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Abstract

Survey data on macro-forecasters suggests their assessments of future output growth and

inflation uncertainty are too high. We find that model estimates of the term structure of ex

ante or perceived macro uncertainty are more in line with ex post RMSE measures than the

survey respondents’perceptions. At shorter horizons the models’assessments of the uncertainty

characterising the outlook is lower than that indicated by the survey data histograms, and closer

to the RMSE estimates. Recent developments in econometric modelling ensure that the models’

information sets line up with the timing of information available to the survey respondents, thus

enabling a fair comparison.
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1 Introduction

The effects of macroeconomic uncertainty on economic activity has long been of interest to econo-

mists, including whether surprises in uncertainty cause declines in output, or vice versa.1 It is

common to measure general uncertainty about the macroeconomic outlook using option-implied

volatility estimates from stock market or exchange rate data, or survey-based data on the disper-

sion of forecasts or on consumer confidence.2 Rather than attempting to measure general macro-

economic uncertainty our interest is in uncertainty more narrowly defined: uncertainty about the

future course of inflation, and uncertainty about future output growth. This is because direct

estimates of inflation and output growth uncertainty are provided by survey respondents’reported

histograms, and our aim is to compare survey measures of uncertainty with model-based estimates.3

Recently, Rossi and Sekhposyan (2015) proposed a measure of macroeconomic uncertainty based

on comparing the realized forecast error to the historical distribution of the past forecast errors

made by the US Survey of Professional Forecasters (SPF) respondents. Their measure is ex post

in the sense that the realization of the variable (output growth) is required for the computation.

The SPF also provides respondents’ forecast distributions of the annual rate of output growth

and the inflation rate, in the form of histograms. These histograms can be employed to compute

survey estimates of ex ante uncertainty. Clements (2014a) computes these ex ante uncertainty

measures from survey forecasts, and compares them with measures based on past forecast errors

(see, e.g., Reifschneider and Tulip, 2007 and Knüppel, 2014), which are typically expressed in terms

of Root Mean Squared Error (RMSE). He finds that ex ante uncertainty exceeds RMSE ‘realized

uncertainty’for both inflation and output growth at within-year horizons.

In this paper, we aim to better understand the mismatch between the ex ante and ex post survey

estimates of uncertainty. A natural question to ask is whether the mismatch would have arisen had

the SPF respondents based their probability assessments and point predictions on macroeconomic

forecasting models. To this end, we estimate ex ante and ex post uncertainty using models that

could in principle have been used by the respondents, in the sense that the models are real-time and

use only information available at the times that the corresponding survey forecasts were made. For

the model estimates to shed light on the mismatch between the ex ante and ex post survey estimates,

we need the model forecasts to be close to the survey forecasts in terms of their forecast accuracy

(i.e., ex post uncertainty). This leads us to consider MIDAS models, so that the information set

used by the model is similar to that available to the survey respondents in terms of timeliness. We

1For example, Carroll (1996) considers the effects of uncertainty about labour income on households spending
decisions, and Dixit and Pindyck (1994) and Bloom (2009) consider the effects on firms and their investment plans.

2Bloom (2009, Table 1, p.629) shows that stock market volatility is correlated with cross-sectional measures of
uncertainty: the cross-sectional standard deviation of firms’ pre-tax profit growth; a cross-sectional stock-return
measure; the cross-sectional spread of industry productivity growth; and the dispersion of the Livingstone half-yearly
survey forecasts of GDP.

3Of course the survey respondents may well base their forecasts on models, so the distinction is between mechanical
model-based forecasts and forecasts which make use of model(s) and judgment to varying degrees.
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find that MIDAS models are close to being as accurate as the survey forecasts at short horizons, if

not at all longer horizons. We then consider whether the models’ex ante forecasts of uncertainty

are more closely attuned with RMSE estimates.4

The comparison of model and survey forecasts is made in terms of the term structure of uncer-

tainty, that is, how uncertainty is resolved as the forecast horizon shortens. The forecasts underlying

the survey uncertainty estimates are fixed-event (see, e.g., Nordhaus, 1987, Clements, 1995), that

is, repeated forecasts made at different origins of a given target (the year-on-year calendar growth

rate of output or prices in a particular year). This characteristic of the survey data determines the

nature of the uncertainty estimates required from the models for a fair comparison. The impor-

tance of data timeliness when comparing survey and model forecasts has been stressed by Faust

and Wright (2009), inter alia, and motivates the use of mixed-frequency forecasting models. Such

models can be setup to draw on data up to the point in time at which the corresponding survey

return was made, so that the model and survey information sets are closely aligned in the time

dimension. The models’outputs are carefully designed to match the quantities which can be calcu-

lated from the survey responses. For example, the survey measures of forecast uncertainty relate to

calendar-year annual inflation and output growth made at horizons of (approximately) one-quarter

up to eight quarters ahead. We show how estimates of these quantities can be obtained from the

forecasting models’outputs. In addition, the models are specified and estimated using the data

which would have been available in real time, to match the surveys which are by their nature real

time. That is, we use only vintages or maturities of data that would have been available at the point

in time each forecast was made (see, e.g., Croushore, 2011a, 2011b on real-time data analysis).

In calculating the term structure, we average over forecast origins, so that time variation in the

uncertainty levels ought to largely cancel out. As a consequence, our benchmark model estimates

the term structure of calendar-year output growth and inflation uncertainty without modelling time-

varying heteroscedasticity, but including both monthly and daily predictors to match the model

information sets with those available to the survey respondents. As a robustness check, we also

consider the model proposed by Pettenuzzo, Timmermann and Valkanov (2015) that incorporates

time-varying heteroscedasticity in models with mixed-frequency data.

Notice that the RMSEs are unconditional measures, in that they capture average performance

(for a given horizon). Ex ante uncertainty is instead a conditional notion, as it measures uncertainty

at each point in time. However, the averaging of the ex ante estimates over time - to generate the

term structure of uncertainty - results in estimates which are essentially unconditional, and so are

comparable to the RMSE estimates in this respect. The ex ante assessments would be expected to

be broadly in line with the RMSEs if they are well calibrated.

Finally, one of our underlying assumptions for many of the calculations is that survey forecasters

4 In the context of assessing DSGE model forecasts, Herbst and Schorfheide (2012) similarly assess whether the
realized RMSEs are commensurate with what would be expected given the DSGE model’s predictive distribution.
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are targeting an early-vintage release of GDP growth or inflation, such as the offi cial estimate

released shortly after the reference quarter: specifically, two quarters later. This is common practice

in the real-time forecasting literature, because it seems reasonable to assume that the three rounds

of annual revisions and the occasional benchmark revisions which are known to occur will result in

changes which are largely unpredictable (see, e.g., Landefeld, Seskin and Fraumeni, 2008 and Fixler,

Greenaway-McGrevy and Grimm, 2014 on the Bureau of Economic Analysis data revisions releases).

Moreover, rankings between competing forecasting models may not be sensitive to the vintage used

for the actual values, and the best forecasting model for predicting early-release data may remain

the best for predicting fully-revised data, albeit that all the models’forecasting performances would

be expected to deteriorate. However, the choice of early-release versus fully-revised data is shown

to be less benign for comparisons of ex ante uncertainty and RMSE.

To anticipate our main finding, our model ex ante measures are markedly less than the survey

ex ante estimates at within-year horizons, and are in fact less than the model and survey RMSE

estimates at one and two quarter horizons. Had the survey respondents used such a model to gen-

erate ex ante uncertainty estimates they would have tended to under-estimate ex post uncertainty

at the shortest two horizons.

