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The study of dynamics and rheology of well-entangled branched polymers remains a challenge for
computer simulations due to the exponentially growing terminal relaxation times of these polymers
with increasing molecular weights. We present an efficient simulation algorithm for studying the
arm retraction dynamics of entangled star polymers by combining the coarse-grained slip-spring
(SS) model with the forward flux sampling (FFS) method. This algorithm is first applied to simulate
symmetric star polymers in the absence of constraint release (CR). The reaction coordinate for the FFS
method is determined by finding good agreement of the simulation results on the terminal relaxation
times of mildly entangled stars with those obtained from direct shooting SS model simulations with
the relative difference between them less than 5%. The FFS simulations are then carried out for
strongly entangled stars with arm lengths up to 16 entanglements that are far beyond the accessibility
of brute force simulations in the non-CR condition. Apart from the terminal relaxation times, the
same method can also be applied to generate the relaxation spectra of all entanglements along the
arms which are desired for the development of quantitative theories of entangled branched polymers.
Furthermore, we propose a numerical route to construct the experimentally measurable relaxation
correlation functions by effectively linking the data stored at each interface during the FFS runs. The
obtained star arm end-to-end vector relaxation functions Φ(t) and the stress relaxation function G(t)
are found to be in reasonably good agreement with standard SS simulation results in the terminal
regime. Finally, we demonstrate that this simulation method can be conveniently extended to study
the arm-retraction problem in entangled star polymer melts with CR by modifying the definition of
the reaction coordinate, while the computational efficiency will depend on the particular slip-spring
or slip-link model employed. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4995422]

I. INTRODUCTION

Development of quantitative theories for predicting the
dynamic and rheological properties of entangled branched
polymers is of both fundamental and practical importance.
In the past decades, theoretical efforts have been primarily
based on the concept of tube model originally proposed by de
Gennes, Doi, and Edwards.1–3 Different from entangled linear
polymers where reptation, contour length fluctuations (CLFs),
and constraint release (CR) are the main relaxation mecha-
nisms, reptation in branched polymers is strongly suppressed
due to the effectively localized branch points. In the simplest
case of symmetric star polymers, the stress relaxation is con-
jectured to proceed via CLF or arm retraction by which the
free end of an arm retracts inward along the primitive path to
escape from the original tube segments and pokes out again to
explore new tube. Since arm retraction is entropically unfavor-
able and so thermally activated, this process can be formulated
as a first-passage (FP) problem or Kramers problem.4–6

A star arm retracting in a fixed network experiences a
potential barrier theoretically described by a quadratic func-
tion U(s) = νkBTZs2, where kB is the Boltzmann constant,

a)Deceased.
b)Author to whom correspondence should be addressed: zuowei.wang@

reading.ac.uk

Z = M/Me is the number of entanglements per arm, M is the arm
molecular weight, Me is the entanglement molecular weight,
and ν is treated as a constant.7 The fractional coordinate s
measures the retraction depth of the arm free end. Pearson and
Helfand predicted an exponential dependence of the arm termi-
nal relaxation time, τd, and correspondingly the viscosity, η0,
on the arm molecular weight, η0 ∼ τd ∼ exp(νM/Me).8 This
prediction, however, shows a large discrepancy from experi-
mental data obtained in star polymer melts due to the neglect
of CR effects. Ball and McLeish9 took into account the CR
effects by applying the dynamic tube dilution (DTD) hypoth-
esis10 where the relaxed arm segments are considered to work
as an effective solvent for the unrelaxed materials. Milner and
McLeish further improved this theory by including the contri-
butions of fast Rouse fluctuations at early times and solving
the first-passage problem of a diffusing end monomer to retract
a fractional distance s to get the arm relaxation spectrum τ(s)
at late times.4,5 The Milner-McLeish theory predicts the stress
relaxation of symmetric star polymer melts reasonably well
but not the dielectric or arm end-to-end vector relaxation func-
tion. It also encounters difficulty in using a single set of model
parameters to describe the rheological behaviors of asymmet-
ric star polymers with different short arm lengths.11 In recent
years, computational models based on the framework of the
Milner-McLeish theory have been developed for describing
the linear viscoelasticity of branched polymers with arbitrary
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architectures and their general mixtures.12–16 These models
have been shown to provide predictions in reasonably good
agreement with experimental data for a variety of systems but
are facing problems in describing the linear rheology of some
simple mixtures, such as the star-linear blends, especially at
low fractions of star polymers.16,17 Therefore more quantita-
tive theories that can simultaneously predict different dynamic
and rheological properties of entangled branched polymers are
still highly desired. The development of such theories requires
the analytical solution of the multi-dimensional FP problem
of arm retraction.18

On the other hand, the coarse-grained slip-link or slip-
spring (SS) simulation models have demonstrated strong
potential in describing the dynamics and rheology of entan-
gled polymers.19–28 For example, the single-chain slip-spring
model developed by Likhtman25 can provide simulation results
on multiple experimentally measurable observables, such as
neutron spin echo, linear rheology, dielectric relaxation, and
diffusion. Using a limited number of fitting parameters, the
predictions of this model match the results obtained from both
experiments and molecular dynamics (MD) simulations on lin-
ear and symmetric star polymers very well.26,29–31 The SS
model serves as an intermediate between tube theory and MD
simulations. As a discrete model, it not only naturally builds
in all the relaxation mechanisms of the tube model but also
carries more system details, such as explicit polymer chains
and entanglements.32 At a higher level of coarse-graining,
the SS model is significantly more efficient than MD simula-
tions using the bead-spring polymer model, which is of great
advantage in the study of branched polymers. Furthermore, the
slip-spring model can separate the contributions from differ-
ent relaxation mechanisms by enabling some of them while
disabling others. This is particularly helpful for examining
assumptions made in the current theoretical models and pro-
viding valuable information for developing more quantitative
models. One typical application is to evaluate the magnitude
of constraint release effects by comparing simulation results
obtained from entangled polymer systems with and without
CR.

