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D-SOLUTIONS TO THE SYSTEM OF VECTORIAL CALCULUS

OF VARIATIONS IN L∞ VIA THE SINGULAR VALUE

PROBLEM

GISELLA CROCE, NIKOS KATZOURAKIS AND GIOVANNI PISANTE

Abstract. For H ∈ C2(RN×n) and u : Ω ⊆ Rn −→ RN , consider the system

(1) A∞u :=
(

HP ⊗HP + H[HP ]⊥HPP

)
(Du) : D2u = 0.

We construct D-solutions to the Dirichlet problem for (1), an apt notion of

generalised solutions recently proposed for fully nonlinear systems. Our D-

solutions are W 1,∞-submersions and are obtained without any convexity hy-
potheses for H, through a result of independent interest involving existence of

strong solutions to the singular value problem for general dimensions n 6= N .

1. Introduction

Let H ∈ C2(RN×n) be a given function and Ω ⊆ Rn a given open set, n,N ∈ N.
In this paper we are interested in the problem of existence of appropriately defined
generalised solutions with given Dirichlet boundary conditions to the second order
PDE system

(1.1) A∞u :=
(

HP ⊗HP + H[HP ]⊥HPP

)
(Du) : D2u = 0.

In the above, the subscript P denotes the derivative of H with respect to its matrix
variable, while

Du(x) =
(
Diuα(x)

)α=1,...,N

i=1,...,n
∈ RN×n,

D2u(x) =
(
D2
ijuα(x)

)α=1,...,N

i,j=1,...,n
∈ RN×n

2

s ,

denote respectively the gradient matrix and the hessian tensor of (smooth) maps
u : Ω ⊆ Rn −→ RN . The notation “[HP ]⊥” symbolises the orthogonal projection
on the orthogonal complement of the range of the linear map HP (P ) : Rn −→ RN :

(1.2) [HP (P )]⊥ := ProjR(HP (P ))⊥ .

In index form, (1.1) reads

N∑
β=1

n∑
i,j=1

(
HPαi(Du) HPβj (Du) + H(Du)

N∑
γ=1

[
HP (Du)

]⊥
αγ

HPγiPβj (Du)

)
D2
ijuβ = 0,

α = 1, ..., N . Our general notation is either self-explanatory or a convex combina-
tion of standard symbolisations as e.g. in [E, D, EG, DM2]. The system (1.1) is the
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nonlinear systems; ∞-Laplacian; Young measures; Singular Value Problem, Baire Category
method; Convex Integration.
N.K. has been partially financially supported by the EPSRC grant EP/N017412/1.

1



2 GISELLA CROCE, NIKOS KATZOURAKIS AND GIOVANNI PISANTE

analogue of the Euler-Lagrange equation when one considers nonstandard vectorial
variational problems in the space L∞ for the supremal functional

(1.3) E∞(u,Ω′) :=
∥∥H(Du)

∥∥
L∞(Ω′)

, u ∈W 1,∞
loc (Ω,RN ), Ω′ b Ω

and first arose in recent work of the second author ([K1]). Calculus of Variations
in L∞, as the field is known today, was initiated by G. Aronsson in the 1960s who
studied the scalar case N = 1 quite systematically ([A1]-[A7]). Since then the area
has been developed marvellously due to both the intrinsic mathematical interest and
the importance for applications. In particular, the theory of Viscosity Solutions of
Crandall-Ishii-Lions played a fundamental role in the study of the generally singular
solutions to the scalar version of (1.1). When N = 1, the respective single equation
simplifies to

(1.4) A∞u = HP (Du)⊗HP (Du) : D2u = 0

and is known as the “Aronsson equation”. For a pedagogical introduction to the
scalar case with numerous references see e.g. [K7, C] (see also [ACJ, BEJ, SS, CR]
for some relevant work and [Pi] for a comparison between the Viscosity Solutions
approach and the Baire Category one).

On the other hand, except perhaps the deep vectorial contributions in [BJW1,
BJW2] which however were restricted to the study of the functional only, until
the early 2010s the case N ≥ 2 remained terra incognita. The foundations of
the general vector case have been laid in a series of recent papers of one of the
authors ([K1]-[K6], [K8]-[K12]) and also in collaboration with Abugirda, Manfredi
and Pryer ([AK, KP, KM]). An important special case of (1.1) to which the results
of this paper apply is the archetypal model of the so-called ∞-Laplace system

(1.5)

 ∆∞u :=
(

Du⊗Du+ |Du|2[Du]⊥ ⊗ I
)

: D2u = 0,

[Du]⊥ = ProjR(Du)⊥ ,

which arises by taking as H the square of the Euclidean norm of RN×n:

(u,Ω′) 7−→
∥∥|Du|2∥∥

L∞(Ω′)
, u ∈W 1,∞

loc (Ω,RN ), Ω′ b Ω.

In index form, (1.5) becomes

N∑
β=1

n∑
i,j=1

(
DiuαDjuβ + |Du|2[Du]⊥αβ δij

)
D2
ijuβ = 0, α = 1, ..., N.

