
How accurate appraisal of behavioral 
costs and benefits guides adaptive pain 
coping 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open access 

Gandhi, W. ORCID: https://orcid.org/0000-0003-3796-6311, 
Morrison, I. and Schweinhardt, P. (2017) How accurate 
appraisal of behavioral costs and benefits guides adaptive 
pain coping. Frontiers in Psychiatry, 8. 103. ISSN 1664-0640 
doi: https://doi.org/10.3389/fpsyt.2017.00103 Available at 
https://centaur.reading.ac.uk/71292/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.3389/fpsyt.2017.00103 
To link to this article DOI: http://dx.doi.org/10.3389/fpsyt.2017.00103 

Publisher: Frontiers 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



June 2017 | Volume 8 | Article 1031

Review
published: 12 June 2017

doi: 10.3389/fpsyt.2017.00103

Frontiers in Psychiatry | www.frontiersin.org

Edited by: 
Juan J. Canales,  

University of Leicester,  
United Kingdom

Reviewed by: 
James W. Grau,  

Texas A&M University,  
United States  

Ihssane Zouikr,  
RIKEN Brain Science Institute  

(BSI), Japan  
Rabih A. Moshourab,  

Charité Universitätsmedizin  
Berlin, Germany

*Correspondence:
Wiebke Gandhi  

w.gandhi@reading.ac.uk

Specialty section: 
This article was submitted to 

Neuropharmacology,  
a section of the journal  
Frontiers in Psychiatry

Received: 11 May 2016
Accepted: 26 May 2017

Published: 12 June 2017

Citation: 
Gandhi W, Morrison I and 

Schweinhardt P (2017) How 
Accurate Appraisal of Behavioral 

Costs and Benefits Guides Adaptive 
Pain Coping.  

Front. Psychiatry 8:103.  
doi: 10.3389/fpsyt.2017.00103

How Accurate Appraisal of 
Behavioral Costs and Benefits 
Guides Adaptive Pain Coping
Wiebke Gandhi1,2,3*, India Morrison4 and Petra Schweinhardt1,2,5,6

1 Faculty of Dentistry, McGill University, Montreal, QC, Canada, 2 The Alan Edwards Center for Research on Pain, McGill 
University, Montreal, QC, Canada, 3 School of Psychology and Clinical Language Sciences, Centre for Integrative 
Neuroscience and Neurodynamics, University of Reading, Reading, United Kingdom, 4 Center for Affective and Social 
Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden, 5 Faculty of 
Medicine, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, 6 Interdisciplinary Spinal 
Research Group, Balgrist University Hospital, Zurich, Switzerland

Coping with pain is a complex phenomenon encompassing a variety of behavioral 
responses and a large network of underlying neural circuits. Whether pain coping is 
adaptive or maladaptive depends on the type of pain (e.g., escapable or inescapable), 
personal factors (e.g., individual experiences with coping strategies in the past), and 
situational circumstances. Keeping these factors in mind, costs and benefits of different 
strategies have to be appraised and will guide behavioral decisions in the face of pain. In 
this review we present pain coping as an unconscious decision-making process during 
which accurately evaluated costs and benefits lead to adaptive pain coping behavior. 
We emphasize the importance of passive coping as an adaptive strategy when dealing 
with ongoing pain and thus go beyond the common view of passivity as a default state 
of helplessness. In combination with passive pain coping, we highlight the role of the 
reward system in reestablishing affective homeostasis and discuss existing evidence 
on a behavioral and neural level. We further present neural circuits involved in the deci-
sion-making process of pain coping when circumstances are ambiguous and, therefore, 
costs and benefits are difficult to anticipate. Finally, we address the wider implications of 
this topic by discussing its relevance for chronic pain patients.

Keywords: behavioral control, active compensatory coping, adaptive pain coping, maladaptive pain coping, 
mesolimbic dopamine system

iNTRODUCTiON

Pain is per definition an unpleasant sensation and signals (potential) harm to the organism (1).  
It therefore requires attention and needs to be addressed by the individual. Evidence suggests that 
pain triggers behavioral coping responses—aiming to reduce unpleasantness and harm, and to reach 
the best hedonic state possible within the given situation. In this article we discuss a variety of behav-
iors that are frequently exhibited to cope with a painful event. We further attempt to disentangle how 
characteristics of the painful stimulus itself as well as situational and personal factors influence the 
appraisal of costs and benefits, which ultimately determines the choice of a particular coping strategy 
via a complex network of relevant neural circuits.
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FiGURe 1 | Representation of the suggested appraisal and unconscious decision-making process when an individual is faced with pain. The appraisal of costs and 
expected benefits is based on attributes of the pain itself, as well as personal and situational factors. Active coping strategies are represented in red, passive 
strategies in green.
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Coping with pain arguably serves two objectives: to (i) elimi-
nate or reduce pain and (ii) continue to pursue valued activities 
despite pain (2). During active coping, the organism focusses on 
external stimuli and addresses them directly (3). Major active 
coping strategies encompass behaviors such as escaping, avoid-
ing, or attacking the source of pain (4), but possibly also actions 
aimed to offset the unpleasant component of pain via active pur-
suit of pleasurable stimuli or events in the environment. During 
passive coping, the organism shows decreased responsiveness to 
external stimuli and focusses on affect regulation (3). Major pas-
sive coping strategies are quiescence, pain acceptance, and forms 
of surrender (including relegating the locus of control to external 
forces). Active and passive coping strategies may prove beneficial 
or disadvantageous depending not only on characteristics of the 
pain itself (i.e., whether it is objectively escapable or not) but also 
on personal factors (individual learning history with similar situ-
ations) and situational aspects, such as opportunities provided 
by the environment to allow for certain strategies (Figure 1). The 
organism has to (unconsciously) appraise the behavioral costs 
and the anticipated benefits for the different available strategies 
to (unconsciously) choose the most economical one. An accurate 
appraisal of the cost/benefit ratio will guide adaptive pain coping 
behavior. For pain that is escapable, active coping strategies are 
likely to be adaptive, because the behavioral costs are compara-
tively little given the benefit of ceasing the pain. However, if the 
organism has experienced little or no success with a certain active 
coping strategy in the past (for example, attacking the source of 
pain), and the situation does not allow for an alternative active 