Since deep arm retractions are rare events due to the high
entropic barrier, the time and length scales accessible to stan-
dard slip-spring simulations are still much shorter than those in
well-entangled experimental systems where the tube models
are supposed to work best. Similar problems have also been
seen in brute force simulations of many other rare events, such
as crystal nucleation,33,34 biological switches,35 and protein
folding.36 The required computational time may take up to
several decades.37 Advanced numerical techniques, such as the
umbrella sampling38 and transition path sampling39 methods,
have to be employed to accelerate the simulations. Recently the
forward flux sampling (FFS) method has been proposed35,40,41

and proven to be successful in molecular dynamics and Monte
Carlo (MC) studies of rare events.37,42

In this work, we will combine the FFS method with the
slip-spring model for studying the dynamics of entangled sym-
metric star polymers. This is a proof-of-concept work. To our
knowledge, the only reported work on applying the transi-
tion path sampling methods to study entanglement dynamics
is the FFS simulation of Rouse chains in the regime relevant

to arm retraction dynamics.18 We will mainly focus on the
systems without constraint release for the following reasons:
(1) It is relatively convenient to implement the FFS method and
find an appropriate reaction coordinate in the non-CR systems.
(2) The terminal relaxation times in the systems without CR
are much longer than those with CR, allowing us to test the
computational efficiency and limit of the combined method.
(3) Reliable simulation data on the FP times of arm retractions
without CR are highly desired for examining analytical solu-
tions of the multi-dimensional Kramers problem.18 (4) The
extension of the method developed in the non-CR case to the
CR case is fairly straightforward, as will be shown in Sec. V.
With an optimized selection of the reaction coordinate, which
is the index of the monomer that the innermost slip-link sits
on, we first validate the proposed simulation method by pro-
ducing simulation results on the terminal relaxation times τd

of mildly entangled star arms up to 8 entanglements in good
agreement with those obtained from SS model simulations.
The FFS simulations are then extended to longer arms with
lengths up to 16 entanglements and so reach τd values about
6 decades beyond that accessible by brute force simulations
(from 6× 106 to 3× 1012 SS unit time). The FP times of other
original slip-links along the arm can be calculated using similar
FFS simulations as for the innermost one, which consequently
provides the entire arm relaxation spectrum τ(s). Moreover, we
propose a numerical route to construct the arm end-to-end vec-
tor correlation functions,Φ(t), and stress relaxation functions,
G(t), from the discrete data stored at each interface during the
FFS runs. Such time correlation functions are still not widely
addressed in the FFS studies, but some relevant discussions
could be found in the literature for the FFS43,44 and weighted
ensemble methods.45–47 Our simulation results will contribute
to the development of theoretical models for describing the
dynamics of entangled branched polymers and also the gen-
eral first-passage problems in multi-dimensional systems. The
simulation methodology developed in this work should also
be applicable to the study of rare events in other scientific
areas.

The rest of this paper is organized as follows. In Sec. II,
we introduce the single-chain slip-spring model for entangled
star polymers in the absence of CR. The detailed description of
the combined FFS and SS model is given in Sec. III. The sim-
ulation results obtained in the non-CR systems are presented
and discussed in Sec. IV, including the terminal relaxation
times τd, the arm retraction spectra τ(s), and the numerical
route for constructing Φ(t) and G(t). In Sec. V, the simulation
method is extended to study the arm retraction dynamics of
star polymers in the presence of CR. We draw conclusions in
Sec. VI.

II. SLIP-SPRING MODEL FOR ENTANGLED
SYMMETRIC STAR POLYMERS
A. Model description

In the single-chain slip-spring model for entangled sym-
metric stars, each star arm is represented by a Rouse chain
with N + 1 monomers linked by N harmonic springs,25,48

as shown in Fig. 1. One end monomer with index 0 of the
chain is treated as the branch point which is fixed in space,
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FIG. 1. Sketch of the single-chain slip-spring model for one arm of a sym-
metric star. The end monomer 0 represents the branch point which is fixed in
space.

while the other end with index N moves freely. The topolog-
ical constraints on the arm are modeled by a set of virtual
springs each of NSS

s beads. Each virtual spring has one end
connected to the Rouse chain by a slip-link that can slide
along the chain, and the other end, called anchor point, is fixed
in space. The slip-spring model effectively assumes a binary
picture of entanglements, which is qualitatively supported by
recent MD simulation studies.49–51 There is on average one
slip-spring every NSS

e monomer. The values of NSS
e and NSS

s
are adjustable for describing the intensity of entanglements.
It should be noted that NSS

e is not necessarily equal to the
entanglement length Ne used in tube theory. Their relation
will be discussed in Sec. IV B. To be consistent with previous
publications,25,30 we choose NSS

e = 4 and NSS
s = 0.5. Other

parameters, such as the bead friction coefficient ζ0, the aver-
age bond length b of the Rouse chain, the temperature kBT
and consequently the time scale τ0 = ξ0b2/k BT , are all set to
unity.

The Hamiltonian of the SS model is determined by the
potential energies of both the harmonic bonds of the Rouse
chains and the virtual springs. The trajectories of the Rouse
monomers are obtained by solving their Langevin equations
of motion numerically using an integration time step size of
∆t = 0.05τ0. In the original slip-spring model,25,29,30 the slip-
links are assumed to travel continuously along the straight lines
between adjacent monomers and so can sit anywhere on the
chain. In a later version of this model,31 the slip-links move
discretely by hopping from one monomer to one of its nearest
neighbors with the acceptance rate controlled by a Metropolis
Monte Carlo (MC) algorithm. The long-time behavior of the
system is not sensitive to the details of the slip-link motion. For
simplicity and computational efficiency, we employ the dis-
crete motion approach in the current work. One Monte Carlo
hopping motion is attempted on average per slip-link at each
time step. It has been found recently by Shivokhin et al. that
the slip-springs themselves could make non-negligible con-
tributions to the effective friction experienced by the Rouse
chain when moving along the tube because the virtual springs
with finite spring constant effectively restrict the excursion

volumes of the slip-links and so reduce their successful rate to
hop onto adjacent monomers.52 As a consequence, an effec-
tive monomeric friction coefficient, ξeff (>ξ0), should be used
instead of ξ0 when mapping the simulation results of the
slip-spring model to experimental data. But a constant change
in the ξ value will not affect the discussions in this work, as
all the data analyses and comparison are carried out within the
slip-spring model framework. The effect of slip-link friction
could be reduced by increasing the number of MC hopping
attempts per time step at the price of higher computational
cost. The slip-links are not allowed to sit on or pass through
the branch points of the star arms. In the systems without
constraint release, such as star polymers in a fixed polymer net-
work, the destruction and creation of slip-links can only take
place at the free ends of the star arms. Different from the sys-
tems with CR,25 the slip-links are not coupled with each other.
In addition, the slip-links on the same arm are not allowed
to pass over each other or occupy the same monomer. This
assumption introduces an effective excluded volume inter-
action between the slip-links, which is consistent with the
low swapping rate between neighboring entanglements as
revealed in a recent MD simulation of symmetric star polymer
melts.51

The previous slip-spring simulations were typically car-
ried out in an ensemble of chains, and the total number of
slip-links in the system is kept constant.25 In the non-CR
case, when one slip-link is deleted from a chain end, another
slip-link will be added to the end of a randomly selected chain
in the ensemble. For convenient installation of the FFS method,
we modify the SS model for the non-CR case by simulating
each entangled arm individually. The destruction of slip-links
on a given arm is still incurred by the retraction of the arm free
end (monomer index N), but the addition of new slip-links
to the same arm end is now determined by a probability Padd

which satisfies the detailed balance condition

(1 − ρsl)
(
Padd + ρslPN−1,N

)
= ρsl

(
Ploss + (1 − ρsl)PN ,N−1

)
,

(1)

where ρsl = 1/NSS
e is the average number of slip-links sit-

ting on each monomer. Pi ,j is the transition probability for a
slip-link to move from monomer i to monomer j, and Ploss

is the probability for a slip-spring sitting on the arm free end
to be destructed after one integration time step, respectively.
Equation (1) thus represents the balance between the flux of
slip-links to and from the end monomer. Assuming PN�1,N

= PN ,N�1 without loss of generality, Eq. (1) gives Padd ≈ 0.167
for the system parameters NSS

e = 4 and Ploss = 0.5. The modi-
fied SS model is validated by studying the static properties of
the simulation system.

