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Recent research has shown that the use of correlated observation errors in data assimilation
can lead to improvements in analysis accuracy and forecast skill. As a result, there is
increased interest in characterizing, understanding and making better use of correlated
observation errors. A simple diagnostic for estimating observation-error statistics makes use
of statistical averages of observation-minus-background and observation-minus-analysis
residuals. This diagnostic is derived assuming that the analysis is calculated using a
best linear unbiased estimator. In this work, we consider whether the diagnostic is still
applicable when the analysis is calculated using ensemble assimilation schemes with domain
localization. We show that the diagnostic equations no longer hold: the statistical averages of
observation-minus-background and observation-minus-analysis residuals no longer result
in an estimate of the observation-error covariance matrix. Nevertheless, we are able to
show that, under certain circumstances, some elements of the observation-error covariance
matrix can be recovered. Furthermore, we provide a method to determine which elements
of the observation-error covariance matrix can be estimated correctly. In particular, the
correct estimation of correlations is dependent on both the localization radius and the
observation operator. We provide numerical examples that illustrate these mathematical
results.
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1. Introduction

A key component in numerical weather prediction (NWP) is the
use of data assimilation systems. Data assimilation techniques
combine model states, known as forecasts or backgrounds, with
observations, weighted by their respective error statistics, to
provide a best estimate of the state, known as the analysis.
To obtain an accurate analysis, it is essential to have an
accurate representation of the background- and observation-error
statistics.

Much attention has been devoted to the estimation and
representation of the background-error covariance matrix in
variational assimilation systems (e.g. Bannister, 2008). In addition
to this, an entire class of ensemble data assimilation schemes
has been developed with the specific aim that the assimilation
system itself should provide an estimate of the flow-dependent
background-error statistics. First introduced by Evensen (1994),
the ensemble Kalman filter estimates the background-error
statistics considering a statistical sample, or ensemble, of
background states during the assimilation-forecast cycle. Many

forms of ensemble Kalman filter have been developed: for example
Burgers et al. (1998), Houtekamer and Mitchell (1998), Anderson
(2001), Evensen (2003) and Tippett et al. (2003). These methods
can be split into two categories; deterministic filters and stochastic
filters. Stochastic filters make use of a set of perturbed observations
which are required to maintain the correct statistics of the
filter (Burgers et al., 1998; Lewis et al., 2006). Deterministic
filters do not require these perturbed observations and therefore
no additional errors are introduced in the observations. It is
these deterministic filters that we will focus on in this article.
A key limitation of ensemble filters is the prohibitively large
number of ensemble members required to obtain an accurate
representation of the background-error statistics (Whitaker and
Hamill, 2002). Therefore, additional constraints are required
for ensemble methods to prove effective when used to provide
operational weather forecasts.

One approach is to ‘localize’ the problem by considering
only a part of the state or observation space, therefore
reducing the necessary ensemble size. The two most common
localization methods are state-space (covariance) localization

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.
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(Hamill et al., 2001; Houtekamer and Mitchell, 2001; Petrie
and Dance, 2010) and domain localization (local analysis:
Houtekamer and Mitchell, 1998; Ott et al., 2004; Janjić et al.,
2011; Nerger et al., 2012), which is used in conjunction with
observation localization (Sakov and Bertino, 2011). In covariance
localization, the estimated background-error covariance matrix
is Schur-multiplied by a localization matrix to suppress spurious
background correlations that appear at long range due to sampling
error. In domain localization, each model grid point is updated
individually using a subset of observations within a given distance.
In this article, we will consider the impact of domain localization
on the estimation of observation-error statistics.

The quantification of observation errors has been a recent
area of research. Typically, observation errors have been assumed
uncorrelated and, in an attempt to satisfy this assumption, the
data is often thinned or ‘superobbed’ (Lorenc, 1981). However,
it is known that a number of different sources contribute to
the observation error, some of which may be correlated, state-
dependent and dependent on the model resolution (Lorenc,
1986; Janjić and Cohn, 2006; Waller, 2013; Waller et al., 2014a,
2014b; Hodyss and Nichols, 2015). Research has shown that
observation errors can indeed exhibit significant correlations.
Furthermore, the inclusion of correlated interchannel errors
for satellite observations in data assimilation systems has been
shown to lead to a more accurate analysis, the inclusion of
more observation information content and improvements in the
forecast skill score (Stewart et al., 2008; Stewart, 2010; Weston
et al., 2014; Bormann et al., 2016).

One difficulty in quantifying observation-error correlations
is that they can only be estimated in a statistical sense, not
calculated directly. The method proposed by Desroziers et al.
(2005) has become popular for estimating observation-error
statistics due to its simplicity (a detailed discussion of this
diagnostic is given in section 3). The diagnostic provides
an estimate of the observation-error covariance matrix using
the statistical average of observation-minus-background and
observation-minus-analysis residuals, assuming that the analysis
is calculated using least-variance linear statistical estimation.
It has also been shown to be applicable to scenarios where
the analysis is calculated using both 3D and 4D variational
assimilation methods (Desroziers et al., 2005; Stewart, 2010).
However, the diagnostic only provides a correct estimate of the
observation-error covariance matrix if the assumed background-
and observation-error statistics used in the assimilation are
correct. As well as the impact of the assumed error statistics, the
diagnostic has further limitations, such as the error introduced
when using nonlinear observation operators (Terasaki and
Miyoshi, 2014) and the fact that an ergodic assumption is often
made in order to obtain sufficient sample residuals (Todling,
2015). However, Desroziers et al. (2005) also show that the result
may be improved if successive iterations of the diagnostic are
applied. Furthermore, with careful interpretation of the results,
the diagnostic can still provide useful information about the
true observation-error statistics when the assumed statistics,
used in the assimilation, are not exact (Ménard, 2016; Waller
et al., 2016b). Despite these limitations, the diagnostic has been
used successfully in some studies to estimate observation-error
variances and correlations. It has been used in simple model
experiments (Li et al., 2009; Stewart, 2010; Miyoshi et al., 2013)
and to estimate time-varying observation errors (Waller et al.,
2014a). The diagnostic has also been applied to operational
NWP observations to calculate interchannel error covariances
(Bormann and Bauer, 2010; Bormann et al., 2010, 2016; Stewart
et al., 2014; Weston et al., 2014; Waller et al., 2016a) and spatial
error covariances (Cordoba et al., 2016; Waller et al., 2016a,
2016c) in variational assimilation systems.