strategy (e.g., flight), the most adaptive strategy is likely passive 
surrender (i.e., lower the costs) and pain endurance—the energy 
expenditure is minimized and the body gains time to heal (i.e., 
greatest anticipated benefit).

Similarly, if pain stems from an objectively inescapable source 
(e.g., visceral pain, inflammation), passive coping in the form of 
quiescence is likely to be adaptive. By reducing movement and 
allowing healing, quiescence might even help to avoid further 
damage. Beyond the concept of passivity as a default state of 
individuals who have not learned to control a certain stressor 
[put forward by Maier and Seligman (5)], we portray passive 
coping as an adaptive strategy when dealing with ongoing pain. 
Passive coping, including pain acceptance, encompasses engage-
ment with the pain symptoms (6) and requires an active learning 
process. “Learned controllability” (5), for instance, can hinder 
pain acceptance—an individual who has learned to be generally 
in control of physical stressors may find it difficult to accept and 
endure pain. In contrast, once pain acceptance has been success-
fully acquired as a coping strategy, cognitive resources become 
available to focus on the surroundings. If incentives are present, 
it would be most adaptive to focus on their pursuit to offset the 
unpleasant sensation caused by ongoing, inescapable pain.

In this review, we present pain coping as an unconscious 
decision-making process during which accurately evaluated 
costs and benefits of behavioral choices lead to adaptive pain 
coping behavior. We also review the neurobiology underlying 
this behavior. Neural circuits involved in pain coping can trigger 
the dopaminergic system and thereby support vigilance toward 
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rewarding stimuli while in pain. We argue that these mechanisms 
are of central importance to coping with ongoing, unavoidable 
pain. In the final part of the article we focus on alterations of the 
brain’s dopamine system as one of the neurobiological obstacles 
hindering adaptive coping in pain patients.

BeHAviORAL FiNDiNGS FOR ACTive  
AND PASSive PAiN COPiNG

Active escape from Acute Pain: From 
Reflexes to Complex Behaviors
Pain warns the organism of (potential) harm and calls for a quick 
coping action, e.g., the withdrawal of the affected body part from 
a harmful source or the escape from an unsafe environment. 
Ultimately, the organism will likely learn from the unpleasant 
experience and, in the future, adapt their behavioral response to 
the threat (e.g., an environment, a certain action, or a specific 
stimulus), which led to pain. Accordingly, Morrison and col-
leagues portrayed pain as an “action problem” (7) highlighting the 
necessity of immediate nocifensive behavior when facing potential 
injury. One of the simplest forms of nocifensive behavior is the 
withdrawal reflex. While reflexes provide a rapid initial action to 
prevent harm and to eliminate pain, more complex mechanisms 
allow for refined nocifensive behaviors (8). For example, early 
experiments in canines demonstrated that naïve dogs receiving 
escape-avoidance training show fear-like behavior in response to 
nociceptive electrical stimulation until the dog finally escapes to 
safety [e.g., jumping over a barrier to the safe compartment of a 
shuttle box (9)]. With every new exposure to the same aversive 
stimulation, the dogs showed the escape response faster and, thus, 
learned “mastery” (5). Similarly, human participants show faster 
reaction times during acute pain (10), suggesting a facilitation of 
the motor actions that would enable quick voluntary escape or 
avoidance responses. The neural underpinnings of this phenom-
enon are discussed in the Section “Neurobiological Correlates of 
Active and Passive Coping.”

Passive endurance of escapable Pain: 
Adaptive and Maladaptive Behaviors
In certain situations, it is adaptive to endure pain even when it 
could be escaped and thus eliminated. For example, we might 
accept the pain of dental treatment because of the anticipated 
future benefit (e.g., increased dental hygiene, prevention of dental 
damage). The decision-making based on the comparison between 
costs and benefits/reward in the pain context has been formalized 
in the “Motivation-Decision Model” (11, 12). In this model, pain 
and reward are understood as interacting aversive and appeti-
tive motivational systems. The individual (e.g., the patient at the 
dentist’s) has to prioritize one or the other, based on personal 
factors (How much do I value dental hygiene?), learning history 
(I survived the last treatment), and situational factors (Does 
the environment offer a way to escape the pain and still get the 
benefits, maybe in form of local anesthesia?).

While adaptive in certain  situations, passive endurance of 
escapable pain can be maladaptive under different circumstances. 
About 50 years ago, the phenomenon of “learned helplessness” 

was first described (13). It refers to passive pain coping of 
animals in a situation where pain can be escaped and would be 
objectively more adaptive than passivity. However, the animals 
had been exposed to unavoidable nociceptive foot shocks in a 
different environment several hours before [e.g., Ref. (13–18)]. 
During this initial procedure of receiving inescapable shocks, 
the animals learn that shock termination is independent of their 
behavioral responses. Receiving shocks in a new environment, 
the expectation of not being in control is generalized, and the 
organism fails to learn appropriate escape behavior [reviewed in 
Maier and Watkins (19)]. The phenomenon of learned helpless-
ness has been replicated experimentally in humans after exposure 
to inescapable noise [e.g., Ref. (20, 21)]. It was conceptualized 
that the person’s attributional style would determine whether the 
individual was likely to develop generalized helplessness after 
experiencing uncontrollability over a stressor (21, 22). According 
to this attributional theory of learned helplessness, people who 
attribute a lack of control over negative events to permanent 
causes (e.g., stress is always uncontrollable) and pervasive factors 
(e.g., most of my problems are unsolvable) are more vulnerable 
to generalize helplessness (5, 21–23).

