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Abstract: In our companion paper [3] we studied a number of different Sobolev spaces on a general (non-

Lipschitz) open subset Ω of ℝn, defined as closed subspaces of the classical Bessel potential spaces Hs(ℝn)
for s ∈ ℝ. These spaces are mapped by the restriction operator to certain spaces of distributions on Ω. In this

note we make some observations about the relation between these spaces of global and local distributions.

In particular, we study conditions under which the restriction operator is or is not injective, surjective and

isometric between given pairs of spaces. We also provide an explicit formula for minimal norm extension (an

inverse of the restriction operator in appropriate spaces) in a special case.

Keywords: Bessel potential Sobolev spaces, non-Lipschitz domains, restriction operator, s-nullity,

unitary realisations of dual spaces, minimal norm extension
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1 Preliminaries
We study properties of Sobolev spaces on a general (non-Lipschitz) open set Ω ⊂ ℝn. In our companion paper

[3] we studied two types of spaces: those consisting of distributions on ℝn (specifically, H̃s(Ω),
∘
Hs(Ω), Hs

Ω

,

defined below), and those consisting of distributions on Ω itself (specifically,Hs(Ω) andHs
0

(Ω), again defined
below). In this note we study properties of the restriction operator as a mapping between the two types of

spaces. The results presented here, while elementary, do not seem to be available in the literature, which

generally focuses on the more standard Lipschitz case (cf., e.g., [9]). As in [3], our motivation is the study of

integral equations on non-Lipschitz sets. (For a concrete example, see [3, §4], where we consider boundary

integral equation reformulations of wave scattering problems involving fractal screens.)

We begin by defining the Sobolev spaces involved. Our presentation follows that of [3], which in turn

is broadly based on [9]. Given n ∈ ℕ, let D(ℝn) denote the space of compactly supported smooth test func-

tions on ℝn, and for any open set Ω ⊂ ℝn, let D(Ω) := {u ∈ D(ℝn) : supp u ⊂ Ω}. For Ω ⊂ ℝn, let D∗(Ω)
denote the space of distributions on Ω (anti-linear continuous functionals on D(Ω))¹. Let S(ℝn) denote the
Schwartz space of rapidly decaying smooth test functions on ℝn, and S∗(ℝn) the dual space of tempered

distributions (anti-linear continuous functionals on S(ℝn)). For u ∈ S(ℝn), we define the Fourier transform
û(ξ ) := 1

(2π)n/2 ∫ℝn e−iξ ⋅xu(x)dx, ξ ∈ ℝn, extending this definition to S∗(ℝn) in the usual way. We define the

1 Following Kato [6], we work with dual spaces of anti-linear functionals, which simplifies certain aspects of the presentation.

Our results translate trivially to dual spaces of linear functionals; see [3, §2] for further discussion.
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2 | D.P. Hewett and A. Moiola, A note on properties of the restriction operator on Sobolev spaces

Sobolev space Hs(ℝn) by

Hs(ℝn) := {u ∈ S∗(ℝn) : ‖u‖Hs(ℝn) < ∞}, where ‖u‖2Hs(ℝn) = ∫
ℝn

(1 + |ξ |2)s|û(ξ )|2 dξ ,

which is a Hilbert space with the inner product

(u, v)Hs(ℝn) = ∫
ℝn

(1 + |ξ |2)s û(ξ )v̂(ξ )dξ .

For any −∞ < s < t < ∞, H t(ℝn) is continuously embedded in Hs(ℝn) with dense image, and we have

‖u‖Hs(ℝn) < ‖u‖H t(ℝn) for all 0 ̸= u ∈ H t(ℝn). Recalling that F(∂αu/∂xα)(ξ ) = (iξ )α û(ξ ) and |α| := ∑n
j=1 αj for

a multi-index α ∈ ℕn
0

, by Plancherel’s theorem it holds that

(u, v)Hm(ℝn) = ∑
α∈ℕn

0

,

|α|≤m

(
m
|α|)(

|α|
α ) ∫
ℝn

∂|α|u
∂xα

(x)∂
|α|v
∂xα

(x)dx, m ∈ ℕ
0
. (1.1)

Hence, functions with disjoint support are orthogonal in Hm(ℝn) for m ∈ ℕ
0
. But we emphasise that this is

not in general true in Hs(ℝn) for s ∈ ℝ \ ℕ
0
.