Another application of the diagnostics is their use in learning
about the assimilation system: for example to test self-consistency
in the system (Desroziers et al., 2005) and to determine sources
of errors (Waller et al., 2016a, 2016c).

One issue that appears to have been overlooked is
that the diagnostics are derived assuming that the analysis
is calculated using a best linear unbiased estimator. In
recent work, the diagnostic has been applied to calculate
observation errors where the analysis has been calculated
using an ensemble assimilation scheme employing domain and
observation localization techniques (Lange and Janjić, 2016;
Schraff et al., 2016). In this article, we consider whether the
diagnostics of Desroziers et al. (2005) are still appropriate for
calculating observation-error statistics for observations used in
a local assimilation scheme. We provide a new derivation of
the diagnostics using the analysis calculated by a local ensemble
assimilation. From this derivation, we show that the diagnostic
equations no longer hold and that the statistical averages of
observation-minus-background and observation-minus-analysis
residuals no longer result in an estimate of the observation-
error covariance matrix, in general. However, further analysis of
our derived diagnostics shows that, under certain circumstances,
some elements of the observation-error covariance matrix can,
in principle, be recovered exactly. Those elements that cannot, in
principle, be derived exactly we describe as ‘incorrectly estimated’.
Furthermore, we provide a method to determine which elements
of the observation-error covariance matrix can be estimated
correctly. In particular, the correct estimation of correlations is
dependent on both the localization radius and the observation
operator. We provide some special cases that show, dependent
on specific background- and observation-error statistics and
observation operators, that one may be lucky and may, in theory,
be able to recover all elements of the observation-error covariance
matrix, or unlucky and able to recover none. We also use examples
to show that it is possible that, theoretically, some elements
will be estimated incorrectly by the diagnostic, but, due to the
choice of specific background- and observation-error statistics
and observation operators, the estimated values may be close
to the true values. However, some prior knowledge of the true
statistics is required to be able to validate the quality of the
incorrect estimates. Therefore, if the estimated error statistics
are to be utilized further, it is necessary to find another method
to assign values to those elements of the covariance matrix that
cannot be estimated correctly by the diagnostic. This may be
achieved by, for example, applying techniques such as those in
Higham (2002) to provide a nearest approximate correlation
matrix.

Despite these problems, the estimated observation-error
covariance matrices can still be useful. It is known that even
the use of approximate observation-error covariance matrices
in data assimilation can improve analysis accuracy (Healy and
White, 2005; Stewart, 2010; Stewart et al., 2013).

This article is organized as follows. We begin in section 2
by describing deterministic ensemble Kalman filters and their
local implementation. We review the standard diagnostics of
Desroziers et al. (2005) in section 3. In section 4, we derive
the diagnostics where the analysis is calculated using a localized
assimilation scheme and determine when the diagnostic can be
used to estimate error correlations. In section 5, we demonstrate
our theoretical results using numerical examples. Finally, we
present our conclusions in section 6.

2. Data assimilation

2.1. Notation

Data assimilation techniques combine observations, y ∈ R
p,

available at time t with a model prediction of the state, the
background xb ∈ R

n, which is often determined by a previous
forecast. Here, p and n denote the dimensions of the observation
and model state vectors respectively. In the assimilation, the
observations and background are weighted by their respective
error statistics, using the background- and observation-error
covariance matrices, B ∈ R

n×n and R ∈ R
p×p, to provide a best

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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estimate of the state, xa ∈ R
n, known as the analysis. After an

assimilation step, the analysis is then evolved forward in time
using a (possibly nonlinear) model to provide a background at
the next assimilation time.

One of the simplest forms of data assimilation scheme is the
best linear unbiased estimator. Using this scheme, the analysis is
obtained using

xa = xb + B̃HT
(

HB̃HT + R̃
)−1

(
y − H

(
xb

))
= xb + K̃dob, (1)

where H : R
n → R

p is the (possibly nonlinear) observation
operator and H is the observation operator linearized about
the current state. Here, we restrict ourselves to the use of a linear
observation operator. The innovation, or observation-minus-
background residual, is denoted by

dob = y − Hxb. (2)

The assumed observation- and background-error covariance
matrices R̃ and B̃ are used to weight the observations and
background in the assimilation. The matrix

K̃ = B̃HT
(

HB̃HT + R̃
)−1

(3)

is the Kalman gain (K̃ ∈ R
n×p) used in the assimilation. We make

the distinction between the assumed error statistics, denoted by .̃ ,
and the exact error statistics, as this is important for the derivation
of the diagnostic in section 3.

2.2. Deterministic ensemble filters

We now describe the general form of deterministic square-root
ensemble filter. At each assimilation time we have an ensemble,
a statistical sample of m state estimates

{
x(k)

}
for k = 1, . . . , m.