Our paper is related to Patton and Timmermann (2011), who estimate the degree of pre-

dictability of state variables over different horizons by fitting unobserved component models to

survey forecasts of annual GDP growth and inflation. We instead use reported histogram fore-

casts to estimate uncertainty, and compare these with model estimates of ex ante uncertainty and

RMSEs.

The plan of the rest of the paper is as follows. Section 2 outlines how we compute the survey

data estimates and describes the available data, as this determines the nature of the forecast

uncertainty estimates we require from the models. Our survey-based measures are constructed in

such a way as to mitigate the tendency towards over-dispersion of the aggregate SPF histogram,

and the inflation of the survey ex ante measure. Section 3 describes the models, how we obtain

measures of uncertainty from them which are comparable to the survey estimates, and presents the

baseline estimates. A number of extensions to the models are also considered, including allowing

for stochastic volatility and for longer-term changes in volatility, such as the onset of the Great

Moderation (see, e.g., McConnell and Perez-Quiros, 2000). Section 4 concludes.

2 Measuring survey uncertainty

Direct estimates of forecast uncertainty are provided by the standard deviations (or variances) of

the survey respondents’ reported histograms. From the individual respondents’ histograms, an

aggregate or consensus histogram can be obtained by simple equal-weighting. A consensus ex ante

uncertainty measure could be calculated as the standard deviation of the aggregate histogram (de-
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noted by σaggh ), or as the average of the individuals’histogram standard deviations (denoted by

σh,ea). Gneiting and Ranjan (2013, section 3.1) show that if the individual distributions are prob-

abilistically calibrated (see, e.g., Dawid, 1984 or Gneiting and Ranjan, 2013), then the aggregate

distribution will be over-dispersed. In our setting, this implies that even if the ex ante and ex post

uncertainty were equal for each individual, the consensus ex ante uncertainty, defined as the stan-

dard deviation of the aggregate distribution, would exceed the root mean squared error (RMSE)

of the consensus point forecast (defined as the mean of the individuals’point forecasts), suggesting

under-confidence (ex ante uncertainty in excess of ex post). Consequently, we take the average of

the individual histogram standard deviation estimates as the survey ex ante uncertainty measure,

EAU (σh,ea). This is defined as:

σh,ea = N−1
∑

n

(
N−1n,h

∑
i σi,n|n−h

)
(1)

where σi,n|n−h is the estimated standard deviation for respondent i of a histogram forecast for

annual growth (inflation) in calendar year n, where n is in years, made h-quarters ahead (h =

1, . . . , 8).5 Hence we average over individuals (i) and forecast targets (n), where Nn,h is the number

of forecasters of target n (for a horizon h), and N is the number of years. We calculate the standard

deviations of the individual histograms by first fitting normal distributions when probability is

assigned to three or more intervals (following Giordani and Söderlind, 2003), and fitting triangular

distributions for one and two interval histograms (as explained in Engelberg, Manski and Williams

(2009, p.37-8)). The results were qualitatively unchanged if we fitted generalized beta distributions

instead of normal distributions, as in Clements (2014a). We also calculated standard deviations

directly from the histograms.6

For purposes of comparison, we also calculate σaggh :

σaggh = N−1
∑

n σn|n−h (2)

where σn|n−h denotes the standard deviation of the aggregate histogram for year n at a horizon h

(again based on fitting a normal distribution).

In addition to estimating average EAU using the surveys, we can obtain an ex post measure

from the forecast errors once the actual values become known. Note that the ex ante estimates

((1) and (2)) are made in advance at time n−h, whereas the RMSE offers an ex post assessment of
how uncertain the outcomes were given the forecasts. The first estimate of ‘realized’uncertainty is

5 In principle a comparison of the ex ante and ex post measures for each individual might be fairer, but to obtain
a single survey measure we use the average of the individual ex ante measures as the survey measure, on the grounds
that this relates to the ‘average’forecaster.

6Letting xs denote the midpoint of interval s, with probability ps, the mean is x =
∑

s xsps, and the variance is∑
s (xs − x)

2 ps−w2/12, where w is the interval length and the last term is Sheppard’s correction, commonly applied
when variances are calculated from histograms.

4



the sample standard deviation of the consensus forecast errors at horizon h (h = 1, . . . , 8), namely:

σ̂h,ep =

√
N−1

∑
n

(
en|n−h − eh

)2 (3)

where en|n−h = zn − zn|n−h, eh = N−1
∑

t en|n−h, and zn|n−h is the cross-section median of the

individual point7 forecasts. Here zn|n−h refers to the forecast of the annual growth rate in calendar

year n made h quarters earlier. The second is the consensus RMSE given by:

RMSEh,ep =

√
N−1

∑
n
e2n|n−h. (4)

It might be argued that the consensus forecast will under-estimate the uncertainty faced by the

average individual, i.e., the average individual RMSE. This would be the case if individual survey

respondents have access to private information, and the consensus forecasts were markedly more

accurate than those of an individual forecaster. Hence in comparing ex ante measures such as

σh,ea, say, with past consensus forecast error RMSEs it might be argued we are not comparing like

with like. Hence we also report average individual RMSEs, and forecast error standard deviations

(following Reifschneider and Tulip, 2007). In terms of choosing between the RMSE and the standard

deviation of the forecast errors, our preferred measure is the RMSE. The standard deviation is

included to see the size of the (squared) bias: generally this is relatively small.

In order to facilitate the comparison of the model predictions to the survey forecasts of the

calendar-year growth rates, it will prove useful to approximate the annual growth rate by a weighted

average of quarter-on-quarter growth rates. Denoting by yt the quarterly growth rate, i.e., yt =

100 ln(Yt/Yt−1) where Y is the quarterly level (the price deflator, or level of output), then the

annual growth rate, zt, can be written as zt =
∑6

j=0wjyt−j where wj = j+1
4 for 0 ≤ j ≤ 3, and

wj = 7−j
4 for 4 ≤ j ≤ 6. zt is a quarterly variable and approximates the calendar-year growth rate

when t refers to a fourth quarter of the year.

Hence for a h = 1 quarterly horizon forecast of zt, the values {yt−1, . . . , yt−6} are known, so
that the variance of zt conditional on this information set is V ar (zt | It−1) = V ar (w0yt | It−1).
Alternatively, for a h = 7 horizon forecast, for example, all the quarters (yt to yt−6) need to be

forecast: V ar (zt | It−7) = V ar
(∑6

j=0wjyt−j | It−7
)
.

For the survey forecasters, we are able to evaluate the accuracy of this approximation for

the ex post uncertainty measures. This provides some indication as to the likely accuracy of the

approximation for the model forecasts. As an example, consider an h = 2 forecast (i.e., a forecast

7An alternative would be to use the cross-section median of the means of the individual histograms. The choice
between the two may appear innocuous, but Engelberg et al. (2009) and Clements (2010, 2014b) show that the
SPF respondents’point predictions and measures of central tendency derived from the histograms are not always
consistent one with another. The use of the histogram means gives rise to marked increases in the σ̂h,ep and RMSE
measures at h = 1 for both output growth and inflation.
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made in response to a survey in the third quarter of the target year). The exact method of

calculating the calendar year growth rate forecasts adds the (point) forecasts of the current and

next quarter levels to the data for the first two quarters of the year, and calculates the percentage

change relative to the previous year. The approximation weights the point forecasts of (100 times)

the quarterly log differences for the current and next quarter with actual quarterly log differences

(for the previous five quarters). In both cases, forecast errors are calculated using as actual values

the percentage changes in the annual levels for year n (average/sum of the values of the four quarters

in the year n) and year n− 1.

