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Weak product spaces of Dirichlet series

Ole Fredrik Brevig and Karl-Mikael Perfekt

Abstract. Let H 2 denote the space of ordinary Dirichlet series with
square summable coefficients, and let H 2

0 denote its subspace consisting
of series vanishing at +∞. We investigate the weak product spaces H 2�
H 2 and H 2

0 �H 2
0 , finding that several pertinent problems are more

tractable for the latter space. This surprising phenomenon is related
to the fact that H 2

0 � H 2
0 does not contain the infinite-dimensional

subspace of H 2 of series which lift to linear functions on the infinite
polydisc.

The problems considered stem from questions about the dual spaces
of these weak product spaces, and are therefore naturally phrased in
terms of multiplicative Hankel forms. We show that there are bounded,
even Schatten class, multiplicative Hankel forms on H 2

0 ×H 2
0 whose

analytic symbols are not in H 2. Based on this result we examine Ne-
hari’s theorem for such Hankel forms. We define also the skew product
spaces associated with H 2 �H 2 and H 2

0 �H 2
0 , with respect to both

half-plane and polydisc differentiation, the latter arising from Bohr’s
point of view. In the process we supply square function characteriza-
tions of the Hardy spaces H p, for 0 < p < ∞, from the viewpoints
of both types of differentiation. Finally we compare the skew product
spaces to the weak product spaces, leading naturally to an interesting
Schur multiplier problem.

Mathematics Subject Classification (2010). Primary 47B35. Secondary
30B50.

Keywords. Dirichlet series, Hankel form, square function, weak product
space.
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1. Introduction

In this paper, we investigate certain properties of weak product spaces asso-
ciated with the Hardy space of Dirichlet series,

H 2 =

{
f(s) =

∞∑
n=1

ann
−s : ‖f‖H 2 =

( ∞∑
n=1

|an|2
) 1

2

<∞

}
,

and its subspace H 2
0 , consisting of those f ∈H 2 with a1 = f(+∞) = 0. The

main objects of study are the weak product spaces H 2�H 2 and H 2
0 �H 2

0 .
With X = H 2 or X = H 2

0 , the weak product X �X is defined as the
Banach space completion of the finite sums F =

∑
k fkgk, where fk, gk ∈X ,

under the norm

‖F‖X�X = inf
∑
k

‖fk‖H 2‖gk‖H 2 .

The infimum is taken over all finite representations of F as a sum of products.
While a separate study of H 2

0 �H 2
0 may at first be thought unmoti-

vated, we will find that the norm of this space is significantly larger for certain
types of Dirichlet series (see Theorem 1 and its corollaries). The presence of
such examples is related to the obstructions faced in producing monomials
n−s in a product fkgk, for fk, gk ∈ H 2

0 , when n is an integer with a low
number of prime factors. In particular, elements of H 2

0 � H 2
0 contain no

terms of the form p−s, where p is a prime number. Hence there is an eas-
ily identifiable infinite-dimensional subspace of H 2 �H 2 which has trivial
intersection with H 2

0 �H 2
0 .

The weak product space H 2�H 2 was first investigated by Helson [21,
22] in an attempt to decide whether Nehari’s theorem holds for multiplicative
Hankel forms (see also Section 2). Helson’s work was continued in [25], where
it was demonstrated that Nehari’s theorem does not hold in full generality.
To explain his point of view, note that each sequence % ∈ `2 induces a (not
necessarily bounded) multiplicative Hankel form on `2 × `2,

%(a, b) =

∞∑
m=1

∞∑
n=1

ambn%mn, a, b ∈ `2. (1)

The analytic symbol of (1) is the Dirichlet series

ϕ(s) =

∞∑
n=1

%nn
−s.

Indeed, if f and g are elements of H 2 with coefficients a and b, respectively,
we have that

Hϕ(fg) = 〈fg, ϕ〉 = %(a, b). (2)

Here, and throughout the rest of the paper, 〈·, ·〉 denotes the inner product
of H 2.

Now, from (2) it is clear that the multiplicative Hankel form (1) is
bounded on `2×`2, or equivalently Hϕ on H 2×H 2, if and only if ϕ induces
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a bounded linear functional on H 2�H 2 through the H 2-pairing, i.e. if and
only if ϕ is in

(
H 2 �H 2

)∗
.

The first bona fide example of a multiplicative Hankel form was obtained
in [11], by the following approach. Note first that the elements of H 2 are
analytic functions in the half-plane Re s > 1/2, the reproducing kernel at
each such s being given by ζ(w+ s), where ζ(s) =

∑
n≥1 n

−s is the Riemann
zeta function. It is thus natural to consider the Carleman-type operator

Hf(s) =

∫ ∞
1/2

f(w) (ζ(s+ w)− 1) dw

acting on H 2
0 , since (ζ(s+ w)− 1) is the reproducing kernel of H 2

0 at w,
for w > 1/2. The matrix of the operator H is that of the multiplicative
Hankel form whose analytic symbol ϕ is the primitive of (ζ(s+ 1/2)− 1) in
H 2

0 . In [11] it was shown that the operator norm of H on H 2
0 is π, which

in terms of its corresponding Hankel form means precisely that |〈fg, ϕ〉| ≤
π‖f‖H 2‖g‖H 2 for f, g ∈H 2

0 . More explicitly written,∣∣∣ ∞∑
m=2

∞∑
n=2

ambn√
mn log(mn)

∣∣∣ ≤ π( ∞∑
m=2

|am|2
) 1

2
( ∞∑
n=2

|bn|2
) 1

2

. (3)

As explained more thoroughly in [11], inequality (3) is a multiplicative ana-
logue of the classical Hilbert inequality∣∣∣ ∞∑

m=1

∞∑
n=1

ambn
m+ n

∣∣∣ ≤ π( ∞∑
m=1

|am|2
) 1

2
( ∞∑
n=1

|bn|2
) 1

2

. (4)

There are several other versions of (4) which are also usually referred to as
Hilbert’s inequality — we direct the interested reader to [19, Ch. IX]. Let us
extract a few facts. First, that by discretization of the continuous version of
(4) and the Hermite–Hadamard inequality, the following improvement of (4)
can be obtained.∣∣∣ ∞∑

m=0

∞∑
n=0

ambn
m+ n+ 1

∣∣∣ ≤ π( ∞∑
m=0

|am|2
) 1

2
( ∞∑
n=0

|bn|2
) 1

2

.

