

The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production

Article

Accepted Version

Walker, A. P., Quaife, T. ORCID: https://orcid.org/0000-0001-6896-4613, van Bodegom, P. M., De Kauwe, M. G., Keenan, T. F., Joiner, J., Lomas, M. R., MacBean, N., Chongang, X., Xiaojuan, Y. and Woodward, F. I. (2017) The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax) on global gross primary production. New Phytologist, 215 (4). pp. 1370-1386. ISSN 1469-8137 doi: https://doi.org/10.1111/nph.14623 Available at https://centaur.reading.ac.uk/70655/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>.

To link to this article DOI: http://dx.doi.org/10.1111/nph.14623

Publisher: Wiley

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in

the End User Agreement.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

The impact of alternative V_{cmax} trait-scaling hypotheses on global gross primary production

- 3
- 4 Walker, Anthony P.^{1,2}; Quaife, Tristan³; van Bodegom, Peter M.⁴; De Kauwe, Martin G.⁵;
- 5 Keenan, Trevor F.⁶; Joiner, Joanna⁷; Lomas, Mark²; MacBean, Natasha⁸; Xu, Chongang⁹;

6 Yang, Xiaojuan¹; Woodward, F. Ian²

- 7
- 8 ¹ Environmental Sciences Division and Climate Change Science Institute, Oak Ridge
- 9 National Laboratory, Oak Ridge, TN 37830-6301, USA
- ² Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building,
- 11 Western Bank, S10 2TN, UK
- ³ National Centre for Earth Observation, Department of Meteorology, University of Reading,
- 13 RG6 6BX, UK
- 14 ⁴ P.M. van Bodegom, Institute of Environmental Sciences, Leiden University, 2333 CC
- 15 Leiden, the Netherlands
- ⁵ Macquarie University, Department of Biological Sciences, New South Wales 2109,
- 17 Australia.
- ⁶ Earth Sciences Division, Lawrence Berkeley National Lab, 1 Cyclotron Road, Berkeley, CA
- 19 94720, United States
- 20 ⁷ NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
- 21 ⁸ Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-
- 22 UVSQ, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- ⁹ Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos,
- 24 NM, USA, 87544
- 25
- 26 Corresponding Author: Anthony P. Walker, walkerap@ornl.gov, 865-576-9365
- 27 Twitter: @AnthonyPWalker @CCSI_ORNL @ORNL_EnvSci
- 28

30 the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article

²⁹ Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with

³¹ for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable,

32 33 34 35	world-wide license to publish or re- the United States Government purp	produce the published form of this manuscript, or allow others to do so, for poses.
36		
37		
38	Word count:	
39		
40	Summary	200
41		
42	Introduction	823
43	Methods	2206
44	Results	1555
45	Discussion	2309
46	Total (exc. Summary)	6893
47		

48 Summary

49 The maximum carboxylation rate of photosynthesis (V_{cmax}) is an influential plant trait • 50 that has multiple scaling hypotheses, which is a source of uncertainty in predictive 51 understanding of global gross primary production (GPP). 52 Four trait-scaling hypotheses (plant functional type, nutrient limitation, environmental • 53 filtering, and plant plasticity) with nine specific implementations are used to predict global V_{cmax} distributions and their impact on global GPP in the Sheffield Dynamic 54 55 Global Vegetation Model. Global GPP varied from 108.1 to 128.2 PgC y⁻¹, 65 % the range of a recent model 56 • 57 intercomparison of global GPP. The variation in GPP propagated through to a 27% 58 coefficient of variation in net biome productivity (NBP). All hypotheses produced global GPP highly correlated (r=0.85-0.91) with three proxies of global GPP. 59 Plant functional type based nutrient limitation, underpinned by a core SDGVM 60 • hypothesis that plant nitrogen status is inversely related to increasing costs of N 61 62 acquisition with increasing soil C, adequately reproduced global GPP distributions. 63 Further improvement could be achieved with accurate representation of water 64 sensitivity and agriculture in SDGVM. Mismatch between environmental filtering 65 (the most data-driven hypothesis) and GPP suggested that greater effort is needed 66 understand V_{cmax} variation in the field, particularly in northern latitudes. 67 68 Key Words: 69

Gross Primary Production, Modelling photosynthesis, Plant functional traits, Traitbased modelling, Terrestrial carbon cycle, Co-ordination hypothesis, DGVM, Assumption
centred modelling

74 Introduction

75 Photosynthetic carbon assimilation is the largest flux in the global carbon cycle, and 76 accurate future projections from terrestrial biosphere models (TBMs) rely upon accurate 77 representations of photosynthesis. Rates of photosynthesis are most commonly simulated as the minimum carboxylation rate of two processes—the Calvin-Benson cycle and light 78 79 activated electron transport—modelled using Michaelis-Menten principles of enzyme kinetics 80 (Farquhar & Wong, 1984; Collatz et al., 1991; Harley et al., 1992; von Caemmerer, 2000). 81 These two realised rates are sensitive to their respective maximum rates—the maximum 82 carboxylation rate (V_{cmax}) and the maximum electron transport rate (J_{max}), and terrestrial 83 carbon cycle models are highly sensitive to these parameters (Zaehle *et al.*, 2005; Bonan *et* 84 al., 2011; Sargsyan et al., 2014; Rogers, 2014; Rogers et al., 2017). Many methods are used 85 across TBMs to calculate V_{cmax} and J_{max}, and these methods represent competing hypotheses, 86 formally or informally posed, on how these influential plant traits scale geographically. The 87 diversity of hypotheses potentially leads to large, and previously unquantified, variation in 88 the simulation of global photosynthetic carbon assimilation and poses the broader scientific 89 question: what are the primary drivers of global V_{cmax} scaling?

90 Plant functional traits consist of a wide range of measurable plant phenotypic 91 (chemical, physiological, and structural) properties that convey information pertaining to 92 some aspect of plant function, and thus are used to describe plant function and functional 93 diversity. Correlations between functional traits have been used to define common axes of 94 plant strategies (Grime, 1974; Craine et al., 2002; Wright et al., 2004; Reich, 2014) and 95 discrete plant functional types (PFTs), designed to simplify the diversity of plant life within a 96 tractable modelling framework (Woodward & Cramer, 1996; Smith et al., 1998; Wullschleger 97 et al., 2014). The quantitative nature of plant functional traits lends their use to global 98 simulation modelling, allowing functions that represent the multiple ecosystem processes 99 encoded in TBMs to be parameterised using values of the relevant plant functional traits. 100 Recently, much attention has been paid to acknowledging wider and continuous variation in 101 plant functional traits within ecosystem modelling (van Bodegom et al., 2012, 2014; Scheiter 102 et al., 2013; Pavlick et al., 2013; Verheijen et al., 2013; Fyllas et al., 2014; Fisher et al., 103 2015; Kueppers *et al.*, 2016). Modelling this trait variation requires spatial and temporal traitscaling hypotheses that go beyond the implicit hypothesis for many traits in many TBMs—
that traits scale discretely across, and are static within, a limited set of broadly defined PFTs.

106 In the current study, multiple competing trait-scaling hypotheses for V_{cmax} and their 107 impacts on global patterns of gross primary production (GPP) are assessed within a common 108 modelling framework (the Sheffield Dynamic Global Vegetation Model—SDGVM). Broadly defined, four V_{cmax} scaling hypotheses are investigated: 1) discrete PFT variation, 2) nutrient 109 110 limitation, 3) environmental filtering, and 4) plant plasticity allowing acclimation to environment. As discribed above, discrete PFT variation, is an hypothesis designed to 111 112 represent key features of global diversity in plant function within a tractable modelling 113 framework.

In more detail, nutrient, specifically nitrogen (N), limitation is hypothesised to affect 114 V_{cmax.25} due to the high concentrations of the enzyme RuBisCO in leaves which makes up a 115 large portion of whole plant N demand. Empirically, V_{cmax.25} and photosynthetic rates correlate 116 117 with leaf N (Field & Mooney, 1986; Wright et al., 2004; Kattge et al., 2009) and plant N 118 uptake (Woodward & Smith, 1995). SDGVM incorporates the hypothesis that plant N status 119 is based on the principle of costs associated with plant N uptake as soil C increases and 120 across mycorhizal types (Read, 1991; Woodward et al., 1995). This hypothesis has been expanded on by recent model development efforts (Fisher et al., 2010; Brzostek et al., 2014). 121 122 The environmental filtering hypothesis states that adaptation to local environment is the 123 primary determinant of V_{cmax,25} scaling. In our study, a data driven approach was taken to 124 represent environmental filtering of V_{cmax.25} following Verheijen *et al.*, (2013). Plant plasticity, 125 which allows acclimation to environment, is based on the hypothesis that the process of 126 natural selection has created plants able to respond to their environment at shorter timescales 127 (e.g. days to weeks). These plant centric methods tend to consider an optimality perspective 128 whereby plants adjust V_{cmax} to maximise the difference between costs and benefits (Chen et 129 al., 1993; Maire et al., 2012; Prentice et al., 2014).

Our aims were to quantify and understand the causes of variability across these various scaling hypotheses of: 1) global V_{cmax} distributions; 2) simulated global distributions of GPP; and 3) temporal trends in global GPP and subsequent impacts on net biome productivity, the simulations of which is the primary purpose of global TBMs. To evaluate the spatial patterns of global GPP predicted by the various methods to scale V_{cmax} we use a

- 135 number of global GPP observation proxies: the Max Plank Institute (MPI) upscaled eddy-flux
- 136 estimate of GPP (Jung et al., 2011); global solar induced fluorescence (SIF) from the GOME-
- 137 2 instrument (Joiner et al., 2013, 2016), and the CASA model calibrated using SIF data.