Although it has not been directly tested, we posit that the phe-
nomenon of learned helplessness is of crucial importance to the 
pain field. The treatment of pain often includes pharmacological 
approaches, but many patients still continue to experience sub-
stantial levels of pain (24) and often describe the treatment effects 
as unreliable and dissatisfactory (25). This leaves the patient with 
little or no control over their condition. As described above, 
learning that their own behavior has no consequence on the 
stressor (i.e., the pain) leads to learned helplessness in vulnerable 
individuals. Learned helplessness in humans has been associ-
ated with motivational and cognitive deficits, and emotional 
disturbances (22), which are indeed commonly described by pain 
patients (26–29).

The examples above highlight how similar behaviors in 
response to pain can be adaptive or maladaptive, depending on 
the accuracy of the individual’s appraisal of the relevant factors. 
Pain coping can, in fact, be described as a decision-making 
process based on the appraisal of costs and expected benefits (11, 
12). In the example of the patient undergoing a dental procedure, 
costs and benefits are realistically anticipated, leading to the 
conclusion that benefits are greater than costs and therefore, tol-
erating pain is adaptive. In the instance of helplessness, however, 
costs are considered unrealistically high while—falsely—no or 
little benefit is being anticipated. This false appraisal of the cost/
benefit ratio leads to unnecessary pain suffering, the perception 
of uncontrollability, and long-term emotional disturbances (22) 
and is thus considered maladaptive.

Passive/emotional Coping when Pain is 
Unavoidable: Positive Pain Management, 
instead of Perseverance in Unsuccessful 
Attempts to eliminate Pain
Even in many acute pain situations, escape or avoidance of the 
pain-provoking stimulus is not possible: an inflamed wound, 
toothache, or visceral pain are examples of acute pain situations 
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that we are unable to escape from. Under these circumstances, 
it is often advantageous to engage in a passive/emotional coping 
style: the affected body part or the whole body is immobilized, 
and blood pressure and heart rate decrease (4, 30, 31), helping 
the body to rest and heal. One central concept within emotional 
coping strategies is pain acceptance. Though pain acceptance has 
sometimes been equated with “giving up,” it actually constitutes an 
active engagement with the pain. In contrast to helplessness, pain 
acceptance is based on an accurate appraisal of costs and benefits, 
with the realistic conclusion that the costs to fight (unavoidable) 
pain are too high given the low probability of benefits. It describes 
a readiness to accept the presence of pain and its inescapability, 
while no energy is being wasted to persevere in the attempt to 
change what cannot be changed (6, 24). Pain acceptance increases 
cognitive capacities and allows attending to rewarding events and 
stimuli in the environment while pain is ongoing. In the following 
paragraph, we discuss in more detail how reaching out for posi-
tive means describes an adaptive active coping style when dealing 
with unavoidable/inescapable pain.

Reaching Out for Positive Means: Active 
Compensatory Coping when Pain is 
Unavoidable
When inescapable/unavoidable pain is well managed via pas-
sive/emotional coping, cognitive capacities become available 
to focus on life-relevant and rewarding events. We classify the 
approach to screen the environment for incentives as an active 
pain coping attempt with the aim to reestablish the hedonic 
homeostasis, which is disturbed by the unpleasant experience of 
pain (1). Consistent with this, healthy individuals show increased 
motivation to obtain reward when in pain (32), presumably to 
compensate for the negative emotional state caused by pain and 
to reestablish the hedonic homeostasis. In our study, participants 
showed increased efforts (faster reaction times) to obtain high 
monetary reward when in pain compared to when they were 
pain-free. We concluded that vigilance for environmental cues 
with the potential to improve the hedonic state was increased by 
the ongoing pain stimulus. Comparable results have been found 
in rodents (33): acutely injured rats spent more time in near 
proximity to rewarding food pellets in the middle of an open field 
arena than control animals (33).

The fact that humans perform better when in pain is remark-
able, given that pain demands attention and has been described as 
reducing the availability of cognitive resources (34–36). To resolve 
this apparent contradiction, it is important to consider whether 
the outcome of the task is of relevance to the participant’s state. 
In general, individuals are more sensitive to information that is 
pertinent to reach a certain goal; goal-irrelevant information, in 
contrast, is likely to be ignored [reviewed in Van Damme et al. 
(37)]. In analogy, while in pain, the sensitivity toward incentives 
associated with rewarding outcomes—as well as toward negative 
cues threatening to further worsen the homoeostatic imbal-
ance—would be increased, because it assists in achieving the goal 
to reestablish hedonic homeostasis. Conversely, during goal-
irrelevant tasks that do not impact the homeostatic balance while 
in pain, such as mental arithmetic, memory, or discrimination 