Our survey data is from the US Survey of Professional Forecasters (SPF) as it spans a long

historical period compared to other surveys which provide similar information.8 It is a quarterly

survey of macroeconomic forecasters of the US economy from 1968 to the present day, initially

administered by the American Statistical Association (ASA) and the National Bureau of Economic

Research (NBER) as the ASA-NBER Survey, and since June 1990 by the Philadelphia Fed as the

SPF: see Zarnowitz (1969), Zarnowitz and Braun (1993) and Croushore (1993).

The SPF provides respondents’forecast distributions of the annual rate of output growth and

the inflation rate, in the form of histograms. The histograms refer to the annual change from the

previous year to the year of the survey, as well as of the survey year to the following year. As

an example, consider the histogram forecasts of the annual output growth in 2005. We have eight

histograms of this target, beginning with a forecast made in the first quarter of 2004 (a forecast

of the following year relative to the survey quarter year), and ending with a forecast made in the

fourth quarter of 2005 (a forecast of the survey quarter year on the previous year). We term these

8 to 1 step ahead forecasts. The histograms are reported by the middle of the middle month of the

quarter, so this defines the cut off point for information for the models.

Hence we will need to construct forecasts of the uncertainty from the models that relate to the

annual growth rate made at horizons of 1 to 8 quarters in advance. It is the form of the survey

uncertainty estimates - namely, that they relate to the annual growth in a calendar year - that

dictates the form of the model-based estimates we calculate in section 3.

2.1 Empirical Results

These results are based on the N = 32 annual targets from 1983 to 2014, and forecast horizons,

h = 1, . . . , 8. The real-time data on GDP and the GDP deflator is taken from the Real Time Data

Set for Macroeconomists (RTDSM) maintained by the Federal Reserve Bank of Philadelphia (see

Croushore and Stark, 2001).

The results in Table 1 are broadly in line with Clements (2014a). From Table 1 it is apparent

that for both variables EAU declines as h declines but remains high relative to RMSE, regardless

8The Bank of England Survey of External Forecasters provides similar information for the UK, but only from
beginning in 1996, and since 1999 the ECB Survey of Professional Forecasters (SPF) covers the euro area.
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of how EAU is calculated, and regardless of whether the comparison is to the RMSE or the forecast

error standard deviation. There are differences between variables. For output growth, the ex

ante measures are less than the ex post for horizons in excess of a year, whereas for inflation the

two are more closely aligned at these longer horizons. Hence the survey forecasters over-state the

uncertainty about the outlook for inflation and output growth at within-year horizons.

We present formal tests of the equality of the EAU and RMSE estimates (last column of the

table), specifically between the EAU - σh,ea - and the RMSE. The p-values indicate that the EAU

and RMSE are statistically different for both variables at short horizons.

As expected, σh,ea lies below σaggh , but qualitatively our findings are unaffected whichever of

the two is used. Further, it is not the case that the use of the consensus forecast errors to calculate

the RMSE is the reason for the RMSE lying below the ex ante measure at within-year horizons. If

we use the average of the individual respondents’forecast standard deviations, or RMSEs (denoted

by σ̂i,ep and RMSEi respectively, in the table) the overall picture is unchanged. Particularly for

inflation, the average of the respondents’RMSEs is higher than the RMSE of the consensus forecast

errors, but the ex ante measures are markedly higher still.

We find that using the quarterly growth rate approximation to the annual growth rate for the

survey forecasts for the two ex post measures yields virtually identical estimates in most cases

(see the last two columns of the table). It appears unlikely that the use of this approximation to

facilitate the calculation of both ex ante and ex post measures for the model forecasts will matter,

although this remains a conjecture.

2.2 Are survey forecasters targeting true values?

The survey respondents assign probabilities to inflation and output growth falling in certain in-

tervals. Hitherto we have assumed they are implicitly targeting an early release of the outcome

variable, such as the quarterly vintage value released two quarters after the reference quarter. It

may be that the ‘true value’is being targeted, which we measure by a recent estimate of the data

point (here, the 2016:Q3 data vintage). Relative to targeting an early release, the reported his-

tograms would incorporate additional uncertainty to reflect the cumulative effect of the uncertain

data revisions between the early release and the final release.

Table 2 compares the survey ex ante measure (the average of the individual standard deviations

from table 1) with the survey RMSE assuming the forecasters target the final release, so that the

RMSE is calculated from final-vintage actuals (we also report the early-release actuals RMSE for

ease of comparison). Note that the histograms and hence survey ex ante uncertainty are unchanged:

all that has changed is the interpretation, and hence the correct ex post comparator is the RMSE

calculated by comparing the point forecasts to the final-vintage data.

For output growth, ex ante uncertainty falls between the two RMSE measures (one using
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second-release actuals, the other final actuals) for the shortest 3 horizons, but for inflation, ex ante

uncertainty exceeds the higher RMSE measure for within-year horizons. These findings suggest

that the assumption that forecasters target true values is not able to explain the apparent under-

confidence in forecasting inflation. But under-confidence would turn into over-confidence for the

within-year output growth forecasts if it were the case that forecasters’uncertainty assessments are

of true values.

3 Models for inflation and output growth uncertainty

We consider Mixed Data Sampling (MIDAS) regressions to exploit monthly and daily information

in addition to the past quarterly values of the series being forecast.9 Our baseline models do

not permit time-variation in the model’s forecast-error variance. This might be expected to be of

secondary importance for estimating the term structure. However, some recent MIDAS models do

allow second moment dynamics (see, e.g., Pettenuzzo et al., 2015), and in section 3.4 we contrast

the results using such models to those obtained using the model discussed in this section.

MIDAS models allow us to exploit the information content of monthly and daily data when

computing model-based uncertainty estimates. MIDAS models have been used by a number of

authors to exploit daily and monthly data, including Ghysels and Wright (2009), Andreou, Ghysels

and Kourtellos (2013) and Clements and Galvão (2008, 2017). The choice of monthly explanatory

variables is guided by economic calendars such as Bloomberg10, which describes a set of data releases

identified as ‘market moving’. Most of these data releases refer to monthly measures of economic

activity, such as industrial production, nonfarm payroll (employment), PMI (purchasing managers

index), retail sales, and housing activity. We elect to use the monthly predictors labeled as ‘market

moving’which are related to economic activity and which are available as real-time data vintages

from 1982. The variables are listed in Table 3. Of these, only PMI is not subject to revisions. We

also include daily equity index (SP500) returns. This variable has been shown to incorporate the

effect of macroeconomic news during the first month of the quarter (Gilbert, Scotti, Strasser and

Vega, 2015), and to have predictive ability for future output growth (Andreou et al., 2013) and

output growth data revisions (Clements and Galvão, 2017).

We use real-time data throughout, to match the intrinsically real-time nature of the surveys.

Given that both the deflator and output are revised over time, this means using the then available

data vintages. The timing of the surveys is such that advance estimates of the previous quarter

values of output and inflation are known. To be precise, consider an h = 1 survey forecast. This is

made in the middle of the fourth quarter of the year, when the advance estimates of the national

9Andreou, Ghysels and Kourtellos (2011) and Foroni and Marcellino (2013) provide recent reviews of MIDAS
models. See also Ghysels, Santa-Clara and Valkanov (2006), Ghysels, Sinko and Valkanov (2007) and Clements and
Galvão (2008).
10http://www.bloomberg.com/markets/economic-calendar/
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accounts for the third quarter have been issued. In our notation, this implies the model is estimated

on data through n − h (the third quarter of the year) from the n + 1 − h quarterly vintage (the
Q4 vintage). So for the first forecast target (the annual rate of inflation in 1983), for h = 1, we

estimate the model on quarterly data up to and including 1983:Q3 from the data vintage available

at 1983:Q4.