B. Static properties

The static property of the slip-spring model system of
entangled symmetric star polymers can be well characterized
by the distribution of slip-links along the star arms. Con-
sidering the effective excluded volume interactions between
the slip-links, the problem is similar to one-dimensional real
gas in equilibrium. The probability distribution of finding
N sl slip-links on a star arm of N monomers is simply given
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FIG. 2. Slip-spring model simulation results (circles) and predictions of
Eq. (2) (line) on the probability distribution of number of slip-links per arm,
P(Nsl, N), for the symmetric star polymers with arm length N = 24.

by

P(Nsl, N) = CNsl
N ρNsl

sl (1 − ρsl)
N−Nsl , (2)

where CNsl
N = N!

Nsl!(N−Nsl)!
. Figure 2 shows the good agreement

between the prediction of Eq. (2) and the SS model simula-
tion results on P(N sl, N) for the system with N = 24. It can be
seen that the peak value of N sl is located at N sl = 6 in consis-
tence with the expected average number of slip-links per arm,
〈Nsl〉 = ρslN = 6.

When there are N sl slip-links on a given arm, the proba-
bility to find the ith slip-link on the monomer x is

P(x, i, Nsl, N) =
Ci−1

x−1CNsl−i
N−x

CNsl
N

(i ≤ x ≤ N − Nsl + i) , (3)

where the numerator is a product of the possibilities to find
i � 1 slip-links on the arm segment from monomer 1 to x � 1
and to find N sl � i slip-links on another segment from monomer
x + 1 to N. It should be noted that in the star polymer systems
without CR, the slip-links do not change their ordering along
the star arms. In Eq. (3), the index i is considered to increase
from 1 for the innermost slip-link to higher values toward
the arm free end. Combining Eqs. (2) and (3), we obtain the
ensemble-averaged probability to find the ith slip-link on the
monomer x,

P(x, i, N) =
N∑

Nsl=1

P(x, i, N sl, N)P(Nsl, N). (4)

Derivations of probability distributions similar to Eqs. (2)–(4)
can also be found in a previous work of Schieber.53

Figure 3 presents the SS simulation results on P(x, i, N)
for the slip-links with indices i = 1 to 6 on star arms of length N
= 24, together with the predictions of Eq. (4). The good agree-
ment between the two sets of data indicates that the simulation
systems are in equilibrium state and the randomly assigned
locations of the anchor points can well preserve the equilib-
rium distribution of the slip-links. This is also reflected by the
fact that the average number of slip-links found on each indi-
vidual monomer is equal to ρsl = 0.25, see the horizontal line
in Fig. 3.

FIG. 3. Slip-spring model simulation results (symbols) and predictions of
Eq. (4) (lines) on the probabilities of finding the ith slip-link on monomer
x, P(x, i, N), for the symmetric star polymers with arm length N = 24. The
horizontal dashed line shows the simulation results on the average number of
slip-links found on each individual monomer.

III. COMBINED FFS AND SS METHOD FOR
ENTANGLED STAR POLYMERS WITHOUT CR

In the systems without CR, the topological constraints or
entanglements imposed on a target arm are released hierar-
chically by the retraction of the arm free end. The terminal
relaxation time τd of the system is defined as the average
first-passage time that takes the free end of an arm to reach
the branch point starting from a random initial conformation.
For well-entangled star arms, τd grows exponentially with
the number of entanglements per arm, Z.8 However, full arm
retraction rarely happens at large Z and so is generally not
accessible by standard brute force simulations. There is also
no exact analytical solution of this multi-dimensional FP prob-
lem. Therefore the forward flux sampling method introduced
in Ref. 35 is employed in order to study these rare events. A
successful application of the FFS method on studying the FP
time of the 1D Rouse chain with one fixed end can be found
in Ref. 18.

A. Forward flux sampling method

In FFS, the phase space is divided by a sequence of non-
crossing interfaces denoted by λi (i = 0, . . . , m), as sketched
in Fig. 4(a). The starting states of the dynamic process are
on the first interface λ0, and the reactive or terminal states
are on the last interface λm. These interfaces are defined by
a reaction coordinate, which can be any parameter evolving
during the process, but different choices could result in signif-
icantly different performance. More detailed discussion about
the reaction coordinate is given in Sec. III B.

The FFS method is operated in two stages. In the first
stage, a very long continuous simulation is performed in order
to calculate the frequency µ0 at which the trajectory crosses the
interfaces λ0 and λ1 in sequence. In the second stage, a set of
consecutive shooting simulations are carried out from interface
λi to interface λi+1 for i = 1, . . . , m − 1, which provide the
transition probabilities P(λi+1 |λi) that a system starting from
λi will first reach λi+1 rather than return to λ0. The first-passage
time τn for the system starting from the first interface λ0 and
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FIG. 4. (a) Schematic diagram of the FFS method. The continuous red tra-
jectory is the continuous simulation in the first stage, and the blue trajectories
are the successful shooting simulations in the second stage. (b) Algorithm
for building continuous arm relaxation pathways from the piecewise shooting
trajectories shown in (a).

ending on the interface λn (1 � n ≤ m) is then given by

τn =
1

µ0
∏n−1

i=1 P(λi+1 |λi)
, 1 � n ≤ m. (5)