tasks, the performance is worse compared to a pain-free state, 
as shown in many experimental studies [e.g., Ref. (35, 38–40)]. 
Interestingly, experimental studies have shown that chronic pain 
patients (41–43) and healthy participants in acute pain (44) choose 
options associated with high immediate reward, while ignoring 
the fact that this choice is associated with higher risk and thus less 
advantageous in the long term. This fits the notion that ongoing 
or persistent pain makes individuals more sensitive to immediate 
rewards and less sensitive to long-term disadvantageous con-
sequences. This phenomenon does not seem to be restricted to 
humans: rats with persistent inflammatory pain were shown to 
choose a lever associated with higher, but less frequent rewards 
over a safer option associated with smaller immediate rewards 
(45). We propose that individuals with ongoing pain focus on 
environmental cues that offer an opportunity to immediately 
improve their hedonic imbalance, i.e., high incentives, while 
higher-order processing of odds and potential risks is dimin-
ished. Furthermore, the experience of winning is itself analgesic 
(46, 47). Thus, reaching out for positive means—i.e., showing an 
increased effort to obtain reward—constitutes an active coping 
style with a twofold benefit when pain itself cannot be avoided 
or escaped: obtaining reward reestablishes or at least improves 
the hedonic homeostatic balance and reduces the perception of 
the pain. It is conceivable that such active compensatory coping 
might even occur when the rest of the body is in passive coping 
mode. That is, the affected body site or the whole body is kept at 
rest while the mind stays alert, screening the environment for 
incentives signaling the potential of immediate reward.

NeUROBiOLOGiCAL CORReLATeS  
OF ACTive AND PASSive COPiNG

Studies on the neurobiology underlying pain coping have often 
used escapable and inescapable stimuli to investigate coping 
responses in animals. As expected, the former are typically asso-
ciated with active escape responses, while the latter are related 
to passive strategies (4). However, as discussed above, organisms 
may react with passivity to stimuli that are objectively avoidable; 
and vice versa may use active coping strategies while healing from 
unavoidable pain is taking place (e.g., reaching out for positive 
means). In the following paragraphs, we discuss the neural sub-
strates underlying the complex interacting influences of pain and 
individual circumstances on coping behavior.

Coping in Response to Objectively 
escapable Pain
Rodent studies demonstrate that generally, escapable acute pain, 
such as short-lasting superficial noxious stimulation of the skin 
and mainly mediated by A-delta fibers (e.g., pinches, pricking, 
and noxious heat stimulation), elicits active coping behaviors, 
accompanied by excitation of the sympathetic nervous system 
(31, 48, 49). One of the simplest forms of nocifensive behavior is 
the withdrawal reflex (7). At the dorsal horn of the spinal cord, 
the afferent nociceptive signal is conveyed directly or indirectly 
to spinal motor neurons to facilitate the withdrawal reflex. While 
reflexes provide a rapid initial action to prevent harm and to 
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FiGURe 2 | Bottom-up pathways of active and passive pain coping and its modulation by top-down mechanisms. The PAG is a central brain structure in pain 
coping, preparing the body for either fight/flight responses or passive endurance of the painful stimulus. (A) Different parts of the PAG receive nociceptive input from 
A-delta or C-fibers. (B) The PAG is modulated, via the DRN, by the mPFC, which signals subjectively perceived control over a painful event. PAG, periaqueductal 
gray; dlPAG, dorsolateral periaqueductal gray; vlPAG, ventrolateral periaqueductal gray; DRN, dorsal raphe nucleus; 5-HT, serotonin; GABA, gamma-aminobutyric 
acid; mPFC, medial prefrontal cortex; green arrows, excitatory activation; red arrows, inhibition; dashed arrows, anatomical connections postulated to underlie 
coping behavior in response to pain; solid arrows, anatomical connections shown to play a role in nociceptive processing or the modulation of behavior when 
expecting or experiencing pain.
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eliminate pain, more complex midbrain and cortex-regulated 
mechanisms allow for refined nocifensive behaviors. The dorso-
lateral periaqueductal gray (dlPAG) receiving mainly input from 
superficial A-delta fibers is key in orchestrating active coping 
responses (4, 30, 50). An important cortical site for integrating 
visual, auditory, and somatosensory information with movement 
toward or away from the harmful source is suggested to be the 
superior parietal cortex, as identified in a human fMRI experi-
ment (51). To our knowledge, no evidence exists for direct con-
nections between the dlPAG and the superior parietal cortex, but 
a human diffusion MRI study showed connectivity between these 
two regions (52). Therefore, dlPAG–parietal cortex connections 
might be the neural substrate of active nocifensive behavior in 
response to escapable pain in humans.

Active pain coping triggered by A-delta input into the dlPAG 
is modulated by top-down mechanisms. The rodent literature 
shows that the medial prefrontal cortex (mPFC) evaluates the 
escapability of pain [reviewed in Maier and Seligman (5)]. If a 
stimulus is deemed escapable, the mPFC allows the dlPAG to 
exhibit an active coping response. Indirect projections have 
been shown to be important for active pain coping: inhibition 
of the dorsal raphe nucleus (DRN) by the mPFC disinhibits 
the dlPAG [reviewed in Maier and Seligman (5); Figure  2], 

thereby allowing fight or flight responses (4, 30, 50). In addi-
tion, direct anatomical connections between the mPFC and the 
dlPAG might also be involved in mediating active pain coping 
responses: the mPFC has been shown in rodents and macaque 
monkeys to project directly to the dlPAG (53, 54). In fact, such 
projections have recently been identified in mice as playing an 
important role for social defensive responses (55). In humans, 
the mPFC has been described to form and store schemata that 
integrate context, events, and appropriate action [reviewed in 
Euston et al. (56)]. The purpose of these schemata is to initiate 
the most suitable emotional and motor response to a given event, 
based on past experiences. Based on these lines of evidence, we 
speculate that also in humans, the dlPAG is disinhibited via the 
mPFC if the appraisal of pain results in the interpretation that it 
can be escaped, and consequently prepares the body for active 
coping.