For a closed F ⊂ ℝn, we define HsF := {u ∈ Hs(ℝn) : supp(u) ⊂ F}. The question of whether a given set

E ⊂ ℝn can support nontrivial elements of Hs(ℝn) will be important in what follows. This question was

investigated in detail in [5], where we introduced the concept of s-nullity. (This concept is referred to by some

authors as (2, −s)-polarity, see, e.g., [8, §13.2].)

Definition 1.1. For s ∈ ℝ, we say that a set E ⊂ ℝn is s-null if there are no non-zero elements of Hs(ℝn) sup-
ported entirely inside E (equivalently, if HsF = {0} for every closed set F ⊂ E).

There are many different ways to define Sobolev spaces on an open subset Ω ⊂ ℝn. In [3] we studied the

following three spaces, all of which are closed subspaces of Hs(ℝn), hence Hilbert spaces with respect to the
inner product inherited from Hs(ℝn):

Hs
Ω

:= {u ∈ Hs(ℝn) : supp(u) ⊂ Ω}, s ∈ ℝ,

H̃s(Ω) := D(Ω)
Hs(ℝn)

, s ∈ ℝ,
∘
Hs(Ω) := {u ∈ Hs(ℝn) : u = 0 a.e. in Ω

c}

= {u ∈ Hs(ℝn) : m(supp u ∩ (Ωc)) = 0}, s ≥ 0;

here m( ⋅ ) denotes the Lebesgue measure on ℝn. (We note that

∘
Hs(Ω) can also be identified with the set of

functions defined on Ω which can be extended by zero to produce functions of the same Sobolev regularity

on the whole ofℝn, see Remark 2.4.) These three spaces satisfy the inclusions

H̃s(Ω) ⊂
∘
Hs(Ω) ⊂ Hs

Ω

(with

∘
Hs(Ω) present only for s ≥ 0). If Ω is sufficiently smooth (e.g., C0), then the three sets coincide, but in

general all three can be different (this issue is studied in [3, §3.5]).

Another way to define Sobolev spaces on an open set Ω is by restriction from Hs(ℝn). For s ∈ ℝ, let

Hs(Ω) := {u ∈ D∗(Ω) : u = U|
Ω
for some U ∈ Hs(ℝn)}, ‖u‖Hs(Ω) := min

U∈Hs(ℝn)
U|
Ω
=u

‖U‖Hs(ℝn),

where U|
Ω
denotes the restriction of the distribution U to Ω in the standard sense (cf. [9, p. 66]). The inner

product on Hs(Ω) can be written as (u, v)Hs(Ω) := (QsU, QsV)Hs(ℝn) for u, v ∈ Hs(ℝn), where U, V ∈ Hs(ℝn)
are such that U|

Ω
= u, V|

Ω
= v and Qs is the orthogonal projection Qs : Hs(ℝn) → (Hs

Ω
c )⊥, see [3, §3.1.4].

It follows that the restriction operator

|
Ω
: (Hs

Ω
c )⊥ → Hs(Ω) is a unitary isomorphism. (1.2)
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D. P. Hewett and A. Moiola, A note on properties of the restriction operator on Sobolev spaces | 3

We also introduce the closed subspace of Hs(Ω) defined by

Hs
0

(Ω) := D(Ω)!!!!
Hs(Ω)
Ω

.

The question of when Hs(Ω) and Hs
0

(Ω) are equal is studied in detail in [3, §3.6].
For any open set Ω ⊂ ℝn, closed set F ⊂ ℝn and s ∈ ℝ, the following dual space realisations hold, in the

sense of unitary isomorphism (see [3, §3.2]):

{
{
{

(Hs(Ω))∗ = H̃−s(Ω), (H̃s(Ω))∗ = H−s(Ω),

(HsF)
∗ = (H̃−s(Fc))⊥, (Hs

0

(Ω))∗ = (H̃−s(Ω) ∩ H−s∂Ω)
⊥,H̃−s(Ω)

.