B. Reaction coordinate

A key issue in applying the FFS method is the choice of
the reaction coordinate. Starting from a random initial config-
uration, the relaxation of a star arm in the system without CR
proceeds by the retraction of the arm free end along the primi-
tive path, passing through all the original slip-links on the arm
sequentially until none left between it and the branch point.
The terminal relaxation time is determined by the moment at
which the innermost slip-link is released. During this process,
the number of surviving original slip-links, N sl, on the arm
drops with time from its initial value to 0, making it an intu-
itively simple choice for the reaction coordinate. Considering
that the value of N sl is statistically proportional to the length
of the surviving tube or primitive path, this choice would be
consistent with a recent FFS study on the FP time for the
free end of a 1D Rouse chain to reach a certain distance z
from the fixed end where z was selected as the reactive coor-
dinate.18 The 1D Rouse chain study is closely related to the
current work because arm extension is essentially the reverse
process of arm retraction. However, when using N sl as the
reaction coordinate, our FFS simulation results on the termi-
nal arm retraction times are found to be significantly smaller
than those obtained from standard SS model simulations. The
problem arises from the difficulty in choosing equivalent start-
ing states for the FFS runs. In the slip-spring model system,
both the instantaneous number of slip-links and their distribu-
tion along the arm are subject to strong fluctuations, especially
on the outer arm segments which undergo fast Rouse motion.
In the FFS runs using N sl as the reaction coordinate, the start-
ing states are collected in the first-stage continuous simulation
as the configurations where the number of slip-links on the

arm is equal to the ensemble-averaged value of 〈Nsl〉 = N ρsl.
Shooting from these starting configurations, only the samples
in which the values of N sl decrease monotonically are con-
sidered to reach interface λ1 successfully. This biased strategy
is thus in favor of the samples where the initial slip-link den-
sities on the outer arm segments are higher than ρsl because
in such cases the probability to lose slip-links at short times
is higher than to gain ones. Therefore, a relatively large pro-
portion of slip-links on a sample arm is released by shallow
arm retractions at early times, leaving fewer than the average
number of slip-links on the surviving segments of the primitive
path. As a consequence, the terminal relaxation times obtained
from the FFS simulations are shorter than those obtained from
standard SS simulations where the ensemble-averaged initial
distribution of slip-links is uniform. These results imply that
the reaction coordinate should be selected close to the branch
point in order to minimize the influence of the fast fluctuating
arm end.

Since the terminal arm relaxation time is determined by
the release of the innermost slip-link from the arm free end, one
can track the motion of this particular slip-link along the arm by
defining the index of the monomer that it sits on as the reaction
coordinate. As shown in Fig. 5 where the 3D Rouse chain
is sketched as a straight line for convenience of discussion,
the first interface λ0 used in FFS is set on monomer α (2 in
this case) where the innermost slip-link originally sits on. Any
initial configuration of the confined arm in which the innermost
slip-link locates on monomer α can be taken as the starting
state of the FFS simulation. The second last interface λm−1 is
placed on the outermost monomer N of the arm, and the last
interface λm is right outside of the arm free end, marking the
final or reactive state that the arm free end has passed through
the innermost slip-link and the arm is fully relaxed. The other
m � 2 interfaces are placed on the monomers in between α
and N.

According to the standard FFS method, a database con-
taining a large number of configurations is accumulated on
each interface. In the first stage of the continuous simula-
tion, the database on λ1 is a collection of configurations whose
innermost slip-link lastly crossed λ0 before crossing λ1. In the
second stage, consecutive shooting simulations are performed
from interface λi to λi+1, i = 1, . . . , m − 1, using starting con-
figurations randomly selected from the database on λi. Among
the M i shooting samples, the ones whose innermost slip-links
reach λi+1 before going back to λ0 are considered as successful
samples and will be stored in the database of λi+1.

FIG. 5. Application of the FFS method for studying the retraction dynamics of
an entangled star arm described by the slip-spring model. The cross (monomer
0) on the left represents the branch point that is fixed in space. The interfaces
λi (vertical lines) used in the FFS simulations are placed on the monomers of
the arm.
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C. Simulation details

Apart from the reaction coordinate, the performance of
the FFS algorithm can also be affected by some other fac-
tors. One factor is that the configurations saved in the database
of interface λ1 during the first-stage continuous simulation
could be strongly correlated with each other due to the lim-
ited running time at this stage in comparison with τd. This
may introduce systematic errors in the simulation results if the
size of the database is fixed. This problem can be resolved by
increasing the interval l1 between the interfaces λ0 and λ1, as
shown in Fig. 5, and recording configurations on λ1 at a lower
frequency ω. For example, rather than recording every event
that the innermost slip-link crosses λ1 when coming from λ0,
one can record once for every 1/ω crossing. Another factor
is the choice of the interface interval l2 between λi and λi+1

(i = 1, . . . , m − 2) and the number of shooting samples M i

from each λi which determine the performance of the FFS in
the second stage. Since l2 controls the transition probabilities
P(λi+1 |λi), a smaller l2 is normally preferred for accelerating
the shooting simulations. The number M i can then be chosen
according to P(λi+1 |λi) and the desired accuracy.

In the current work, we take l1 = 2 and l2 = 1 which sepa-
rate the first two interfaces λ0 and λ1 by one bead and then set
one interface on every bead along the arm. The recording fre-
quency ω has to be reduced for longer arms in order to reduce
the conformational correlations on λ1 and is empirically taken
to beω = 1/(N−15) for arm length N ≥ 16. Since the reaction
coordinate is defined by the location of the innermost original
slip-link, the transition probability P(λi+1 |λi) increases with i
towards the arm free end. In order to achieve good statistics
for the first few interfaces close to the branch point, M i should
be large enough. A number of samples M i = 40 000 are thus
used for λi, i = 1, 2, . . . , m − 1, in all of the FFS simulation
runs. As shown in Fig. 3, there is a non-negligible fraction of
initial configurations where the innermost slip-links are many
monomers away from the branch point and could be released
by shallow arm retractions. The terminal relaxation times of
such arms are thus much shorter than those of the arms with
uniform slip-link distributions. Actually, their terminal times
have been reached in the first-stage continuous simulations
without going into the second stage of FFS. These τd data are
still counted for calculating the distribution and the mean value
of the terminal relaxation times.

IV. RESULTS AND DISCUSSIONS FOR SYSTEMS
WITHOUT CONSTRAINT RELEASE
A. Terminal time of arm retraction

The terminal time τd of the arm retraction process is the
main and most straightforward output of the FFS simulations.
Figure 6 presents the FFS results on τd as a function of the arm
length N. For comparison, we have also included the τd data
obtained from the so-called direct shooting simulations which
start from the first interface λ0 and stop at the last interface λm

without intermediate steps. These runs are equivalent to the
slip-spring simulations using initial configurations randomly
picked from the database on interface λ0 and running contin-
uously until the innermost original slip-spring being deleted

FIG. 6. Simulation results on the terminal arm retraction time τd obtained
from FFS and direct shooting simulations as a function of arm length N.

by the arm free end. For each arm length, the direct shoot-
ing simulation results are averaged over 10 000 independent
samples, while in the FFS simulations, τd is averaged over
2000 independent runs. Since in each FFS run, there are
40 000 samples recorded on λ1, the average is actually taken
over a much bigger ensemble than that of the direct shoot-
ing runs. Considering the high computational cost, the direct
shooting simulations are only performed for arm lengths from
N = 20 to 36, corresponding to about 4 to 8 entanglements per
arm estimated with Ne ≈ 4.47 as discussed in Sec. IV B. In
this range of N, the FFS and direct shoot simulation results in
Fig. 6 show very good agreement with the relative differences
less than 5%. The combined FFS and SS method and the choice
of the reaction coordinate are thus well justified.