In situations where the painful stimulus is not identified as 
escapable, the dlPAG and its functions are inhibited via neural 
networks identified in non-human studies (5). When pain is 
deemed inescapable, the mPFC does not inhibit the DRN, which 
is activated via excitatory nociceptive input from the habenula 
and locus coeruleus (57–59). Activity in the DRN suppresses 
activity in the dlPAG via serotonergic projections (60) and 
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thereby triggers behavioral passivity. The serotonergic pathways 
from the DRN further activate the amygdala (61), which results 
in the emotional experience of fear.

The periaqueductal gray (PAG) also seems to code negative 
prediction errors, which has been described in humans using 
functional magnetic resonance imaging (62). Negative predic-
tion errors in these circumstances describe the experience of a 
painful stimulus that was (falsely) evaluated as avoidable, i.e., the 
outcome was worse (more painful) than expected. This informa-
tion is being fed back to the mPFC to update expectations for 
future pain events (62). This suggests that a similar pain event in 
the future will less likely be considered escapable; this, in turn will 
result in decreased dlPAG activation (via the top-down pathways 
described above) and therefore lead to decreased active escape 
behavior or even behavioral passivity.

Coping in Response to Objectively 
inescapable Pain
Objectively unavoidable acute pain, such as deep somatic or 
visceral pain, is conveyed by C-fiber input into the ventrolateral 
periaqueductal gray (vlPAG), which triggers passive coping 
behaviors and downregulation of the sympathetic nervous system 
in rodents (4, 30). Keay et al. (63), for instance, demonstrated that 
tonic nociceptive stimulation of the neck (deep muscle stimula-
tion by 5% formalin solution or cutaneous stimulation by a neck 
clip) increased quiescence compared to control rats, which was 
associated with a selective increase of a marker of neural activity, 
c-Fos, in the vlPAG. As explained in the section above, serotoner-
gic neurons of the DRN are activated simultaneously via the locus 
coeruleus and the habenula of the descending antinociceptive 
system (57–59). By activation of the raphe nucleus, serotonin 
is being released from axons in the spinal cord, which produces 
an analgesic effect by inhibiting incoming nociceptive signals 
[e.g., Ref. (64)]; the pain can thus be endured more easily. These 
mechanisms support passivity and quiescence of the body to 
allow healing and regaining of energy.

Of interest for this article are not only the afferent but also the 
efferent connections of the PAG, particularly to the dopaminergic 
structures ventral tegmental area (VTA) and substantia nigra 
identified by tracer studies in rodents (65–67). The PAG input 
to the nigrostriatal dopaminergic system via the substantia nigra 
pars compacta originates mainly in the ventral aspect of the PAG 
(65). Considering the central role of the nigrostriatal system in 
initiating and preparing motor responses demonstrated by lesion 
studies [e.g., Ref. (68, 69)], this system is a candidate substrate for 
increased motor performance in response to reward-associated 
stimuli while experiencing inescapable pain (see Reaching Out 
for Positive Means: Active Compensatory Coping When Pain Is 
Unavoidable). In contrast to the substantia nigra, the PAG input 
into the VTA does not seem to be restricted to one specific aspect 
of the PAG but originates from ventrolateral as well as dorsolat-
eral columns (67). Within the VTA, these PAG efferents target 
dopaminergic neurons in the paranigral and the parabrachial 
subregions (67), providing a circuitry via which nociceptive 
input could trigger the mesolimbic dopaminergic system. In line 
with the anatomical circuitry, dopamine is released in the basal 

ganglia, including the striatum, in response to experimental pain 
in rats (70) and humans (71, 72). Dopamine release in response 
to acute pain has been described to serve the primary purpose 
to initiate pain-relevant behaviors helping the organism to either 
endure or avoid the pain depending on the situational circum-
stances [reviewed in Taylor et al. (73)]. Outside pain, dopamine 
plays a key role for reward processing (74–79): dopamine release 
is associated with enhanced awareness of stimuli signaling poten-
tial reward leading to increased motivation to obtain reward in 
animals and humans (74, 76, 80, 81). Thus, ventral striatal dopa-
mine release in response to pain—presumably triggered by the 
PAG via the VTA—is well positioned to enhance the salience of 
incentives in the environment and thereby underlie the increased 
motivation to obtain reward observed in acute unavoidable pain. 
Considering that dorsolateral as well as ventrolateral columns of 
the PAG connect to the VTA, this might happen not only during 
coping with objectively inescapable pain but also during coping 
with escapable pain. In fact, dopamine release in the mesolimbic 
dopamine system of rats predicts successful avoidance of foot 
shocks (82), which can be interpreted as a positive expectation that 
the hedonic homeostasis will not be disturbed—in this instance, 
successful pain avoidance would have a similar reinforcement 
value as obtaining appetitive stimuli. In either instance—active 
or passive coping—dopamine release in the mesolimbic system 
would be an adaptive mechanism by which the brain tries to 
reestablish or maintain the affective homeostatic balance.

Coping under Ambiguous Circumstances: 
Prediction and Control in Striatal–Cortical 
Circuitry
Above, we have relatively simplistically differentiated between 
escapable/avoidable and inescapable/unavoidable pain. In real 
life, pain stimuli lie on a spectrum of “avoidability.” For example, 
a certain price has to be paid to avoid pain or with a certain behav-
ior pain can be decreased but not completely avoided. For any 
situation in which pain does not lie on either end of the spectrum, 
action selection and prioritization has to take place while accept-
ing uncertainty about the costs/benefit ratio. In this section, we 
will discuss the neurobiology of these phenomena.