We mention without proof that the same procedure (with some additional
straightforward estimates) yields in the multiplicative setting that∣∣∣ ∞∑

m=1

∞∑
n=1

ambn√
(m+ 1/2)(n+ 1/2) log((m+ 1/2)(n+ 1/2))

∣∣∣ ≤ π‖a‖`2‖b‖`2 ,
which of course no longer represents a multiplicative Hankel form.

The strongest version of Hilbert’s inequality (4) is∣∣∣ ∑
m,n≥0
m+n>0

ambn
m+ n

∣∣∣ ≤ π( ∞∑
m=0

|am|2
) 1

2
( ∞∑
n=0

|bn|2
) 1

2

. (5)

This last variant can also be stated for two-tailed sequences {am}m∈Z and
{bn}n∈Z. The proof of (5) amounts to a concrete application of Nehari’s
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theorem on H2(T), since the associated Hankel form has the bounded symbol
Φ of supremum norm π,

Φ(z) = −iArg(z) = i(π − θ), z = eiθ. (6)

As far as the authors are aware, all proofs of (5) in the literature make use
of (a reformulation of) (6).

Whether the multiplicative Hankel form (3) has a bounded symbol is an
open problem that is related to a long standing embedding problem of H 1

(see [11, Sec. 6]). It therefore natural to ask if we also have

|〈fg, ϕ〉| ≤ π‖f‖H 2‖g‖H 2 , f, g ∈H 2? (7)

In light of the discussion above, this question actually turns out to be more
subtle than what one might expect at first. We are unable to settle it, seem-
ingly due to the lack of a Nehari theorem for multiplicative Hankel forms.

That (7) is significantly easier to settle for H 2
0 than for H 2 is not

a peculiarity, but rather an ongoing theme for all the questions we will ask
about product spaces in this paper. Note that inequality (3) is easily recast as
a question about (the dual space of) H 2

0 �H 2
0 . More generally, elements of(

H 2
0 �H 2

0

)∗
correspond to multiplicative Hankel forms of the type (1), but

with sums starting at m,n = 2. The remainder of this section is an overview
of the problems that we will consider.

In Section 2, we investigate the difference between Hankel forms on
H 2 ×H 2 and Hankel forms on H 2

0 ×H 2
0 . After some preliminaries, we

obtain the main result of this section, Theorem 1, which allows us to embed
any bounded operator C : `2 → `2 into a Hankel form on H 2

0 ×H 2
0 . This

result is the basis for our observation that H 2
0 �H 2

0 is significantly smaller
than H 2 �H 2, and it is also an important tool in the proofs of our other
main results.

Helson [21] proved that any Hankel form on H 2 × H 2 which is of
Hilbert-Schmidt class S2 is induced by a bounded symbol on the infinite
polytorus T∞. In [10] it was shown that if p > p0 ≈ 5.74, then there is
a Hankel form on H 2 ×H 2 of Schatten class Sp that does not have any
bounded symbol, leading to the conjecture that the same might be true for
all p > 2. In Theorem 6 we will prove that p = 2 is indeed critical in this
sense for multiplicative Hankel forms acting on H 2

0 ×H 2
0 , leading us closer

to optimality of Helson’s result. In fact, for p > 2 we will even demonstrate
the existence of forms in Sp that do not have square-integrable symbols on
the polytorus.

The penultimate section is devoted to the study of the skew prod-
uct space ∂−1

(
H 2 � ∂H 2

)
. The motivation to study this space is twofold.

Firstly, characterizations of the dual spaces of skew products are often sig-
nificantly easier to obtain (see [1, 2]). Secondly, for the classical Hardy space
H2, the comparison between H2 �H2 and ∂−1

(
H2 � ∂H2

)
leads naturally

to a Schur multiplier problem for Hankel matrices. Much has been written
about this problem, owing to the fact that it was closely related to Pisier’s



Weak product spaces of Dirichlet series 5

construction of a polynomially bounded operator not similar to a contraction.
We refer the reader to [9, 13, 16, 26].

We begin Section 3 by proving a square function characterization of H p,
which is of independent interest for the study of Hardy spaces of Dirichlet se-
ries. Due to the notation involved, we defer a precise statement to Theorem 8.
We first use this characterization to prove that

H 2 �H 2 ⊆ ∂−1
(
∂H 2 �H 2

)
( H 1. (8)

We then study whether the first inclusion in (8) is strict. This appears to be a
difficult question, but by Schur multiplier methods we are able to demonstrate
that this is the case if every appearance of H 2 in (8) is replaced by H 2

0 .
Finally, in Section 4, we look at the material of Section 3 again, but

with the Hardy spaces of the polydisc in mind. Noting that Dirichlet series
differentiation gives rise to a rather unnatural differentiation operator on the
polydisc, we prove instead a square function characterization of Hp(T∞) that
is adapted to the radial differentiation operator

R =

∞∑
j=1

zj∂zj . (9)

This will allow us to conclude that on finite-dimensional tori, it holds that

H2(Td)�H2(Td) = R−1
(
H2(Td)�RH2(Td)

)
= H1(Td).

It also turns out that radial differentiation has a number theoretic interpreta-
tion when considered from the Dirichlet series point of view, something that
too will be elaborated upon in Section 4.