An additional difficulty in the study of the non-divergence system (1.1) which is
not present in the scalar case of (1.4) is that the operator A∞ has discontinuous
coefficients, even when it is applied to C∞ maps. Actually, even in the model case
of (1.5), the example u(x1, x2) = eix1 − eix2 is a 2 × 2 analytic ∞-Harmonic map
near the origin of R2, but the rank of the gradient jumps from 2 off the diagonal
{x1 = x2} to 1 on it and [Du]⊥ is discontinuous. The emergence of interfaces
whereon the coefficients are discontinuous is a general phenomenon studied in some
detail in [K1, K3, K4]. A manifestation of this fact is that in the genuine vectorial
case of rank rk(Du) ≥ 2, the appropriate minimality notion connecting (1.1) to (1.3)
is not the obvious extension of Aronsson’s scalar notion of Absolute Minimisers (see
[K2, K10, K11]).

Perhaps the greatest difficulty associated to the study of (1.1) is that it is quasi-
linear, non-divergence and non-monotone and all standard approaches in order to
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define generalised solutions based on integration-by-parts or on the maximum prin-
ciple seem to fail. Motivated partly by the systems arising in Calculus of Variations
in L∞, the second author has recently proposed in [K9, K8] a new efficient theory
of generalised solutions which applies to fully nonlinear PDE systems of any order

F
(
x, u(x),Du(x), ...,Dpu(x)

)
= 0, x ∈ Ω,

and allows for merely measurable mappings to be admitted as solutions. This
approach of the so-called D-solutions is duality-free and is based on the probabilistic
representation of derivatives which do not exist classically. The tools is the weak*
compactness of the difference quotients considered in the Young measures valued
into a compactification of the “space of jets”.

For the special case at hand of 2nd order systems like (1.1)-(1.5), the definition

can be motivated as follows: let u be a strong a.e. W 2,∞
loc (Ω,RN ) solution to

(1.6) F
(
Du,D2u

)
= 0, a.e. on Ω.

We are looking for a meaningly way to interpret the hessian rigorously for just
W 1,∞

loc (Ω,RN ) because this is the natural regularity class for (1.1) arising from the
L∞ variational problem for (1.3). For reasons to become apparent in a moment,

we restate (1.6) as: for any compactly supported Φ ∈ Cc
(
RN×n2

s

)
, we have

(1.7)

∫
RN×n2
s

Φ(X)F
(
Du(x),X

)
d[δD2u(x)](X) = 0, a.e. x ∈ Ω.

That is, we view the classical hessian map D2u as a probability-valued map Ω ⊆
Rn −→ P

(
RN×n2

s

)
given by the Dirac measure at itself x 7→ δDu(x). Further, we

restate that D2u is the limit in measure of the difference quotients of the gradient
D1,hDu as h→ 0 by writing

(1.8) δD1,hDu
∗−−⇀ δD2u, as h→ 0.

The weak* convergence of (1.8) is in the Young measures valued into RN×n2

s , that

is the set of weakly* measurable probability-valued maps Ω ⊆ Rn −→P
(
RN×n2

s

)
(for details see Section 2 that follows and [CFV, FG, V, P, FL]). The hope arising
from (1.7)-(1.8) is that it might be possible for general probability-valued “diffuse

hessians” to arise for just W 1,∞
loc maps which will no longer be the concentration

masses δD2u. This is indeed possible if we embed RN×n2

s into its 1-point Alexandroff
compactification

RN×n
2

s := RN×n
2

s ∪ {∞}.
By considering (δD1,hDu)h6=0 as Young measures valued into RN×n2

s , subsequential

weak* limits always do exist in the set of Young measures Ω ⊆ Rn −→P
(
RN×n2

s

)
and we may define generalised hessians as follows:

Definition 1 (Diffuse Hessians, cf. [K8]). For any u ∈W 1,∞
loc (Ω,RN ), we define the

diffuse hessians D2u as the infinitesimal subsequential limits of difference quotients

of Du in the Young measures valued into the sphere RN×n2

s :

δD1,hmDu
∗−−⇀D2u, in Y

(
Ω,RN×n

2

s

)
, as m→∞.

Obviously,

D1,hv(x) =

(
v(x+ he1)− v(x)

h
, ... ,

v(x+ hen)− v(x)

h

)
, h 6= 0
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where {e1, ..., en} is the usual basis of Rn. By the weak* compactness of the set

Y
(
Ω,RN×n2

s

)
, every map possesses at least one diffuse hessian (and actually exactly

one if it is twice differentiable in measure à la Ambrosio-Malý [AM], see [K8]).

Definition 2 (Lipschitzian D-solutions of 2nd order PDE systems, cf. [K8]). Let

F : RN×n× RN×n
2

s −→ RN

be a Borel measurable map. A mapping u : Ω ⊆ Rn −→ RN in W 1,∞
loc (Ω,RN ) is a

D-solution to

(1.9) F
(
Du,D2u

)
= 0 in Ω,

if for any diffuse hessian D2u ∈ Y (Ω,RN×n2

s ) and any Φ ∈ Cc
(
RN×n2

s

)
, we have∫

RN×n2
s

Φ(X)F
(
Du(x),X

)
d
[
D2u(x)

]
(X) = 0, a.e. x ∈ Ω.

The notion of generalised solution given by Definitions 1 & 2 will be our central
notion of solution for (1.1). By the motivation of the notion and the results of
Section 2 it follows that it is compatible with strong and classical solutions (for
more see [K8]-[K12]). More precisely, if a D-solution is twice differentiable a.e. on
Ω, then (1.8) says that all diffuse derivatives coincide a.e. on Ω and are given by
the Dirac measure δD2u at the hessian. Hence, the integral formula (1.7) reduces
to the definition of strong a.e. solutions.