From this ensemble it is possible to calculate the ensemble mean,

x̄ = 1

m

m∑
k=1

x(k), (4)

and ensemble perturbation matrix, X ∈ R
n×m:

X = 1√
m − 1

(
x(1) − x̄ x(2) − x̄ . . . x(m) − x̄

)
. (5)

Using the background ensemble members to calculate the
background ensemble mean x̄b and background ensemble
perturbation matrix Xb allows us to write the background
ensemble covariance matrix as

Pb = XbXbT = B̃. (6)

We note that the background ensemble covariance matrix will
not be exact and therefore can be thought of as the assumed
background-error covariance matrix. The background ensemble
mean is updated to provide the analysis ensemble mean, x̄a, as

x̄a = x̄b + K̃
(

y − Hx̄b
)

, (7)

where the Kalman gain is constructed as in Eq. (3) using the
background ensemble covariance matrix given in Eq. (6). (If
the observation operator is nonlinear, the matrix K̃ is defined
differently, as in e.g. Hunt et al. (2007). Alternatively, the
nonlinearity may be dealt with using an augmented state (Evensen,
2003).)

The ensemble perturbation matrix update then gives
information on the analysis-error covariance matrix. We do not
describe the update of the ensemble perturbations in detail, but
instead note that a number of different approaches are available
(e.g. Tippett et al., 2003), though one must be careful to ensure
that the chosen form is unbiased (Livings et al., 2008). We do not
include the equations here, as we only need to understand the
updated analysis mean for use with the Desroziers et al. (2005)
diagnostic, which is introduced in section 3.

Figure 1. Schematic of domain localization with grid points (pluses), observations
(dots) and local domain (shaded grey circle) with localization radius δ. Note that
we order the grid points from left to right and top to bottom with x1 (top left)
to x9 (bottom right). For clarity, we only label selected grid points in the figure.
When domain localization is applied, the component of the state vector located
at the highlighted grid point x2 would be updated using observations y1 and y2

that fall within the shaded area.

2.3. Local assimilation

In this section, we consider how domain localization is applied
to ensemble assimilation schemes. In domain localization, each
component of the background state vector is updated individually
using a subset of observations located within a given distance, δ.

In general, the ith component of the mean background vector,
x̄i, is updated independently using a local set of p̆{i} observations,
y̆{i} ∈ R

p̆{i}. The local observations can be defined as a sub-vector
of the full observation vector,

y̆{i} = �{i}y, (8)

where �{i} ∈ R
p̆{i}×p is a selection matrix, with elements 1 and

0, that selects only observations within a given distance, δ, from
the corresponding location of x̄i. (We remark that it is possible to
update a subvector of states simultaneously if each component in
the sub-vector is updated using the same local set of observations.)

Example. We present an example of the update of a single
component in Figure 1. In this schematic, the component x2

would be updated using only those observations (black dots) that
lie within a given radius (shaded grey circle). For this example, we
are able to determine that the selection matrix for the highlighted
grid point would be

�{2} =
[

1 0 0 0
0 1 0 0

]
,

which selects observations y1 and y2. (For this example, it would
be possible to update x1 and x2 simultaneously, as both of these
points would be updated using only observations y1 and y2.)

As only a sub-vector of observations is used, it is also necessary
to consider only a sub-vector of the modelled observations,

y̆b{i} = �{i}Hx̄b, (9)

and a local Kalman gain, ˘̃K{i} ∈ R
n×p̆{i}, defined as

˘̃K{i} =
XbXbT

HT�{i}T
(
�{i}

(
HXbXbT

HT + R̃
)

�{i}T
)−1

. (10)

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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The local update to the ensemble mean is calculated using

x̄a
i = x̄b

i +
p̆{i}∑
j=1

˘̃K{i}i,j

(
�{i}

(
y − Hx̄b

))
j
. (11)

We note that only the ith row of the ith local Kalman gain is
required for the update.

Following the update of the ensemble mean, it is necessary to
update the ensemble perturbations. Again, we do not describe
the update of the ensemble perturbations in detail; rather, we
note that the ensemble perturbation updates are also performed
locally using the local forms of the required matrices (Sakov and
Bertino, 2011).

3. The standard observation-space diagnostic

Desroziers et al. (2005) present a set of diagnostics that
provides estimates of the observation- and background-error
covariance statistics based on combinations of observation-
minus-background (OmB, also known as the innovation, given in
Eq. (2)), observation-minus-analysis (OmA) and analysis-minus-
background (AmB) residuals. In this article, we focus primarily
on use of the diagnostics to estimate observation-error statistics.
(Use of the diagnostics to estimate background-error statistics
is discussed in Appendix A.) In the derivation of the diagnostic
in Desroziers et al. (2005), it is assumed that the analysis is
determined using the best linear unbiased estimator described in
Eq. (1). Calculating the analysis in this way allows the analysis
residual (OmA) to be defined as

doa = y − Hxa

= y − Hxb − HK̃dob. (12)

Under the assumption that the forecast and observation errors are
uncorrelated, Desroziers et al. (2005) show that an estimate of the
observation-error correlation matrix can be obtained by taking
the statistical expectation of the outer product of the analysis and
background residuals:

E
[

doadobT
]

= R̃
(

HB̃HT + R̃
)−1 (

HBHT + R
)

= R̃̃S−1S

= Re, (13)

where Re is the estimated observation-error covariance matrix
and B and R are the exact background and observation covariance

matrices. Here, we define S = R + HBHT and S̃ = R̃ + HB̃H
T

.
If the observation and forecast errors used in the assimilation are
exact, R̃ = R and B̃ = B, then

E
[

doadobT
]

= R. (14)

However, in practice the estimate will be subject to sampling
error. Here, we will refer to Eq. (14) as the ‘standard’ form of the
observation diagnostic.