138 Methods

139 The SDGVM was developed as a daily timestep, global biogeography and ecophysiology model (Woodward et al., 1995; Woodward & Lomas, 2004) to predict the primary 140 141 biomes of Earth and their associated fluxes of carbon (C) and water in response to global 142 change. SDGVM has been described and extensively evaluated at site and global scales 143 (Woodward *et al.*, 1995; Cramer *et al.*, 2001; Woodward & Lomas, 2004; Picard *et al.*, 2005; 144 Sitch *et al.*, 2008; Beer *et al.*, 2010; De Kauwe *et al.*, 2013, 2014; Friend *et al.*, 2014; Walker 145 *et al.*, 2014b; Zaehle *et al.*, 2014), so here we provide a brief description of the model and the 146 process simulation methods relevant to this paper. 147 In SDGVM, C and water cycles conserve mass, while canopy nitrogen (N) is simulated through an empirical relationship of N uptake to soil C (Woodward et al., 1995; 148 Woodward & Lomas, 2004), based on the principle of costs associated with plant N uptake as 149 soil C increases and across mycorhizal types (Read, 1991). During the application of 150 151 SDGVM to the FACE model data synthesis (FACE-MDS; Walker et al., 2014b; Medlyn et 152 al., 2015) it was observed that SDGVM had low $V_{cmax,25}$ values ($V_{cmax,25} = 11N_a$; where N_a is leaf N per unit leaf area) and that using realistic values of V_{cmax.25} observed at the FACE sites 153 154 led to over prediction of GPP. The default V_{cmax.25} values in SDGVM were calibrated to compensate biases caused by the assumption that photosynthesis calculated at mean daily 155 156 radiation can be scaled by daylength to calculate mean daily photosynthesis. This assumption over-estimates photosynthetic efficiency by effectively linearising the response of 157 158 photosynthesis to light. We corrected this bias by developing a sub-daily downscaling of light 159 and photosynthesis calculations to 10 time periods during a half-day (described in more detail 160 in Notes S1). The sub-daily calculation of photosynthesis allowed realistic V_{cmax,25} values to 161 generate realistic values of GPP in the model. SDGVM scales V_{cmax,25} and J_{max,25} by water 162 limitation and leaf age.

163 Due to their strong correlation, in this study we focus only on V_{cmax} scaling hypotheses 164 and employ a single relationship of $V_{cmax,25}$ to $J_{max,25}$ (Walker *et al.*, 2014a):

(1)

165

 $J_{max, 25} = eV_{cmax, 25}^{0.890}$.

Each V_{cmax} scaling hypothesis—PFT, nutrient limitation, environmental filtering, and
 plant plasticity—for V_{cmax} scaling described in the introduction was implemented in the

SDGVM in multiple ways drawn from a number of datasets, empirical relationships, andspecific mathematical representations (see below and Table 1).

170 *Static traits* (static_PFT): Static values of V_{cmax.25} were derived by taking PFT means 171 (using SDGVM PFT definitions; see SI for specific values) from the TRY database (www.try-172 db.org; data accession on 16 Nov 2010) augmented to include data from the sparsely 173 represented tropics (described below). This augmented TRY database was also used to derive 174 the trait-environment relationships and is described in detail below. Each trait observation 175 was linked to a PFT based on information on growth form (shrub, grass, tree), leaf habit 176 (deciduous/evergreen) and photosynthetic pathway (C_3/C_4) (Verheijen et al., 2013, 2015). *Nutrient limitation hypotheses:* We employ five implementations of the nutrient 177 limitation hypothesis. First (Ntemp global), the original version of SDGVM calculated V_{cmax} 178 from the rate of N uptake (N₁) (Woodward & Smith, 1994, 1995). N₁ was calculated as a 179 180 function of soil C, N, and mean annual air temperature (for details see: Woodward et al., 181 1995). We label the original SDGVM method according to the assumption that sets it apart 182 from other nutrient limitation hypotheses, that N_u is a function of temperature. In later versions of SDGVM, the temperature modifier of N_u was removed and canopy 183 N was calculated using a globally uniform, empirical scalar on N_u (Woodward *et al.*, 1995; 184 Woodward & Lomas, 2004). All of the remaining implementations of the nutrient limitation 185

186 hypotheses use the temperature independent function of N_u and canopy N. The second

187 nutrient limitation implementation (N_global) was:

188

 $V_{cmax,25} = e^{3.712} N_a^{0.650} , \qquad (2)$

189 where N_a is leaf N, was taken from Walker *et al.*, (2014a) and was implemented globally. 190 Third (N_PFT), we used the PFT-specific, linear $V_{cmax,25}$ to N_a relationships derived by Kattge 191 et al., (2009). Forth (N_oxisolPFT), to simulate an implicit P limitation, we used the N_PFT 192 relationships but replaced the evergreen broadleaved PFT relationship with a relationship 193 derived on P poor oxisols. Fifth (NP_global), to simulate a more explicit P limitation on 194 $V_{cmax,25}$ a function of $V_{cmax,25}$ where P was influential in interaction with N derived from a 195 database of field and lab grown plants (Walker *et al.*, 2014a), was also simulated: 197 $V_{cmax,25} = 0.121$

196
$$V_{cmax,25} = e^{5..940} N_a^{[1.101]} + 1.101 +$$

- 197 To simulate leaf P concentration we used a global relationship to total soil P derived 198 by Ordonez et al., (2009), and a global total soil P map (Yang et al., 2014).
- 199 *Environmental filtering*: Environmental filtering was represented by empirically 200 deriving PFT specific trait-environment relationships (Environ_PFT) from the TRY database 201 V_{cmax,25} values at the accession date (Niinemets, 1999; Kattge et al., 2009) augmented by Verheijen et al., (2015) to include V_{cmax,25} from the tropics (Deng *et al.*, 2004; Meir *et al.*, 202 203 2007; Domingues et al., 2010; van de Weg et al., 2011; Cernusak et al., 2011; Azevedo & 204 Marenco, 2012; Nascimento & Marenco, 2013) that were not well covered in the TRY 205 database. Each species within the database was assigned to a PFT based on the specific 206 SDGVM PFT definitions.

207 Based on the global coordinates of the trait data, each trait entry was associated to a 208 set of environmental conditions—mean annual temperature, mean temperature of the 209 warmest month, mean temperature of the warmest month, temperature difference of warmest 210 month and coldest month, total annual precipitation, total precipitation in the driest quarter, 211 fraction of total precipitation that falls in the driest quarter, mean annual relative humidity, 212 total annual down-welling shortwave radiation—taken from the CRU-NCEP dataset (the 213 same as used to run the model simulations). For each PFT, a multiple regression with forward 214 selection was run to relate variation in V_{cmax.25} to environmental drivers. To avoid correlation 215 between explanatory variables, variables with a correlation over 0.7 were not used in the same regression model. 216

An empirical, linear decrease in $V_{cmax,25}$ with CO_2 using the formulation of Verheijen et al., (2015) was also included as part of the response to environment (see Notes S1 for the relationships). $V_{cmax,25}$ is calculated at the beginning of each year for each PFT on each gridsquare based on mean environmental conditions of the past year.

221 V_{cmax} data for C4 plants were only available for these trait-environment relationships. 222 Therefore in the simulations for all hypotheses these relationships (or static values for 223 static_PFT) were used to set $V_{cmax,25}$ and phosphoenolpyruvate carboxylase (PepC₂₅) activity 224 in C4 plants.

Plant plasticity: We examined plant plastcity by using the co-ordination hypothesis
 (Co-ord_global), which states that plants adjust V_{cmax} such that the carboxylation limited rate
 of photosynthesis (w_c) equals the electron transport limited rate of photosynthesis (w_j) over

228 mean environmental conditions, commonly considered those of the past month (Chen et al.,

229 1993; Maire et al., 2012). Using the Harley et al., (1992) photosynthesis functions, the co-230 ordination hypothesis to find V_{cmax} requires solving the following function (see Notes S1 for

232

$$0 = V_{cmax} \left(4C_i + 8\Gamma_* \right) \left[1 + \left(\frac{\alpha_i \bar{Q}}{S_{t,j} e \left(V_{cmax} / S_{t,v} \right)^{0.890}} \right)^2 \right]^{0.5} - \alpha_i \bar{Q} \left(C_i + K_m \right)$$
(4)

- 233 where C_i is the internal CO_2 partial pressure (Pa), Γ_* is the photorespiratory CO_2
- compensation point (Pa), α_i is the intrinsic quantum efficiency of electron transport (mol e mol⁻¹ absorbed photons), \bar{Q} is the mean absorbed light intensity of the past month (µmolm⁻²s⁻ 1), S_{t,j} and S_{t,v} are the temperature scalars for J_{max,25} and V_{cmax,25} to scale to leaf-temperature from 25°C, e is the base of the natural logarithm, and K_m is the effective Michaelis-Menten half-saturation constant for carboxylation when accounting for oxygenation (Pa). The
- 239 denominator in the squared term, $S_{t,j} e (V_{cmax}/S_{t,v})^{0.890}$, represents J_{max} at the mean 240 temperature of the last month calculated using Eq 1 and considering temperature scaling.
- The leaf nitrogen utilisation for assimilation (LUNA) (Xu et al., 2012; Ali et al., 2016) hypothesis was also evaluated (LUNA_global). LUNA optimises leaf N investment in various photosynthetic functions—light capture, electron transport, carboxylation—to maximise daily net photosynthesis (assimilation – leaf respiration) given mean environmental conditions (Ali et al., 2016). The LUNA optimisation also satisfies empirical environmental constraints and the constraint of co-ordination of w_c and w_j . Thus LUNA is a combination of plant plasticity, nutrient limitation, and environmental filtering hypotheses.
- In this study we use the mean environmental conditions of the past 30 days, consistent with the averaging used for the co-ordination hypothesis (Ali et al., 2016 use the previous 10 days).