The principal result of this paper is the existence of D-solutions to the Dirichlet
problem for (1.1) when N ≤ n. These solutions have extra geometric properties,
being W 1,∞-submersions and solving a certain system of vectorial Hamilton-Jacobi
equations associated to (1.1)-(1.3). Our only assumptions on H are that

• H is non-negative, C1 on RN×n and C2 on {P ∈ RN×n : rk(P ) = N},
• H(P ) depends on P via PP> ∈ RN×Ns ,
• rk(HP (P )) = N when rk(P ) = N .

In particular, we do not assume any kind of convexity of “BJW-quasiconvexity” or
level-convexity for H, not even C2 smoothness on the whole of RN×n but merely
on the open set of matrices of full rank. The notion of “BJW-quasiconvexity”
introduced and studied in [BJW1, BJW2] is the correct notion for weak* lower
semi-continuity of L∞ functionals. Examples of H to which our results apply are
given by H1(P ) = |AP |α for α > 1 and A ∈ RN×N≥0 and by H2(P ) = (|P |2 + 1)−1.
The example H2 does not even have rank-one convex sublevel sets. The solutions
we construct are obtained by the celebrated Baire Category method of Dacorogna-
Marcellini (see [DM2] and [D, DP]) for a certain 1st order differential inclusion
relevant to (1.1) which we expound after the statement:

Theorem 3 (Existence of D-solutions to the Dirichlet problem). Let N ≤ n and
H : RN×n −→ [0,∞) be such that

H(P ) = h
(
PP>

)
for some h : RN×N≥0 −→ [0,∞) satisfying

• h ∈ C1
(
RN×N≥0

)
∩ C2

(
RN×N>0

)
,

• the derivative hX(X) is symmetric and det(hX(X)) 6= 0 for X > 0.
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Then, for any open Ω ⊆ Rn and g ∈W 1,∞(Ω,RN ), the Dirichlet problem for (1.1)

(1.10)

{
A∞u = 0, in Ω,

u = g, on ∂Ω,

has an infinite set of D-solutions in the class of Lipschitz submersions

A :=
{
v ∈W 1,∞

g (Ω,RN ) : rk(Dv) = N, a.e. on Ω
}
.

Namely, there is an infinite set of u ∈ A such that for any D2u ∈ Y (Ω,RN×n2

s ),∫
RN×n2
s

Φ(X)
(

HP ⊗HP + H[HP ]⊥HPP

)
(Du) : X d[D2u](X) = 0

a.e. on Ω, for any Φ ∈ Cc
(
RN×n2

s

)
.

Proposition 4 (Geometric properties of D-solutions to (1.10)). In the setting of
Theorem 3, we also have the following extra properties for our D-solutions: for any

c > ‖Dg‖L∞(Ω)

there is an infinite set of solutions Ac ⊆ A such that each u ∈ Ac solves the coupled
system of Hamilton-Jacobi equations

(1.11)


H(Du) = H

(
[c I | 0 ]

)
, a.e. on Ω,[

HP (Du)
]⊥

= 0, a.e. on Ω,

det
(
DuDu>

)
= c2N , a.e. on Ω,

u = g, on ∂Ω.

Theorem 3 and Proposition 4 generalise one of the results of [K8] in which the
the conclusions above were established in the special case n = N and H(P ) = |P |2,
corresponding to the ∞-Laplacian (1.5).

Informally, the idea of the proofs of Theorem 3 and Proposition 4 is as follows.
An inspection of (1.1) shows that it can be contracted as

(1.12) HP (Du) D
(
H(Du)

)
+ H(Du)

[
HP (Du)

]⊥
Div
(
HP (Du)

)
= 0,

that is as

n∑
i=1

(
HPαi(Du) Di

(
H(Du)

)
+ H(Du)

N∑
γ=1

[
HP (Du)

]⊥
αγ

Di

(
HPγi(Du)

))
= 0,

for α = 1, ..., N . Hence, if we could prove for some C ≥ 0 existence of solutions to
the differential inclusion

Du(x) ∈
{
P ∈ RN×n

∣∣∣H(P ) = C, rk(HP (P )) = N
}
, x ∈ Ω,

we would obtain a solution to (1.12) (i.e. to (1.1)) because then D
(
H(Du)

)
≡ 0

and also [HP (Du)]⊥ since if HP (Du) has full rank the orthogonal complement of its
range trivialises. However, the preceding arguments make sense only for classical
or strong solutions. The proof of Theorem 3 has two main parts. We first use the
Baire Category method to establish the existence of W 1,∞ strong a.e. solutions to
system (1.11) of Corollary 4 and then we utilise the machinery of D-solutions to
make the above heuristics rigorous.
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Our main ingredient for the solvability of (1.11) is a result of independent interest
about the solvability of the following fully non-linear system, usually referred to as
the prescribed singular value problem:

(1.13)

{
λi(Du) = 1, a.e. on Ω, i = 1, ..., n ∧N,

u = g, on ∂Ω.

In (1.13), {λ1(Du), ..., λn∧N (Du)} denotes the set of singular values of the matrix
Du, namely the eigenvalues of the matrix (Du>Du)1/2 in increasing order and we
symbolise n ∧N = min{n,N}.