The calculation of these statistics for non-homogeneous,
irregular datasets, where different observations are used in
each assimilation cycle, cannot be performed using the matrix
multiplication above. Instead, this calculation can be achieved
by pairing components of the background and analysis residuals
and binning the doa and dob pairs. The pairing and binning
of observations will depend on the type of correlation being
estimated. For example, if we wish to calculate spatial correlations,
we may consider pairing only residuals that occur simultaneously
in time; the binning of the doa and dob pairs will depend on the
distance between the spatial locations of doa and dob. If we were
to estimate time correlations, then we would consider pairs of
residuals at the same location; the binning of the residual pairs

would then be dependent on the time difference between doa and
dob. The covariance, cov(β), is then computed individually for
each bin, β, using

cov(β) = 1

Nβ

Nβ∑
k=1

(
doa

i dob
j

)
k
− 1

Nβ

Nβ∑
k=1

(
doa

i

)
k

1

Nβ

Nβ∑
k=1

(
dob

j

)
k

,

(15)

where
(

doa
i dob

j

)
k

is the kth pair of elements of doa and dob in bin

β and Nβ is the number of residual pairs in bin β. We note that
the second term ensures that the calculation is not affected by
bias (Waller et al., 2016a).

4. Observation-space diagnostics using localized analyses

In this section, we revisit the derivation of the diagnostics, but in
this case we assume that the analysis is calculated using the local
ensemble assimilation described in section 2. For the purposes of
this derivation we make several assumptions.

(1) We consider a scalar case where each individual state
variable is updated using a local set of observations. We
note that this can be extended to the case where a local
analysis update is applied to a vector of state variables
(e.g. all variables in a given column at a given latitude and
longitude) that share the same set of local observations.

(2) We note that in this section we are concerned only with
the background and analysis ensemble means and not the
individual ensemble members, therefore to simplify the
notation we drop the overbar.

(3) In section 3 we demonstrated that the standard diagnostic
in Eq. (14) is only correct when R̃ and B̃ used in the
assimilation are correctly specified and therefore, for the
derivation in this section, we make the assumption that
the error covariance statistics used in the assimilation are
exact, that is R̃ = R and B̃ = XbXbT = B.

4.1. Derivation of diagnostic using local analyses

If we then assume that the analysis is calculated using a local
assimilation scheme, as in Eq. (11), the analysis residual is given
by

doa
i = yi − (

Hxa
)

i

= dob
i −

n∑
k=1

p̆{k}∑
l=1

Hi,kK̆{k}k,l

(
�{i}dob

)
l
. (16)

Thus, the diagnostics can be written in component form as

Re
i,j = E

[
doa

i dob
j

]
,

= E

⎡⎣⎛⎝dob
i −

n∑
k=1

p̆{k}∑
l=1

Hi,kK̆{k}k,l

(
�{k}dob

)
l

⎞⎠ dob
j

⎤⎦ ,

= Ri,j + (
HBHT

)
i,j

−
n∑

k=1

Hi,k

(
BHT�{k}T

(
�{k}S�{k}T

)−1
�{k}S

)
k,j

,

= Ri,j + (
HBHT

)
i,j

− (HF)i,j . (17)

In Eq. (17), we define F ∈ R
n×p as

Fk,j = G{k}k,j, (18)

where

G{k} = BHT�{k}T
(
�{k}S�{k}T

)−1
�{k}S. (19)

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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We note that F �= G{k}, but that the kth row of F is equal
to the kth row of G{k}. Furthermore, the rows of the matrix
F have a relation to the analysis grid points, with the kth
row related to xk, and the columns of the matrix F have a
relation to the observations, with the jth column related to the
observation yj.

Equation (17) relies on the use of the correct error covariances
in the assimilation and is based on updating the state using
an assimilation scheme employing localization. The standard
diagnostic gives a correct estimate of the observation-error
covariance matrix. However, when local analyses are used it
is not clear if the diagnostic gives a correct estimate of the
matrix R.

From Eq. (17), we see that the diagnostic will only result in
Re

i,j = Ri,j if
(

HBHT
)

i,j
− (HF)i,j = 0. To determine if this holds,

we first consider which elements of the matrix F are equal to
corresponding elements of the matrix BHT. To understand which
elements of F have the correct value, we must consider the
elements of the kth row of each of the matrices G{k}. We
note that G{k} is dependent on �{k}, which is a selection
matrix containing zeros and ones. By reordering the vector
of observations, the matrix �{k} can always be arranged into
the block form �̂{k} = [

I 0
]
, where I ∈ R

p̆{k}×p̆{k} is
the identity matrix. Applying this rearrangement (denoted by
.̂) to all the required matrices, Ĝ{k} can be calculated as
follows:

Ĝ{k} = B̂HT�̂{k}T
(
�̂{k}̂S�̂{k}T

)−1
�̂{k}̂S

=
[

B̂HT
[1,1] B̂HT

[1,2]

] [
I
0

]
×

([
I 0

] [
Ŝ[1,1] Ŝ[1,2]

Ŝ[2,1] Ŝ[2,2]

] [
I
0

])−1

× [
I 0

] [
Ŝ[1,1] Ŝ[1,2]

Ŝ[2,1] Ŝ[2,2]

]
=

[
B̂HT

[1,1] B̂HT
[1,1]Ŝ−1

[1,1]Ŝ[1,2]

]
. (20)

We see that the first set of columns of the matrix, i.e. the columns
related to the observations selected by �{k} and used in the
local update, are equal to the corresponding elements of BHT.

In contrast, the second set of columns are not equal to B̂HT
[1,2].

They are, in fact, related to the first set of columns, B̂HT
[1,1]

multiplied by Ŝ−1
[1,1]Ŝ[1,2] (note that in general Ŝ−1

[1,1]Ŝ[1,2] �= I). In
Appendix B, we provide a simple example that demonstrates
why the calculation of F fails to produce the desired elements
of HBHT and how, in turn, this impacts on the estimate of the
observation-error covariance matrix.