3.1 MIDAS Specification

Our target variable is the calendar-year growth rate zn. At time n − h, a number of quarterly
values of yt will need to be forecasts. To be able to use the same forecasting model to compute

both a point forecast ẑn|n−h and an EAU measure varea(zn|n−h), we estimate a MIDAS model for

qht , defined below as the weighted ‘future’quarters for a forecast horizon h:

qht =

h−1∑
i=0

1 + i

4
yt−i for h = 1, ..., 4

qht =
3∑
i=0

1 + i

4
yt−i +

h∑
i=4

7− i
4

yt−i for h = 5, 6

qht = zt for h ≥ 7. (5)

As before, yt is the quarterly growth rate, and zt is the annual growth rate computed quarterly11

and equal to the calendar-year value when t is the last quarter of a year. The qht is the LHS variable

in the MIDAS models described below. For a given horizon h, (5) gives the quarters that need to

be forecast, weighted by their importance in approximating zt. For h = 7, for example, there are

no relevant quarterly growth rate data at t− 7 required to compute zt so q7t = zt.

To explain the MIDAS models we introduce some notation. Let xMt denote a variable available

at the monthly frequency, where xMt is the last month in quarter t, xMt−1/m the penultimate month

in quarter t, etc., and mM = 3 (the number of months in a quarter). Typically data for the first

month of the survey quarter will be in the agents’information set, because respondents file their

forecasts around the middle of the middle month of the quarter. This is indicated in our models by

a one month ‘lead’, i.e., lM = 1/3 (one month). As a illustration, consider a model with a single

monthly indicator variable and lags of the growth rate of the quarterly dependent variable:

qht = β0 + βQ

p−1∑
i=0

w(θQ, i)yt−h−i (6)

+βM

pM−1∑
i=0

w(θM , i)x
M
t−h−(i/3)+lM + εht ,

11Recall zt =
∑6

j=0 wjyt−j where wj =
j+1
4
for 0 ≤ j ≤ 3 and wj = 7−j

4
for 4 ≤ j ≤ 6.
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where we may use pM = p × mM , where p is the maximum number of lags in quarters of the

quarterly dependent variable. In the empirical application, we use p = 8 and estimate weighting

functions for both the lags on the quarterly dependent variable and for the monthly indicator. As

an example, suppose lM = 1/3 and h = 1. Then (6) implies the use of data on the first month of

the quarter t (xt−2/3), as this would have been available to the survey respondents who file their

returns by the middle of the middle month of quarter t.

For the lag weighting functions we use the beta function:

w (θ; i) =
f(θ; i)∑K
j=1 f(θ; j)

f(θ; i) =
(k)θ1−1(1− k)θ2−1Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
; k = i/(K + 1).

In the case of quarterly lags, K = p, and in the case of monthly lags K = pmM .

The model with both monthly and daily indicators is:

qht = β0 + βQ

p−1∑
i=0

w(θQ, i)yt−h−i (7)

βM

pM−1∑
i=0

w(θM , i)x
M
t−h−i/3+lM

+βD

mD−1∑
i=0

w(θD, i)x
D
t−h−i/60+lD + εht ,

where mD = 60 (approximately number of business days in a quarter), so we use one quarter of

daily data. Because there is no delay on the release of financial data, and forecasts are computed

in the middle of the quarter, we use lD = 20/60 = 1/3 (where 20 is the approximate number of

business days in a month). This implies the use of daily information on the first month. (The

convention is that xDt is the last day of quarter t. Therefore when h = 1, i = 0 and lD = 1/3,

xD
t−h−i/60+lD = xDt−2/3, indicating the last day of the first month of quarter t).

To incorporate the information of the set of monthly indicators in Table 3, we substitute xMt
by the factor fMt in equation (7). The factor fMt is obtained by principal components using

the five monthly series (see, e.g., Marcellino and Schumacher (2010)). Before the estimation of

the factor, we transformed observed monthly levels to monthly quarterly growth rates at annual

rates: xMt = 400(log(XM
t ) − log(XM

t−mM )), where XM
t is the variable in levels. In the case of

daily data, we apply a similar transformation to the original daily values in levels, namely xDt =

400(log(XD
t )− log(XD

t−mD)).

MIDAS models are estimated by nonlinear least squares using a numerical optimization algo-

rithm and a grid search for the initial values of the parameters of the weighting functions.
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3.1.1 MIDAS EAU

The model EAU estimates are the estimated standard errors of the models for a given h, computed

as described in the Appendix to take into account parameter uncertainty. Empirically, the contri-

bution of parameter uncertainty is small: it raises the EAU measure by 5 to 10% depending on the

forecasting horizon. Notice however that no allowance is made for the estimation error associated

with the extraction of the factors.

3.1.2 MIDAS RMSE

The calculation of RMSE requires point forecasts of the calendar-year growth rates zn, for 1983

to 2014. Using the forecasts, qhn|n−h, of the unknown quarterly components, q
h
n, we compute the

forecasts of the calendar-year growth rates, zn|n−h, as:

zn|n−h = qhn|n−h +
6∑

j=h

wjyn−j , (8)

for h = 1, ..., 6 and as before wj = j+1
4 for 0 ≤ j ≤ 3, and wj = 7−j

4 for 4 ≤ j ≤ 6. The RMSE

is the square root of the mean of the squared forecast errors over the N = 32 observations of the

out-of-sample period for each h, i.e.,
√
N−1

∑N
n=1

(
zn − zn|n−h

)2.
3.2 Benchmark MIDAS Empirical Results

As previously mentioned, we estimate the MIDAS regressions using the vintages that would have

been available to the survey respondents at each point in time. Details of the data sources for

the monthly predictors in the MIDAS models are given in table 3. As in the survey evaluation,

these results are based on the N = 32 annual targets from 1983 to 2014, and forecast horizons,

h = 1, . . . , 8.

Table 4 presents results for the MIDAS model in (7) but substituting xMt by the monthly factor

fMt . The one-quarter-ahead MIDAS model EAU estimates are around a quarter and a sixth of

the survey estimates, for output growth and inflation. By way of contrast, the one-quarter-ahead

RMSE model estimates are similar to the survey values for both variables, and we do not reject the

null of equal accuracy using conventional significance levels. The results of the tests for whether

the model EAU and the model RMSE are equal in Table 4 suggest that we are unable to reject the

null at the 5% level, including at h = 1 (in stark contrast to the results for surveys in Table 1).

The model reverses the relative magnitudes of EAU and RMSE at short horizons compared

to the findings for the surveys. In a sense, the finding that the model fares less well out-of-

sample compared to the in-sample fit is unsurprising: out-of-sample performance has often been

championed as the gold standard for model evaluation because of the tendency for in-sample fit to
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prove an unreliable guide to out-of-sample performance (see, e.g., Clements and Hendry, 2005 for a

discussion). The key finding here is that survey respondents over-estimate forecasting uncertainty

at short horizons, while the same is not true for a real-time mixed frequency model that exploits

the information of monthly and daily indicators.

As a check on our use of a rolling estimation window, the last two columns of Table 4 show the

effect of using an expanding window of data (i.e., a recursive forecasting scheme). We report the

ratio of the model EAU and RMSE estimates from the recursive and rolling schemes. The results

show that the RMSEs are largely unaffected at h = 1 for both variables, but that the EAU estimates

are increased by around 10-20% for all h when the recursive scheme is used. This is consistent with

the rolling scheme offering a degree of adaptability to the lower levels of economy-wide volatility

following the Great Moderation (see, e.g., McConnell and Perez-Quiros, 2000), whereas using the

recursive scheme keeps the earlier observations. Section 3.5 reports on an alternative to rolling

window estimation designed to capture abrupt changes in volatility.