Systems of PDEs involving singular values, mostly related to non-convex prob-
lems in Calculus of Variations, have been considered by several authors (cf. for
instance [Cr, BCR, DR, DPR]). In particular the problem of finding sufficient con-
ditions on the boundary datum g in order to get existence of solutions to problem
(1.13) has been addressed, in the special case n = N , in [DM1, DM2, DT]. To the
best of our knowledge no results are known for the case n 6= N . Accordingly, we
establish the following result.

Theorem 5. Let Ω ⊆ Rn be an open set. Assume that g ∈ Affpw(Ω,RN ) is such
that λn∧N (Dg) < 1, a.e. on Ω. Then, there exists an infinite set of solutions
u ∈W 1,∞

g (Ω,RN ) to the system (1.13).

The proof of the previous theorem can be obtained as an application of the
general existence theory for differential inclusion via the Baire Category method
(cf. [DP]), in the same spirit as in the N = n case. It relies on the characterisation
of the rank-one convex envelope of the set of matrices

E :=
{
Q ∈ RN×n : λi(Q) = 1, i = 1, . . . , N ∧ n

}
,

which is

RcoE =
{
Q ∈ RN×n : λN∧n(Q) ≤ 1

}
,

as proved in Theorem 11.
In order to address the question of the existence of solutions to the problem

(1.11) with g ∈ W 1,∞(Ω,RN ), some comments on the admissible regularity of the
boundary datum in Theorem 5 are in order. Indeed, the piecewise affinity of the
datum g can be weakened to Lipschitz continuity if we restrict slightly the bound
on the norm λn∧N (Dg). This result, precisely stated in Corollary 6 that follows, is
a simple consequence of the convexity of the rank-one convex hull of E (cf. Theorem
11) and of the approximation result proved in [DM2, Corollary 10.21].

Corollary 6. Let Ω ⊆ Rn be an open set. Assume that g ∈ W 1,∞(Ω,RN ) is such
that for some δ > 0 we have λn∧N (Dg) ≤ 1 − δ, a.e. on Ω. Then there exists a
infinite set of solutions u ∈W 1,∞

g (Ω,RN ) to the system (1.13).

The rest of the paper is organised as follows. In the next section we recall some
known results about Young measures valued into spheres. In Section 3 we provide
the proof of the existence of solutions for the prescribed singular value problem and
in the last section we prove existence and geometric properties of D-solutions to
the problem (1.10).
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2. Young measures valued into spheres

Here we collect some basic material taken from [K8] which can be found in differ-
ent guises and in greater generality e.g. in [CFV, FG]. Let E ⊆ Rn be measurable
and consider the L1 space of strongly measurable maps valued in the continuous

functions over the sphere RN×n2

s (for details on these spaces see e.g. [Ed, FL]):

L1
(
E,C

(
RN×n

2

s

))
.

The Banach space C
(
RN×n2

s

)
will be endowed with the standard supremum norm.

The above L1 space consists of Carathéodory functions Φ : E × RN×n2

s −→ R for
which

‖Φ‖
L1(E,C(RN×n2

s ))
=

∫
E

∥∥Φ(x, ·)
∥∥
C(RN×n2

s )
dx < ∞.

The dual of this (separable) Banach space is

L∞w∗
(
E,M

(
RN×n

2

s

))
= L1

(
E,M

(
RN×n

2

s

))∗
.

The dual space above consists of measure-valued maps x 7→ ϑ(x) which are weakly*

measurable, that is, for any fixed Ψ ∈ C
(
RN×n2

s

)
, the function

E 3 x 7−→
∫
RN×n2
s

Ψ(X) d[ϑ(x)](X) ∈ R

is measurable. The norm of the space is

‖ϑ‖
L∞
w∗ (E,M(RN×n2

s ))
= ess sup

x∈E
‖ϑ(x)‖

where “‖ · ‖” symbolises the total variation on the real (signed) Radon measures.
The closed unit ball of L∞w∗ is sequentially weakly* compact and the duality pairing

(2.1) 〈·, ·〉 : L∞w∗
(
E,M

(
RN×n

2

s

))
× L1

(
E,C

(
RN×n

2

s

))
−→ R

is given by

〈ϑ,Φ〉 :=

∫
E

∫
RN×n2
s

Φ(x,X) d[ϑ(x)](X) dx.

Definition (Young Measures). The subset of the unit sphere of L∞w∗ consisting of
probability-valued maps is the set of Young measures from E into the compactifica-

tion RN×n2

s :

Y
(
E,RN×n

2

s

)
:=
{
ϑ ∈ L∞w∗

(
E,M

(
RN×n

2

s

)) ∣∣∣ϑ(x) ∈P
(
RN×n

2

s

)
, a.e. x ∈ E

}
.

We finally note the following well known facts (for their proofs see e.g. [FG]):

(a) The set of Young measures above is convex and sequentially weakly* compact.

(b) Every measurable map v : E ⊆ Rn −→ RN×n2

s induces a Young measure δv
given by δv(x) := δv(x).