Notation

As usual, {pj}j≥1 denotes the sequence of prime numbers in increasing order,
and Ω(n) will denote the number of prime factors in n, counting multiplicities.
We will write f � g to indicate that there is some positive constant C so
that |f(x)| ≤ C|g(x)|. If both f � g and g � f , we write f � g.

When we speak of a Dirichlet series ϕ as an element of a dual space K ∗,
where K is a Banach space of Dirichlet series in which the space of Dirichlet
polynomials P is dense, we always mean that the functional induced by ϕ
via the H 2-pairing is bounded. That is, ϕ ∈ K ∗ if and only if the functional

υϕ(f) = 〈f, ϕ〉, f ∈P,

extends to a bounded functional on K . Similarly, when we write that K ∗ ⊆
X , where X is a Banach space of Dirichlet series, we mean that for every
functional υ ∈ K ∗ there exists a ϕ ∈ X such that υ = υϕ (on P) and
‖ϕ‖X � ‖υ‖K ∗ .

2. Hankel forms and a matrix embedding

Much of the success in the theory of Hardy spaces of Dirichlet series is due to a
simple observation of Bohr [7], which facilitates a link between Dirichlet series
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and function theory in polydiscs. By identifying each prime number with an
independent variable, zj = p−sj , the Dirichlet series f(s) =

∑
n≥1 ann

−s

is lifted to a function in the Hardy space of the countably infinite torus,
H2(T∞). More precisely, the prime factorization

n =

∞∏
j=1

p
κj
j

associates to n the finite non-negative multi-index κ(n) = (κ1, κ2, κ3, . . .).
This means that the Bohr lift of f is

Bf(z) =

∞∑
n=1

anz
κ(n),

where z = (z1, z2, z3, . . .). The mapping B : H 2 → H2(T∞) is an isometric
isomorphism that respects multiplication. T∞ is a compact abelian group,
and its Haar measure is denoted by m∞. The measure m∞ is equal to the
product of the normalized Lebesgue measure on T in each variable. In partic-
ular, H2(Td) is a natural subspace of H2(T∞). We refer to [20, 27] for further
properties of H2(T∞).

In [4], Bayart introduced the spaces H p, for 1 ≤ p < ∞, as those
Dirichlet series f such that Bf ∈ Hp(T∞), and we define the H p-norm as

‖f‖H p =

(∫
T∞
|Bf(z)|p dm∞(z)

) 1
p

.

As above, Hp(Td) is a natural subspace of Hp(T∞) 'H p.
Returning to the multiplicative Hankel form Hϕ defined in (2), the fact

that B respects multiplication implies that

Hϕ(fg) = 〈BfBg, Bϕ〉H2(T∞).

From this representation, it is clear that we may replace Bϕ with any ψ ∈
L2(T∞) such that Pψ = Bϕ, where P denotes the Riesz projection from
L2(T∞) to H2(T∞). In this case, we also denote the Hankel form Hϕ by Hψ.
If ψ ∈ L∞(T∞), then ‖Hϕ‖ ≤ ‖ψ‖∞, where ‖Hϕ‖ denotes the norm of Hϕ

acting on H 2 ×H 2, and we say that Hϕ has bounded symbol ψ. Note that
if the functional

f 7→ 〈f, ϕ〉, f ∈H 1,

is bounded on H 1 ' H1(T∞) ⊂ L1(T∞), then Hϕ has a bounded symbol
by the Hahn-Banach theorem. Hence, Hϕ has a bounded symbol if and only
if ϕ ∈ (H 1)∗.

The main result of [25] implies that there exist bounded multiplica-
tive Hankel forms that do not have a bounded symbol. It should be pointed
out that the proof is non-constructive, and no example of a bounded multi-
plicative Hankel form without a bounded symbol has been identified. On the
other hand, if d = 1 then Nehari’s theorem [24] states that every bounded
Hankel form Hϕ on H2(Td) � H2(Td) has a bounded symbol ψ ∈ L∞(Td).
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Nehari’s theorem has been extended to d < ∞ by Ferguson–Lacey [17] and
Lacey–Terwilleger [23].

The matrix of the multiplicative Hankel form (2) is

M% =
(
%mn

)
m,n≥1

=


%1 %2 %3 · · ·
%2 %4 %6 · · ·
%3 %6 %9 · · ·
...

...
...

. . .

 . (10)

By isolating the first row and column in M% using the inner product repre-
sentation of Hϕ from (2), we obtain

Hϕ(fg) = a1b1%1+a1 〈g − b1, ϕ〉+b1 〈f − a1, ϕ〉+Hϕ

(
(f−a1)(g−b1)

)
. (11)

The left hand side is a bounded Hankel form if and only if ϕ ∈
(
H 2 �H 2

)∗
,

while the right hand side is bounded if and only if ϕ ∈
(
H 2

0

)∗
= H 2/C and

ϕ ∈
(
H 2

0 �H 2
0

)∗
. While it is obvious that(

H 2 �H 2
)∗ ⊆H 2, (12)

we shall now see that the corresponding statement for H 2
0 is not true. This

will follow immediately from our next result, which also is crucial in estab-
lishing the other main results of the paper.

Theorem 1 (Matrix embedding). Let C = (cj,k)j,k≥1 be an infinite matrix
defining an operator on `2. Consider the Dirichlet series

ϕ(s) =

∞∑
j=1

∞∑
k=1

cj,k (p2j−1p2k)
−s
,

where {pj}j≥1 denotes the sequence of primes numbers in increasing order.
Then

(a) ‖Hϕ‖0 = ‖C‖,
(b) ‖Hϕ‖ � ‖C‖S2

= ‖ϕ‖H 2 ,

where ‖Hϕ‖0 denotes the norm of Hϕ acting on H 2
0 ×H 2

0 , and ‖C‖S2
denotes

the Hilbert–Schmidt matrix norm of C,

‖C‖S2 =

( ∞∑
j=1

∞∑
k=1

|cj,k|2
) 1

2

.