When pain is neither unambiguously escapable nor unam-
biguously inescapable, neural circuits in the central nervous 
system operate both to predict potentially noxious circumstances 
and to control behavior accordingly. These processes rely heavily 
on experience and learning and involve (voluntary) action selec-
tion. Depending on whether pain is acute (injury is experienced 
or anticipated), or whether it occurs in a post-injury context 
(in a healing phase), pain-related signaling will prompt differ-
ent behavior and enlist different ensembles of neural circuits. 
Aversive responses during acute pain usually occur in the context 
of injury or threat of injury, referred to here as “peri-injury” pain 
processing. Generally, a “go” decision—escape or avoidance—is 
optimal in peri-injury pain processing, because the benefit of 
pain elimination seems to outweigh the behavioral cost. In 
contrast, “post-injury” pain processing occurs after tissue has 
been damaged, and behavior that promotes healing is prioritized, 
including quiescence and inhibition of normal behavioral activity 
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(any attempt to eliminate the pain, i.e., behavioral cost would be 
greater than the benefit). Generally, a “stay” decision—rest and 
recuperate—is therefore optimal in post-injury pain processing.

Neural mechanisms of prediction and control in peri-injury 
processing involve the striatal dopamine circuits discussed 
above, as well as cortical circuits with which they interact. This 
involves instrumental reinforcement learning about actions 
and outcomes. For example, when an action carries both costs 
and benefits, responses in ventral ACC and ventral striatum are 
attenuated when the predicted costs outweigh the benefits—this 
attenuation increases with an increase of the negative relation 
of costs over benefits (83). The greater the amount of additional 
information needed to select an appropriate action, the greater the 
demand for higher-order levels of control via cortical networks. 
In a hierarchical “cascade,” various nested levels are subsumed, 
ranging from immediate context, memory, and any relevant con-
tingencies or rule-based information (84). This results in more 
flexible and discretionary forms of control, going beyond reflex 
action or the more binary on–off control of inhibitory feedback 
loops. Subregions of the ACC probably work together to integrate 
stimulus content and current task demands to produce appropri-
ate and timely responses (85, 86). These mechanisms are likely to 
be critical for active coping in the face of pain.

There is evidence that simpler levels of the control hierarchy 
in cingulate cortex are located more caudally (for example, in 
dorsal posterior cingulate cortex), and increasingly more nested 
and complex levels in the more rostral direction [for example, 
the rostral, perigenual portions of the dorsal ACC (7, 87)]. 
Recent human neuroimaging evidence indicates that voluntary 
motor-related processing can account for MCC activation during 
pain, particularly in the caudal cingulate motor zone (CCZ) (10). 
Rostral ACC regions are particularly densely interconnected with 
dorsomedial and dorsolateral prefrontal networks that are also 
implicated in executive processing and action selection. These 
areas may contribute to a ranking of choices in both current and 
prospective temporal windows (88).

ACC and insular cortices are interconnected and highly coac-
tive during pain, as well as in a range of other contexts (89). In 
situations involving acute pain, predictive dynamics between 
ACC and anterior insula (AI) probably reflect processing related 
to assigning priority to a stimulus and selecting an action in vol-
untary responses to pain (7). The organization of pain processing 
shows evidence of a caudorostral gradient in the insula, in terms 
of connectivity and roles in distinct cortical networks (90, 91), 
reaching a high degree of integration in AI (92). Importantly, 
this integration probably occurs in a predictive manner, with AI 
activity predicting whether a subject will classify a stimulus as 
painful even before the stimulus occurs (93).

These cortical networks may also contribute to coping strate-
gies. For example, the vlPAG is functionally connected with 
rostral ACC even during rest, when the brain is not receiving 
nociceptive input nor engaged by a task (94). In addition to the 
striatal functions described above, signaling in the striatum when 
anticipating pain may signal the expected value of a painful 
stimulus to the PAG, which communicates this signal to a wider 
cortical circuit that includes control-related regions of dACC 
(62). This is consistent with the PAG instigating dopamine release 

in the striatum and “energizing” active responses to ongoing pain. 
Dopamine-dependent circuits crucially support predictions 
about reward (95) as well as playing a central role in the imple-
mentation of such learning in the instrumental control of action.

The interesting case with respect to coping is when an indi-
vidual makes active, peri-injury-like decisions under chronic 
or post-injury circumstances. What determines the shift from 
a passive to active coping mode in chronic pain? Individual 
differences in PAG–striatum–cortical network dynamics may 
play a role. For acute, unavoidable painful stimulation, healthy 
individuals differ in their learning biases (96): some individu-
als displayed a “negative” learning pattern in which pain drives 
aversive learning, while others displayed a “positive” pattern in 
which learning is driven more by success in avoiding pain. These 
individual differences were associated with differential responses 
in the striatum and were predicted by striatal gray matter density 
(96). The complex striatocortical architecture of control and pre-
diction neurocircuitry in pain behavior reflects the fact that broad 
behavioral strategies like “go” or “stay” can be generally effective 
under certain sets of circumstances but may not necessarily prove 
beneficial with respect to pain outcomes in any given situation, 
for example, as when subjective pain outcomes in chronic pain 
would improve by shifting to an active strategy.

COPiNG AND CHRONiC PAiN

Thus far, we have presented fundamental principles of pain coping 
and its underlying neurobiology. In the last section of this article, 
we discuss the relevance of these concepts and neural circuitries 
for chronic pain in more detail.