(c) Let vm, v∞ : E ⊆ Rn −→ RN×n2

s be measurable, m ∈ N. Up to the passage to
subsequences, we have

vm −→ v∞ a.e. on E ⇐⇒ δvm
∗−−⇀δv∞ in Y

(
E,RN×n

2

s

)
.
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3. The prescribed singular value problem

In this section we prove Theorem 5 and Corollary 6. To this aim we start by
recalling for the convenience of the reader some well known results about generalised
convex hulls of sets of matrices (for further details we refer to the books [DM2] and
[D]).

For Q ∈ RN×n we set

T (Q) :=
(
Q, adj2Q, . . . , , adjN∧nQ

)
∈ Rτ(N,n),

where adjsQ stands for the matrix of all s × s subdeterminants of the matrix Q,
1 ≤ s ≤ N ∧ n = min {N,n} and

τ (N,n) :=

N∧n∑
s=1

(
N

s

)(
n

s

)
,

(
N

s

)
=

N !

s! (N − s)!
.

Definition 7. Consider a function f : RN×n → R ∪ {+∞}.
(1) f is said to be polyconvex if there exists a convex function g : Rτ(N,n) →

R ∪ {+∞} such that f(Q) = g(T (Q)).
(2) f is said to be rank one convex if

f
(
λQ+ (1− λ)R

)
≤ λ f (Q) + (1− λ) f (R)

for every λ ∈ [0, 1] and every Q,R ∈ RN×n with rk(R−Q) = 1.

It is well known that if a function is polyconvex, then it is rank one convex. Next
we recall the corresponding notions of convexity for sets.

Definition 8. Let E be a subset of RN×n.

(1) We say that E is polyconvex if there exists a convex set K ⊆ Rτ(N,n) such
that

{
Q ∈ RN×n : T (Q) ∈ K

}
= E.

(2) We say that E is rank one convex if for every λ ∈ [0, 1] and for every
Q,R ∈ E such that rk(Q−R) = 1, then λQ+ (1− λ)R ∈ E.

Definition 9. The polyconvex and rank one convex hulls of a set E ⊆ RN×n are,
respectively, the smallest polyconvex and rank one convex sets containing E and
are, respectively, denoted by PcoE and RcoE.

Obviously one has the following inclusions: E ⊆ RcoE ⊆ PcoE ⊆ coE, where
coE denotes the convex hull of E. Let us also recall the next characterisation of
the rank one convex hull:

(3.1) Rco E =
⋃
i∈N

RicoE,

where R0coE = E and

Ri+1coE =

{
Q ∈ RN×n :

Q = λA+ (1− λ)B, λ ∈ [0, 1],

A,B ∈ RicoE, rk(A−B) ≤ 1

}
, i ≥ 0.

It is well known that, for E ⊆ RN×n, (cfr. [D, Proposition 2.36])

(3.2) coE =
{
Q ∈ RN×n : f(Q) ≤ 0, for every convex function f ∈ FE∞

}
where

FE∞ =
{
f : RN×n → R ∪ {+∞} : f |E ≤ 0

}
.
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Analogous representations to (3.2) can be obtained in the polyconvex and rank
one convex cases:

PcoE =
{
Q ∈ RN×n : f(Q) ≤ 0, for every polyconvex function f ∈ FE∞

}
,

RcoE =
{
Q ∈ RN×n : f(Q) ≤ 0, for every rank one convex function f ∈ FE∞

}
.

For a matrix A ∈ RN×n, we denote by λi(A), with 0 ≤ λi(A) ≤ λi+1(A), i =
1, . . . , N ∧ n, the singular values of A, that is, the eigenvalues of the matrix
(A>A)

1
2 ∈ Rn×n. The following singular value decomposition theorem can be

deduced from [HJ, Theorem 2.6.3].

Theorem 10. Let A ∈ RN×n. Then there exist U ∈ RN×N , V ∈ Rn×n unitary
matrices and D ∈ RN×n rectangular diagonal matrix such that A = UDV t.

Using the singular values we can define the unitarily invariant norms on RN×n
(known as Ky Fan k-norms (cf. [HJ, Section 7.4.8]) as

‖A‖k :=

k−1∑
i=0

λn−i(A), k ∈ {1, 2, . . . , n ∧N}.

Choosing k = 1 we obtain the useful property of the maximum singular value
λn∧N (A) of being a norm in RN×n.

As done in [DM1, Theorem 7.16] for the case n = N , in the next theorem we
characterise the rank-one convex hull of the set

(3.3) E =
{
Q ∈ RN×n : λi(Q) = 1, i = 1, . . . , N ∧ n

}
.

It turns out that, in this particular case where the singular values are all equal,
RcoE is indeed a convex set, as coE = RcoE = PcoE.

Theorem 11. Let E be defined by (3.3). Then coE = PcoE = RcoE,

RcoE =
{
Q ∈ RN×n : λN∧n(Q) ≤ 1

}
and

int RcoE =
{
Q ∈ RN×n : λN∧n(Q) < 1

}
.

Proof. Let X := {Q ∈ RN×n : λn(Q) ≤ 1}. The claim will follow from the
inclusions coE ⊆ X and X ⊆ RcoE. The first one is a direct consequence of
the convexity of the function A 7→ λn(A) (that is convex being a norm) and of
the characterisation of the convex envelope of a set given by (3.2). To prove the
second inclusion, by the decomposition Theorem 10, it is enough to prove that a
general rectangular diagonal matrix D ∈ X is in the rank-one convex envelope of
the subset of rectangular diagonal matrices in E. The proof then is identical to
that of [D, Theorem 7.17] where we have to consider the notation diag(a1, . . . , an)
as a rectangular diagonal matrix made by a square diagonal block with entries
(a1, . . . , an) and a (N −n)×n or (n−N)×N zero block accordingly with the case
N > n or n > N .