251 *Scaling of* $V_{cmax,25}$ *to leaf temperature:* Being enzymatically controlled, at short 252 timescales V_{cmax} is highly dependent on leaf temperature and is usually normalised to a 253 reference temperature, commonly 25 °C, adding the subscript 25 to the notation ($V_{cmax,25}$). 254 Three methods used to scale $V_{cmax,25}$ to leaf temperature were investigated (Figure S1 and 255 Notes S1 for more details): 1) a saturating exponential (the SDGVM model default, see 256 below); 2) the Arrhenius equation modified for enzymatic loss of function at high

temperatures as presented in Medlyn *et al.*, (2002); and 3) the modified Arrhenius with

258 emprical acclimation of temperature optima to local environmental conditions (Kattge &

- 259 Knorr, 2007).
- 260

261 Model Setup & Simulations

262 The model simulations were run using the CRU-NCEP meteorological dataset 1901-263 2012 (Le Quéré et al., 2014; Figures S2-S4). PFT distributions were assumed static 264 throughout the whole simulation period and were derived from land cover (LC) maps 265 provided by the ESA CCI project (www.esa-landcover-cci.org; Figures S5-S12). The PFT 266 fractions were derived from the LC maps using the LC to PFT conversion described in 267 Poulter et al., (2015), and adjusted to account for the separation of C3 and C4 species that 268 cannot be detected using MERIS wavebands (Poulter et al., 2015). The resultant PFT maps 269 were then further categorised according to the SDGVM PFT classification.

270 Atmospheric CO₂ data were taken from the Scripps Ocean Institute merged ice-core 271 and flask measurement global dataset (Keeling et al., 2005). The simulations were initialised 272 with a 500 year spin-up that randomly selected meteorological years from the period 1901-273 1920. A separate spin-up was conducted for each ensemble member. The ensemble consisted 274 of the nine different trait based approaches to simulate V_{cmax} (Table 1) and a subset of these 275 nine approaches—N_global, Co-ord_global, and LUNA_global—each run with the three 276 temperature scaling assumptions, for a total of 17 simulations. N_global, N_PFT, Co-277 ord_global, and LUNA_global were chosen to combine with the three temperature scaling 278 approaches to represent a range of methods, and to see how the temperature scaling 279 assumptions interacted with the dynamic spatial-scaling plant plasticity hypotheses (i.e. Co-280 ord global, and LUNA global).

281

282 *Evaluation datasets*

The simulated spatial distributions of global GPP were used to evaluate the impacts of the various V_{cmax} simulation methods. No method exists to measure GPP directly at the global scale, all methods involve assumptions and models (Anav et al., 2015) that may introduce 286 bias or non-independence from the SDGVM simulations. We therefore compared modelled

287 spatial distributions of GPP to three global GPP proxies—the empirically up-scaled flux

tower estimates of GPP from the Max Plank Institute (MPI; Beer et al., 2010; Jung et al.,

289 2011); and two datsets based on GOME-2 solar induced fluorescence (SIF; Joiner et al.,

290 2013, 2016).

The two SIF based methods differed in their scaling of SIF radiance (Wm⁻²sr⁻¹y⁻¹) to 291 GPP (gC m⁻²y⁻¹). The first scaling method (SIF-CASA) scaled SIF using modelled GPP from 292 293 the Carnegie Ames Stanford Approach (CASA) Global Fire Emissions Database version 3 294 (GFED 3) model (ven der Werf et al., 2010). CASA primarily determined the spatial variation 295 in GPP while SIF determined the temporal variation: in each gridpoint monthly SIF data were 296 normalised by the gridpoint mean and then multiplied by the gridpoint mean CASA-GFED 297 GPP (Eq 5, SIF-CASA). The second scaling method (scaled-SIF) was intended to allow SIF 298 to determine both temporal and spatial variation in GPP: SIF were annually integrated in each grid-cell, normalised by the global mean SIF (SIF) and then multiplied by the global mean 299 of the SIF-CASA dataset (Eq 6). 300

301

 $cSIF_{i,j,t} = \frac{C \bar{A} SA_{i,j} \cdot SIF_{i,j,t}}{S \bar{I} F_{i,j}},$ $s \bar{S} IF_{i,j} = \frac{c \bar{S} IF \cdot S \bar{I} F_{i,j}}{S \bar{I} F}$ (C)

(5)

(6)

302

where CASA is the CASA GPP; cSIF is the CASA scaled GPP; sSIF is the simply scaled-SIF,and subscripts are the gridpoint latitude, i; longitude, j; and time, t.

At the time of writing, SIF data were available for the period 2007-2012 and so for consistency we present analyses for all model output over the same period. A comparison of model results for the last full decade, 2001-2010, with 2007-2012 give quantitatively similar results. The MPI data were available only until 2011, but given the MPI data have little interannual variability (Kumar *et al.*, 2016) this was expected to have little effect.

GPP predicted by the trait-scaling hypotheses were compared against the three GPP
proxies using standard deviation, correlation, and centered root mean square difference.
Combining these metrics in polar co-ordinates allows comparison of gridded datasets against
a reference. These plots are known as Taylor diagrams (Taylor, 2001). Datasets were also
analysed using principle component analysis (PCA) to identify common principle axes of

- 315 variation across the datasets. As well as hypotheses and GPP proxies, climate variables
- 316 (temperature, precipitation, and short wave radiation—SWR) were included to investigate
- 317 climatic influence in the spatial patterns. Datasets were mean centred and scaled by standard
- 318 deviation to give *z*-scores before conducting the PCA. The R (R Core Development Team,
- 2011) package 'plotrix' (Lemon, 2006) was used to plot the Taylor diagrams and the function
- 320 'prcomp' from the 'stats' package to perform the PCA.

321 Results

322 Global V_{cmax,25} distributions

323 Global distributions of top-leaf V_{cmax,25} predicted by the various trait scaling 324 assumptions had markedly different means, variances, and latitudinal distributions (Figure 1 and S13). All but one (Ntemp_global) nutrient limitation hypothesis including LUNA_global 325 326 (which is constrained by nutrient limitation) predicted relatively low variance in global 327 V_{cmax,25}; with moderate values in the tropics, high values in the temperate zone, highest values 328 in dry temperate regions, and lowest values in the Boreal zone before increasing in the high 329 Arctic (Figure 1). The exception (Ntemp_global) showed relatively high V_{cmax,25} variance with 330 the highest values in the tropics that broadly decrease with latitude. Inclusion of phosphorus (P), either implicitly (N_oxisolPFT; Kattge et al., 2009) for the evergreen broadleaf PFT in 331 332 the simulation, or explicitly (NP_global; Walker et al., 2014a), reduced V_{cmax.25} marginally in 333 much of the tropics (compared with N_PFT and N_global respectively).

334 In contrast, non-nutrient based hypotheses (Static_PFT, Environ_PFT, and Co-335 ord_global) tended to show the opposite pattern (Figure 1 and S13): more pronounced 336 maximum V_{cmax.25} values in northern cool wet areas dominated by green needle-leaf PFTs 337 (Scandinavia and the North-American Pacific coast) and dry areas dominated by C3 grasses (the North-American west and Central Asia). The static_PFT values and the Environ_PFT 338 relationships were derived from the same V_{cmax.25} dataset. Therefore the observed similar 339 340 latitudinal pattern was expected, as was the more spatially homogenous distribution for the 341 static values per PFT. The co-ordination hypothesis is independent of the datasets used to 342 produce the static_PFT and Environ_PFT, and produces highest V_{cmax,25} values in the coldest 343 and driest regions—north-eastern Canada and Asia, and the Himalayan plateau.

344

345 Consequences for the simulated Carbon Cycle

Across the nine $V_{cmax,25}$ scaling implementations, global mean annual GPP for the period 2007-2012 ranged from 108.1 to 128.2 PgC y⁻¹ (Figure 2; Table 2). The ensemble mean ±s.d. annual GPP was 118.7±6.4 PgC y⁻¹, giving a coefficient of variation of 5.4 % (Table 2). The variation was somewhat higher for vegetation and soil carbon stocks (12.0 % and 13.9 %). Most crucially for carbon sequestration from the atmosphere under global change was that net biome productivity (NBP) varied by 27.1 % across the hypotheses tested.

- 352 The highest global GPP was simulated by the Ntemp_global implementation of
- 353 nutrient limitation, closely followed by the static PFT hypothesis at 127.8 PgC y⁻¹. The global
- and PFT specific relationships of $V_{cmax,25}$ to leaf nitrogen simulated global GPP of 121.7 and
- 355 116.5 PgC y⁻¹. The inclusion of P as an additional limiting factor resulted in lower global GPP
- 356 by 3.7 and 5.9 PgC y^{-1} respectively than consideration of N limitation alone. The P related
- drop in GPP was a result of disproportionate GPP reduction by P in generally high
- 358 productivity regions, i.e. the tropics (Figure 2 and S14). Environmental filtering
- 359 (Environ_PFT) and plant placticity (Co-ord_global) simulated similar mean GPP at 118.1 and
- 360 119.2 PgC y⁻¹. The constrained optimisation of functional leaf N allocation (LUNA
- 361 hypothesis) yielded the lowest GPP at 108.1 PgC y⁻¹.
- For a subset of $V_{cmax,25}$ scaling hypotheses (N_global, LUNA_global, Co-ord_global), the more up-to-date modified Arrhenius temperature scaling (Medlyn et al., 2002; Kattge & Knorr, 2007) were used, both with and without acclimation of temperature optima to growth temperature. Using these temperature scaling functions generally increased global GPP (Figure S15), especially for the co-ordination hypothesis (119.1-131.2 PgC y⁻¹). The increase in GPP for was primarily due to increasing GPP in the northern temperate and Boreal zones (Figure 3).
- 369 The hypotheses and their implementations also influenced the temporal trend in GPP 370 (1900-2012) in response to increasing CO₂ and changing climate (Figure 4a). Ntemp_global resulted in the strongest change in GPP over the 20th century, the result of increasing 371 372 temperatures stimulating N uptake. The LUNA hypothesis and the co-ordination hypothesis 373 both predict shallower trajectories in GPP than any of the other scaling hypotheses. Scaling 374 V_{cmax,25} and J_{max,25} using the modified Arrhenius function with and without temperature 375 acclimation made little difference to the relative trajectories of GPP when used in conjunction 376 with N_global, co-ordination, and LUNA hypotheses (Figure S16). Across the ensemble, 377 NBP over the period 2007-2012 was strongly related to the change in global GPP over the 378 time period 1901-2012 (Figure 4b).
- 379