Proof. Let f, g ∈ H 2
0 with coefficients {aj}j≥1 and {bk}k≥1, respectively.

Since there are no constant terms in H 2
0 we have that

Hϕ(fg) = 〈fg, ϕ〉 =

∞∑
j=1

∞∑
k=1

(
ap2j−1bp2k + ap2kbp2j−1

)
cj,k. (13)

Note that for every prime p, ap and bp each only appear once in this sum.
Let

K1 = span{p−s2k−1 : k ≥ 1}, K2 = span{p−s2k : k ≥ 1}, K3 = H 2
0 	(K1 ⊕K2) ,
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and let PKj
denote the corresponding orthogonal projections. Let aj and bj

denote the coefficient sequences, in the natural basis of Kj , of PKjf and
PKjg, respectively. Then we may rewrite (13) as

Hϕ(fg) = 〈Cb2,a1〉`2 + 〈Ca2,b1〉`2 = 〈J (CT ⊕ C)(a1,a2), (b1,b2)〉`2⊕`2 ,
where J is the involution on `2 ⊕ `2 defined by J (a1,a2) = (a2,a1). We
conclude that

Hϕ

∣∣
H 2

0
' J (CT ⊕ C)⊕ 0,

completing the proof of (a). For (b), we first observe that setting g = 1 implies
‖Hϕ‖ ≥ ‖ϕ‖(H 2)∗ = ‖ϕ‖H 2 = ‖C‖S2 . Returning to the decomposition (11)
we see that ‖Hϕ‖ ≤ 4‖C‖S2

, by using (a). �

As a corollary of Theorem 1, we obtain that a bounded Hankel form
on H 2

0 ×H 2
0 does not necessarily have a symbol in L2(T∞), in stark con-

trast with the classical situation where bounded Hankel forms have bounded
symbols. We also find that (12) does not hold for H 2

0 .

Corollary 2.
(
H 2

0 �H 2
0

)∗ 6⊆ H 2. That is, there are bounded multiplicative

Hankel forms Hϕ on H 2
0 ×H 2

0 with the property that there is no ψ ∈ L2(T∞)
such that Hϕ = Hψ.

Proof. Use Theorem 1 and let C be the matrix of the identity operator on
`2. �

Actually, we have the following stronger version of Corollary 2, which
can be proven by considering all diagonal operators C on `2 and using Theo-
rem 1. It exemplifies concretely that H 2

0 �H 2
0 is in some ways significantly

smaller than H 2 �H 2.

Corollary 3. The Dirichlet series

f(s) =

∞∑
k=1

ak(p2k−1p2k)−s

is in H 2
0 �H 2

0 if and only if a ∈ `1, while it is in H 2 �H 2 if and only if
a ∈ `2.

Recall thatH2(Td) is a natural subspace ofH2(T∞) and that if f ∈H 2
0 ,

then Bf(0) = 0. We now observe that the inclusions behave as expected for
the corresponding finite-dimensional subspaces of the weak product spaces.

Lemma 4. For 1 ≤ d < ∞, let H2
0 (Td) denote the space of functions F ∈

H2(Td) for which F (0, 0, . . . , 0) = 0. Then(
H2

0 (Td)�H2
0 (Td)

)∗ ⊆ H2
0 (Td)	 Lin(Td) ⊆ H2

0 (Td),

where Lin(Td) denotes the subspace of H2
0 (Td) consisting of linear functions,

Lin(Td) =
{
L(z) =

d∑
j=1

ajzj : aj ∈ C
}
.
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Proof. It is sufficient to show that

H2
0 (Td)	 Lin(Td) ⊆ H2

0 (Td)�H2
0 (Td),

since it follows that any functional in
(
H2

0 (Td) � H2
0 (Td)

)∗
must be repre-

sented by a unique element of H2
0 (Td)	Lin(Td). Every F ∈ H2

0 (Td)	Lin(Td)
can be written

F (z) =

d∑
j=1

zjFj(z),

where Fj ∈ H2
0 (Td). This representation of F is not unique, but we can

always organize it so that
∑
j ‖Fj‖2H2(Td) = ‖F‖2H2(Td). By the computation

‖F‖H2
0�H2

0
≤

d∑
j=1

1 · ‖Fj‖H2(Td) ≤
√
d
( d∑
j=1

‖Fj‖2H2(Td)

) 1
2

=
√
d‖F‖H2(Td),

we see that F ∈ H2
0 �H2

0 . �

It is clear that the final part of this argument breaks down for d =
∞; the key point being that the subspace Lin(T∞) of linear functions in
H2

0 (T∞) 'H 2
0 is infinite-dimensional, which from the Dirichlet series point

of view corresponds to the fact that there are infinitely many prime numbers.
Even so, Corollary 2 is surprising. We stress that its conclusion is related to
the additional arithmetical obstructions which appear when computing the
norm of an element in H 2

0 �H 2
0 rather than in H 2 �H 2. The following

result is intended to clarify this statement. In particular, it demonstrates that
the subspace of linear functions actually is complemented in H 2 �H 2.

Theorem 5. For a non-negative integer m, let Pm denote the projection on
m-homogeneous Dirichlet series,

Pm

∞∑
n=1

ann
−s =

∑
Ω(n)=m

ann
−s.

Then Pm is a contraction on H 2 �H 2.

Proof. The case m = 0 is trivial. Let m ≥ 1 and suppose that

F =
∑
k

fkgk (14)

is a finite sum. Then

PmF (s) =
∑
k

m∑
j=0

Pjfk(s)Pm−jgk(s).
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By applying the definition of the norm of H 2�H 2 and the Cauchy–Schwarz
inequality, we find that

‖PmF‖H 2�H 2 ≤
∑
k

m∑
j=0

‖Pjfk‖H 2‖Pm−jgk‖H 2

≤
∑
k

( m∑
j=0

‖Pjfk‖2H 2

) 1
2
( m∑
j=0

‖Pm−jgk‖2H 2

) 1
2

≤
∑
k

‖fk‖H 2‖gk‖H 2 ,

the final inequality following from the fact that

∞∑
j=0

‖Pjf‖2H 2 = ‖f‖2H 2 , f ∈H 2.