The characterisation of the interior follows from the continuity of A 7→ λn(A)
(λn is a norm) and from the fact that if Q ∈ int RcoE then λn(Q) 6= 1. The last
claim can be easily proved by contradiction, assuming without loss of generality
that Q is diagonal and perturbing it by considering Q + εZ where Z ∈ RN×n is
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such that (Z)n∧N,n∧N = 1 and the other entries of Z are null. Then Q+ εZ would
not belong to RcoE, which is a contradiction. �

To prove Theorem 5 we can apply the general existence theorem of [DP] (note
that similar existence theorems have been obtaind by Kirchheim in [Ki1, Ki2] and
by Müller and Šverák in [MS1, MS2]). To this aim we need the notion of Approxi-
mation Property defined below.

Definition 12 (Approximation Property). Let E ⊆ K (E) ⊆ RN×n. The sets E
and K (E) are said to have the approximation property if there exists a family of
closed sets Eδ and K (Eδ), δ > 0, such that

(1) Eδ ⊆ K (Eδ) ⊆ intK (E) for every δ > 0;
(2) for every ε > 0 there exists δ0 = δ0 (ε) > 0 such that dist(Q,E) ≤ ε for every

Q ∈ Eδ and δ ∈ [0, δ0];
(3) if Q ∈ intK (E) then Q ∈ K (Eδ) for every δ > 0 sufficiently small.

We therefore have the following result (cf. [DP, Theorem 7 and 9] and also [D,
Section 10.2.1]).

Theorem 13. Let E ⊆ RN×n be compact and suppose that there exist Eδ and
K (Eδ) = RcoEδ satisfying the approximation property with K = int RcoE. Let
Ω ⊆ Rn be open and g ∈ Affpiec

(
Ω,RN

)
be such that

Dg (x) ∈ E ∪ int RcoE, a.e. x ∈ Ω.

Then there exists (a dense set of) u ∈W 1,∞
g

(
Ω,RN

)
such that

Du (x) ∈ E, a.e. x ∈ Ω.

Remark 14. If the set K is open, g can be taken in C1
piec

(
Ω,RN

)
(cf. Corollary

10.15 or Theorem 10.16 in [D]), with Dg (x) ∈ E ∪ K. While if K is open and
convex, g can be taken in W 1,∞ (Ω,RN) provided

Dg (x) ∈ C, a.e. x ∈ Ω,

where C ⊆ K is compact (cf. Corollary 10.21 in [DM1]).

Proof of Theorem 5 and Corollary 6. We prove the approximation property
with

Eδ =
{
Q ∈ RN×n : λi(Q) = 1− δ, i = 1, . . . , n ∧N

}
.

Indeed it is easy to check that

RcoEδ =
{
Q ∈ RN×n : λn∧N (Q) ≤ 1− δ

}
⊆
{
Q ∈ RN×n : λn∧N (Q) < 1

}
= int RcoE .

To check the second condition we observe that for any fixed Q ∈ Eδ, then up
to a multiplication by unitary matrices (see Theorem 10), we can assume that

Q = (1− δ)̃I, where Ĩ is the rectangular identity matrix belonging to E. Therefore

‖Q− Ĩ‖ ≤ cδ. The third condition can be easily verified arguing as in the last part of
the proof of Theorem 11. We can therefore prove Theorem 5 by applying Theorem
13. The claim of Corollary 6 can be proved by arguing as before and appealing to
Remark 14. �
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4. D-solutions to the PDE system arising in vectorial Calculus of
Variations in L∞

In this section we establish the proofs of Theorem 3 and of Proposition 4 by
utilising Corollary 6 which was proved in Section 3.

Proof of Proposition 4. We begin by showing the next consequence of the
solvability of the singular value problem.

Claim 15. Given an open set Ω ⊆ Rn and g ∈W 1,∞(Ω,RN ) with N ≤ n, for any
constant c > ‖Dg‖L∞(Ω) there exist (an infinite set of) maps u : Ω ⊆ Rn −→ RN
in W 1,∞

g (Ω,RN ) such that1

(4.1)

{
DuDu> = c2I, a.e. on Ω,

u = g, on ∂Ω.

Proof of Claim 15. Since the matrix-valued maps (DuDu>)1/2 and (Du>Du)1/2

have the same non-zero eigenvalues, by the results of the previous section the Dirich-
let problem

(4.2)

{
σα
(
(DvDv>)1/2

)
= 1, a.e. on Ω, α = 1, ..., N,

v = g/c, on ∂Ω,

(where {σ1, ..., σN} symbolise the eigenvalues of the N × N matrix in increasing

order) has solutions v ∈W 1,∞
g/c (Ω,RN ) because a.e. on Ω we have that

max
α=1,...,N

σα

((
D(g/c) D(g/c)>

)1/2)
=

1

c

{
σN
(
DgDg>

)}1/2

=
1

c

{
max
|e|=1

(
DgDg>

)
: (e⊗ e)

}1/2

=
1

c
max
|e|=1

∣∣e>Dg
∣∣

≤ 1

c

∥∥Dg
∥∥
L∞(Ω)

≤ 1− δ,
for some δ > 0. This is a consequence of Corollary 6. By rescaling u := cv, we have
the existence of an infinite set of solutions u ∈W 1,∞

g (Ω,RN ) of

(4.3)

{
σα
(
(DuDu>)1/2

)
= c, a.e. on Ω, α = 1, ..., N,

u = g, on ∂Ω.