380 Evaluating spatial distributions of GPP

Overlying the general, climatically driven spatial distribution of GPP, the differences
 in the spatial distributions of V_{cmax,25} are observable in the simulated GPP distributions (Figure

2 and S3). To evaluate the various hypotheses, their global GPP predictions (mean annual

384 GPP over 2007-2012) are compared in Taylor space (Figure 5 and Table S1) with several GPP

proxies (MPI, scaled-SIF, SIF-CASA; Figure 2 and S17). No matter which GPP proxy was

taken as reference, all hypotheses clustered closely in Taylor space with correlation c. r=0.9

(r=0.85-0.91), standard deviation within $\pm 25\%$ (with the exception of Ntemp_global when

compared against both SIF based proxies and LUNA compared against MPI), and centred
 RMSD between 250 and 500 gC m⁻²y⁻¹. All hypotheses were marginally less correlated to the
 scaled-SIF data (r=0.85-0.89) than the other two GPP proxies.

391 The most correlated hypotheses to MPI and SIF-CASA were N_global and N_PFT, 392 though the improvements in these correlations were marginal (r=0.91 vs 0.88-0.90). 393 Ntemp global was generally less well correlated to all three proxies with substantially higher 394 standard deviation and which predicted the highest global GPP and strongest latitudinal 395 gradient. The least correlated hypotheses to MPI were LUNA_global and Environ_PFT, 396 though again only marginally. Environ_PFT was also less well correlated with both SIF based 397 proxies. N_PFT and N_oxisolPFT were the most correlated to scaled-SIF, marginally better 398 than LUNA and N_global. The variance in the correlation across the hypotheses was greater 399 when hypotheses were compared against the scaled SIF proxy (Figure 5c).

400 Difference plots between modelled GPP and GPP proxies (Figure 6 and S18-S19) 401 showed that the N_oxisolPFT implementation tended to perform well against all three proxies, though there were some substantial under-predictions in tropical forests when 402 403 compared against MPI (Figure S18). However, tropical GPP was consistently under-predicted 404 by many implementations when compared against MPI, particularly in the Amazon. Static 405 values per PFT and Ntemp_global clearly showed the strongest mismatches with the GPP 406 proxies. Environ_PFT performed poorly in northern latitudes, particularly Scandinavia, and 407 southern China, where V_{cmax} was predicted to be higher than any other implementation 408 (Figure 1). Co-ordination and LUNA performed well, but tended to over-predict in nothern 409 latitudes when compared against N_PFT and N_oxisolPFT. Across all implementations, GPP 410 was under-predicted in Europe, eastern North America, and India while GPP was overpredicted in grasslands, particularly in South America, western North America and sub-411

412 Saharan Africa.

413 When the alternative, more realistic modified Arrhenius temperature response 414 hypotheses were implemented, mismatches with scaled-SIF were unaffected for LUNA_global, slightly worsened in N_global, N_PFT, and noticeably worsened for Co-415 416 ord_global (Figure 5d). Implemented within the LUNA model, the three different temperature 417 scaling assumptions made little difference to global GPP, presumably because the N 418 constraint in LUNA was strong and the optimisation allowed flexibility around temperature 419 responses to find a similar maximum assimilation rate across temperature scaling 420 assumptions.

421 The SIF-CASA, scaled-SIF and MPI proxies were generally more correlated to each 422 other than to any of the V_{cmax} hypothesis implementations, but only marginally. Arguably the 423 proxies were as dissimilar from each other as the better model hypotheses were from the 424 proxies, making it difficult to provide a definitive conclusion about which specific 425 implementation of the various hypotheses was closest to GPP observation proxies.

426 Principal component (PC) analysis (PCA) was used to identify the common patterns 427 and areas of divergence across both the models and the GPP proxies, and the potential cimatic 428 drivers of the commonalities and differences. PCA demonstrated that 82 % of the spatial 429 variance across simulated GPP, GPP proxies, and climatic variables are explained by a single 430 PC (Figure S20). All model assumptions are closely grouped with high loadings on PC1 431 (Figure 7a), i.e. all model predictions are positively correlated with the spatial pattern of the first PC (Figure 7c). Closely grouped to the models on PC1 are all observed GPP proxies, as 432 433 well as precipitation. Short wave radiation (SWR) and temperature were less strongly 434 correlated with PC1, though the correlation was also positive, suggesting that precipitation is 435 the primary driver of the dominant global pattern in GPP.

PC2 accounted for c. 11 % of spatial variance and segregates SWR and temperature
(both positively correlated to PC2) from the model implementations, GPP proxies, and
precipitation (Figure 7d). The remaining PCs combined account for 7 % of the spatial
variation in the data and it is these remaining PCs that demonstrate the main areas of
divergence between V_{cmax} implementations and GPP proxies.

PC3 and PC4 account for 4 % of variation. Short wave radiation and modelled GPP
were correlated with PC3 while the GPP proxies (MPI most strongly) and precipitation were
anti-correlated. PC3 shows the regions where modelled GPP is stimulated by light (primarily

- 444 in natural grasslands; blue areas Figure 7e) or restricted by low light (red areas). By contrast,
- the GPP proxies appear to be stimulated by precipitation (red areas) or restricted by low
- 446 precipitation (blue areas). PC4 segregates both SIF proxies from precipitation. PC4 shows
- 447 high values almost exclusively in the worlds major agricultural regions—the North American
- 448 combelt, the Northeast and South regions of Brazil and the area surrounding São Paulo,
- 449 Europe and the Russian bread basket, India, particularly north India, central eastern China,
- 450 and even smaller agricultural regions such as the Indus valley in Pakistan and alongside the
- 451 Rift Valley in East Africa.

452 Discussion

453 We tested a series of plausible trait-scaling hypotheses for V_{cmax.25}, many of which are implemented in terrestrial ecosystem models, and found that they led to substantial variability 454 455 in SDGVM simulated global GPP. Mean annual GPP ranged across the implementations of the hypotheses from 108.1 to 128.2 PgC y⁻¹ (mean 118.7±6.4 PgC y⁻¹). The range in global 456 GPP demonstrates the large sensitivity of simulated GPP to V_{cmax.25} and this range 457 458 encompasses 65% of that from a set of three models run in coupled and uncoupled modes (1990-2009 mean annual GPP range of 130-161 PgC y⁻¹, mean 145.6±12.6 PgC y⁻¹; Anav *et* 459 460 al., 2015). The simulations used by Anav et al., (2015) were drawn from two inter-461 comparison projects, each with their own protocols, which is likely to inflate the range of 462 simulated GPP compared to the simulations presented in this study which share a single 463 protocol. Thus variation in simulated GPP caused by V_{cmax,25} trait scaling hypotheses likely 464 represents a substantial source of variation in GPP across models, which is currently 465 unaccounted for in model intercomparisons (e.g. Anav et al., 2015).

466 Dynamic trait-scaling based on nutrient limitation, in which plant nutrient status is 467 inversely related to the cost of N acquisition, performed better than other hypotheses when 468 compared against three GPP observation proxies. PFT specific relationships of V_{cmax} to leaf N 469 resulted in the best performance. Static trait values per PFT were not supported by this study. 470 The better performance of nutrient limitation implementations was most apparent when 471 compared against the scaled-SIF GPP proxy and we argue that this is a more independent, 472 thus more robust, comparison.

473

474 Evaluation of V_{cmax} distributions

475 Discerning which is the most realistic trait-scaling hypotheses was non-trivial. 476 Currently no independent, globally gridded estimates of V_{cmax,25} distributions exist. Many regions in global V_{cmax} datasets are only sparsely represented and one of the most 477 478 comprehensive global V_{cmax} datasets was employed to compile the V_{cmax,25} relationships to 479 environment (Environ_PFT) for the trait filtering hypothesis (Kattge et al., 2011; Verheijen et 480 *al.*, 2013). The Environ_PFT prediction of the global V_{cmax.25} distribution (Figure 1) is an empirical upscaling of V_{cmax,25} point measurements using global climatic and land-cover 481 482 information. Unlike other hypotheses tested, which additionally rely on either model process

483 representation (e.g. simulation of leaf N) or more theoretical assumptions (e.g. co-ordination),

484 Environ_PFT is data-driven and contingent only on the assumption that $V_{cmax,25}$ scales with

485 environment (coefficient of determination 0.49-0.82 for C3 plants, see Notes S1; and Ali *et*

486 *al.*, [2015]; Verheijen *et al.*, [2013]).