Figure 7 compares the average computational times
required to complete a single direct shooting and a single FFS
run on a single central processing unit (CPU) (Intel Xeon E5-
2620). The direct shooting simulation is faster at short arm
lengths, but its computational time grows exponentially with
N and overtakes that of the FFS when N ≥ 32. The FFS
method allows us to study much longer arms. For entangled
star polymers with arm length N = 72 in the absence of CR, the
terminal relaxation time is found to be τd ≈ 2.85×1012 which
is about 8 orders of magnitude longer than that of stars with

FIG. 7. Average computational times required for completing a single FFS
and a single direct shooting run on a single Intel Xeon processor.
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N = 20 and is hardly accessible to any type of direct simulations
unless running on a supercomputer for several years.

B. Comparison with theoretical model predictions

The τd data in Fig. 6 show a clear exponential dependence
on the arm length N, which is expected from the Pearson-
Helfand theory for star arms retracting in a fixed network.8

These results can be further compared with the predictions of
more detailed theoretical models.4,5,18 The Milner-McLeish
theory based on the solution of 1D Kramers problem pre-
dicts the terminal arm retraction time in the absence of CR
as4,5

τd(N) =
π5/2

4
√

6
τR(N)

1
z

exp

(
3z2

2

)
, (6)

where z =
√

N/Ne and the arm Rouse time τR(N)
= 4ζ0N2b2/3π2k BT . The entanglement molecular weight Ne

can be estimated by substituting the corresponding FFS result
on τd(N) into Eq. (6). As shown in Fig. 8, the obtained Ne

values are roughly independent of N, giving Ne ≈ 4.94.
Recently, Cao et al. pointed out that the first-passage prob-

lem of Rouse chain should be treated as a multi-dimensional
Kramers problem.18 FFS simulations of 1D Rouse chains
showed that the z�1 scaling in the prefactor of τd as predicted in
Eq. (6) is only valid for very large chain extensions. In the inter-
mediate chain extension regime corresponding to the realistic
arm retraction process, a new theory based on the Freidlin-
Wentzell theory was proposed,54 which predicts a z�3 scaling
in the prefactor of the terminal time [Eq. (60) in Ref. 18],

τd(N) =
C(N)τR(N)

z3
exp

(
3z2

2

)
, (7)

where C(N) is a fitting parameter. For arm lengths N ≥ 20,
we can take the plateau value of C(N) = 1.2 as found in the
FFS simulations of 1D Rouse chains.18 The Ne values cal-
culated by substituting the FFS data on τd(N) into Eq. (7)
are shown in Fig. 8, which increase with the increasing arm-
length and approach an asymptotic value of Ne ≈ 4.47 that is
smaller than the Ne value estimated by using Eq. (6). The two

FIG. 8. Entanglement molecular weight Ne calculated by substituting the
FFS simulation results on τd (Fig. 6) into the theoretical predictions of Eqs.
(6) (squares) and (7) (circles) for various arm lengths.

theoretical models thus predict qualitatively different depen-
dence of Ne on N, at least in the systems without CR. Since
the entanglement molecular weight is one of the most impor-
tant model input parameters for predicting the dynamics and
rheology of entangled polymers, this N-dependent behavior
apparently needs further investigation for developing quanti-
tative theories. The FFS results on τd over a broad range of
arm lengths should work as a benchmark for examining theo-
retical models that are typically developed for well-entangled
polymers.

In Eqs. (6) and (7), the parameter ν used in the quadratic
arm retraction potential is taken to be 3/2 as originally pro-
posed by Doi and Edwards for describing contour length
fluctuations or arm retractions in a fixed network.2 But com-
puter simulation and theoretical works have suggested that
the value of ν actually has an arm-length dependence and
even the quadratic form of the arm retraction potential may
be subject to change once taking into account the enthalpic
contributions.55,56 When we fit the τd data in Fig. 6 to an expo-
nential function of τd(N/Ne) = A exp[ν(N/Ne)] with Ne = 4.94
over the whole range of arm length N we studied, a value of
ν ≈ 1.69 is found, which is somewhat larger than 3/2. On the
other hand, the theoretical predictions of Eq. (6) using ν = 3/2
and Ne = 4.94 also agree with the simulation data reasonably
well. To examine the ν parameter using Eq. (7) with a fixed
Ne value could be more complicated because this theoretical
model was derived using the constant value of ν = 3/2. Con-
sidering that the simulation results in Fig. 6 are obtained in
the systems without CR and the slip-spring model does not
involve explicit enthalpic contributions, we keep ν as a con-
stant in the comparison with theoretical models in the current
work.

We note that the Ne values given in Fig. 8 are different
from that obtained by mapping the original slip-spring model
simulation results on the linear viscoelastic properties of linear
polymer melts to the Likhtman-McLeish model predictions
(Ne ≈ 5.7).25,30 The difference could be related to the use of
different theoretical models for the data fitting, the presence of
constraint release effects in the polymer melts, and the different
ways of treating the slip-link motion along the polymer chains,
namely, continuously or discretely, as discussed in Sec. II A.
The value of Ne ≈ 4.94 we found is very close to the value
of Ne = 4.89 estimated by Shivokhin et al. for the slip-spring
model using the same set of model parameters NSS

e = 4 and
NSS

s = 0.5.52

C. Arm relaxation spectrum

Apart from the terminal relaxation time, the FFS method
can also be applied to obtain the entire relaxation spectrum of
the arm. This is done in a similar way as calculating τd. The
only difference is to set the index of the monomer that the ith
original slip-link sits on, instead of that of the innermost slip-
link, as the reaction coordinate. Accordingly, the first interface
λ0 in the FFS method is defined on the monomer where the ith
slip-link originally occupied. The FP time of the ith slip-link
is recorded as τ(X) with the fractional index X = i/ 〈Nsl〉. The
simulation results on τ(X) are plotted in Fig. 9 for the arm
lengths 20 ≤ N ≤ 44. For the systems with N ≤ 36, the direct
shooting simulation results are also presented for comparison.
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FIG. 9. Relaxation spectrum calculated using the first-passage times of all
slip-links for star arms with various lengths obtained by both FFS (solid sym-
bols) and direct shooting (open symbols) simulations. The dashed curves are
for guiding the eye. The parameter X = i/ 〈Nsl〉 is the fractional index of the ith
slip-link along the arm, which increases from X = 1/ 〈Nsl〉 for the innermost
slip-link to 1 − 1/ 〈Nsl〉 for the outermost one.