3.3 Benchmark Model - Robustness Checks

Table 5 checks the robustness of the results to the specification of the number of lags at the different

frequencies. In the benchmark model, we set p = 8 quarterly lags, 24 monthly lags of the factor, and

60 daily lags (3 months of daily data). Because of the nature of the MIDAS model, large numbers

of lags can be accommodated without the number of parameters to be estimated increasing. Hence

little attention tends to be paid to the choice of the maximum number of lags. As a robustness

check, we set p = 4 quarterly lags, and use 12 monthly lags and one month of daily data. The

results in Table 5 indicate the results are largely unchanged in key respects. We still find that at

the short horizons the model EAU are markedly smaller than the survey EAU.

The second check replaces qht in equation (7) by the annual growth rate, zt = 100
[(∑3

i=0 Yt−i
)
/
(∑7

i=4 Yt−i
)
− 1
]
≈∑6

j=0wjyt−j , where Yt is the quarterly GDP (or the GDP deflator) in levels, and yt are quarterly

growth rates, and otherwise keeps the same specification of the right-hand-side regressors as in the

benchmark model (p = 8,mD = 60). As argued above, qht only includes the future quarterly growth

rates unknown at t − h, weighted according to the approximation described in section 2, whereas
zt does not vary with h, that is, the quarterly information already available. Table 6 records the

results, which again are largely unchanged from the results using qht . However, if we reduce the

maximum lag orders, as in Table 5, the RMSEs and EAU estimates increase markedly (not shown

to save space). This suggests using zt with long lags yields reasonable results, but this approach is

not as robust as using qht .

12



3.4 MIDAS models and stochastic volatility

In this section we employ a Bayesian approach to estimate MIDAS models, allowing for stochastic

volatility. The approach closely follows Pettenuzzo et al. (2015). A Bayesian approach allows more

complicated models to be estimated, including models in which the variance equation is allowed to

depend on high-frequency data. By and large these extensions and refinements do not qualitatively

affect our findings for the term structure relative to the simple MIDAS, although as shown by

Pettenuzzo et al. (2015), would likely produce more accurate time-series predictive densities.

The Bayesian estimation and subsequent extensions are facilitated by a small change in the

MIDAS model given in equation (7). Instead of using a beta function to constrain the coeffi cients

on the high-frequency lags, an Almon function is used instead, namely:

w(θ, i) =

q∑
i=1

θik
i,

where q is the polynomial order. The main advantage of this function is that it is linear on the

parameters θi, simplifying the Bayesian algorithm employed for estimation. We define vectors of

monthly and daily lags:

X
(M)
t−h = [xMt−(3h/mM )+lM , ..., x

M
t−(3h/mM )−(pM−1)/mM+lM ]′

X
(D)
t−h = [xDt−(60h/mD)+lD , ..., x

D
t−(60h/mD)−(mD−1)/mD+lD ]′

and corresponding ‘Q matrices’as in Pettenuzzo et al. (2015, eqn. 6), that is, a (q + 1)×pM matrix

denoted by QM and a (q + 1) × mD denoted by QD. QM and QD contain no unknowns. If we

define X̃(M)
t = QMX

(M)
t and X̃(D)

t = QDX
(D)
t , then the MIDAS regression can be written as:

qht = β0 +

p−1∑
i=0

βQ,1+iyt−h−i + θ′MX̃
(M)
t−h + θ′DX̃

(D)
t−h + εht . (9)

and the unknown parameters βQ,1+i, i = 0, . . . , p− 1, θM and θD can be estimated directly. More

compactly, equation (9) can be written as:

qht = Zt−hΨ + εht (10)

where:

Zt−h = [1, yt−h, ..., yt−h−p−1, X̃
′(M)
t−h , X̃

′(D)
t−h ]′

Ψ = [β0, β1, ..., βq,θM ,θd].

If we assume that εht ∼ N(0, σ2ε), and assume normal priors for the parameters βi, θM and θD, and
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an inverted-gamma prior for σ2ε, we can use a Gibbs sampler to obtain the posterior distribution

of the coeffi cients, and the predictive density for qhn|n−h, that is, qn|Zn−h, having integrated out
Ψ. Bauwens, Lubrano and Richard (2000, p.61 and p.138) show that, by using these priors, the

predictive density of one-step-ahead forecasts is a Student t-distribution, with moments which have

closed form solutions.12 Following Pettenuzzo et al. (2015), the predictive density for qhn|n−h is

computed using Gibbs sampler draws (this is required for the case we allow time variation in the

parameter σ2ε). After disregarding the initial burn-in draws from the conditional distributions, we

compute the jth draw from the predictive density as:

qh,(j)n = Zn−hΨ(j) + σ(j)ε η(j); η(j) ∼ N(0, 1) (11)

Ψ(j)|σ2ε ∼ N(b̄, V̄ ) (12)

σ2(j)ε |Ψ ∼ IG(s̄2/2, v̄/2), (13)

where the posterior means and variances (b̄, V̄ ) for the conditional distribution Ψ|σ2ε are computed
as Pettenuzzo et al. (2015), equations (16) and (20). Prior means and variances are also set as in

Pettenuzzo et al. (2015), and the value of the degrees of freedom of the inverse gamma distribution

v̄ is computed as:

s̄2 = s2y(v
0 ∗ (n− h)) +

n−h∑
t=1

(
q
(h)
t − Zt−hΨ

)2
where s2y is computed as in Pettenuzzo et al. (2015, eqn. (16)) and v

0 = 0.005.13 Note that we are

using observations up to n−h to compute the conditional draws, but the predictive density targets
observation n. The ex ante standard error is calculated as:

EAUn|n−h =

√√√√√ 1

M

 M∑
j=1

qh,(j)n −

1/M

M∑
j=1

q
h,(j)
n

2, (14)

where M is the total number of draws of the predictive density obtained from the Gibbs sampler

algorithm summarized in equations (11) to (13).

Relative to the MIDAS model of section 3, we have outlined a model that employs a different

weighting function to deal with the dimensionality issue arising from the large number of lags, and

by implementing a Gibbs sampler to compute the ex ante variance. This model can be extended

in a number of ways. For example, we could allow the variance of the disturbances to change over

12The ‘direct forecasting’ approach is natural for MIDAS models, as otherwise the high-frequency explanatory
variables would need to be modelled and forecast. Direct forecasting entails a different set of coeffi cient estimates for
each forecasting horizon h, but that means we always have essentially ‘one-step’predictive densities. This implies
that we can avoid the nonlinearities that arise from iterating one-step forecasts: see Bauwens et al. (2000, p.138).
13We draw from the inverse gamma distribution by drawing first from the standard normal, and then applying the

required transformations based on both parameters as described in Blake and Mumtaz (2012).

14



time. A MIDAS model with stochastic volatility would be:

qht = Zt−hΨ + exp(υht /2)ηt; ηt ∼ N(0, 1) (15)

υht = λ0 + λ1υ
h
t−h + ξt; ξt ∼ N(0, σ2ξ),

where υt is the log standard deviation of the disturbances to the conditional mean at time t. Here

the equation for the log standard deviation follows an AR(1) process with normal disturbances,

although it is sometimes specified as a random walk, especially for forecasting inflation. The above

model is a simplified version of that of Pettenuzzo et al. (2015), which also allows the high-frequency

observables to directly impact conditional volatility υt. Such a model could be specified as:

υht = λ0 + λ1υ
h
t−h + θ′M,vX̃

(M)
t−h + θ′D,vX̃

(D)
t−h + ξt. (16)

As before, we rewrite the above equation more compactly as:

υht = Vt−hΛ + ξt

where:

Vt−h = [1, υt−h, X̃
′(M)
t−h , X̃

′(D)
t−h ]′

Λ = [λ0, λ1,θM,v,θd,v].