Per definition, chronic pain persists or recurs over a period 
longer than 3 months (97). This means that even for patients who 
have some control over their pain and can reduce or even avoid 
pain under certain circumstances, pain episodes are frequent 
and/or long enough to qualify as chronic pain. Nevertheless, it 
would be too simple to view chronic pain merely as being una-
voidable. How avoidable chronic pain episodes are perceived as 
encompasses a wide spectrum. Some types of chronic pain lie at 
the extreme end and are practically unavoidable, such as non-
evoked neuropathic pain. Other types, such as movement-related 
pain in osteoarthritis, might be largely avoidable, as long as the 
individual adjusts his or her behavior accordingly. These two 
examples illustrate the two major goals of coping with chronic 
pain: pain reduction on the one hand and on the other hand, the 
continued pursuit of valued activities and life goals (2), despite 
pain.

As the example of movement-related pain, the goals of pain 
reduction and the continued pursuit of valued activities may 
be incompatible with each other and may be associated with 
conflicting motivations. Therefore, the need for valuation, goal 
setting, goal adjustment, and goal pursuit strategies becomes 
extremely important in the management of chronic pain. These 
are all processes necessitating active engagement of the patient. 
Indeed, active coping strategies in chronic pain patients with a 
focus on the pursuit of life-goals are associated with improved 
health and treatment outcomes (98, 99). Active coping in the 
context of chronic pain refers to accepting responsibility for 
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dealing with one’s pain and to be actively engaged in developing 
strategies for pain reduction and the pursuit of other life goals. 
The best care strategies for chronic pain require the patient to 
embrace lifestyle adaptations and self-management (100). Of 
course, active coping is not to be confounded with “activity no 
matter what.” As discussed above, it is central to adaptive pain 
coping that costs and benefits are realistically appraised, while 
benefits should outweigh costs. In order to keep the costs within 
an appropriate range given the benefits, self-management encom-
passes activity pacing, in addition to behavioral persistence (101). 
Although emotional coping strategies are grouped under avoid-
ant, and therefore passive, coping (102), we suggest that they are 
necessary to allow for active coping when unavoidable pain is 
present. Above, we introduced the concept of pain acceptance 
(i.e., a readiness to accept the presence of unavoidable pain, while 
not wasting energy on unsuccessful attempts to eliminate it) as 
an example of passive/emotional coping. This concept focuses 
on increased functionality despite having pain and enables the 
patient to focus on rewarding events in their environment. In 
fact, among chronic pain patients, the self-efficacious ones 
could be demonstrated to show less depressive symptoms and 
their pain interfered less with daily-life activities (103–106). 
We conclude that emotional coping is a central initial process, 
necessary to allow for adaptive active coping with chronic pain, 
for instance, by means of focusing on pleasurable events and 
increased functionality.

Neurobiological Obstacles for Active 
Coping with Chronic Pain
If a combination of pain acceptance and active (goal-pursuing) 
coping strategies are most adaptive for dealing with chronic pain, 
why do many patients persevere in their passivity, while avoiding 
the next important step of an active approach (101)? The answer 
encompasses different domains, ranging from psychological to 
neurobiological to societal phenomena. Psychological obstacles 
comprise, but are not limited to, avoidant behavior, including 
learned avoidance (a certain behavior is punished by experienc-
ing pain), misinformed avoidance (“bending over is bad”), and 
affective avoidance (fear of pain) (107), learned helplessness 
(underestimating the benefit/cost ratio based on the individual 
learning history), and misguided reinforcement (e.g., pain behav-
iors are rewarded). Excellent reviews on psychological aspects of 
obstacles to coping with chronic pain have been published (107, 
108); we attempt here to integrate this with neurobiological find-
ings emerging in the chronic pain literature.

Several brain functions are required for active coping, such 
as an evaluation of the situation integrating past experiences (5), 
action selection (56), control of affect (5, 56), and goal adjust-
ment. Not all these functions have been experimentally assessed 
in chronic pain patients; however, patients have been described 
to present with cognitive difficulties, including impaired 
decision-making (41–43). Further, it has become clear in recent 
years that dorsomedial and dorsolateral parts of the prefrontal 
cortex—each an integral component within striatal–cortical 
control networks—display structural and functional alterations 
in chronic pain patients [reviewed in Bushnell et  al. (109) and 

Smallwood et al. (110)]. Thus, cognitive functions important for 
active coping might be impaired in chronic pain patients due to 
brain alterations, which would be an important obstacle to adap-
tive coping. In addition, the mPFC is important for classifying a 
stimulus as being avoidable or controllable, as described above. 
A dysfunctional mPFC might be less capable of identifying when 
pain is controllable, leading via the DRN to an inhibition of the 
dlPAG. This in turn would impede active coping. Several lines of 
evidence indicate that structural brain changes are at least partly 
a consequence of pain or prolonged nociceptive input (111) and 
this could initiate a viscous circle or even a downward spiral of 
pain and unsuccessful coping.