The agreement between the FFS and direct shooting data gets
improved as the arm free end retracts deeper along the prim-
itive path, i.e., with the decrease of the slip-link index i and
so X. This is understandable because the release of the outer
slip-links or entanglements is dominated by the fast Rouse-like
fluctuations. The corresponding entropic barrier is relatively
low such that the FFS method does not work well at large X.
For this reason, the most reliable relaxation spectrum, espe-
cially for the long arms, should be constructed by combining
the FP times of the inner slip-links as calculated by the FFS
method with the FP times of the outer ones obtained from direct
shooting simulations. One such example is shown in Fig. 9 for
the systems with N = 44. The complete relaxation spectrum
τ(X) can be directly applied to test theoretical models of arm
retraction dynamics.

D. Constructing relaxation correlation functions

In experiments, the dynamics and rheology of entangled
polymers are generally characterized by the dielectric relax-
ation or chain end-to-end vector correlation function,Φ(t), and
the stress relaxation function, G(t). The calculation of these
observables usually requires the continuous trajectories of the
polymers, which are however not naturally available in FFS
simulations, because only instantaneous configurations at the
hitting points on the interfaces are recorded. Here we intro-
duce a numerical route to effectively link these discrete pieces
of information to construct the dielectric and stress relaxation
functions. The systems of entangled star polymers without CR
are used as examples to demonstrate the application of this
algorithm.

Figure 4(b) sketches the method used to build continuous
arm relaxation pathways from the piecewise FFS shooting tra-
jectories shown in Fig. 4(a). Considering two hitting points
on the terminal interface λm, marked as Am and Bm, there
must be two continuous trajectories or pathways that one can
track back from them to the first interface λ0. As shown in
Fig. 4(b), the pathway to state Am is constructed by linking
the successful shooting trajectory from the hitting point Am�1

to Am with that from Am�2 to Am�1, and so on until reach-
ing the point A1 on the interface λ1. The linking from A1 to a
starting point A0 is obtained from the trajectory generated in
the continuous simulation in the first stage of the FFS simu-
lations. Similarly, the pathway to the hitting point Bm can be
traced back to B1 on λ1 and then to a starting point B0. We note
that these rebuilt trajectories are different from the true con-
tinuous trajectories generated in standard slip-spring model
simulations, but the ensemble-averaged pathways obtained in
these two cases should be very close, as reflected in the con-
sistent Φ(t) and G(t) results in Fig. 11. From computational
point view, the rebuilding method requires the storage of all
the successful shooting trajectories between neighboring inter-
faces and also a large memory for data processing. This may
limit its application to large systems such as the fine-grained
bead-spring models widely used in molecular dynamics
simulations.

When calculating the arm relaxation correlation functions
from the rebuilt trajectories, two assumptions have been made.
First, when one slip-link is destroyed by the retracting arm
free end, the primitive path segment in between its nearest
neighboring slip-link and itself will be forgotten immediately.
This assumption is valid for most of the slip-links due to the
discrete feature of entanglements in the SS model. The only
exception is with the tube segment between the branch point
and the innermost slip-link where this assumption may affect
the calculation of the relaxation functions, as discussed below.
The second assumption is that the FP times on each interface
follow a single exponential distribution. This assumption has
also used in solving the 1D Kramers problem and in the Doi-
Edwards tube model without CR.2 Since the slip-spring model
is essentially a multi-dimensional problem, we perform an
extra set of simulations to examine the validity of this assump-
tion. A total number of 10 000 direct shooting simulations, all
starting from exactly the same initial configuration, are car-
ried out to mimic a FFS run. The FP times for the innermost
slip-link to reach different monomers, or different interfaces in

FIG. 10. Probability distributions of the first-passage times for the innermost
slip-link to reach different monomers or different interfaces in the FFS defini-
tion λi along the arm as calculated by direct shooting slip-spring simulations
of star arms of length N = 20. All of the 10 000 simulations start from the
same initial configuration where the innermost slip-link sits on monomer 1
next to the branch point. The solid lines represent a single exponential fit to
the simulation data in each case.
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the FFS definition, are recorded. Figure 10 presents the prob-
ability distributions, Pi(t), of the FP times on three different
interfaces for the arms of length N = 20. It can be seen that
Pi(t) on interfaces with higher indices can be well described
by the exponential function

Pi(t) =
1
τi

exp

(
−

t
τi

)
, (8)

where τi is the mean FP time on the interface λi. The second
assumption becomes valid as the arm free end retracts deeply
along the primitive path.

Following Eq. (8), the probability that the innermost slip-
link has never crossed the interface λi after time t is

Pλi
λ0

(t) = exp

(
−

t
τi

)
, i = 1, 2, . . . , m (9)

and the probability that it has crossed λi at least once is

P∞
λi

(t) = 1 − exp

(
−

t
τi

)
, i = 1, 2, . . . , m. (10)

Therefore, the probability that the trajectory starting from
λ0 has crossed interface λi but never crossed interface λi+1

is

Pλi+1
λi

(t) = P∞
λi

(t) − P∞
λi+1

(t) = −exp

(
−

t
τi

)
+ exp

(
−

t
τi+1

)
,

i = 1, 2, . . . , m − 1. (11)

Using Eqs. (9)–(11), the time correlation function of
a dynamic observable, V, whose instantaneous values are
calculated on different interfaces can be evaluated by

〈V (t)V (0)〉 =

〈
Pλ1
λ0

(t)W0 +
m−1∑
i=1

Pλi+1
λi

(t)Wi + P∞
λm

(t)Wm

〉
, (12)

where W i is defined as

Wi =
1
hi

hi∑
k=1

V k
i V k

0 , i = 0, 1, . . . , m. (13)

Here h0 is the number of starting points on the first interface
λ0 and V k

0 is the observable value at the kth starting point.
Similarly hi (i = 1, . . . , m) is the number of hitting points on
the interface λi out of the M i�1 shootings from λi−1 and V k

i
is the observable value at the kth hitting point on λi, respec-
tively. For the system sketched in Fig. 4(b), there are only 2
hitting points on the final interface λm such that hm = 2 in
Eq. (13).

Substituting Eqs. (10) and (11) into Eq. (12), we get

〈V (t)V (0)〉 =

〈m−1∑
i=0

∆Wi,i+1 exp

(
−

t
τi+1

)
+ Wm

〉
, (14)

where∆Wi,i+1 = Wi−Wi+1. The correlation function in Eq. (14)
is expressed as a weighted summation of a set of exponential
functions, which is consistent with the tube model predic-
tions for the end-to-end vector and stress relaxation functions
of entangled polymers in the absence of constraint release.2

The only difference lies in the last term Wm on the right-
hand side of Eq. (14) which, if being nonzero, may result
in an unphysical plateau after the terminal relaxation time
τd.

