.39 2.674×101 6.789×10−6 25
mri2 100 0 1.39×106 0.512 65.3 99.0 1.413×102 1.232×10−6 574
tomographic1 50 0 4.76×106 0.001 1.46 11.7 4.192×101 1.754×10−6 351

Table 6.2

Results for the LLDL option run with GMRES to solve the augmented system. lsize controls the
fill in each column of the factor L, nnz(L) denotes the number of entries in the factor L, timef

and timet are the factorization and total solution times (in seconds), the value of the least-squares
objective is ‖r‖2, ratio(r) is given by (1.4), and the number of GMRES iterations is itn. In all
cases, α1 = α2 = 1.0.

Problem lsize nnz(L) timef timet ‖r‖2 ratio(r) itn

DBIR1 20 1.27×106 0.24 83.9 1.667×102 3.774×10−7 3924
DBIR2 20 1.36×106 0.26 > 600
LPL1 20 1.04×106 0.25 39.7 7.088×101 4.087×10−5 1047
NSCT2 100 1.26×106 0.32 7.76 1.838×102 9.758×10−8 524
PDS-100 20 3.65×106 1.36 15.2 2.849×102 1.911×10−6 237
PDS-90 0 1.63×106 1.13 26.3 2.685×102 1.949×10−6 431

beaflw 100 1.05×105 0.03 0.47 4.558 6.322×10−7 836
162bit 20 1.15×105 0.05 21.3 1.177×101 2.530×10−6 5163
176bit 20 2.38×105 0.10 149 1.843×101 1.101×10−6 20902
192bit 20 4.26×105 0.19 250 2.487×101 1.981×10−6 24999
208bit 50 1.28×106 0.55 > 600
Maragal 6 20 7.44×105 0.28 7.67 1.069×101 1.184×10−6 730
Maragal 7 20 1.68×106 0.62 5.06 1.369×101 1.528×10−6 309
Maragal 8 100 2.06×106 0.66 > 600
mri1 20 1.94×106 0.33 16.1 2.674×101 6.999×10−6 506
mri2 100 2.40×106 0.37 49.2 1.413×102 1.235×10−6 1231
tomographic1 50 2.65×106 0.61 > 600

results. We observe that while HSL MI30 appears robust (it successfully solved all the
problems in our test set except BAXTER, which is omitted because we were unable to
choose parameters that led to successful convergence), the LLDL option fails to solve
a number of problems within our limits of 600 seconds and 100000 iterations.

An alternative to using an IC-based factorization is to employ a general incomplete
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indefinite factorization code. Chow and Saad [8] considered the class of incomplete LU
preconditioners for solving indefinite problems, and later Li and Saad [33] integrated
pivoting procedures with scaling and reordering. Building on this, Greif, He, and
Liu [22] recently developed an incomplete factorization package called SYM-ILDL
for general sparse symmetric indefinite matrices. Here the system matrix may be
any sparse indefinite matrix; no advantage is made of the specific block structure of
(1.3). Independently, Scott and Tůma [53] report on the development of incomplete
factorization algorithms for symmetric indefinite systems and propose a number of
new ideas with the goal of improving the stability, robustness, and efficiency of the
resulting preconditioner. Preliminary experiments on our rank-deficient least-squares
test problems have found that the indefinite factorization is much less robust than
the signed IC approach, and so full results are not included here.

7. Concluding remarks. In this paper, we have used numerical experiments
to study solving rank-deficient sparse linear least-squares problems. These are hard
problems. In particular, the lack of positive definiteness means that the standard ap-
proach of applying a Cholesky solver to the normal equations fails. Our approach is to
use existing software to compute the factors of a regularized system and then to em-
ploy these factors as a preconditioner with an iterative method to recover the solution
of the original problem. We have explored using state-of-the-art parallel sparse direct
solvers to compute a complete factorization as well as recent approaches to compute
limited-memory incomplete factorizations. Regularization allows a Cholesky-based
direct solver to be used to factorize the scaled and shifted normal matrix C, avoid-
ing the need for numerical pivoting that can adversely affect the performance of a
sparse indefinite direct solver. However, this requires C to be available. If C cannot
be formed or if it is unacceptably dense, the regularized augmented system with the
threshold parameter u = 0.0 offers a feasible alternative approach (see also [49]).

For very large problems it may not be possible to use a direct solver, and so
we have also considered limited-memory IC factorizations. Our results show that IC
factorizations of the normal equations computed using the package HSL MI35 provide
robust preconditioners with significantly sparser factors than those from a complete
factorization, but they require a much larger number of LSMR iterations to achieve
the requested accuracy. The use of intermediate memory in constructing these IC
factors can sometimes significantly enhance the quality of the preconditioner without
adding extra fill to the final factors. For the signed IC factorizations of the augmented
system, the use of intermediate memory can also be advantageous. In many of our
test cases, the total solution time for the signed IC factorizations of the augmented
system is greater than for the IC factorizations of the normal equations, but, again,
the former has the advantage of avoiding the construction of the normal matrix. We
note that our software allows the user to tune a number of parameters, including not
only the choice of ordering and scaling but also the amount of memory used by the
IC factorization. These choices and the choice of the regularization parameter can
significantly affect the quality of the resulting preconditioner, and it may be necessary
to experiment with the different options to obtain the best performance for a given
application.

Currently, the codes that compute the IC factorizations and then perform the
subsequent forward and backward substitutions that are needed when using the factors
as preconditioners are serial. As much of the total time is taken by the iterative solver,
parallel implementations of the application of the preconditioner are needed. This is
currently an area of active research [7].
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Finally, although this paper has focused on tackling rank-deficient least-squares
problems using sparse direct LLT and LDLT solvers and their incomplete factoriza-
tion counterparts, a number of other approaches are available. In particular, a QR
factorization of A may be used, either a complete sparse QR factorization as offered
by SuiteSparseQR [9] and qr mumps [5], or an incomplete QR factorization such as
the multilevel incomplete QR (MIQR) factorization of Li and Saad [34]. Moreover,
the results reported in [20, 21] suggest that the BA-GMRES approach of Morikuni
and Hayami [36, 37] may offer a feasible alternative.
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