Even though all the disturbances are normally distributed, the form of the predictive densities

q
(h)
n|n−h and υ

(h)
n is not known, but can be calculated using the Gibbs sampler.14 Note that the

required predictive density is qn|Zn−h, that is, we need to integrate out the effects of estimating
the unobservables υ1, ..., υn−h,(which has to be done numerically), as well as of the parameters, Λ.

The jth draw of the predictive density is obtained as:

qh,(j)n = Zn−hΨ(j) + exp(υh,(j)n /2)η(j); η(j) ∼ N(0, 1) (17)

υh,(j)n = V
(j)
n−hΛ(j) + σ

(j)
ξ η(j)

Ψ(j)|σ2ξ , υn−h,Λ ∼ N(b̄, V̄ ) where υn−h = (υ1, ..., υn−h)

υn−h,(j)| Ψ,Λ, σ2ξ ∼ Mixture of Normals Algorithm

σ
2(j)
ξ |Ψ, υn−h,Λ ∼ IG(s̄2ξ/2, v̄/2)

Λ(j)|σ2ξ , υn−h,Ψ ∼ N(m̄, V̄m)

14We are able to compute moments of the conditional distributions qn|Zn−h, υn or even qn|Zn−h, υn−h , but is it
hard to get qn|Zn−h, that is, integrating out the uncertainty on unobserved volatilities.
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where s̄2ξ = s+
∑n−h

t=1

(
υ
(h)
t − Zt−hΨ

)2
. The posterior mean and variance m̄ and V̄m are obtained

from Pettenuzzo et al. (2015, eqns. (31) and (32) ). All priors are set as in Pettenuzzo et al. (2015).

The algorithm to draw the time series of the unobserved log standard deviations υt is from Chan

and Hsiao (2014) who provide a time-effi cient implementation of the mixture of normals algorithm

proposed by Kim, Shephard and Chib (1998).15 We implement the Gibbs sampler by obtaining the

conditional draws in the order described above.

Based on M predictive density draws of qh,(j)n , we can obtain the ex ante variance via equation

(14).

Table 7 presents EAUs and RMSEs for five MIDAS specifications using 90-quarters rolling

windows. Bayesian specifications are computed employing 15,000 Gibbs draws and removing the

initial 1000 (M = 14, 000). The first column reproduces the MIDAS results for the model of section

3, eqn. (7). The MIDAS model draws on both daily and monthly predictors, and is estimated by

NLS with beta weighting functions. The second column shows the results for the B_MIDAS, that is,

the model described in equation (9). The B_MIDAS model has Almon weighting function instead

and it is estimated by Bayesian methods. The third column presents results for the B_MIDAS

but with stochastic volatility as in equation (15). The last two columns present results for the

Double-MIDAS specification (eqn. (16)) with just monthly data (column 4) or both monthly and

daily data (column 5). All these specifications substitute xMt with a monthly factor fMt to exploit

information on a set of monthly series.

It appears that the Bayesian approach (column 2) increases the estimates of EAU at horizons

beyond h = 2 for both variables, but that this is largely offset for inflation once we consider

the Double-MIDAS model. Nevertheless, the differences between the set of MIDAS models are

small relative to the difference between the models’and survey estimates, and do not affect the

key qualitative findings. Differences between the models’RMSEs across h are generally small as

expected since the inclusion of stochastic volatility normally does not improve the accuracy of point

forecasts (as, for example, in Pettenuzzo et al. (2015)). We should note, however, that the Bayesian

MIDAS specifications are normally more accurate forecasters of inflation at long horizons than the

MIDAS of section 3, reducing the already small RMSE gap between model and survey.

3.5 Modelling long-run volatility changes

Our use of both rolling estimation and stochastic volatility enables the model EAU estimates to

adapt to the reduction in underlying volatility documented by McConnell and Perez-Quiros (2000)

and Sensier and van Dijk (2004), inter alia. 16 However, for abrupt, one-off changes in volatility,

15We modified the matlab code available at http://people.anu.edu.au/joshua.chan/code.html for our purposes. In
the equations given by (17) we have ignored the required draws of the mixture sampler described in Chan and Hsiao
(2014).
16There are other modelling possibilities, such as the Unobserved Component Stochastic Volatility (UCSV) model of

Stock and Watson (2007) applied to US inflation, which allows the variances of permanent and transitory components
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approaches other than rolling windows may be preferable, and we use the testing procedure of

Sensier and van Dijk (2004) to identify breaks in the conditional variance, and to estimate the date of

the break. Their supWald statistic for a break in the variance is applied to the MIDAS disturbances,

using p-values computed as in Hansen (1997).17 If we find a break at the 5% significance level,

we only use the observations after the break to compute the ex ante uncertainty measure. This

strategy made little difference to the shorter-horizon estimates, and the results are not reported.

4 Conclusions

We have used MIDAS models to generate uncertainty measures that are comparable to the survey

estimates in terms of the target and the forecast horizon, and are intended to closely approximate

the information available to the survey respondent. The MIDAS model ex ante measures are

markedly smaller than the survey ex ante estimates at short horizons, even though the RMSEs of

the models and the surveys are broadly comparable at short horizons. The application of Double-

MIDAS specifications, which allow for volatility changes depending on macroeconomic variables

and stock returns, result in estimates which are qualitatively inkeeping with these findings.

Although other models could be used, it would be surprising if the resulting RMSE estimates

were radically different, at least at the short horizons. This is because the MIDAS model’s RMSEs

for both output growth and inflation are ‘close’ to those for the survey forecasts at h = 1, and

arguably the survey forecasts constitute an approximate upper bound on the accuracy with which

a model might be expected to forecast in practice. There are a number of papers attesting to the

good short-term performance of survey forecasts (see, e.g., Ang, Bekaert and Wei, 2007 and Faust

and Wright, 2009).

The key anomaly is that the survey ex ante estimates suggest much greater uncertainty at short

horizons than the model estimates (both ex ante and ex post) and the survey ex post values. For

example, approximate 95% intervals for calendar year output growth and inflation made in the 4th

quarter of the year are ±1% of the central projection, whereas intervals based on model or survey

RMSE estimates are closer to ±0.6% and to ±0.4% for output growth and inflation respectively.

A possible explanation is if we assume that survey forecasters ex ante uncertainty reflects the

outlook for the fully-revised values of the variables, including the rounds of annual revisions and

benchmark revisions. In that case, we find evidence that the survey ex ante uncertainty under-

estimates the ex post uncertainty of output growth, but our assessment for inflation is unchanged.

This alternative assumption on the behaviour of professional forecasters is necessarily speculative

because the surveys themselves provide no information on the vintages of data the histograms refer

to change over time. Cogley, Sargent and Surico (2012) fit a model fo this type to the US for the period 1791—2011,
and capture the overall decline in inflation volatility since the mid 1980s as a decline in the variance of the permanent
component.
17We remove the first and last 15% of the observations from the grid used to search for break dates.
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to.

Otherwise professional forecasters typically over-estimate the uncertainty surrounding within-

year forecasts of output growth and inflation when forecasting horizons are shorter than one year.

Our key empirical discovery is that models - such as the MIDAS model - which are able to match

the survey forecasts accuracy (on RMSE), would suggest ex ante uncertainty well below the survey

ex ante measure at short horizons. These results are robust to the use of different ex post measures

(such as the average across individual RMSEs and standard deviations of forecast errors; the

RMSE and forecast standard deviation of the consensus forecast), and to the different measures of

professional forecaster ex ante uncertainty considered in this paper.