Rearranging the columns back to the original observation
vector ordering results in G{k} having its jth column equal to the
jth column of BHT only if the jth observation was used in the local
update of xk. Using this information, we are able to determine
that

if yj ∈ {(
y̆{k})

l
, l = 1, . . . , p̆{k}} then Fk,j = (

BHT
)

k,j
;

otherwise Fk,j �= (
BHT

)
k,j

.

(21)

In other words, the (k, j)th element of F is equal to the (k, j)th
element of BHT only if the analysis for state xk was calculated
using the observation yj. We remark that no calculation is required
to determine which elements of F have the correct value. It is
sufficient to know only which observations are used to update
which analysis states. We are able to determine that the kth row
of F will only have correct elements where the observation yj has
been used to update analysis state xk, i.e. is within the localization
distance. As well as considering a localization distance around a
grid point xk, it is possible to consider a ‘region of influence’ of
an observation.

Figure 2. Schematic of regions of observation influence when domain localization
is applied to ensemble assimilation schemes. Grid points (pluses) and observations
(dots), with observations coloured with corresponding regions of observation
influence (shaded coloured circles). Assuming that the model equivalent
observations are calculated using the four nearest model states, the coloured
squares around grid points select the points that would be utilized by the
observation operator for the observation of the corresponding colour. Note that
we order the grid points from left to right and top to bottom with x1 (top
left) to x9 (bottom right). For clarity, we only label selected grid points in the
figure.

The region of influence of an observation is the set
of analysis states that are updated in the assimilation
using the observation yi.

Using this definition, we are able to determine that the jth column
of F will only have correct elements where the analysis state xk

has been updated using the jth observation.

Example. In Figure 1 in section 2, we introduced a simple example
where there are four observations available to update nine states.
Using Eq. (21) and the diagram in Figure 1, we can determine
which elements Fi,j are equal to (BHT)i,j. If we denote elements
where Fi,j = (BHT)i,j by ✓and elements where Fi,j �= (BHT)i,j by
✗, we have

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

✓ ✓ ✗ ✗
✓ ✓ ✗ ✗
✗ ✓ ✗ ✗
✓ ✓ ✓ ✓
✓ ✓ ✓ ✓
✗ ✓ ✓ ✓
✗ ✗ ✓ ✓
✗ ✗ ✓ ✓
✗ ✗ ✓ ✓

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using Figure 1, we see that that x2 would be updated
using only observations y1 and y2 and hence in the sec-
ond row of F only the first two columns have correct
entries.

In Figure 2, we see the same example as in Figure 1, but
now the coloured shaded areas show the region of influence for
each corresponding observation. Figure 2 shows that observation
y2 will only be used to update x1, . . . , x6; as a result, the
second column of F only has the first six elements estimated
correctly.
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4.2. Determining correctly estimated elements of the observation-
error covariance matrix for regular datasets

To determine which elements of the observation-error covariance
matrix can be estimated correctly, we require only two things:

• to know which elements of the observation operator are
zero and

• to know which elements of F are incorrect.

It is useful to store this information in two matrices. Let
C ∈ R

p×n contain information on the non-zero elements of H,
where

Ci,j
def=

{
0 if Hi,j = 0,
1 if Hi,j �= 0,

(22)

and let D ∈ R
n×p contain information on the incorrect elements

of F, where

Di,j
def=

{
0 if Fi,j = (

BHT
)

i,j
,

1 if Fi,j �= (
BHT

)
i,j

.
(23)

We note that, to compute D, it is sufficient only to know the
location of the observations in relation to the location of the
analysis states. The matrix C provides information about the
‘domain of dependence’ of an observation.

The domain of dependence of an observation yi is
the set of elements of the model state that are used to
calculate the model equivalent of yi (i.e. the set of states{

xk : Hi,k �= 0
}

).

The form of C and D ensures that product of these two matrices
L = CD can be used to determine which elements of Re can be
estimated correctly using the diagnostic. In other words,

if Li,j = 0 then Re
i,j = Ri,j,

otherwise Re
i,j �= Ri,j.

(24)

We note that, for the elements where Li,j �= 0, the estimated value
of Re

i,j is given by Eqs (17), (18) and (19). In section 5, we provide
examples that show that the values estimated incorrectly by the
diagnostic may be close to the true values or can be far from the
truth; hence, without some prior knowledge of the true statistics,
one cannot be certain of the quality of the incorrect estimates.

Using the definitions of the domain of dependence and region of
influence, we can interpret Eq. (24) further as follows:

The correlation between the errors of observations yi

and yj can be estimated using the diagnostic only if the
domain of dependence for observation yi lies within
the region of influence of observation yj.

From this statement, we can see that using the diagnostic will not
necessarily result in a symmetric matrix; it is possible that the
domain of dependence for observation yi lies within the region of
influence of observation yj, but that the domain of dependence
for observation yj does not lie within the region of influence
of observation yi. Hence, in this case, the element Ri,j can be
estimated whereas the element Rj,i cannot.

Although developed in the framework of a linear observation
operator, our conclusion should hold when a nonlinear
observation operator is applied, as it depends only on which states
the observation operator acts on and not how the observation
operator acts on the state.

Example. We must now assume a form for our observation
operator in our example. We assume that, to calculate a model
observation equivalent, the observation operator acts on the four

closest state points to the observation itself. This is shown in
Figure 2, where for each coloured observation the state points
required to make the model observation are selected with a
correspondingly coloured square. Using an observation operator
of this form and using the previous step of our example, we are
able to determine that

C =

⎡⎢⎢⎣
1 1 0 1 1 0 0 0 0
0 1 1 0 1 1 0 0 0
0 0 0 1 1 0 1 1 0
0 0 0 0 1 1 0 1 1

⎤⎥⎥⎦ ,

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1
0 0 1 1
1 0 1 1
0 0 0 0
0 0 0 0
1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By comparing D with the F previously calculated in our example,
we see that D represents in binary the correct and incorrect
elements of F. Finally, using C and D we are able to determine
that

L =

⎡⎢⎢⎣
0 0 2 2
2 0 2 2
2 2 0 0
3 2 0 0

⎤⎥⎥⎦ .