The problem associated with Wm does not exist in the tube
model where the tube is assumed to be continuous.2 The arm
free end can thus retract continuously along the primitive path
all the way to the branch point and so release all the mem-
ories in the original tube. As a result, Wm equals to zero for
all dynamic observables. However, in the slip-spring model,
the entanglements are represented discretely by the slip-links.
The terminal time τd is taken to be the time when the arm
free end passes the innermost slip-link. In standard slip-spring
model simulations, the memories, such as stress and arm end-
to-end vector orientation, stored in the original tube segment
between the innermost slip-link and the branch point can still
be released by the continuous relaxation of the arm beyond τd.
But in the FFS simulations, the runs are terminated right after
τd when the trajectories reach the last interface λm. Although
this termination does not affect the determination of the ter-
minal time as shown above, it artificially traps the unreleased
memories in the last tube segment in the configurations saved
on λm, leading to a nonzero ensemble average value of Wm.
As an attempt to recover the full relaxation function, we pro-
pose a simple approximation to incorporate the arm relaxation
dynamics beyond the terminal time τd (= τm), which is to mul-
tiply the Wm term in Eq. (14) with an exponential time decay
function, giving

〈V (t)V (0)〉 =

〈m−1∑
i=0

∆Wi,i+1 exp

(
−

t
τi+1

)
+ Wm exp

(
−

t
τm

)〉
.

(15)

The dielectric and stress relaxation functions calculated
using Eq. (15) from the rebuilt trajectories are plotted in
Fig. 11 for arm lengths up to N = 72. For comparison, theΦ(t)
and G(t) data obtained from standard slip-spring model simu-
lations are also included for the systems with N ≤ 36. In these
calculations, the dielectric or arm end-to-end vector relaxation
function is defined as Φ(t) = 〈Re(t) · Re(0)〉 /

〈
R2

e(0)
〉

where
Re is the arm end-to-end vector and the mean square end-to-
end distance

〈
R2

e(0)
〉
= Nb2. The G(t) results are the single-

arm stress autocorrelation functions without considering the
cross-correlation contributions from the virtual springs.57,58

This choice does not affect any discussions or conclusions
in the current work, especially when there is no constraint
release effect. The Φ(t) and G(t) results obtained by using
the rebuilding method and from the standard SS model sim-
ulations show reasonably good agreement in the terminal
regime, indicating the capability of Eq. (15) in constructing
the arm relaxation functions using discrete FFS shooting tra-
jectories. The noticeable discrepancy between the two sets of
data in each case at short time scales could be attributed to
the fact that the exponential distribution assumption of the FP
times does not apply to the first few interfaces, as shown in
Fig. 10. On the other hand, we have also applied Eq. (14)
directly to construct the relaxation functions of the systems
with N = 36. The obtainedΦ(t) and G(t) curves (dashed lines)
initially coincide with those calculated using Eq. (15), but start
to decay slower when some of the sample trajectories have
reached their terminal times and the constant Wm contribu-
tions are counted in. The unphysical plateaus are reached after
the mean terminal time τd for the reasons discussed above.
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FIG. 11. (a) Arm end-to-end vector correlation function Φ(t) and (b) stress
relaxation function G(t) obtained from standard slip-spring simulations (sym-
bols) and calculated using Eq. (15) from the rebuilt trajectories (solid lines),
respectively. The dashed lines represent the results on the systems with arm
length N = 36 calculated by using Eq. (14) directly with the Wm term included.
The vertical dotted lines mark the terminal relaxation time τd of arms with
N = 36 as determined in the FFS simulations.

Therefore at least for the combined FFS and SS method we
used, the algorithm for constructing the time correlation func-
tions needs to take into account the arm relaxation behavior
beyond τd.

V. EXTENSION OF THE COMBINED FFS AND SS
METHOD TO SYSTEMS WITH CONSTRAINT RELEASE

The combined FFS and SS method can be extended to
entangled polymer systems with CR by adjusting the defi-
nition of the reaction coordinate. In the standard slip-spring
model,25,51 constraint release is included by coupling the slip-
links sitting on different polymer chains or arms into pairs
to represent the binary entanglements. When one slip-link is
deleted from the free end of an arm, its coupled partner is also
deleted regardless of its location, which results in a CR event.
This means that for FFS simulations, the originally innermost
slip-link alone could not be used to define a reaction coordinate
for exploring the entire arm relaxation spectrum, because this
slip-link may be destructed by a CR event before reaching the
arm free end. To resolve this problem, we refer to a recent slip-
spring simulation work on entangled symmetric star polymers

with CR.51 There it was shown that the relaxation of the orig-
inal tube segments, and correspondingly the relaxation of the
arm end-to-end vector, is dominated by the first-passage times
of the so-called tube-representative (TR) slip-links, which are
the original slip-links finally released from the arm free end.
The other original slip-links which are destructed from the
middle of the arm by CR events only contribute to stress relax-
ation. For determining the terminal relaxation time of the arm
end-to-end vector, we only need to find the moment when the
last tube segment held in between the branch point and the
innermost TR slip-link is released by the arm free end. Since
it is not known in advance whether an original slip-link will be
deleted by the arm end or by CR, we can define the reaction
coordinate as the index of the monomer that the innermost sur-
viving original slip-link sits on. In other words, if at time t the
innermost original slip-link was deleted by CR, the reaction
coordinate will be immediately shifted from the monomer it sat
on to the monomer occupied by the nearest original slip-link
because the latter becomes the innermost surviving original
slip-link.

Different from the systems without CR where each star
arm is treated independently, the FFS simulations of the sys-
tems with CR require the use of an ensemble of star polymers
where the slip-links sitting on different arms are coupled with
each other. In the current work, the simulated system consists
of 20 three-arm star polymers with a total number of Narm