However, an important caveat is that the matching of the (unconditional) ex ante and ex post

assessments does not necessarily coincide with improved density forecast accuracy.18 As an example,

suppose yt ∼ N
(
0, σ2t

)
, and either σ2t = 1 or σ2t = 4, both with probability 1

2 . A forecast density

M1: D
(
0, 212

)
is correctly calibrated unconditionally with equal ex ante and ex post uncertainty.

This is not true of a second forecast density, M2: D
(
0, σ2t + 0.1

)
, butM2 would be preferred toM1

in terms of accuracy. Hence we conclude that the survey short-horizon forecasts are over-dispersed

compared to the model estimates, and compared to RMSE estimates, but acknowledge that less

dispersed forecast densities will not necessary be more accurate on score-based forecast density

measures.

5 Appendix

5.1 Computation of EAU with estimated MIDAS models

Consider the generic MIDAS model, written for quarterly, monthly and daily regressors, as:

qht = G (κ,xt−h) + εht

where:

xt−h =

 yt−h, ..., yt−h−p+1, x
M
t−(3h/mM )+lM

, . . . , xM
t−(3h/mM )−(pM−1/mM )+lM

,

xD
t−(60h/mD)+lD

, ..., xD
t−(60h/mD)−(mD−1/mD)+lD

 ,

and κ =
(
θQ, θM , θD, βQ, βM , βD

)
.

Then the forecast error is given by:

en|n−h = qn − qn|n−h
18We are grateful to an anonymous referee for making this point, and for the illustrative example we give in the

text.
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where qn|n−h is the forecast using the estimated model with observations up to n−h, so the forecast
error is:

en|n−h = εhn +G (κ,xn−h)−G (κ̂,xn−h) (18)

Using a Taylor series expansion when κ̂ is close to κ (assuming a reasonable sample size):

G (κ̂,xt−h) ≈ G (κ,xt−h) +
∂G (κ,xt−h)

∂κ̂
(κ̂− κ) (19)

= G (κ,xt−h) + xt−h(κ̂) (κ̂− κ) (20)

Substituting from (19) into (18) gives:

en|n−h = εhn + xn−h(κ̂) (κ̂− κ)

so that

var
(
en|n−h

)
= σ2ε,n−h + xn−h(κ̂)var (κ̂− κ)xn−h(κ̂)′ (21)

where V ar
(
εhn
)

= σ2ε,n−h.

So assuming an estimator v̂ar(κ̂), we can calculate the second term in the above expression,

which is the contribution of parameter estimation uncertainty to the model’s ex ante uncertainty.

Write the full sample (t = 1, 2, .., n−h) gradient as x(κ̂) = ∂G (κ̂,x) /∂κ̂. Then v̂ar(κ̂) is computed

using a sandwich variance-covariance matrix by applying the usual Newey-West formulae to the full

sample gradient x(κ̂) and the residuals ε̂ = qh − G (κ̂,xt−h). We compute the required gradients

using numerical derivatives.
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Table 1: Results for Survey Forecasts: Ex Ante and RMSE Forecast Uncertainty.

Ex ante Ex Post Test p-values
σh,ea σaggh σh,ea,np σ̂h,ep RMSE σ̂i,ep RMSEi σ̂h,ep,app RMSEapp σh,ea = RMSE

h Annual Output Growth
8 1.00 1.15 1.09 1.54 1.55 1.51 1.65 . . 0.14
7 0.98 1.14 1.05 1.50 1.51 1.43 1.53 . . 0.09
6 0.94 1.05 1.02 1.31 1.31 1.42 1.49 . . 0.15
5 0.88 0.99 0.95 1.08 1.09 1.09 1.15 . . 0.15
4 0.83 0.94 0.90 0.83 0.86 0.79 0.89 0.87 0.87 0.79
3 0.75 0.79 0.81 0.52 0.52 0.57 0.57 0.54 0.54 0.00
2 0.63 0.65 0.69 0.37 0.37 0.39 0.39 0.37 0.37 0.00
1 0.46 0.50 0.54 0.27 0.27 0.27 0.26 0.28 0.28 0.01
h Annual Inflation
8 0.83 1.01 0.88 0.82 0.93 0.83 0.95 . . 0.57
7 0.85 1.01 0.89 0.72 0.85 0.80 0.96 . . 0.78
6 0.82 0.92 0.85 0.60 0.70 0.74 0.88 . . 0.03
5 0.76 0.86 0.79 0.52 0.56 0.66 0.77 . . 0.00
4 0.71 0.81 0.76 0.40 0.40 0.50 0.55 0.39 0.39 0.00
3 0.68 0.75 0.72 0.27 0.29 0.37 0.40 0.27 0.29 0.00
2 0.60 0.66 0.65 0.20 0.21 0.28 0.29 0.20 0.21 0.00
1 0.48 0.54 0.52 0.18 0.18 0.19 0.19 0.17 0.17 0.00

Notes. The estimates are based on the surveys from 1982:1 to 2014:4, of annual output growth and
inflation in 1983 to 2014 (32 years). σh,ea is the average of the individual standard deviations. σ

agg
h

is the standard deviation of the aggegate distribution. The standard deviations of the aggregate and
individual histograms are calculated by fitting normal distributions when three or more intervals
are given non-zero probability, and by fitting triangular distributions otherwise. σh,ea,np instead
calculates the standard deviations from the individual histograms directly (without fitting normal
distributions) and then takes the cross-section average. The standard deviation σ̂h,ep and the RMSE
(‘RMSE’) use the second-release real-time data series to calculate forecast errors using the median of
the point forecasts as the consensus forecast. σ̂i,ep and RMSEi are the averages of the individual
forecast-error standard deviations and RMSEs, respectively. The two measures augmented by
the subscript ‘app’use the approximation involving the weighted sum of log quarterly differences
to calculate the forecast of the annual percentage change. (Not available for the longer-horizon
forecasts due to nature of survey). The final column records the p-values of the test of equality
between the EAU (σh,ea) and RMSE.
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Table 2: Survey Estimates: Forecasting Early Release Data or True Values

Output Growth Inflation
h EAU RMSE RMSE EAU RMSE RMSE

Early Vint. Fully Rev. Early Vint. Fully Rev.
8 1.00 1.55 1.79 0.83 0.93 1.05
7 0.98 1.51 1.71 0.85 0.85 1.02
6 0.94 1.31 1.52 0.82 0.70 0.87
5 0.88 1.09 1.35 0.76 0.56 0.73
4 0.83 0.86 1.28 0.71 0.40 0.57
3 0.75 0.52 0.93 0.68 0.29 0.51
2 0.63 0.37 0.87 0.60 0.21 0.41
1 0.46 0.27 0.81 0.48 0.18 0.36

The Early Vintage RMSE is calculated using the quarterly-vintage available two quarters after the
reference quarter, as in table (1). The Fully-Revised RMSE uses actual values from the 2016:Q3
data vintage.