The matrix L tells us which elements of the observation-error
covariance matrix can be estimated accurately. Using L along
with Figure 2, we see the following.

• All the observation-error variances (diagonal elements) are
estimated correctly.

• We are not able to estimate the elements R1,3, R3,1, R1,4

and R4,1. This is intuitive, since we see from Figure 2 that
observations y3 and y4 do not fall within the region of
influence of y1.

• We are able to estimate R3,4 and R4,3, since the domain
of dependence for observation y3 lies within the region
of influence of y4 and the domain of dependence for
observation y4 lies within the region of influence of y3.

• We are able to estimate R1,2 but cannot estimate R2,1,
despite the fact that y1 and y2 lie within each other’s regions
of influence. This is because the domain of dependence for
observation y1 lies within the region of influence of y2, but
the domain of dependence for observation y2 does not lie
within the region of influence of y1.

• The remaining entries of R cannot be estimated correctly.

In our example, we are able to estimate correctly 7 of the 16
elements of R. In general, the number of elements that can be
estimated correctly will be dependent on the localization radius
and observation operator. We note two particular special cases of
H that show that one may be lucky and recover all elements of the
observation-error covariance matrix, or be unlucky and recover
none.

• If H contains no zero entries (this scenario is likely to be
unphysical), then the diagnostics may provide no correct
information when applied to analyses calculated using the
localization.

• If H = I and n = p, i.e. the system is fully observed, then the
diagnostic will have the same correct entries as matrix F. If,
in addition, B and R are diagonal, then a local assimilation
scheme does produce the correct solution (this follows,
since for all Ĝ{k} the components of Ŝ[1,2] are zero).
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This methodology for determining correct elements is
applicable to regular datasets where the same observation
locations are used in each assimilation cycle. In this scenario,
since the same set of local observations will be used for each
local analysis update in each assimilation cycle, it will only ever
be possible to recover certain elements of the observation-error
covariance matrix.

To use the estimated statistics in an assimilation scheme, it will
be necessary to ‘fill in’ those elements of the covariance matrix that
cannot be estimated correctly by the diagnostic. It may be possible
to ‘fill in’ some of these elements using the calculated information:
e.g., if we have been able to estimate Re

i,j correctly, but not Re
j,i,

then, using the symmetric nature of a correlation matrix, we can
replace Re

j,i with Re
i,j. For the elements of the observation-error

covariance matrix for which we have no reliable information,
it may be necessary to assume no correlation or to estimate
the elements by employing more sophisticated techniques such
as those in Higham (2002) to provide a nearest approximate
correlation matrix.

4.3. Application to irregular datasets

If the dataset is irregular, then we must modify the above
approach slightly. As discussed in section 3, if we wish to calculate
observation errors for irregular observations then we must use
the summation form of the diagnostic and bin samples, rather
than a simple multiplication of samples doa and dob. Instead
of calculating Re and determining which elements have been
estimated correctly, we must be more careful and only consider
pairs of doa and dob that give the correct result. This can be
achieved by calculating C, D and L for each assimilation cycle. We
can then use the values in the matrix L to determine which doa dob

pairs can be used in the observation-error statistics calculation:

if Li,j = 0 use doa
i dob

j in the calculation,

if Li,j �= 0 do not use doa
i dob

j in the calculation.
(25)

Similarly, then, it is appropriate to use doa
i dob

j in the calculation
of observation-error correlation only if the observation operator
applied to calculate observation yi acts only on states that have
been updated using the observation yj. In other words,

When using the diagnostic to estimate observation-
error statistics, it is appropriate to use the pair of
residuals, doa

i dob
j , only if the domain of dependence for

observation yi falls within the region of influence of yj.

When calculating spatial correlations, one often assumes that
the observation-error correlations will be isotropic. Because of
this assumption, it is possible that we may be more successful
in recovering the observation-error statistics than in the regular
dataset case. Even so, it is possible that we will not be able to
recover information on all the correlations we require. In this
case, it may be necessary to fit a correlation function to the
estimated data.

5. Illustration of theoretical results

5.1. Experiment design

In this section, we describe ensemble filter and local ensemble
filter twin experiments based on the example presented in Figures
1 and 2 in sections 2 and 4. We set an explicit grid spacing of one
unit and localization distance of δ = 1.5. We use the analyses from
these experiments to estimate the observation-error covariance
matrix and use the results to illustrate the theoretical results
presented in section 4.

We define the observation operator to be bilinear interpolation
with equal weighting, i.e.

H = 0.25C,

where C is defined in the example in section 4.2. We determine
the true observation- and background-error covariance matrix
elements using

Ri,j = σ 2
r e(−�yi,j/Lr), (26)

where �yi,j is the distance between observations yi and yj, and

Bi,j = σ 2
b e(−�xi,j/Lb), (27)

where �xi,j is the distance between states xi and xj, respectively.
Both B and R are taken from Markov distributions (Wilks, 1995).
For the assimilation experiments we have a single true solution;
from this truth, pseudo-observations are created by adding errors
drawn from N (0, R) and the background is determined by adding
errors drawn from N (0, B). The background is then perturbed to
create the ensemble members. We perform a single assimilation
step using both a standard ensemble Kalman filter (Eq. (7)) with
1000 members and a local ensemble filter (Eq. 11)) with either
1000 or 100 members. To ensure accuracy of the background
ensemble covariance matrix, Pf , and avoid the ergodic assump-
tion of the diagnostic, we do not implement a dynamical model.
Instead, the single assimilation cycle experiment is repeated 5000
times, with new background, ensemble members and pseudo-
observations created each time. The resulting OmA and OmB
residuals are used to provide an estimate of the observation-error
covariance matrix. (We note that we choose a large number of
residual samples, since we wish to reduce the influence on the diag-
nostic of sampling error.) We analyse the quality of the estimated
observation-error correlation matrix by calculating, for each ele-
ment, the percentage error compared to the true error covariance:

100 ×

∣∣∣Ri,j − Re
i,j

∣∣∣∣∣Ri,j

∣∣ . (28)

5.2. Experimental results

We now consider how well the diagnostic estimates Re for two
different choices of B. We note that the example in section 4.2
shows which elements we expect to be estimated correctly and
incorrectly. We will first consider the case where σb = σr = 1 and
Lb = Lr = 1. We plot the percentage errors in Figure 3(a) for
Re estimated using 5000 residual samples from a 1000 member
ensemble filter, Figure 3(b) for Re estimated using 5000 residual
samples from a 1000 member local ensemble filter and Figure 3(c)
for Re estimated using 5000 residual samples from a 100 member
local ensemble filter. We see that, for this choice of B and R, the
errors in the ‘incorrectly estimated’ elements are small, with the
largest error in Figure 3(b) being similar to the percentage error
of the reference Re calculated using analyses from a standard
ensemble filter. We also note that reducing the number of
ensemble members appears to reduce the percentage error values
slightly.

We next consider the case where σb = 2, σr = 1, Lb = 0.5
and Lr = 1. We plot the percentage errors in Figure 4(a) for
Re estimated using 5000 residual samples from a 1000 member
ensemble filter, Figure 4(b) for Re estimated using 5000 residual
samples from a 1000 member local ensemble filter and Figure 4(c)
for Re estimated using 5000 residual samples from a 100 member
local ensemble filter. We note that the colour scale for Figure 4
is a factor of four larger than that in Figure 3. We see that,
for this choice of B, the errors in the ‘incorrectly estimated’
elements are large, with some of the errors as large as the actual
elements themselves. In this example, it is clear that the correctly
estimated elements are a reasonable estimate of the true error
statistics, whereas the incorrectly estimated elements provide
poor information.

These two examples highlight that it is not possible, in general,
to determine whether the incorrect elements will give estimates
close to the true values. This suggests that one can never be certain
about the quality of the incorrect estimates.
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Figure 3. Percentage error in estimated observation-error covariance matrices
when σr = 1, σb = 1, Lr = 1 and Lb = 1. (a) Percentage error in elements of
Re estimated using analysis residuals from a 1000 member ensemble Kalman
filter; largest error 13.4%. (b) Percentage error in elements of Re estimated using
analysis residuals from a 1000 member local ensemble Kalman filter; largest error
14.0%. (c) Percentage error in elements of Re estimated using analysis residuals
from a 100 member local ensemble Kalman filter; largest error 12.2%. Note that
the colour scale is a factor of four smaller than that in Figure 4.
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Figure 4. Percentage error in estimated observation-error covariance matrices
when σr = 1, σb = 2, Lr = 1 and Lb = 2. (a) Percentage error in elements of Re

estimated using analysis residuals from a 1000 member ensemble Kalman filter;
largest error 8.5%. (b) Percentage error in elements of Re estimated using analysis
residuals from a 1000 member local ensemble Kalman filter; largest error 97.7%.
(c) Percentage error in elements of Re estimated using analysis residuals from
a 100 member local ensemble Kalman filter; largest error 97.7%. Note that the
colour scale is a factor of four larger than that in Figure 3.

6. Conclusions

To obtain an accurate analysis, it is important that the
observation- and background-error statistics are specified
accurately in the data assimilation system. A number of
operational NWP centres are now using ensemble assimilation
schemes that provide flow-dependent background-error statistics.
However, for the computational cost of these ensemble
methods to be affordable it is necessary to employ additional
constraints such as variance inflation and localization. Research

involving the improved treatment of observation-error statistics
has been a more recent area of research. The positive
impact of including correlated observation-error statistics in
operational data assimilation has highlighted the need to improve
their specification and inclusion in assimilation systems. One
method available to estimate observation-error statistics is the
diagnostic of Desroziers et al. (2005). The diagnostic makes
use of statistical averages of observation-minus-background and
observation-minus-analysis residuals to provide an estimate of
the observation-error covariance matrix. However, the diagnostic
only gives a correct estimate of the observation-error statistics
if the background- and observation-error statistics used in the
analysis update are correctly specified. Despite the limitations,
the diagnostic has been used successfully to estimate observation-
error statistics for numerical weather prediction (Bormann and
Bauer, 2010; Bormann et al., 2010, 2016; Stewart et al., 2014;
Weston et al., 2014; Cordoba et al., 2016; Waller et al., 2016a,
2016c). One important fact that appears to have been overlooked
is that the diagnostic is derived assuming that the analysis is
calculated using a best linear unbiased estimator.

Here, we consider whether domain localization impacts on the
results of the diagnostic of Desroziers et al. (2005). We provide a
new derivation of the diagnostic, where we assume that the analysis
has been calculated using a local ensemble filter. This derivation
shows that, in general, even when the assumed background- and
observation-error statistics are exact, the diagnostic no longer
provides a correct estimate of the observation-error covariance
matrix.

Although we show that the diagnostics no longer provide a
correct estimation of the observation-error covariance matrix, we
are able, under the assumption that the assumed background- and
observation-error statistics are correctly specified, to determine
which elements of the observation-error covariance matrix are
recoverable. It is possible to estimate the error correlations
between two observations only if the observation operator applied
to calculate the model equivalent observation yi acts only on states
that have been updated using the observation yj. In other words,
one can determine the following.

The correlation between the errors of observations yi

and yj can be estimated using the diagnostic only if the
domain of dependence for observation yi lies within
the region of influence of observation yj.