A number of other neurobiological factors hinder successful 
active coping in chronic pain. As discussed above in Section 
“Neurobiological Correlates of Active and Passive Coping,” active 
versus passive coping responses are influenced by bottom-up 
afferent input with C-fibers preferentially triggering passivity. 
Of course, chronic pain constitutes a heterogeneous group of 
different conditions, comprising among others neuropathic 
and inflammatory pains. Despite this heterogeneity, C-fibers, in 
particular from deep tissues and viscera, likely provide important 
afferent input in many chronic conditions. For example, central 
sensitization and wind-up, considered to be two important 
mechanisms operating in neuropathic pain, depend on C-fiber 
input into the spinal cord (112, 113). Under conditions of inflam-
mation, “silent” nociceptors that, in healthy tissue, are mechani-
cally insensitive and not activated even by strong stimuli, become 
excitable to pressure, changes in temperature, and tissue acidosis, 
which contributes to the generation and maintenance of hyper-
algesia (114). In the joint, approximately one-third of sensory 
C-fibers and a small percentage of A-delta fibers are estimated 
to be mechano-insensitive silent nociceptors (114). Thus, the 
neurobiological coping response triggered by bottom-up input 
ought to be passivity in many chronic pain conditions, even when 
the pain is not accompanied by significant emotional distress. To 
perform active coping successfully, chronic pain patients thus 
have to overcome this neurobiology that defaults the individual to 
passivity. In addition to C-fiber input promoting passivity, we and 
others have postulated that an “inactivity response” operates in 
some chronic pain patients that resembles the sickness response 
observed with systemic inflammation (115, 116). Such a response 
consisting of widespread pain, hypersensitivity to somatosensory 
as well as auditory or olfactory stimuli, stiffness, fatigue, lethargy, 
and depressed mood can be understood as an integrated program 
designed to force the organism to rest (116). This program would 
be beneficial and promote healing and recovery in situations of 
acute inflammation, infection, or certain types of visceral pain. 
However, activation of the inactivity responses by, e.g., psycho-
logical stressors or regional pain problems would be maladap-
tive, because quiescence neither leads to the elimination of the 
stressor in these situations nor does it improve the hedonic state 
or functionality. In many instances, passivity even aggravates the 
problem through deconditioning and withdrawal. Intriguingly, 
the symptom constellation of the inactivity response—wide-
spread pain particularly in deeper tissues, hypersensitivity to 
somatosensory as well as auditory or olfactory stimuli, stiff-
ness, fatigue, lethargy, and depressed mood—corresponds to 
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the clinical picture of fibromyalgia and related “primary” pain 
conditions (97). The role nociceptive input from the periphery 
plays in primary pain conditions remains debated (97) and the 
potential neurobiology of the postulated inactivity response is 
currently unknown. Extrapolating from the classical sickness 
response, however, suggests that neuroinflammation might be a 
candidate mechanism (115). Activation of glia cells, an important 
constituent of neuroinflammation, has indeed been observed in 
the brains of patients with chronic low back pain (117).

Activated glia and an associated pro-inflammatory cytokine 
response in the CNS are known to have substantial effects on vari-
ous neurotransmitter systems (118). Regarding the monoamine 
transmitters, which include serotonin, norepinephrine, and 
dopamine, cytokines impact on synthesis, re-uptake, and release, 
typically with the net effect of decreasing monoamine availability 
in the brain [reviewed in Miller et al. (118)]. Dopaminergic neu-
rons in the substantia nigra have been shown to be particularly 
sensitive to inflammation (119), which is related to the high 
density of microglia in this region. This is interesting because 
it has become clear in recent years that chronic pain is associ-
ated with changes in the brain’s dopamine systems [reviewed in 
Taylor et al. (73)]. Human imaging studies have found lowered 
responsiveness within the mesolimbic as well as the nigrostriatal 
dopamine system in response to salient stimuli in chronic pain 
patients (120–123). Chronic pain patients have lower D2 recep-
tor binding (121, 123–125) and presynaptic dopamine activity 
(126, 127) in the striatum at rest and following an acute pain 
stimulus. In animal studies, chronic pain results in decreased 
neuronal activity, as assessed by c-Fos staining, in the VTA (128), 
and decreased overall dopamine levels and striatal D2 receptors 
(129–132). Given the importance of dopamine for motivated 
behavior (133), it is not surprising that chronic pain animals have 
been observed to show reduced effort to obtain a food reward, 
which was linked to depressed activity in the indirect pathway 
of the ventral striatum (134). Other functions associated with 
dopamine have similarly been found to be impaired in chronic 
pain animals, for example, exploratory behavior (135) and self-
administration of rewarding opioids (136); although this has not 
yet been directly linked to dopamine dysfunction. Considering 
the importance of the dopaminergic system for goal-directed 
behavior and reward processes in general, impairments in this 
system are likely to impact successful coping. Although the 

circuitries for passive pain coping are strongly engaged in patients 
while experiencing uncontrollable pain, the associated triggering 
of the reward system via vlPAG and ventral striatum does not 
lead to the beneficial effects described for healthy individuals (i.e., 
improving hedonic tone, reducing pain, and promoting health), 
likely because of the various changes in the brain’s dopamine 
systems associated with chronic pain (73).

To summarize, active strategies in addition to pain acceptance 
are key for successful coping with chronic pain. But as discussed in 
this section, there are several neurobiological, in addition to psy-
chological, obstacles to active coping, making the implementation 
of the most beneficial behaviors more difficult. Neurobiological 
obstacles include the importance of C-fiber input in chronic pain 
because it is wired to elicit passivity without leading to the asso-
ciated benefits of increased vigilance toward rewarding stimuli 
due to alterations of the brain’s dopamine system in chronic pain 
patients. Supraspinal circuits important for action selection, goal 
pursuit, and (perceived) control are likely impaired in chronic 
pain patients, contributing to a viscous circle of pain and unsuc-
cessful coping. And finally, an inactivity response might be inap-
propriately activated in some chronic pain patients, reflected in 
complex symptom constellations consisting of widespread pain, 
hypersensitivity, fatigue, and depressed mood. For successful 
coping, these difficulties have to be overcome. An understanding 
of the neurobiological obstacles might be helpful for the health-
care provider to understand and accept when patients display 
passivity. In addition, patients might benefit from learning about 
the neurobiological basis of coping and their difficulties to adopt 
active strategies, similar to the effectiveness of pain neuroscience 
education in reducing pain, improving function, and lowering 
disability (137).
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