487 The data-driven Environ_PFT V_{cmax,25} values are higher in northern latitudes relative 488 to the tropics, as are $V_{cmax.25}$ distributions for the co-ordination hypothesis, which is in line 489 with current literature (A. Rogers et al., unpublished). All the N based hypotheses in SDGVM (including LUNA) generally showed higher V_{cmax.25} in the tropics than in the Boreal and 490 491 Tundra zones (Figure 1) which is not consistent with our data-driven estimate 492 (Environ PFT). N limitation hypotheses predictions of tropical V_{cmax.25} were consistent with the literature, often reported in the range 20-80 µmolm⁻²s⁻¹ (Domingues et al., 2010, 2015; 493 494 Vårhammar et al., 2015; Norby et al., 2016), but were not consistent with values reported for the high Arctic, in the range 60-160 µmolm⁻²s⁻¹ (A. Rogers et al., unpublished). 495

The primary cause of the zonal $V_{\text{cmax},25}$ distribution for the implementations 496 497 constrained by N is the core SDGVM hypothesis that plant nutrient status is inversely related 498 to soil carbon. This hypothesis is based on observations that plant N uptake decreases as 499 dependence on organic N supply (correlated with mycorrhizal N supply) increases, which in 500 turn is hypothesised a consequence of increasing soil organic matter (Read, 1991; Woodward 501 et al., 1995). The global distributions of V_{cmax,25} predicted by the nutrient limitation hypothesis are therefore generally the inverse of the distributions of soil carbon (Figure S21-S23), 502 503 resulting in a broad latitudinal gradient in leaf N as soil decomposition rates slow with 504 cooling temperatures. This cost-based hypothesis for plant N status reproduces the broad 505 macro-ecological pattern of increasing N limitation as latitude increases suggested by leaf C:N and N:P stoichiometry (Reich & Oleksyn, 2004; McGroddy et al., 2004; Ordonez et al., 506 507 2009).

The original LUNA study at the global scale showed lower $V_{cmax,25}$ in the tropics and global distributions of top-leaf $V_{cmax,25}$ that were more similar to those predicted by Environ_PFT and Co-ord_global (Ali et al., 2016) than the N limitation hypotheses to which LUNA was more similar in this study. The defining difference is that Ali et al., (2016) assumed a constant top-leaf N of 2 gm⁻², while in SDGVM leaf N varies as a function of soil carbon. The results in SDGVM suggest that LUNA is more sensitive to variability in leaf Nthan to variability in environment.

515

516 Evaluation of GPP distributions

517 Principal components analysis (PCA) demonstrated that precipitation was the primary 518 driver of the dominant mode of global GPP distributions in both the GPP proxies and all 519 model simulations, and was therefore responsible for the strong correlation (0.85-0.91) of all 520 hypotheses to the proxies. PCA indicated that the model simulations diverged from the 521 observation proxies for two reasons: 1) a relative GPP stimulation by PAR in dry grasslands 522 in SDGVM opposing a relative GPP reduction by low precipitation in the proxies (and *vice* 523 versa; PC3); and 2) a relative stimulation of GPP in SIF based proxies in agricultural areas of 524 the planet that was anti-correlated with precipitation and that was not apparent in the 525 SDGVM nor MPI (PC4).

526 The stimulation of GPP by PAR without a counteracting reduction from low 527 precipitation in SDGVM is most likely due to the relative insensitivity of SDGVM to low soil 528 water avaialability when compared against other models (Medlyn *et al.*, 2016). On the other 529 hand, the ubiquity of the under-prediction in all of Earth's major agricultural regions is likely 530 due to agricultural improvement that was not represented by SDGVM—e.g. improved seed, 531 fertilisation, and irrigation. The negative correlation of precipitation to PC4 and positive SIF proxy correlation in these agricultural areas (Figure 7) demonstrates the independence of GPP 532 533 from precipitation in these regions., perhaps This independence implies that irrigation may be 534 the primary driver of the under-prediction of GPP while recognising that irrigation levels are 535 highly heterogeneous within these regions (Siebert et al., 2010).

536 GPP proxies (MPI, SIF-CASA, and scaled-SIF) were as dissimilar to each other as the 537 better performing hypotheses were to the proxies. PCA showed that the SIF based proxies 538 had relatively higher GPP in dry, agricultural regions of the planet compared with MPI.

539 Relatively higher SIF based GPP in cropland areas compared against MPI has been

previously observed (Guanter et al., 2014). This dissimilarity indicates an uncertain constraintfrom observations.

542 SIF is linearly related to MPI estimates of GPP at the temporal and spatial scales 543 typically simulated by global TEMs (Guanter *et al.*, 2014; Parazoo *et al.*, 2014). SIF

544 accurately reproduces seasonality in GPP (Joiner et al., 2014), though the coefficients of the 545 linear relationships between SIF and GPP may vary with vegetation type (Frankenberg et al., 2011; Guanter et al., 2012; Parazoo et al., 2014). By assuming that the scaled-SIF proxy 546 547 follows the same linear relationship to GPP across all terrestrial ecosystems, systematic errors 548 (epistemic uncertainties in the classification of Beven, [2016]) are likely in the scaled-SIF 549 estimate of the global GPP distribution. However, it is also extremely likely that epistemic 550 uncertainties are common in the system of global GPP estimation in the MPI dataset-eddycovariance flux estimates of NEE, empirical flux partitioning to derive GPP, derivation of 551 552 empirical relationships of GPP with climate variables, scaling of point estimated GPP using a 553 gridded climate dataset. The scaled-SIF data are a relatively direct, global-scale signal from the photobiochemical photosynthetic pathway and their spatial distribution is entirely 554 independent of the model output, in contrast with the MPI product and SIF-CASA, both of 555 which use climate data in their calculation. 556

While the Environ_PFT had the most data-driven and thus what we believe to be 557 558 more accurate V_{cmax,25} distributions, Taylor plots (Figure 5) and difference plots (Figures 6, S7, and S8) showed that their relative global GPP distributions had a larger mismatch to GPP 559 560 proxies than the N limitation implementations in the northern latitudes. This difference was most apparent when compared against scaled-SIF. The latitudinal gradient in leaf N generated 561 562 by the nutrient limitation implementations, and thus V_{cmax.25}, redistributes global GPP towards the tropics compared with other hypotheses (Figure 2, 6 and S14), yielding global GPP 563 564 distributions more similar to global GPP proxies.

565 The mismatch of the data-driven estimates of V_{cmax,25} from Environ_PFT indicates 566 latitudinal variability in the relationship of V_{cmax,25} with GPP. The reason for this mismatch is unclear. SDGVM may over-predict LAI in northern latitudes, and it may be that lower V_{cmax} 567 568 in nutrient limitation is compensating for high LAI. However, using a multi-scale state estimation procedure to combine GPP estimates from TEMs, SIF, and flux-towers; Parazoo et 569 570 al., (2014) noted a redistribution of GPP from northern latitudes to the tropics in the optimised GPP state compared with the prior estimates from the TEMs. Similar decoupling 571 between V_{cmax.25} and GPP at high latitude has also been observed in preliminary simulations of 572 the Community Land Model (CLM version 5.0) using satellite phenology (i.e. data-driven 573 574 LAI), LUNA, and observed leaf N (Fisher, pers. Comm.). Alternatively, there may be

575 insufficient V_{cmax} data for high-latuitude systems and normalising V_{cmax} to 25 °C in regions

576 that experience these temperatures only in extreme cases and with generic temperature

577 scaling functions could be introducing a bias in the V_{cmax} data.

578 Recent evidence has suggested that leaf phosphorus may modify, co-limit, or replace 579 the V_{cmax,25} to N relationship (Reich & Oleksyn, 2004; Domingues *et al.*, 2010; Walker *et al.*, 2014a; Norby *et al.*, 2016); though the physiological link to photosynthesis is more complex. 580 581 Considering P limitation either implicitly (N_oxisolPFT) or explicitly (NP_global) did not clearly improve the fit to the GPP proxies (compared against their N only counterparts) based 582 583 on the quantitative comparison. However, a visual comparison of the difference plots suggests that the N oxisolPFT implementation produced the least over-all difference to GPP 584 proxies, indicating perhaps a role for P limitation of photosynthesis in the tropics. A map of 585 586 oxisols vs non-oxisols to segregate evergreen broadleaved PFTs would likely improve the 587 simulation.

588

589 GPP trend and NBP

590 Most importantly for projections of the global carbon cycle under environmental 591 change, the response of GPP to global change (1901-2012) across the V_{cmax} hypotheses was 592 different, with plant-centric acclimation hypotheses showing a lower response of GPP to 593 increasing CO₂. NBP variability over 2007-2012 was strongly related to the change in GPP 594 over the 20th century and the 5.4% coefficient of variation in GPP to propagate through to 595 29% variation in NBP.

596Projecting the trajectory of land carbon uptake is the major purpose of global597terrestrial ecosystem models and the 'acclimation' of $V_{cmax,25}$ to increasing CO₂, and perhaps598other factors of global change, predicted by these hypotheses has consequences for the599projected terrestrial carbon sink. Consequences we cannot currently evaluate with data due to600the difficulty in measuring GPP and terrestrial NBP, especially the 20th century trends; though601coupled Earth-System models are thought to under-estimate the global carbon sink (Hoffman602et al., 2014).

603 Co-ord_global and LUNA_global predict the shallowest, and almost indentical, GPP 604 trends over the 20th century (Figure 4a). The co-ordination hypothesis (also embedded within 605 LUNA) restricts CO₂ fertilisation of GPP to the effect of CO₂ on light-limited photosynthesis. 606 Assuming all else is equal, increasing CO₂ increases both the carboxylation limited 607 photosynthetic rate, w_c , and the electron transport limited rate, w_i , but w_c is increased in greater proportion (the degree of which is dependent on the choice of model for w_i). Thus co-608 609 ordination reduces V_{cmax,25} at the higher CO₂ concentration to balance w_c with w_i. Thus, under 610 co-ordination, the CO₂ fertilisation of GPP is primarily driven by the CO₂ response of light-611 limited photosynthesis, which is lower than the CO₂ response of carboxylation limited 612 photosynthesis. The decline in V_{cmax} driven by the co-ordination hypothesis is stronger than 613 the decline in Environ_PFT (Figure S24) which was the only hypothesis to have an explicit 614 reduction of V_{cmax} in response to CO₂. We assumed a fixed relationship between J_{max} and V_{cmax} 615 for the implementation of co-ordination in this analysis (Eq 5). Given that these plant plasticity hypotheses are founded within the concept of optimality (Xu et al., 2012; Prentice 616 et al., 2014; Wang et al., 2014), the restriction of the CO₂ response to the smaller electron 617 transport (light) limited under co-ordination suggests that the optimal solution would include 618 619 a variable response of the J_{max} to V_{cmax} relationship to changing CO₂ concentration.