Using the same logic, it is possible to determine which pairs of
analysis and background residuals can be used to provide an
accurate estimate of the observation-error statistics. For special
(unlikely) cases, we can show that one may be lucky and recover all
elements of the observation-error covariance matrix or unlucky
and recover none. Using examples, we show that the values
estimated incorrectly by the diagnostic may be close to the true
values or may be far from the truth; hence, without some prior
knowledge of the true statistics, one cannot be certain of the
quality of the incorrect estimates.

To use the estimated statistics in an assimilation scheme, it
will be necessary to ‘fill in’ those elements of the covariance
matrix that cannot be estimated correctly by the diagnostic. Some
elements may be determined by using the symmetric nature of a
correlation matrix. For those correlations for which we have no
reliable information, it may be necessary to assume a particular
correlation structure or estimate the elements by employing more
sophisticated techniques, such as those in Higham (2002), to
provide a nearest approximate correlation matrix.

If the assumed background- and observation-error statistics
are not exact, then those elements that can be estimated will be
affected. In this case, the theoretical work of Waller et al. (2016b)
may be used to provide knowledge on how the assumed statistics
may affect the estimated observation-error statistics.

We note that we have not considered the impact of variance
inflation here, but instead suggest that if the inflation factor is
not correct then the variance of the background-error statistics
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will be either under- or overestimated. In the case of under-
or overestimated variances, the theoretical work of Waller et al.
(2016b) can be used to provide an understanding of the impact
on the estimated observation-error statistics. We do not discuss
other forms of localization here, as a different derivation of the
diagnostic would be required.

Our new derivation in this article may, at a glance, suggest that it
is no longer possible to use the diagnostic to estimate observation-
error statistics using analyses that have been calculated with an
assimilation system employing localization. However, with careful
consideration the diagnostic may be used to calculate some
elements of the observation-error covariance matrix correctly.
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Appendix A: Diagnosing background-error statistics

In this section, we present the diagnostic described in Desroziers
et al. (2005) used to estimate background-error statistics. We
show that this diagnostic is also affected when analyses from local
assimilation schemes are used.

Using the standard diagnostic to estimate the background-
error statistics mapped into observation space, we make use of
the innovation and analysis-minus-background (AmB) residuals:

dab = Hxa − Hxb

≈ HK̃dob. (A1)

The background-error statistics in observation space, HBeHT,
can then be estimated using

E
[

dabdobT
]

= HB̃H
T(

HB̃HT + R̃
)−1 (

HBHT + R
)

= HBeHT. (A2)

Again, HBeHT = HBHT when the matrices B̃ and R̃ used in
assimilation are exact. Practical calculation of this diagnostic
for irregular datasets can be achieved in a similar way to the
observation-error computation, Eq. (15).

We now consider the impact of local assimilation analyses
on the diagnostics using the same assumptions as in
section 4, i.e.

(1) we consider a scalar case where each individual state
variable is updated using a local set of observations;

(2) all state variables refer to the ensemble mean; however, to
simplify the notation we drop the overbar; and

(3) we make the assumption that the error covariance
statistics used in the assimilation are exact, i.e. R̃ = R
and B̃ = XbXbT = B.

Now, assuming that the analysis is calculated using a local
assimilation scheme, then in component form the diagnostic is
given by (

HBeHT
)

i,j

= E
[

dab
i dob

j

]
= E

⎡⎣ n∑
k=1

p̆{k}∑
l=1

Hi,kK̆{k}k,l

(
�{k}dob

)
l

dob
j

⎤⎦
= (HF)i,j , (A3)

where F is defined as in Eq. (18). We note that the third term
of Eq. (17) is equal to Eq. (A3) and hence it is possible to use
the same methodology developed in section 4.2 to determine
which elements of HBHT may be estimated correctly using the
diagnostic.

Appendix B: Simple 2 × 2 example of diagnostic failure

We now provide a simple example to show how the diagnostic
fails when domain localization is employed. Suppose we have two
state values, x1 and x2, and two direct (H = I2×2) observations, y1

and y2. We assume that the localization acts such that x1 is updated
using y1 and x2 is updated using y2 and therefore �{1} = [1 0]
and �{2} = [0 1]. We assume the error correlation matrices are

R =
[

a b
b c

]
and

B =
[

d e
e f

]
.

The estimated covariance matrix is given by

Re = R + HBHT − HF. (B1)

We must first determine the elements of the matrix F, which can
be calculated using Eq. (19):

F =

⎡⎢⎢⎣ d d

(
b + e

a + d

)
f

(
b + e

c + f

)
f

⎤⎥⎥⎦
and

Re =

⎡⎢⎢⎣ a a

(
b + e

a + d

)
c

(
b + e

c + f

)
c

⎤⎥⎥⎦ . (B2)

We note that the variances are estimated correctly, but the
covariances are not. Furthermore, the estimated matrix is not
even symmetric. We now consider three cases to illustrate how
the ‘incorrect’ elements can be very poor, or may indeed give
reasonable estimates, although for the wrong reasons.

B1. Case 1

If we let R = B, then a

(
b + e

a + d

)
= c

(
b + e

c + f

)
= b and all the

elements of the observation-error covariance matrix are correct.

B2. Case 2

If we let R and B be correlation matrices (a = c = d = f = 1),

with B uncorrelated (e = 0), then a

(
b + e

a + d

)
= c

(
b + e

c + f

)
=

b/2. The estimated correlation is half the value it should be.

B3. Case 3

If we let R and B be correlation matrices (a = c = d = f = 1),

with −b = e, then a

(
b + e

a + d

)
= c

(
b + e

c + f

)
= 0. The estimate

provided by the diagnostic suggests no correlation, when in fact
there should be correlations, possibly very strong.
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