The proof is completed by taking the infimum over the representations (14).
�

We return to the matrix of Hϕ acting on H 2 ×H 2 from (10). The
matrix M0

ρ corresponding to the action of Hϕ on H 2
0 ×H 2

0 is obtained from

Mρ by deleting the first row and column. That is, M0
ρ = (ρmn)m,n≥2 in view

of (10).

Now, suppose that Hϕ is a compact form, i.e. that its matrix M defines
a compact operator on `2. Let

Λ = {λ1, λ2, . . .}

denote the singular value sequence of M . We say that Hϕ is in the Schatten
class Sp, 0 < p ≤ ∞, if Λ ∈ `p, and we let ‖Hϕ‖Sp = ‖Λ‖`p . When speaking

of a Hankel form Hϕ we will write Sp(H 2) or Sp(H 2
0 ) to clarify which space

is being considered; using Theorem 1 as in Corollary 3, it is easy to construct
Hankel forms belonging to the latter Schatten class, but not to the former.

Helson [21] showed that if Hϕ ∈ Sp(H 2) and p = 2, then Hϕ has a
bounded symbol. In [10], the authors showed that this is no longer the case
when

p > p0 ≈ 5.738817179.

We will now investigate symbols for forms Hϕ ∈ Sp(H 2
0 ). We start by veri-

fying that Helson’s result still holds for S2(H 2
0 ).

As in Lemma 4, any bounded Hankel form on H 2
0 ×H 2

0 has a symbol
ϕ in (H 2

0 �H 2
0 )∗ of the form

ϕ(s) =
∑

Ω(n)≥2

%nn
−s.
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From this fact, a computation shows that

‖Hϕ‖2S2(H 2
0 ) =

∞∑
m=2

∞∑
n=2

|Hϕ(m−sn−s)|2

=
∑

Ω(n)≥2

(d(n)− 2) |%n|2 �
∑

Ω(n)≥2

d(n)|%n|2.

Here d(n) denotes the number of divisors of n, and the final estimate follows
from the fact that d(n) − 2 ≥ d(n)/3 for n such that Ω(n) ≥ 2, seeing as
d(n) ≥ Ω(n) + 1. Hence we can use Helson’s inequality( ∞∑

n=1

|an|2

d(n)

) 1
2

≤

∥∥∥∥∥
∞∑
n=1

ann
−s

∥∥∥∥∥
H 1

to conclude that ϕ ∈ (H 1)∗ whenever Hϕ ∈ S2(H 2
0 ). That is, Hϕ has a

bounded symbol whenever Hϕ ∈ S2(H 2
0 ). We now show that Helson’s result

is optimal for Sp(H 2
0 ).

Theorem 6. For p > 2 there exist Hankel forms Hϕ ∈ Sp(H 2
0 ) such that

no ψ in L2(T∞) satisfies Hϕ = Hψ. In particular, there exist Hankel forms
Hϕ ∈ Sp(H 2

0 ) for which there are no bounded symbols.

Proof. Let C = (cj,k)j,k≥1 be a matrix defining an operator on `2 which

belongs to Sp but not to S2. In accordance with Theorem 1 let

ϕ(s) =

∞∑
j=1

∞∑
k=1

cj,k(p2j−1p2k)−s.

Since, as in the proof of Theorem 1, Hϕ

∣∣
H 2

0
' J

(
CT ⊕ C

)
⊕0, we have that

‖Hϕ‖pSp(H 2
0 )

= 2‖C‖pSp <∞.

On the other hand, we have by assumption that

‖ϕ‖H 2 = ‖C‖S2 =∞. �

While Theorem 6 does not concern Hankel forms on H 2 ×H 2, we do
consider it to give us an indication that p = 2 might be the critical value also
in this case.

Conjecture 1. For every p > 2 there exists a multiplicative Hankel form Hϕ

in Sp(H 2) without a bounded symbol.

3. A square function characterization of H p and skew
products

In the context of the classical Hardy spaces, it was Bourgain [9] who recalled
the square function characterization of Hp due to Fefferman and Stein [15]
and used it to the effect of showing that H2 � ∂H2 ⊆ ∂H1, where ∂Hp
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denotes the space consisting of the derivatives of all Hp-functions. In view of
the fact that ∂H1 = ∂(H2 �H2) ⊆ H2 � ∂H2 this immediately implies that

∂−1(H2 � ∂H2) = H2 �H2. (15)

In terms of bilinear forms, we can naturally associate a Hankel-type form Jg
to every element g ∈

(
∂−1(H2 � ∂H2)

)∗
. If an additive Hankel form Hg on

H2 ×H2 corresponds to the matrix (ĝ(j + k))j,k≥0, then Jg has matrix(
j + 1

j + k + 1
ĝ(j + k)

)
j,k≥0

.

Hence Bourgain’s lemma (15) can be equivalently rephrased to say that the
map Hg 7→ Jg is bounded in operator norm. This statement actually carries
greater interest than what its face value might suggest. The matrix(

j + 1

j + k + 1

)
j,k≥0

is not a bounded Schur multiplier on all matrices, and hence the mapHg 7→ Jg
is not completely bounded [13]. This observation is at the heart of Pisier’s [26]
construction of a polynomially bounded operator not similar to a contraction.