620

621 In summary, the analysis of multiple V_{cmax} trait scaling hypotheses on simulated GPP 622 suggested that nutrient limitation was the more likely driver of global V_{cmax} distributions. N 623 limitation was implemented via a relationship of decreasing leaf N with increasing soil C 624 based on increasing costs of N uptake. Of the nutrient limitation implementations, the PFT specific relationships to leaf N that implicitly accounted for P limitation in broadleaved 625 626 evergreens (Noxisol_PFT; Kattge et al., 2009) were found to most closely match the GPP 627 proxies. Incorporating a global map of oxisols would likely help to further refine this 628 implementation. For SDGVM and other global carbon cycle models we recommend the Noxisol_PFT relationships to leaf N, particularly for models that can simulate N cycling or 629 630 spatially dynamic leaf N. For carbon-cycle only models, the static_PFT hypothesis did not reproduce spatial distributions of global GPP as well and we suggest that the scaled 631 632 relationship of N uptake to soil C (Woodward et al., 1995) without the temperature modifier could be a relatively straight forward way to implement dynamic leaf N allowing the use of 633 the Noxisol_PFT relationships. These recommendations are contingent on the GPP proxies 634 635 used, which are uncertain. We suggest that further measurements of V_{cmax} in Boreal and Arctic

- $\,$ $\,$ ecosystems, that include the V_{cmax} response to temperature in these ecosystems, will help to
- 637 discriminate among alternate hypotheses.

640 Acknowledgements

641 We thank three anonymous reviewers and the handling editor for their time and thoughtful reviews. This material is based upon work supported by the U.S. Department of 642 643 Energy, Office of Science, Office of Biological and Environmental Research under contract 644 number DE-AC05-00OR22725. APW and CX were also supported as part of the Next 645 Generation Ecosystem Experiments-Tropics, funded by the U.S. Department of Energy, 646 Office of Science, Office of Biological and Environmental Research to incorporate LUNA 647 and run final simulations. Model development by APW was supported by a PhD studentship 648 sponsored by the UK's National Centre for Earth Observation. TQ's contribution was funded 649 by the UK Natural Environment Research Council (NERC) National Centre for Earth Observation (NCEO). TFK was supported by the Laboratory Directed Research and 650 651 Development Program of Lawrence Berkeley National Laboratory under U.S. Department of 652 Energy Contract No. DE-AC02-05CH11231. Data and code developed and generated as part 653 of this study are available on request with the aim to make available on a public repository in 654 the near future.

655

656 Author contributions

All authors contributed to the writing of the manuscript. APW conceived of the study,
ran the model, analysed the data, and led the writing. APW, ML, FIW, TQ made additional
developments to the SDGVM. CX contirbuted to adding the LUNA hypothesis to SDGVM.
PvB derived the trait environment relationships. XY contributed the soil P dataset. JJ
contributed SIF data. NM derived the land-cover datasets. MDK and TK contributed to the
analysis.

663 References

Ali AA, Xu C, Rogers A, Fisher RA, Wullschleger SD, Massoud EC, Vrugt JA, Muss JD, McDowell NG, Fisher JB, *et al.* 2016. A global scale mechanistic model of photosynthetic capacity (LUNA V1.0). *Geoscientific Model Development* **9**: 587–606.

Ali AA, Xu C, Rogers A, McDowell NG, Medlyn BE, Fisher RA, Wullschleger SD, Reich PB, Vrugt JA, Bauerle WL, *et al.* 2015. Global-scale environmental control of plant photosynthetic capacity. *Ecological Applications* 25: 2349–2365.

Anav A, Friedlingstein P, Beer C, Ciais P, Harper A, Jones C, Murray-Tortarolo G, Papale D, Parazoo NC, Peylin P, *et al.* 2015. Spatiotemporal patterns of terrestrial gross primary production: A review. *Reviews of Geophysics* 53: 785–818.

Azevedo GFC, Marenco RA. **2012**. Growth and physiological changes in saplings of *Minquartia guianensis* and *Swietenia macrophylla* during acclimation to full sunlight. *Photosynthetica* **50**: 86–94.

Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Roedenbeck C, Arain MA, Baldocchi D, Bonan GB, et al. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. *Science* **329**: 834–838.

Beven K. 2016. Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. *Hydrological Sciences Journal* **61**: 1652–1665.

van Bodegom PM van, Douma JC, Verheijen LM. 2014. A fully traits-based approach to modeling global vegetation distribution. *Proceedings of the National Academy of Sciences*, *USA* 111: 13733–13738.

van Bodegom PM, Douma JC, Witte JPM, Ordoñez JC, Bartholomeus RP, Aerts R. 2012. Going beyond limitations of plant functional types when predicting global ecosystem– atmosphere fluxes: exploring the merits of traits-based approaches. *Global Ecology and Biogeography* 21: 625–636.

Bonan GB, Lawrence PJ, Oleson KW, Levis S, Jung M, Reichstein M, Lawrence DM, Swenson SC. 2011. Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data. *Journal of Geophysical Research: Biogeosciences* **116**: G02014.

Brzostek ER, Fisher JB, Phillips RP. **2014**. Modeling the carbon cost of plant nitrogen acquisition: Mycorrhizal trade-offs and multipath resistance uptake improve predictions of retranslocation. *Journal of Geophysical Research: Biogeosciences* **119**: 1684–1697.

Cernusak LA, Hutley LB, Beringer J, Holtum JAM, Turner BL. **2011**. Photosynthetic physiology of eucalypts along a sub-continental rainfall gradient in northern Australia. *Agricultural and Forest Meteorology* **151**: 1462–1470.

Chen JL, Reynolds JF, Harley PC, Tenhunen JD. **1993**. Coordination theory of leaf nitrogen distribution in a canopy. *Oecologia* **93**: 63–69.

Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J. **2002**. Functional traits, productivity and effects on nitrogen cycling of 33 grassland species. *Functional Ecology* **16**: 563–574.

Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, *et al.* **2001**. Global response of terrestrial ecosystem structure and function to CO₂ and climate change: results from six dynamic global vegetation models. *Global Change Biology* **7**: 357–373.

De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Hickler T, Jain AK, Luo Y, Parton WJ, Prentice IC, *et al.* **2013**. Forest water use and water use efficiency at elevated CO₂: a model-data intercomparison at two contrasting temperate forest FACE sites. *Global Change Biology* **19**: 1759–1779.

De Kauwe MG, Medlyn BE, Zaehle S, Walker AP, Dietze MC, Wang Y-P, Luo Y, Jain AK, El-Masri B, Hickler T, *et al.* **2014**. Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO₂ enrichment sites. *New Phytologist* **203**: 883–899.

Deng X, Ye WH, Feng HL, Yang QH, Cao HL, Hui KY, Zhang Y. **2004**. Gas exchange characteristics of the invasive species *Mikania micrantha* and its indigenous congener *M*. *cordata* (Asteraceae) in South China. *Botanical Bulletin of Academia Sinica* **45**: 213–220.

Domingues TF, Meir P, Feldpausch TR, Saiz G, Veenendaal EM, Schrodt F, Bird M, Djagbletey G, Hien F, Compaore H, et al. 2010. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. *Plant, Cell & Environment* **33**: 959– 980.

Field CB, Mooney HA. 1986. The leaf nitrogen-photosynthesis relationship. In: Givnish TJ, ed. *On the economy of plant form and function*. Cambridge, UK: Cambridge University Press, 25–55.

Fisher RA, Muszala S, Verteinstein M, Lawrence P, Xu C, McDowell NG, Knox RG, Koven C, Holm J, Rogers BM, *et al.* **2015**. Taking off the training wheels: the properties of a dynamic vegetation model without climate envelopes, CLM4.5(ED). *Geoscientific Model Development* **8**: 3593–3619.

Fisher JB, Sitch S, Malhi Y, Fisher RA, Huntingford C, Tan S-Y. **2010**. Carbon cost of plant nitrogen acquisition: A mechanistic, globally applicable model of plant nitrogen uptake, retranslocation, and fixation. *Global Biogeochemical Cycles* **24**: GB1014.

Frankenberg C, Fisher JB, Worden J, Badgley G, Saatchi SS, Lee J-E, Toon GC, Butz A, Jung M, Kuze A, et al. 2011. New global observations of the terrestrial carbon cycle from

GOSAT: Patterns of plant fluorescence with gross primary productivity. *Geophysical Research Letters* **38**: L17706.

Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, et al. 2014. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO₂. *Proceedings of the National Academy of Sciences, USA* **111**: 3280–3285.

Fyllas NM, Gloor E, Mercado LM, Sitch S, Quesada CA, Domingues TF, Galbraith DR, Torre-Lezama A, Vilanova E, Ramírez-Angulo H, et al. 2014. Analysing Amazonian forest productivity using a new individual and trait-based model (TFS v.1). *Geoscientific Model Development* **7**: 1251–1269.

Grime JP. 1974. Vegetation classification by reference to strategies. *Nature* 250: 26–31.

Guanter L, Frankenberg C, Dudhia A, Lewis PE, Gómez-Dans J, Kuze A, Suto H, Grainger RG. **2012**. Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. *Remote Sensing of Environment* **121**: 236–251.

Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA, Frankenberg C, Huete AR, Zarco-Tejada P, Lee J-E, *et al.* 2014. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence. *Proceedings of the National Academy of Sciences*, USA 111: E1327–E1333.

Harley PC, Thomas RB, Reynolds JF, Strain BR. 1992. Modeling photosynthesis of cotton grown in elevated CO₂. *Plant, Cell & Environment* 15: 271–282.

Joiner J, Guanter L, Lindstrot R, Voigt M, Vasilkov AP, Middleton EM, Huemmrich KF, Yoshida Y, Frankenberg C. 2013. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. *Atmospheric Measurement Techniques* **6**: 2803–2823.

Joiner J, Yoshida Y, Guanter L, Middleton EM. **2016**. New methods for the retrieval of chlorophyll red fluorescence from hyperspectral satellite instruments: simulations and application to GOME-2 and SCIAMACHY. *Atmospheric Measurement Techniques* **9**: 3939–3967.

Joiner J, Yoshida Y, Vasilkov AP, Schaefer K, Jung M, Guanter L, Zhang Y, Garrity S, Middleton EM, Huemmrich KF, *et al.* 2014. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange. *Remote Sensing of Environment* **152**: 375–391.

Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen J, *et al.* 2011. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. *Journal of Geophysical Research: Biogeosciences* **116**: G00J07.

Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Boenisch G, Garnier E, Westoby M, Reich PB, Wright IJ, *et al.* 2011. TRY - a global database of plant traits. *Global Change Biology* 17: 2905–2935.

Kattge J, Knorr W. 2007. Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. *Plant, Cell & Environment* **30**: 1176–1190.

Kattge J, Knorr W, Raddatz T, Wirth C. **2009**. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global-scale terrestrial biosphere models. *Global Change Biology* **15**: 976–991.

Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA. **2005**. Atmospheric CO₂ and 13CO₂ exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Ehlringer JR, Cerling TE, Dearing MD, eds. *A history of atmospheric CO*₂ *and its effects on plants, animals, and ecosystems*. New York: Springer, 83–113.

Kueppers L, Iversen C, Koven C. 2016. Expanding use of plant trait observation in earth system models. *Eos* **97**. doi: 10.1029/2016EO049947

Kumar J, Hoffman FM, Hargrove WW, Collier N. 2016. Understanding the representativeness of FLUXNET for upscaling carbon flux from eddy covariance measurements. *Earth System Science Data Discussions*. doi: 10.5194/essd-2016-36

Le Quéré C, Peters GP, Andres RJ, Andrew RM, Boden TA, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, *et al.* 2014. Global carbon budget 2013. *Earth System Science Data* 6: 235–263.

Lemon J. 2006. Plotrix: a package in the red light district of R. *R*-*News* 6: 8–12.

Maire V, Martre P, Kattge J, Gastal F, Esser G, Fontaine S, Soussana J-F. 2012. The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. *PLoS ONE* **7**: e38345.

Medlyn BE, De Kauwe MG, Zaehle S, Walker AP, Duursma RA, Luus K, Mishurov M, Pak B, Smith B, Wang Y-P, et al. 2016. Using models to guide field experiments: a priori predictions for the CO₂ response of a nutrient- and water-limited native Eucalypt woodland. *Global Change Biology* **22**: 2834–2851.

Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, *et al.* 2002. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. *Plant, Cell & Environment* 25: 1167–1179.

Medlyn BE, Zaehle S, De Kauwe MG, Walker AP, Dietze MC, Hanson PJ, Hickler T, Jain AK, Luo Y, Parton W, *et al.* 2015. Using ecosystem experiments to improve vegetation models. *Nature Climate Change* **5**: 528–534.

Meir P, Levy PE, Grace J, Jarvis PG. 2007. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. *Plant Ecology* **192**: 277–287.

Nascimento HCS, Marenco RA. 2013. Mesophyll conductance variations in response to diurnal environmental factors in *Myrcia paivae* and *Minquartia guianensis* in Central Amazonia. *Photosynthetica* **51**: 457–464.

Niinemets U. 1999. Components of leaf dry mass per area - thickness and density - alter leaf photosynthetic capacity in reverse directions in woody plants. *New Phytologist* **144**: 35–47.

Norby RJ, Gu L, Haworth IC, Jensen AM, Turner BL, Walker AP, Warren JM, Weston DJ, Xu C, Winter K. 2016. Informing models through empirical relationships between foliar phosphorus, nitrogen and photosynthesis across diverse woody species in tropical forests of Panama. *New Phytologist*. doi: 10.1111/nph.14319

Parazoo NC, Bowman K, Fisher JB, Frankenberg C, Jones DBA, Cescatti A, Pérez-Priego Ó, Wohlfahrt G, Montagnani L. 2014. Terrestrial gross primary production inferred from satellite fluorescence and vegetation models. *Global Change Biology* **20**: 3103–3121.

Pavlick R, Drewry DT, Bohn K, Reu B, Kleidon A. **2013**. The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. *Biogeosciences* **10**: 4137–4177.

Picard G, Woodward FI, Lomas MR, Pellenq J, Quegan S, Kennedy M. 2005. Constraining the Sheffield dynamic global vegetation model using stream-flow measurements in the United Kingdom. *Global Change Biology* **11**: 2196–2210.

Poulter B, MacBean N, Hartley A, Khlystova I, Arino O, Betts R, Bontemps S, Boettcher M, Brockmann C, Defourny P, et al. 2015. Plant functional type classification for earth system models: results from the European Space Agency's Land Cover Climate Change Initiative. *Geoscientific Model Development* **8**: 2315–2328.

Prentice IC, Dong N, Gleason SM, Maire V, Wright IJ. **2014**. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. *Ecology Letters* **17**: 82–91.

R Core Development Team. 2011. *R*: *A* language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

Read DJ. 1991. Mycorrhizas in ecosystems. *Experientia* 47: 376–391.

Reich PB. **2014**. The world-wide 'fast–slow' plant economics spectrum: a traits manifesto. *Journal of Ecology* **102**: 275–301.

Reich PB, Oleksyn J. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. *Proceedings of the National Academy of Sciences, USA* **101**: 11001–11006.

Rogers A. **2014**. The use and misuse of V_{c,max} in Earth System Models. *Photosynthesis Research* **119**: 15–29.

Rogers A, Medlyn BE, Dukes JS, Bonan G, von Caemmerer S, Dietze MC, Kattge J, Leakey ADB, Mercado LM, Niinemets Ü, *et al.* **2017**. A roadmap for improving the representation of photosynthesis in Earth system models. *New Phytologist* **213**: 22–42.

Sargsyan K, Safta C, Najm HN, Debusschere BJ, Ricciuto D, Thornton P. 2014. Dimensionality reduction for complex models via bayesian compressive sensing. *International Journal for Uncertainty Quantification* **4**: 63–93.

Scheiter S, Langan L, Higgins SI. 2013. Next-generation dynamic global vegetation models: learning from community ecology. *New Phytologist* **198**: 957–969.

Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P, Portmann FT. **2010**. Groundwater use for irrigation – a global inventory. *Hydrology and Earth System Sciences* **14**: 1863–1880.

Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P, *et al.* 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). *Global Change Biology* **14**: 2015–2039.

Smith TM, Shugart HH, Woodward FI (Eds.). 1998. *Plant functional types: their relevance to ecosystem properties and global change*. Cambridge: Cambridge University Press.

Taylor KE. **2001**. Summarizing multiple aspects of model performance in a single diagram. *Journal of Geophysical Research: Atmospheres* **106**: 7183–7192.

Verheijen LM, Aerts R, Brovkin V, Cavender-Bares J, Cornelissen JHC, Kattge J, van Bodegom PM. 2015. Inclusion of ecologically based trait variation in plant functional types reduces the projected land carbon sink in an earth system model. *Global Change Biology* **21**: 3074–3086.

Verheijen LM, Brovkin V, Aerts R, Bönisch G, Cornelissen JHC, Kattge J, Reich PB, Wright IJ, van Bodegom PM. **2013**. Impacts of trait variation through observed trait– climate relationships on performance of an Earth system model: a conceptual analysis. *Biogeosciences* **10**: 5497–5515.

Walker AP, Beckerman AP, Gu L, Kattge J, Cernusak LA, Domingues TF, Scales JC, Wohlfahrt G, Wullschleger SD, Woodward FI. 2014a. The relationship of leaf photosynthetic traits – V_{cmax} and J_{max} – to leaf nitrogen, leaf phosphorus, and specific leaf area: a meta-analysis and modeling study. *Ecology and Evolution* **4**: 3218–3235.

Walker AP, Hanson PJ, De Kauwe MG, Medlyn BE, Zaehle S, Asao S, Dietze M, Hickler T, Huntingford C, Iversen CM, *et al.* 2014b. Comprehensive ecosystem model-data synthesis using multiple data sets at two temperate forest free-air CO₂ enrichment experiments: Model performance at ambient CO₂ concentration. *Journal of Geophysical Research: Biogeosciences* **119**: 937–964.

Wang H, Prentice IC, Davis TW. **2014**. Biophysical constraints on gross primary production by the terrestrial biosphere. *Biogeosciences* **11**: 5987–6001.

van de Weg MJ, Meir P, Grace J, Ramos GD. **2011**. Photosynthetic parameters, dark respiration and leaf traits in the canopy of a Peruvian tropical montane cloud forest. *Oecologia* **168**: 23–34.

Woodward FI, Cramer W. 1996. Plant functional types and climatic change: Introduction. *Journal of Vegetation Science* **7**: 306–308.

Woodward FI, Lomas MR. **2004**. Vegetation dynamics - simulating responses to climatic change. *Biological Reviews* **79**: 643–670.