Next, by the Spectral Theorem, for each such u there is a measurable map with
values in the orthogonal matrices

U : Ω ⊆ Rn −→ O(N,R) ⊆ RN×N

such that

DuDu> = U


σ1

(
(DuDu>)1/2

)2
O

.. .

O σN
(
(DuDu>)1/2

)2
U> = U(c2I)U> = c2I,

1One of the referees of this paper brought to our attention that the tensor DuDu> is the so

called Left-Cauchy-Green Tensor which appears in nonlinear elasticity.
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a.e. on Ω. The claim thus ensues. �

Now we complete the proof of the proposition. By our assumptions on H (see
Theorem 3), for any u as above we have

H(Du) = h
(
DuDu>

)
= h

(
c2I
)

and by splitting the identity as

c2I = [cI |O] · [cI |O]>

where [cI |O] ∈ RN×N × RN×(n−N), we have

H(Du) = h
(

[cI |O] · [cI |O]>
)

= H
(
[cI |O]

)
, a.e. on Ω.

Further,

det
(
DuDu>

)
= det

((
DuDu>

)1/2)2
=

{
N∏
α=1

σα

((
DuDu>

)1/2)}2

= c2N ,

a.e. on Ω. Note now that in view of the symmetry of the derivative of h, we have

HPαi(P ) =
(
h
(
PP>

))
Pαi

=

N∑
β,γ=1

n∑
j=1

hXβγ
(
PP>

)(
Pβjδαγδij + Pγiδαβδij

)

= 2

N∑
β=1

hXαβ
(
PP>

)
Pβi,

for all α = 1, ..., N and i = 1, ..., n. Hence, by the last two equalities and our
assumption on H we have that HP (Du) has full rank:

rk (HP (Du)) = rk
(
hX
(
DuDu>

)
Du
)

= rk(Du) = N,

a.e. on Ω. By (1.2), this implies

[HP (Du)]
⊥

= ProjR(HP (Du))⊥ = Proj(RN )⊥ = Proj{0} = 0,

a.e. on Ω, as desired. The proposition ensues. �

Proof of Theorem 3. Given Ω ⊆ Rn open, g ∈W 1,∞(Ω,RN ) and c > ‖Dg‖L∞(Ω),
let u ∈ Ac be any of the solutions obtained in Proposition 4 of the systems of fully
nonlinear equations (1.11). We set

(4.4) A∞αiβj(P ) := HPαi(P ) HPβj (P ) + H(P )

N∑
γ=1

[
HP (P )

]⊥
αγ

HPγiPβj (P ),

where α, β = 1, ..., N and i, j = 1, ..., n. In order to show that u is a D-solution of
(1.1), we must show that for any diffuse hessian of u

(4.5) δD1,hmDu
∗−−⇀D2u in Y

(
Ω,RN×n

2

s

)
,

as m→∞, we have

(4.6)

∫
RN×n2
s

Φ(X)
[
A∞

(
Du(x)

)
: X
]
d
[
D2u(x)

]
(X) = 0
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for a.e. x ∈ Ω and any fixed Φ ∈ Cc
(
RN×n2

s

)
. By (1.11), we have H

(
Du(x)

)
= const

for a.e. x ∈ Ω. Fix such an x ∈ Ω, 0 < |h| < dist(x, ∂Ω) and i ∈ {1, ..., n}. Then,
by Taylor’s theorem, we have

0 = H
(
Du(x+ hei)

)
−H

(
Du(x)

)
=

=

N∑
β=1

n∑
j=1

∫ 1

0

HPβj

(
Du(x) + λ

[
Du(x+ hei)−Du(x)

])
dλ�

�
[
Djuβ(x+ hei)−Djuβ(x)

]
.

This implies the identity

N∑
β=1

n∑
j=1

HPβj

(
Du(x)

) (
D1,h
i Djuβ

)
(x)

+

N∑
β=1

n∑
j=1

∫ 1

0

[
HPβj

(
Du(x) + λ

[
Du(x+ hei)−Du(x)

])
−HPβj

(
Du(x)

)]
dλ
(
D1,h
i Djuβ

)
(x) = 0.