We define the skew product space ∂−1(H 2�∂H 2) as the Banach space
completion of the space of Dirichlet series F whose derivatives have a finite
sum representation F ′ =

∑
k fkg

′
k, where fk, gk ∈ H 2. The completion is

taken under the norm

‖F‖∂−1(H 2�∂H 2) = |F (+∞)|+ inf
∑
k

‖fk‖H 2‖gk‖H 2 ,

where the infimum is computed over all finite representations. From the prod-
uct rule (fg)′ = f ′g + fg′ it is clear that

H 2 �H 2 ⊆ ∂−1(H 2 � ∂H 2). (16)

Our first goal is to establish a square function characterization of H p,
for 0 < p < ∞, and use it to show that ∂−1(H 2 � ∂H 2) ⊆ H 1. We begin
by recalling that the spaces H p are related to the Möbius invariant Hardy
spaces in the right half-plane, C0, defined as

Hp
i (C0) =

{
f ∈ Hol(C0) : ‖f‖Hpi (C0) = sup

σ>0

( 1

π

∫
R
|f(σ+it)|p dt

1 + t2

) 1
p

<∞

}
.

Given a character χ ∈ T∞, we “twist” the Dirichlet series f(s) =
∑
n≥1 ann

−s

to obtain

fχ(s) =

∞∑
n=1

anχ(n)n−s, χ(n) = χκ(n).

We will require the following basic result, which can be extracted from
Lemma 5 and Theorem 5 in [4].
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Lemma 7. Let 0 < p < ∞, and suppose that f ∈ H p. For almost every
χ ∈ T∞, fχ ∈ Hp

i (C0). Moreover,

‖f‖H p =

(∫
T∞
‖fχ‖pHpi (C0)

dm∞(χ)

) 1
p

.

Remark. The results in [4] are stated only for p ≥ 1, but the same arguments
lead to our statement of Lemma 7.

For τ ∈ R, let Γτ be the cone

Γτ = {σ + it : |t− τ | < σ}

in the right half-plane C0, with vertex at iτ . For a holomorphic function f in
C0, let Sf be the square function, or the Lusin area integral,

Sf(τ) =

(∫
Γτ

|f ′(σ + it)|2 dσ dt
)1/2

, τ ∈ R,

and let f∗ denote the non-tangential maximal function

f∗(τ) = sup
s∈Γτ

|f(s)|, τ ∈ R.

Since 1/(1 + τ2) is a Muckenhoupt Aq-weight for all q > 1, it follows from
Gundy and Wheeden [18] that f ∈ Hp

i (C0) if and only if f∗ ∈ Lpi (R) =
Lp
(
(1 + τ2)−1 dτ

)
, for 0 < p < ∞, with comparable norms. Furthermore, if

limσ→∞ f(σ + it) = 0, then

‖f∗‖Lpi (R) � ‖Sf‖Lpi (R). (17)

This gives us a norm expression for functions in H p in terms of the square
function.

Theorem 8. Let f(s) =
∑
n≥1 ann

−s. Then for any 0 < p <∞, we have

‖f‖pH p � |a1|p +

∫
T∞
‖S(fχ)‖p

Lpi (R)
dm∞(χ)

= |a1|p +

∫
T∞

∫
R

(∫
Γτ

|f ′χ(σ + it)|2 dσ dt
)p/2

dτ

1 + τ2
dm∞(χ).

(18)

Proof. In view of (17) and Lemma 7 we obtain (18) for f with constant term
a1 = 0, that is, for f ∈ H p

0 . Note that the linear functional f 7→ a1 is
bounded on H p, corresponding to the functional Bf 7→ Bf(0) on Hp(T∞)
[12]. Hence, the closed subspace H p

0 is complemented in H p by C, and (18)
follows in general for f ∈ H p, with one side being finite if and only if the
other is. �

Corollary 9. ∂−1(H 2 � ∂H 2) ⊆H 1.

Proof. Suppose that f, g ∈ H 2, and that F is the Dirichlet series such that
F ′ = fg′ with F (+∞) = 0. Since ‖g − g(+∞)‖H 2 ≤ ‖g‖H 2 it is for the
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purpose of proving the statement justified to assume that g(+∞) = 0. We
then have that

‖F‖H 1 �
∫
T∞

∫
R

(∫
Γτ

|fχ(σ + it)|2|g′χ(σ + it)|2 dσ dt
)1/2

dτ

1 + τ2
dm∞(χ)

≤
∫
T∞

∫
R

(fχ)∗(τ)

(∫
Γτ

|g′χ(σ + it)|2 dσ dt
)1/2

dτ

1 + τ2
dm∞(χ)

≤
∫
T∞
‖(fχ)∗‖L2

i (R)

(∫
R

∫
Γτ

|g′χ(σ + it)|2 dσ dt dτ

1 + τ2

)1/2

dm∞(χ)

�
∫
T∞
‖fχ‖H2

i (C0)‖gχ‖H2
i (C0) dm∞(χ) ≤ ‖f‖H 2‖g‖H 2 .

This proves that ∂−1(H 2 � ∂H 2) ⊆H 1. �

Before proceeding, we give a few remarks on the application of Theorem
8 to the Hardy space Hp(Td) of a finite-dimensional polydisc, d <∞. Let D
denote the differentiation operator on Dirichlet series,

Df(s) = ∂f(s) = f ′(s) = −
∞∑
n=2

an log(n)n−s.

Consider a series f such that Bf ∈ H2(Td), i.e. such that an = 0 if pj |n for
some j > d. Identifying pj with the jth complex variable zj , the differentiation
operator D in the usual polydisc notation has the form

DBf(z1, . . . , zd) = −
d∑
j=1

log(pj)zj∂zjBf(z1, . . . , zd). (19)

Hence Theorem 8 gives us a new type of square function characterization of
Hp(Td), in terms of the differentiation operator D. In analogy with Corollary
9 it can be used to prove that

D−1
(
H2(Td)�DH2(Td)

)
⊆ H1(Td)

and by the characterization of H1(Td) due to Ferguson–Lacey [17] and Lacey–
Terwilleger [23] we conclude that in the finite polydisc we have

D−1
(
H2(Td)�DH2(Td)

)
= H2(Td)�H2(Td) = H1(Td). (20)

It should be objected, however, that the weighted differentiation operator D
might not be natural in the setting of the polydisc. In Section 4 we shall
consider the constructs of the present section for the infinite polydisc, using
the radial differentiation operator instead of D, and in the process prove that
(20) is valid also for radial differentiation and integration.