Woodward FI, Smith TM. 1994. Global photosynthesis and stomatal conductance - modeling the controls by soil and climate. In: Callow, J. A., ed. *Advances in Botanical Research. Volume 20*. 1–41.

Woodward FI, Smith TM. 1995. Predictions and measurements of the maximum photosynthetic rate, Amax, at the global scale. In: Schulze E-D, Caldwell MM, eds. Springer Study Edition. *Ecophysiology of Photosynthesis*. Springer Berlin Heidelberg, 491–509.

Woodward FI, Smith TM, Emanuel WR. **1995**. A global land primary productivity and phytogeography model. *Global Biogeochemical Cycles* **9**: 471–490.

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, *et al.* 2004. The worldwide leaf economics spectrum. *Nature* **428**: 821–827.

Wullschleger SD, Epstein HE, Box EO, Euskirchen ES, Goswami S, Iversen CM, Kattge J, Norby RJ, Bodegom V, M P, *et al.* **2014**. Plant functional types in Earth system models: past experiences and future directions for application of dynamic vegetation models in high-latitude ecosystems. *Annals of Botany* **114**: 1–16.

Xu C, Fisher R, Wullschleger SD, Wilson CJ, Cai M, McDowell NG. 2012. Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. *PLoS ONE* **7**: e37914.

Yang X, Post WM, Thornton PE, Jain AK. 2014. Global Gridded Soil Phosphorus Distribution Maps at 0.5-degree Resolution. doi: 10.3334/ORNLDAAC/1223

Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang Y-P, El-Masri B, Thornton P, *et al.* **2014**. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO₂ Enrichment studies. *New Phytologist* **202**: 803–822.

Zaehle S, Sitch S, Smith B, Hatterman F. 2005. Effects of parameter uncertainties on the modeling of terrestrial biosphere dynamics. *Global Biogeochemical Cycles* **19**: GB3020.

Figure Captions

- Figure 1. Mean growing season top-leaf $V_{cmax,25}$ (µmol m⁻²s⁻¹) over the period 2007-2012 for
- the nine implementations of the four V_{cmax} trait-scaling hypotheses. Growing season defined
- as periods during which LAI was greater than one. Values are reported prior to scaling of
- $668 \quad V_{cmax}$ by water-stress or leaf-age.
- 669
- 670 Figure 2. Mean annual GPP GPP (gC m⁻²y⁻¹) for the period 2007-2012 for the nine
- 671 implementations of the four V_{cmax} trait-scaling hypotheses and the three global GPP proxies.
- 672 Global mean annual GPP shown in each panel (PgC).
- 673
- Figure 3. Mean annual zonal GPP (PgC) over the period 2007-2012 for three of the V_{cmax}
- trait-scaling implementations in combination with the three temperature scaling assumptions.
- 677 Figure 4. Variability in GPP trends and NBP for the nine implementations of the four V_{cmax}
- trait-scaling hypotheses. (a) Trends in the absoute change in global GPP over the period
- 679 1901-2012; and (b) the relationship between mean annual NBP 2007-2012 and the change in
- 680 GPP 1901-2012 across the nine hypotheses.
- 681
- 682 Figure 5. Taylor plots of GPP (2007-2012) for the nine implementations of the four V_{cmax}
- trait-scaling hypotheses compared against the three GPP proxies: (a) MPI, (b) SIF-CASA, (c)
- 684 scaled-SIF; annd (d) including the two additional temperature scaling hypotheses (modA and
- 685 tacc) for N_global, N_PFT, LUNA_global and co-ord_global. Taylor plots compare datasets
- 686 against a reference dataset using correlation (grey radial isolines), standard deviation (blue
- 687 circular isolines, zero at the origin), and root mean difference (green circular isolines, zero at
- 688 the reference dataset on the x-axis).
- 689
- 690 Figure 6. Difference plot of GPP simulated by the nine implementations of the four V_{cmax}
- trait-scaling hypotheses minus the scaled-SIF GPP proxy.
- 692

- 693 Figure 7. Principle components analysis of the nine implementations of the four V_{cmax} trait-
- 694 scaling hypotheses with the three GPP proxies and three climatic variables: precipitation,
- 695 temperature, and short-wave radiation. Loadings of variables on (a) PC1 and PC2, (b) PC3
- and PC4; maps of (c) PC1 pattern (d) PC2 pattern (e) PC3 pattern, and (f) PC4 pattern. Break
- 697 points on the colour scale are at quantiles (0.025, 0.1, 0.2, 0.35, 0.65, 0.8, 0.9, 0.975) in the
- 698 gridpoint scores on each PC to give even representation of the data.

Hypothesis	Label	Specific method	PFT specifi c	Description	Reference	Papers/Models	Dataset
Static	static_PFT	Static	Y	Augmented TRY database means	Verheijen et al., 2015	Most CMIP5 models	Literature search augmented TRY
Nutrient limitation	Ntemp_global	empirical f(Nu)	Ν		Woodward et al., 1995	Original SDGVM	Woodward et al., 1995
	N_global	empirical f(Na)	Ν	Power law	Walker et al., 2014		Literature search Walker et al., 2014
	NP_global	empirical f(Na,Pa)	Ν	Power law including leaf phosphorus	Walker et al., 2014		Literature search Walker et al., 2014
	N_PFT	empirical f(Na)	Y	Linear from TRY database	Kattge et al., 2009	O-CN, other N cycle models,	TRY
	N_oxisolPFT	empirical f(Na)	Y	As above but with oxisol relationship for evergreen broadleaf PFT	Kattge et al., 2009		TRY
Environmental filtering	Environ_PFT	empirical f(env.)	Y	Augmented TRY relationship to	Verheijen et al., 2015		Literature search augmented TRY
Plant plasticity	Co-ord_global	Theoretical f(Q, T, VDP)	Ν	Vcmax adjusted so wc = wj given mean environment over the past 30 days	Chen et al., 1993; Maire et al., 2012	First principles Wang et al	na
Plant plasticity & nutrient limitation	LUNA_global	4. Theoretical f(Na, Q, T, RH)	Ν	Constrained optimisation of leaf N allocation given mean environment over the past 30 days	Xu et al., 2012; Ali et al., 2016	CLM5.0	Literature search Ali et al., 2015
	Temperature scaling						
Static	*	SDGVM default	Ν	Saturating exponential		SDGVM	
Static	*_modA	Modified Arrhenius	Y	Temperature optimum	Medlyn et al., 2002		
Plant plasticity	*_tacc	Modified Arrhenius with acclimation	Y (modA only)	Temperature optimum varies with growth temperature	Kattge & Knorr, 2007		

700 Table 1. Summary of $V_{cmax,25}$ and V_{cmax} temperature scaling hypotheses.

Nu—N uptake, Na—N per unit leaf area, Pa—P per unit leaf area, Q—incident PAR per unit
leaf area, T—leaf temperature, VPD—vapour pressure deficit, RH—relative humidity. *

- 703 represents the label for one of four Vcmax scaling hypotheses (N_global, N_PFT,
- 704 LUNA_global, or Co-ord_global) used in conjunction with these three temperature scaling
- 705 hypotheses.
- 706

Table 2. Carbon cycle variables for the nine Vcmax scaling hypotheses (means over the
period 2007-2012). Net primary productivity, NPP; soil carbon stocks, Csoil; vegetation
carbon stocks, Cveg; total terrestrial carbon stocks, Ctotal; standard deviation, sd; coefficient
of variation, CV. All variables are in gC m⁻² y⁻¹.

`							
2		GPP	NPP	NBP	Csoil	Cveg	Ctotal
13	static_PFT	127.8	73.4	1.7	1619.8	777.7	2397.5
1/	Ntemp_global	128.2	71.1	2.9	1009.5	768.0	1777.5
14	N_global	121.7	66.8	2.1	1304.6	680.9	1985.5
15	N_PFT	116.5	64.9	1.9	1285.6	581.8	1867.4
'16	N_oxisolPFT	110.6	62.5	1.6	1270.9	517.4	1788.3
	NP_global	118.0	64.1	1.9	1289.6	694.2	1983.8
17	LUNA_global	108.1	60.9	1.2	1349.2	558.4	1907.7
'18	environ_PFT	118.1	66.2	1.9	1253.1	781.2	2034.3
10	co-ord_global	119.3	69.6	1.1	1494.9	714.3	2209.2
19	mean	118.7	66.6	1.8	1319.7	674.9	1994.6
20	sd	6.4	3.9	0.5	158.8	94.0	189.6
771	CV (%)	5.4	5.8	27.3	12.0	13.9	9.5

- 724 Supplemental Material
- 725
- 726 Figure S1. Temperature responses of Vcmax.
- Figure S2-S4. Climate data used to run the model.
- Figure S5-S12. Land-cover data used to run the model.
- 729 Figure S13. Zonal plot of $V_{cmax,25}$.
- 730 Figure S14. Zonal plot of GPP.
- 731 Figure S15. Global GPP for various V_{cmax} temperature scaling assumptions.
- Figure S16. 20th and 21st change in GPP for various V_{cmax} temperature scaling assumptions.
- 733 Figure S17. GPP observation proxies.
- Figure S18. Difference plot of model GPP to MPI GPP proxy.
- 735 Figure S19. Difference plot of model GPP to SIF-CASA GPP proxy.
- 736 Figure S20. Variance explained by each principal component.
- Figure S21-S23. Modelled relationships between leaf N and $V_{cmax,25}$ with soil carbon.
- 738 Figure S24. 20th and 21st change in modelled $V_{cmax,25}$.
- 739 Figure S25. 20th and 21st change in modelled LAI.
- 740
- 741 Notes S1. Additional methods description.
- 742
- 743 Table S1. Metrics for Taylor plots.
- 744