Table 3: Monthly Indicator Variables

Variable Description Vintages Available Source
Ind. Prod. Total Industrial Production 1966:M1-2015:M6 RTDSM
Empl. Employees on non-agricultural payrolls 1966:M1-2015:M6 RTDSM
Sales Retail and Food Services Sales; 1966:M1-2015:M6 ALFRED

Retail Sales before vintage 1992:M1.
Housing New Privately Owned Houses Started 1968:M2-2015:M6 RTDSM
PMI Purchasing Managers Index: Obs: 1959:M1-2015-M6 Datastream

ISM since 2002, but previously NAPM. (not subject to revisions)

The RTDSM is maintained by the Philadelphia Fed: see Croushore and Stark (2001). ALFRED is
maintained by the St Louis Fed.
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Table 4: Estimates of Macro Uncertainty: MIDAS Relative to Survey Forecasts

h Output Growth
EAUm EAUm/s RMSEm RMSEm/s EAUm=RMSEm EAUm RMSEm

rec/roll rec/roll
8 1.91 1.90 1.64 1.06 0.18 1.08 1.16
7 1.88 1.91 1.65 1.09 0.27 1.09 1.05
6 1.72 1.84 1.53 1.17** 0.31 1.11 1.03
5 1.46 1.66 1.37 1.25** 0.39 1.12 0.93
4 1.05 1.27 0.90 1.04 0.04 1.12 1.00
3 0.63 0.84 0.64 1.23* 0.96 1.11 0.97
2 0.32 0.51 0.41 1.11 0.14 1.08 0.96
1 0.13 0.28 0.29 1.04 0.10 1.08 0.99

h Inflation
EAUm EAUm/s RMSEm RMSEm/s EAUm=RMSEm EAUm RMSEm

rec/roll rec/roll
8 0.99 1.19 1.13 1.21 0.72 1.19 1.27
7 0.94 1.10 1.00 1.17 0.97 1.17 1.18
6 0.83 1.01 0.79 1.13 0.51 1.19 1.21
5 0.70 0.92 0.65 1.18 0.32 1.19 1.18
4 0.54 0.76 0.55 1.40* 0.68 1.17 1.17
3 0.33 0.48 0.37 1.28** 0.64 1.17 0.98
2 0.17 0.29 0.24 1.12 0.32 1.17 1.01
1 0.07 0.15 0.18 1.03 0.27 1.11 0.99

The annual targets are from 1983 to 2014 as in Tables 1 and 2.
The ‘m’subscript denotes the MIDAS model with a monthly data factor and daily equity price
returns, and ‘s’the survey, where EAUs is σh,ea. The MIDAS EAU incorporates a term in parameter
estimation uncertainty. The MIDAS model results in the left panel are based on estimation of the
model using rolling windows of 90 observations, over forecasting origins from 1982:1 to 2014:4. The
model has p = 8 quarterly lags, 24 monthly lags, and 60 daily lags.
*, **, *** denote the rejection of the null that model is as accurate as the survey in favour of the
alternative that the model is statistically worse than the survey at respectively 10%, 5% and 1%
significance levels.
The column headed ‘EAUm = RMSEm’records the p-values of the test of equality between EAU
and RMSE.
The two columns in the right panel report the results of using a recursive forecasting scheme for the
MIDAS model. The model is estimated on expanding windows of data. The right panel columns
give the ratio of the recursive and rolling estimates of EAU and RMSE.
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Table 5: Robustness check I: MIDAS model with p = 4 and only a month of daily data

Output growth
EAUm EAUm/s RMSEm RMSEm/s Equal RMSEs EAUm=RMSEm

8 2.00 1.99 1.73 1.11 0.21 0.21
7 1.89 1.93 1.70 1.13 0.07 0.34
6 1.75 1.87 1.52 1.16 0.05 0.17
5 1.50 1.71 1.07 0.98 0.58 0.00
4 1.09 1.31 0.85 0.99 0.69 0.01
3 0.66 0.88 0.61 1.18 0.04 0.40
2 0.33 0.52 0.40 1.07 0.19 0.21
1 0.13 0.28 0.28 1.03 0.39 0.10

Inflation
EAUm EAUm/s RMSEm RMSEm/s Equal RMSEs EAUm=RMSEm

8 1.11 1.33 0.93 1.00 0.74 0.04
7 1.14 1.22 0.86 1.01 0.47 0.04
6 0.90 1.10 0.65 0.94 0.81 0.00
5 0.75 0.98 0.61 1.09 0.18 0.02
4 0.56 0.79 0.49 1.23 0.15 0.05
3 0.34 0.50 0.34 1.18 0.01 0.60
2 0.18 0.30 0.25 1.18 0.04 0.26
1 0.07 0.15 0.18 1.02 0.34 0.29

Relative to the benchmark MIDAS model in Table 4 with p = 8 quarterly lags, 24 monthly lags,
and 60 daily lags, we set p = 4 quarterly lags, and use 12 monthly lags and one month of daily data.
The last two columns are the p-values from testing the equality of RMSEs between the surveys and
models, and the equality of the two model-based uncertainty measures.

Table 6: Robustness check II: Using annual growth rates as the dependent variable in the MIDAS
model

Ratios to Survey
Output Inflation Output Inflation

EAU RMSE EAU RMSE EAU RMSE EAU RMSE
8 1.95 1.64 1.05 1.20 1.94 1.06 1.25 1.29
7 1.93 1.66 0.99 1.06 1.96 1.10 1.16 1.24
6 1.76 1.50 0.88 0.84 1.88 1.14 1.07 1.21
5 1.51 1.33 0.75 0.69 1.72 1.22 0.98 1.24
4 1.08 0.98 0.57 0.58 1.31 1.13 0.80 1.46
3 0.66 0.65 0.35 0.40 0.89 1.25 0.52 1.39
2 0.34 0.39 0.19 0.27 0.54 1.06 0.31 1.28
1 0.15 0.27 0.09 0.20 0.34 1.00 0.18 1.11

The specification of the right-hand-side regressors is as in the benchmark MIDAS of Table 4. The
left-hand-side variable is zt.
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Table 7: Alternative MIDAS models
h MIDAS B_MIDAS B_MIDAS_SV D_MIDAS (M) D_MIDAS (M+D)

Output Growth
Ex ante uncertainty

8 1.91 2.17 2.04 1.95 2.84
7 1.88 2.10 1.96 1.97 2.37
6 1.72 1.95 1.95 2.06 2.52
5 1.46 1.69 1.64 1.80 1.98
4 1.05 1.26 1.18 1.34 1.63
3 0.63 0.76 0.67 0.69 0.71
2 0.32 0.40 0.35 0.38 0.40
1 0.13 0.16 0.13 0.14 0.14

RMSE
8 1.64 1.67 1.76 1.73 1.67
7 1.65 1.68 1.83 1.84 1.84
6 1.53 1.56 1.55 1.80 1.65
5 1.37 1.34 1.24 1.23 1.27
4 0.90 1.02 1.06 0.95 1.11
3 0.64 0.76 0.71 0.65 0.70
2 0.41 0.38 0.37 0.39 0.37
1 0.29 0.29 0.28 0.28 0.29

Inflation
Ex ante uncertainty

8 0.99 1.12 1.03 1.09 1.25
7 0.94 1.02 0.91 0.97 1.10
6 0.83 0.92 0.82 0.85 0.92
5 0.70 0.79 0.71 0.71 0.80
4 0.54 0.60 0.56 0.52 0.60
3 0.33 0.36 0.33 0.33 0.33
2 0.17 0.19 0.18 0.20 0.20
1 0.07 0.08 0.07 0.07 0.08

RMSE
8 1.13 1.15 0.94 0.89 0.98
7 1.00 0.98 0.84 0.82 0.88
6 0.79 0.79 0.67 0.64 0.66
5 0.65 0.68 0.53 0.54 0.54
4 0.55 0.54 0.50 0.46 0.51
3 0.37 0.36 0.37 0.38 0.38
2 0.24 0.25 0.25 0.24 0.25
1 0.18 0.19 0.19 0.18 0.19

The first column ‘MIDAS’refers to the model in Table 4. The other models are, respectively: the
Bayesian MIDAS, the Bayesian MIDAS with SV, and the ‘Double’MIDAS with monthly data
(higher frequency-data in the mean and variance equations), and and the ‘Double’MIDAS with

monthly and daily data (higher frequency-data in the mean and variance equations).
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