We return to the discussion of products of Dirichlet series spaces, and
note that Corollary 9 in combination with (16) yields that

H 2 �H 2 ⊆ ∂−1
(
∂H 2 �H 2

)
⊆H 1. (21)

The remainder of this section is devoted to the investigation of whether these
inclusions are strict. We begin with the following observation.
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Lemma 10. Let ϕ(s) =
∑
k≥1 ρkk

−s be a function in H 2. Then ϕ induces

a bounded linear functional υϕ on ∂−1(H 2 � ∂H 2), via the H 2-pairing, if
and only if the form

Jϕ(a, b) =

∞∑
m=1

∞∑
n=1

ambn
log n

logm+ log n
ρmn (22)

is bounded on `2×`2, where the summand is understood to be 0 if m = n = 1.
The corresponding norms are equivalent,

‖υϕ‖ � |ρ1|+ ‖Jϕ‖.

In particular, if ρk ≥ 0 for all k, then ϕ ∈
(
∂−1(H 2 � ∂H 2)

)∗
if and only

if ϕ ∈
(
H 2 �H 2

)∗
, with equivalent norms.

Proof. Suppose that f and g are Dirichlet series with coefficient sequences a
and b, respectively. Let ∂−1(f ′g) denote the primitive of f ′g with constant
term 0. Then

〈∂−1(f ′g), ϕ〉 =

∞∑
m=1

∞∑
n=1

ambn
log n

logm+ log n
ρmn,

proving the first part of the proposition. For the second part, note as per
usual that the action of ϕ as an element in

(
H 2 �H 2

)∗
corresponds to the

multiplicative Hankel form

Hϕ(a, b) =

∞∑
m=1

∞∑
n=1

ambnρmn. (23)

Hence, if ρk ≥ 0 for all k, then

‖ϕ‖(∂−1(H 2�∂H 2))∗ � ‖ϕ‖(H 2�H 2)∗ .

The converse inequality is a direct consequence of (16). �

Ortega-Cerdá and Seip [25] showed that H 2�H 2 ( H 1. With Lemma 10,
we are able to apply their technique to prove the corresponding statement
for ∂−1(H 2 � ∂H 2).

Theorem 11. ∂−1(H 2 � ∂H 2) ( H 1

Proof. Let d be a positive integer and consider the function

ϕd(s) =

d∏
j=1

(
p−s2j−1 + p−s2j

)
,

where {pj}j≥1 again denotes the prime sequence. The norm of ϕd as an

element of the dual of H 2 �H 2 is 2d/2 [25]. Since the coefficients of ϕd are
non-negative, Lemma 10 hence shows that

‖ϕd‖(∂−1(H 2�∂H 2))∗ � 2d/2.

On the other hand, consider fd = ϕd as an element of H 1, ‖fd‖H 1 = (4/π)d

[25]. Since 〈fd, ϕd〉2 = 2d, the functional induced by ϕd on H 1 has norm at
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least (π/2)d. If it were the case that ∂−1(H 2�∂H 2) = H 1, then the norm of
ϕd as a functional on H 1 and the norm as a functional on ∂−1

(
H 2 � ∂H 2

)
would be equivalent, a contradiction as d→∞. �

The remaining question of whether(
∂−1(H 2 � ∂H 2)

)∗
=
(
H 2 �H 2

)∗
(24)

or, equivalently, whether the first inclusion in (21) is strict, appears to be
subtle. As we just saw in Lemma 10 it can be rephrased as to ask if the forms
(22) and (23) are simultaneously bounded, which would mean precisely that(

log n

logm+ log n

)
m,n≥1

is a Schur multiplier on the class of multiplicative Hankel forms. Specializing
to the one-variable case by only considering integers of the form 2k, we see
that the analogue of (24) for the classical Hardy space H2(T) is equivalent
to the statement that (j + 1)/(j + k + 1) is a Schur multiplier on (additive)
Hankel forms, as discussed in the introduction of this section.

However, by applying Theorem 1 in full force together with Schur mul-
tiplier techniques, we are able to show that the inclusion is strict when H 2

is replaced by H 2
0 . We define ∂−1

(
H 2

0 � ∂H 2
0

)
in exact analogy with our

previous considerations, except that we impose all of its elements f to have
constant term f(+∞) = 0.

Theorem 12. H 2
0 �H 2

0 ( ∂−1
(
H 2

0 � ∂H 2
0

)
.

Proof. Assume to the contrary that(
log n

logm+ log n

)
m,n≥2

is a Schur multiplier on bounded multiplicative Hankel forms

ρ(a, b) =

∞∑
m=2

∞∑
n=2

ambnρmn, a, b ∈ `2.

Applied to every symbol constructed by the procedure of Theorem 1, we
conclude that (

log p2j−1

log p2k + log p2j−1

)
j,k≥1

(25)

is a Schur multiplier on all matrices C defining bounded operators C : `2 →
`2. However, (25) cannot be a Schur multiplier, as this would defy Bennett’s
criterion [5], since

lim
j→∞

lim
k→∞

log p2j−1

log p2k + log p2j−1
= 0,

while

lim
k→∞

lim
j→∞

log p2j−1

log p2k + log p2j−1
= 1. �
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It must be stressed that Theorem 12 does not imply that the inclusion
in (16) is strict. If we attempt to apply the proof to H 2�H 2, the matrices
constructed by Theorem 1 are Hilbert–Schmidt. To be a Schur multiplier on
Hilbert–Schmidt matrices means only to have bounded entries, so no contra-
diction is obtained. However, we do feel that Theorem 12 invokes the natural
conjecture.