(1.3)

The duality pairings corresponding to these realisations are defined in terms of the duality pairing

⟨u, v⟩Hs(ℝn)×H−s(ℝn) = ∫
ℝn

û(ξ )v̂(ξ )dξ ,

which extends the L2(ℝn) scalar product.

2 Properties of the restriction operator |Ω : Hs(ℝn) → Hs(Ω)
In this section we examine the relationship between the spaces H̃s(Ω),

∘
Hs(Ω), Hs

Ω

⊂ Hs(ℝn), whose elements

are distributions on ℝn, and the spaces Hs(Ω) and Hs
0

(Ω), whose elements are distributions on Ω. The two

types of spaces are linked by the restriction operator |
Ω
: Hs(ℝn) → Hs(Ω), and in this section we investi-

gate some of its properties. In particular, we ask: for a given value of s and an appropriate pair of subspaces
X ⊂ Hs(ℝn), Y ⊂ Hs(Ω), when is |

Ω
: X → Y (i) injective? (ii) surjective? (iii) a unitary isomorphism?

We start by recalling that |
Ω
: X→ Hs(Ω) is continuouswithnormatmost one for any subspace X ⊂ Hs(ℝn)

and that |
Ω
: (Hs

Ω
c )⊥ → Hs(Ω) is a unitary isomorphism.

For Ω being Lipschitz with bounded ∂Ω, we have the following result, which states that |
Ω
: H̃s(Ω) →

Hs
0

(Ω) is an isomorphism for certain values of s. (As in [3, 9], we say that Ω is Lipschitz if its boundary can be

locally represented as the graph, suitably rotated, of a Lipschitz function fromℝn−1 toℝ, with Ω lying only on

one side of ∂Ω.) The result for s ≥ 0 is classical (see, e.g., [9, Theorem 3.33]); the extension to −1/2 < s < 0 is

proved below (it is an immediate consequence of Lemma 2.7 (i) and [3, Corollary 3.29 (ix)]). In interpreting

this result one should recall that for Ω being Lipschitz, it holds that Hs
0

(Ω) = Hs(Ω) if and only if s ≤ 1/2
[3, Corollary 3.29 (ix)] and also that H̃s(Ω) =

∘
Hs(Ω) = Hs

Ω

for all s ∈ ℝ (see [3, Lemma 3.15], which follows

from [9, Theorems 3.29 and 3.21]), with

∘
Hs(Ω) present only for s ≥ 0.

Lemma 2.1. If Ω is Lipschitz, ∂Ω is bounded, and s > −1/2, s ̸∈ {1/2, 3/2, . . .}, then |
Ω
: H̃s(Ω) → Hs

0

(Ω) is an
isomorphism (with norm at most one).

Wewould like to understand towhat extent this result generalises to non-Lipschitz Ω, and also how |
Ω
acts on

the spaces

∘
Hs(Ω) and Hs

Ω

in the case where these are not equal to H̃s(Ω). Some partial results in this direction

are provided by the following lemma.

Lemma 2.2. Let Ω ⊂ ℝn be open and let s ∈ ℝ. Then the following hold:
(i) |

Ω
: Hs

Ω

→ Hs(Ω) is injective if and only if ∂Ω is s-null.
(ii) For s ≥ 0, |

Ω
:

∘
Hs(Ω) → Hs(Ω) is injective; if s ∈ ℕ

0
, then it is a unitary isomorphism onto its image

in Hs(Ω).
(iii) For s ≥ 0, |

Ω
: H̃s(Ω) → Hs

0

(Ω) is injective and has dense image; if s ∈ ℕ
0
, then it is a unitary isomorphism

onto Hs
0

(Ω).