(4.7)

Let now hm → 0 as m → ∞ be an infinitesimal sequence giving rise to a diffuse
hessian as in (4.5). We define the “error” tensor

Em
αiβj(x) := HPαi

(
Du(x)

) ∫ 1

0

[
HPβj

(
Du(x) + λ

[
Du(x+ hme

i)

−Du(x)
])
−HPβj

(
Du(x)

)]
dλ,

(4.8)

for a.e. x ∈ Ω, where α, β = 1, ..., N , i, j = 1, ..., n and m ∈ N. Then, in view of
(4.8) and of the following consequence of (1.11)

N∑
γ=1

H
(
Du(x)

) [
HP

(
Du(x)

)]⊥
αγ

HPγiPβj

(
Du(x)

)
= 0,

identity (4.7) (for h = hm) yields

N∑
β,γ=1

n∑
i,j=1

{(
HPαi(Du) HPβj (Du)

+ H(Du)
[
HP (Du)

]⊥
αγ

HPγiPβj (Du)

)
+ Em

αiβj

}
D1,hm
i Djuβ = 0,

(4.9)

a.e. on Ω and for all α = 1, ..., N . In view of definition (4.4), we rewrite (4.9)
compactly as (

A∞
(
Du(x)

)
+ Em(x)

)
: D1,hmDu(x) = 0,

for a.e. x ∈ Ω. By multiplying by Φ(D1,hmDu), this gives

(4.10)

∫
RN×n2
s

∣∣∣Φ(X)
(
A∞

(
Du(x)

)
+ Em(x)

)
: X
∣∣∣ d[δD1,hmDu(x)

∣∣(X) = 0,



14 GISELLA CROCE, NIKOS KATZOURAKIS AND GIOVANNI PISANTE

for a.e. x ∈ Ω. Since Du ∈ L∞(Ω,RN×n), by the continuity of the translations in
L1 we have

Du(·+ hei) −→ Du, i = 1, ..., n,

as h → 0, in L1
loc(Ω,RN×n) and hence along, if necessary, a further subsequence

(mk)∞1 we have

Du
(
x+ hmke

i
)
−→ Du(x), for a.e. x ∈ Ω,

as k →∞. Since H ∈ C1(RN×n) and Du ∈ L∞(Ω,RN×n), the Dominated Conver-
gence Theorem and (4.8) imply that

(4.11) |Emk | −→ 0, in L1
loc(Ω),

as k →∞. Let E ⊆ Ω be a compact set. Then, (4.10) gives
(4.12)∫

E

∫
RN×n2
s

∣∣∣Φ(X)
(
A∞

(
Du(x)

)
+ Emk(x)

)
: X
∣∣∣ d[δD1,hmkDu

(x)
]
(X) dx = 0.

We define the Carathéodory maps

Ψm(x,X) := χE(x)
∣∣∣Φ(X)

(
A∞

(
Du(x)

)
+ Em(x)

)
: X
∣∣∣, m ∈ N,

Ψ∞(x,X) := χE(x)
∣∣∣Φ(X)

(
A∞

(
Du(x)

))
: X
∣∣∣,

which are elements of the Banach space L1
(
E,C

(
RN×n2

s

))
by the compactness of

the support of Φ and of the set E. We also have that

(4.13) Ψmk −→ Ψ∞, as k →∞ in L1
(
E,C

(
RN×n

2

s

))
,

because of the estimate

‖Ψmk −Ψ∞‖
L1(E,C(RN×n2

s ))
≤ max

X∈supp(Φ)

∣∣∣Φ(X)X
∣∣∣ ∫
E

∣∣Emk(x)
∣∣ dx

which yields that the right hand side vanishes as k →∞ as a consequence of(4.11).
The weak*-strong continuity of the duality pairing (2.1), (4.13) and (4.5) allow us
to pass to the limit as k →∞ in (4.12) and deduce∫

E

∫
RN×n2
s

Φ(X)
[
A∞

(
Du(x)

)
: X
]
d
[
D2u(x)

]
(X) dx = 0.

Since E ⊆ Ω is an arbitrary compact set, the theorem ensues. �

5. Remarks and open questions

In this final section we make some further comments regarding the results stated
in Theorem 3, pointing also towards certain relevant open questions which we have
not answered in this work.

•An interesting question which we not attempt to answer herein regards the relation
of D- and viscosity solutions in the scalar case of N = 1, in particular in relation
to the first order vectorial equation H(Du) = c. The content of Theorem 3 is
that all W 1,∞ strong solutions to the first order system (1.11) are D-solutions to
(1.1). This is a kind of generalisation of the scalar implication that “differentiable
solutions to the Eikonal equation |Du| = c are∞-Harmonic”. However, we refrained
from mentioning this explicitly earlier since, when restricted to the scalar case, the
notion of D-solutions is generally weaker than that of viscosity solutions. In the
recent paper [K10] some further insights regarding the behaviour of C1 D-solutions
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and their relation to the variational problem are presented, even though they do
not answer this particular question.

• A further interesting open question regards whether C1-regular D-solutions to
the system are in some sense “critical points” to the functional. Clearly, C1 is
a very optimistic regularity expectation for putative minima or extrema of any
kind and one might hope that this prominent class would have the most favourable
properties. At present we do not have a definitive answer, primarily because there
is no clear way of how to define an adequate notion of “critical points” for supremal
functionals.

• We close by noting that one might be tempted to call the solutions we construct
“critical points” of the functional, in the sense that they solve the equilibrium equa-
tions whilst not minimising the functional. However, the reader should note that
our solutions are not critical points in the classical sense of Calculus of Variations
for integral functionals. The situation for supremal functionals, even in the scalar
case, is indeed far from being well understood. In particular, for supremal func-
tionals, even global minimisers may not solve the equations! To the best of our
knowledge, nowhere in the literature any kind of L∞-notion of critical points has
been defined. The only existing variational notions are those of absolute minimis-
ers and their vectorial generalisations (∞-minimal maps in [K2] and tight maps in
[SS]).
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