Conjecture 2. The inclusion between the standard weak product and its skew
counterpart is strict, H 2 �H 2 ( ∂−1

(
H 2 � ∂H 2

)
.

4. Radial differentiation

From the polydisc point of view, the constructs of the last section all arose
from the weighted differentiation operator D of (19), obtained from the
Dirichlet series formalism. In the present section we shall consider instead
the more natural radial differentiation operator of equation (9). Before com-
mencing, note that as in Theorem 5 every Dirichlet series may be decomposed
into m-homogeneous subseries,

f(s) =

∞∑
n=0

ann
−s =

∞∑
m=0

( ∑
Ω(n)=m

ann
−s
)

=

∞∑
m=0

Pmf(s).

Through the Bohr lift, this is equivalent to the corresponding decomposition
of a power series in a countably infinite number of variables,

F (z) =

∞∑
n=0

anz
κ(n) =

∞∑
m=0

( ∑
|κ(n)|=m

anz
κ(n)

)
=

∞∑
m=0

PmF (z), z = (z1, z2, . . .).

We recall that κ(n) = (κ1, κ2, . . .) is the finitely supported multi-index asso-
ciated to every positive integer n through its prime decomposition, so that

|κ(n)| = Ω(n) =
∑
j

κj .

Consider now, for any z ∈ T∞, the following power series in one variable w.

Fz(w) = F (zw) =

∞∑
n=1

anz
κ(n)wΩ(n) =

∞∑
m=0

PmF (z)wm.

Observe in particular that the mth coefficient of Fz(w) is the m-homogeneous
subseries of F . From here it is clear that differentiation in the auxiliary vari-
able w allows us to capture the natural radial differentiation of the polydisc,
since every monomial of order m is treated equally. This is further justified
by the formal computation

w
d

dw
Fz(w) = w

∞∑
j=1

zj∂zjF (wz) = (RF )z(w).

We have the following analogue of Lemma 7. We also point out that
through the Bohr lift a similar statement can be made for Dirichlet series.
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Lemma 13. Let F ∈ Hp(T∞), 0 < p < ∞. Then Fz ∈ Hp(T) for almost
every z ∈ T∞ and

‖F‖Hp(T∞) =

(∫
T∞
‖Fz‖pHp(T) dm∞(z)

)1/p

. (26)

Proof. This follows from Fubini’s theorem and the fact that z 7→ F (z) and
z 7→ F (wz), for w ∈ T, have equal Hp(T∞)-norm. �

For θ ∈ [0, 2π), let Γα(θ) denote the Stolz angle in D with vertex at
eiθ and of some fixed aperture α < π/2. The (slightly non-standard) square
function Sg of a function g holomorphic in D is given by

Sg(θ) =

(∫
Γα(θ)

|wg′(w)|2 dA(w)

)1/2

,

where dA denotes the normalized area element. If g(0) = 0 we have that
‖g‖Hp(T) � ‖Sg‖Lp(T). Since Fz(0) = F (0) for every z ∈ T∞, this immedi-
ately gives us the analogue of Theorem 8.

Theorem 14. Let F ∈ Hp(T∞), 0 < p <∞. Then

‖F‖pHp(T∞) � |F (0)|p+
∫
T∞

∫ 2π

0

(∫
Γα(θ)

|(RF )z(w)|2 dA(w)

)p/2
dθ

2π
dm∞(z).

Now most of the arguments of the previous section can be repeated. We
collect the results that follow without providing details. Note in particular
the satisfying conclusion obtained for the finite-dimensional polydisc. Indeed,
this result partly motivates the existence of this section.

Corollary 15. We have that

H2(T∞)�H2(T∞) ⊆ R−1
(
H2(T∞)�RH2(T∞)

)
( H1(T∞).

On the other hand, when d <∞ it holds that

H2(Td)�H2(Td) = R−1
(
H2(Td)�RH2(Td)

)
= H1(Td).

We remark that it is not clear how to obtain Corollary 15 directly from
the considerations in Section 3, due to the weights log pj entering into Dirich-
let series differentiation. In fact, suppose that n =

∏
j p

κj
j . Then

log n =
∑
j

κj log pj and Ω(n) =
∑
j

κj ,

illustrating the fact that the R treats every prime equally, while the half-plane
differentiation operator D does not. In particular, the proof of Theorem 12
does not yield any information when D is replaced by R, since the Schur
multiplier vital to the proof has entries

Ω(n)

Ω(m) + Ω(n)
=

Ω(p2j−1)

Ω(p2k) + Ω(p2j−1)
=

1

2
.
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It should also be pointed out that decomposing Dirichlet series (or power
series on the infinite polydisc) into homogeneous subseries is not a new idea.
It dates back at least to Bohnenblust–Hille [6], and has recently been applied
to obtain results for composition operators on spaces of Dirichlet series [3] as
well as L1-estimates for Dirichlet polynomials [8].

We conclude this paper by providing a charming inequality, which fol-
lows at once from Lemma 13 and the classical Hardy inequality

∞∑
m=0

|bm|
m+ 1

≤ π

∥∥∥∥∥
∞∑
m=0

bmw
m

∥∥∥∥∥
H1(T)

. (27)

Corollary 16. Let f(s) =
∑
n≥1 ann

−s ∈H 1 and consider the m-homogeneous

subseries Pmf(s) =
∑

Ω(n)=m ann
−s. Then

∞∑
m=0

‖Pmf‖H 1

m+ 1
≤ π‖f‖H 1 .

Corollary 16 can be compared to the estimate ‖Pmf‖H 1 ≤ ‖f‖H 1 ap-
pearing in [8, Lem. 3]. Returning to the beginnings of this paper, we mention
that Hardy’s inequality (27) in turn can be obtained by viewing the bounded
symbol for the sharpest version of Hilbert’s inequality (6) as an element in
the dual of H1(T) (see [14, pp. 47–49]).
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