Proof. Part (i) is obvious from the definition of the restriction operator. For part (ii), the injectivity statement

is obvious, since if u ∈
∘
Hs(Ω) and u|

Ω
= 0, then u = 0. It follows that |

Ω
:

∘
Hs(Ω) → Hs(Ω) is a unitary isomor-

phism onto its image in Hs(Ω)when s ∈ ℕ
0
, because in this case the Hs(ℝn) inner product (see (1.1)) can be
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4 | D.P. Hewett and A. Moiola, A note on properties of the restriction operator on Sobolev spaces

written as a sum of integrals over products of functions/derivatives in the “physical” space (as opposed to

the Fourier space), so disjoint support is enough to guarantee orthogonality. Hence, when s ∈ ℕ
0
, we have

∘
Hs(Ω) ⊂ (Hs

Ω
c )⊥, and we know by (1.2) that |

Ω
is a unitary isomorphism from (Hs

Ω
c )⊥ onto Hs(Ω). Part (iii)

follows from part (ii) and the density ofD(Ω) in both H̃s(Ω) and Hs
0

(Ω) (since the image of a closed set under

an isometry is closed).

Remark 2.3. By combining Lemma 2.2 (i) with the results concerning s-nullity in [3, Lemma 3.10] (see also

[5]) one can derive a number of corollaries. For example, the following hold:

(i) For every open Ω, there exists −n/2 ≤ s
Ω
≤ n/2 such that |

Ω
: Hs

Ω

→ Hs(Ω) is always injective for s > s
Ω

and never injective for s < s
Ω
. In particular, |

Ω
: Hs

Ω

→ Hs(Ω) is always injective for s > n/2 and never

injective for s < −n/2.
(ii) If Ω is Lipschitz (even with unbounded boundary), then |

Ω
: H̃s(Ω) = Hs

Ω

→ Hs(Ω) is injective if and only
if s ≥ −1/2.

(iii) For every −1/2 ≤ s∗ ≤ 0, there exists a C0 open set Ω for which |
Ω
: H̃s(Ω) = Hs

Ω

→ Hs(Ω) is injective for
all s > s∗ and not injective for all s < s∗.

Remark 2.4. To expand on Lemma 2.2 (ii), we note that the restriction operator

|
Ω
:

∘
Hs(Ω) → {u ∈ Hs(Ω) : u

ze
∈ Hs(ℝn)} ⊂ Hs(Ω)

is a bijection, where we denote by u
ze
the extension of u ∈ Hs(Ω) from Ω to ℝn by zero and u Ü→ u

ze
is the

inverse of |
Ω
, see also [3, Remark 3.1].

Remark 2.5. Lemma 2.2 (iii) and [3, Remark 3.32], which follows from [7, Chapter 1, Theorem 11.7], imply

that if Ω is C∞ and bounded, and if s ∈ {1/2, 3/2, . . .}, then the restriction |
Ω
: H̃s(Ω) → Hs

0

(Ω) is not surjec-
tive, demonstrating the sharpness of Lemma 2.1.

Remark 2.6. If Ω is a Lipschitz open set with bounded boundary, Lemma 2.1 and the definition of Hs(Ω)
give that |

Ω
: H̃s(Ω) ∩ H1(ℝn) → Hs

0

(Ω) ∩ H1(Ω) is an isomorphism for all 0 ≤ s ≤ 1, s ̸= 1/2. Then [9, Theo-

rem 3.40] gives that:

∙ |
Ω
: H̃s(Ω) ∩ H1(ℝn) → H1(Ω) is an isomorphism for 0 ≤ s < 1/2,

∙ |
Ω
: H̃s(Ω) ∩ H1(ℝn) → H1

0

(Ω) is an isomorphism for 1/2 < s ≤ 1.

Characterising (H̃1/2(Ω) ∩ H1(ℝn))|
Ω
and deriving similar results for non-Lipschitz sets appear to be open

problems.

Lemma 2.2 (ii) and (iii) only deal with the case s ≥ 0. In the next lemmawe relate properties of the restriction

operator acting on H̃s(Ω) for s and −s. In particular, this lemma allows us to infer the statement of Lemma 2.1

for −1/2 < s < 0 from the classical statement for 0 < s < 1/2 (recalling that Hs
0

(Ω) = Hs(Ω) for Ω being

Lipschitz and s ≤ 1/2). For clarity, in this lemma and its proof we denote the restriction operator acting on

H̃s(Ω) as |s
Ω

: H̃s(Ω) → Hs(Ω). The proof of the lemma makes use of the fact that we can characterise the

Banach space adjoint of |s
Ω

in terms of |−s
Ω

, using the dual space realisations (1.3).