= 60 arms. The branch points of the stars are allowed to move
in space. Only one randomly chosen arm out of the whole
ensemble is used for the FFS study. The setup of the interfaces
on this target arm is similar to that used in the non-CR case
(Fig. 5). The first interface λ0 is set on the monomer that the
initially innermost slip-link along this arm sits on, and the
subsequent interfaces are placed on outer monomers with the
intervals of l1 = 2 and l2 = 1. The reaction coordinate is defined
as the index of the monomer where the innermost surviving
original slip-link sits on. Both the first-stage continuous and
the second-stage shooting simulations are run as the standard
slip-spring model simulations which involve all star polymers
in the ensemble to allow for constraint release. It means that
the configurations of all these polymers need to be stored in
the database on each interface. If there is no reaction coordi-
nate jumping due to CR, the shooting simulations are carried
out in the same way as in the non-CR case from interface λi

to λi+1 for i = 1, . . . , m − 1. But if during a shooting simula-
tion started from interface λi, a CR event causes the jump of
the reaction coordinate from the destructed innermost original
slip-link to the nearest surviving original slip-link, the trajec-
tory may immediately cross one or more interfaces. In this
case, we allow the simulation to continue until reaching the
next interface, say λi+j with j ≥ 2, and then save the configura-
tion of the system in the database of interface λi+1 (instead of
λi+j). When a shooting simulation from λi+1 selects this config-
uration as its starting point, the trajectory will instantaneously
reach the next interface λi+2 because the reaction coordinate
has actually reached or crossed this interface. As a result of the
successful shooting, the same configuration will be saved in the
database of λi+2. Following similar shooting and saving pro-
cesses, this configuration will be stored in the databases of all
relevant interfaces from λi+1 to λi+j for further sampling. This
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approach ensures that the events that this jumping trajectory
has also successfully crossed the interfaces λi+1, . . . , λi+j−1 are
correctly counted for calculating the transition probabilities
between different interfaces. The FFS run is terminated until
the last surviving original slip-link is destructed by the arm free
end and so the terminal relaxation time τd is reached. In each
FFS run, there are 20 000 samples recorded on each interface
λi (i = 1, . . . , m − 1), and the final results on τd are averaged
over 1000 independent FFS runs. In the current method for the
CR case, although the simulations and data storage involve an
ensemble of Narm arms, only the relaxation spectrum of the tar-
get arm can be collected in each FFS sample run. The computa-
tional cost and memory storage requirement are thus still high
for simulating systems with very long arms. Further improve-
ment in the efficiency of the algorithm is apparently needed.
For example, it is possible to achieve efficiency similar to the
non-CR case by combining the proposed FFS method with the
single-chain slip-spring or slip-link model with self-consistent
treatment of constraint release along the same chain or
arm.59

The ensemble-averaged terminal relaxation times, τd,
obtained in the FFS simulations with the modified definition
of the reaction coordinate are presented in Fig. 12, together
with the terminal relaxation times of the arm end-to-end vec-
tor relaxation functions as obtained from standard slip-spring
model simulations and the mean FP times of the innermost sur-
viving original slip-links as obtained from the direct shooting
simulations. The three sets of data show very good agreement
within error bars, which effectively validates the proposed FFS
method. The combined FFS and SS method can thus provide
quantitative predictions on the terminal relaxation times of
entangled star polymers either with or without CR over a broad
range of arm lengths that are surely needed for the develop-
ment of quantitative theories for entangled branched polymers.
The construction of the relaxation correlation functions, Φ(t)
and G(t), in the CR case is rather complicated and will be left
for later studies.

FIG. 12. Simulation results on the terminal arm relaxation times τd obtained
from the FFS (open squares) and direct shooting (open circles) simulations,
together with the terminal times of the arm end-to-end vector correction
functions calculated from standard slip-spring simulations (open triangles),
in the systems with constraint release. For reference, the FFS results on
τd for the systems without CR (solid squares, same as in Fig. 6) are also
plotted.

VI. CONCLUSIONS

We present an application of the forward flux sampling
method in combination with the slip-spring model on studying
the arm retraction dynamics of entangled star polymers. The
slip-spring model originally developed for describing entan-
gled linear polymers has been extended to model symmetric
star polymers. As a proof of concept, we start with the systems
without constraint release where the entanglements or slip-
links can only be created on or deleted from the arm free ends,
making the FFS method conveniently applicable. Two possible
reaction coordinates for the FFS simulations have been tested.
The choice of the index of the monomer that the originally
innermost slip-link sits on is found to provide FFS simulation
results on terminal relaxation times τd in good agreement with
those obtained in direct shooting simulations for mildly entan-
gled stars with arm lengths up to 8 entanglements. The FFS
simulations are then performed to study the terminal relax-
ation of much longer arms (up to 16 entanglements) that are
hardly accessible by any direct simulations, especially consid-
ering the exponential growth of τd with the arm length in the
absence of CR. The FFS results on τd over such a broad range
of arm lengths allow direct comparison with the predictions
of theoretical models which are typically developed for well-
entangled polymers. The entanglement molecular weight Ne

extracted from such comparison is found to have an arm-length
dependence.

In addition to the terminal arm relaxation time, the first-
passage times of all other original slip-links on a given arm can
also be conveniently calculated by defining the reaction coor-
dinate as the index of the monomer that the interested slip-link
sits on, which in turn provides the entire relaxation spectrum
of the arm. For mildly entangled arms, the FFS results on
the FP times show good agreement with direct shooting sim-
ulation data for the deep entanglements or inner slip-links,
but some discrepancy exists for the shallow ones because the
FFS method does not work well at low entropic barriers. The
reliable relaxation spectrum of long star arms thus should be
constructed by combining the FP times of the inner slip-links
as calculated by the FFS method with the FP times of the outer
ones obtained from direct simulations. Furthermore, we have
proposed a numerical route to construct the arm relaxation
correlation functions from the FFS simulation data saved on
discrete interfaces. This method is essentially a summation of
weighted exponential relaxation functions with characteristic
times determined by the mean FP times of different slip-links
along the arm. The so-constructed arm end-to-end vector cor-
relation functions, Φ(t), and stress relaxation functions, G(t),
show reasonably good agreement with those obtained in stan-
dard slip-spring simulations in the terminal regime, while the
noticeable discrepancy at short time scales can be attributed
to the use of a too strong assumption that the first-passage
times at the first few FFS interfaces follow the exponential
distribution.

We have also attempted to extend the FFS method to sys-
tems with constraint release, namely, to entangled star polymer
melts. The key change from the non-CR case is to define
the reaction coordinate using the innermost surviving origi-
nal slip-link. Again good agreement is found between the FFS
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simulation results on the terminal arm relaxation time with
those obtained in standard slip-spring model simulations. We
note that the computational efficiency of the combined FFS and
SS method in the CR case is limited by the use of a relatively
large ensemble of star molecules in the slip-spring model we
applied where the slip-links sitting on different arms are cou-
pled with each other to represent the constraint release effects.
One option to improve the efficiency is to employ some single-
chain slip-spring or slip-link models where the CR effects are
treated self-consistently along the same chain, but all the FFS
methodology will remain the same.

Our study in this work indicates that the forward flux
sampling method can be applied in combination with the slip-
spring/slip-link or other coarse-grained simulation models to
provide a promising computational tool for efficiently inves-
tigating the dynamics of highly entangled branched polymers
which are generally inaccessible to direct simulation methods
but highly desired for the development of quantitative theories
on entangled branched polymers.
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