Lemma 2.7. Let Ω ⊂ ℝn be non-empty and open, and let s ∈ ℝ. Then the following hold:
(i) |s

Ω

: H̃s(Ω) → Hs(Ω) is bijective if and only if |−s
Ω

: H̃−s(Ω) → H−s(Ω) is bijective.
(ii) |−s

Ω

: H̃−s(Ω) → H−s(Ω) is injective if and only if |s
Ω

: H̃s(Ω) → Hs(Ω) has dense image; i.e., if and only if
Hs
0

(Ω) = Hs(Ω).

Proof. Let Is : H−s(Ω) → (H̃s(Ω))∗ and I∗s : H̃s(Ω) → (H−s(Ω))∗ be the unitary isomorphisms defined in

[3, equation (21)] as follows:

Isu(v) = ⟨U, v⟩s and I∗s v(u) = ⟨v, U⟩−s for u ∈ H−s(Ω), v ∈ H̃s(Ω),

whereU ∈ H−s(ℝn)denotes any extensionof uwithU|
Ω
= u. Let |s∗

Ω

: (Hs(Ω))∗ → (H̃s(Ω))∗ denote theBanach
space adjoint (i.e., the transpose) of |s

Ω

, defined by (|s∗
Ω

l)(ϕ) = l(ϕ|s
Ω

) for l ∈ (Hs(Ω))∗ and ϕ ∈ H̃s(Ω). We can

characterise |s∗
Ω

in terms of |−s
Ω

, using Is and I∗−s. Precisely, it holds that |
s∗
Ω

I∗−s = Is|−s
Ω

. To see this, simply note

Brought to you by | University of Reading
Authenticated

Download Date | 8/4/17 3:11 PM



D. P. Hewett and A. Moiola, A note on properties of the restriction operator on Sobolev spaces | 5

that, by the definition of Is and I∗−s,

(|s∗
Ω

I∗−su)(v) = (I∗−su)(v|sΩ) = ⟨u, v⟩s = (Is(u|−s
Ω

))(v), u ∈ H̃−s(Ω), v ∈ H̃s(Ω).

From this characterisation, the statements of the lemma follow immediately using classical functional-

analytic results, e.g., [1, Corollary 2.18 and Theorem 2.20].

We have seen that the restriction operator |
Ω
: H̃s(Ω) → Hs

0

(Ω) is an isomorphism for Ω being Lipschitz and

for s > −1/2, s ̸∈ {1/2, 3/2, . . .}. The next proposition shows that this result also extends to the case where Ω
is a finite union of disjoint Lipschitz open sets, even when the union is not itself Lipschitz. Note that we do

not require the closures of the constituent open sets to be mutually disjoint. The result therefore applies, for

example, to the prefractal sets generating the Sierpinski triangle [3, Figure 4 (a)], which are finite unions of

equilateral triangles touching at vertices.

Proposition 2.8. The statements of Lemma 2.1 extend to finite disjoint unions of Lipschitz open sets with
bounded boundaries.

Proof. The injectivity statement follows from the s-nullity of finite unions of Lipschitz boundaries for

s ≥ −1/2 (cf. [3, Lemma 3.10 (v) and (xix)]). The surjectivity follows from Lemma 2.9 below.

Lemma 2.9. Let the open set Ω ⊂ ℝn be the union of the disjoint open sets {Aj}Nj=1, N ∈ ℕ, and suppose that the
restrictions |Aj : H̃s(Aj) → Hs

0

(Aj) are surjective for all 1 ≤ j ≤ N. Then also |
Ω
: H̃s(Ω) → Hs

0

(Ω) is surjective.

Proof. In this proof we denote by |
Ω
1
,Ω

2

the restriction operator fromD∗(Ω
1
) toD∗(Ω

2
), when Ω

2
⊂ Ω

1
⊂ ℝn

are open sets. Fix u ∈ Hs
0

(Ω). Then, for all 1 ≤ j ≤ N, u|
Ω,Aj ∈ Hs(Aj) belongs to Hs0(Aj), since Ω is a disjoint

union and so (D(Ω)|ℝn ,Ω)|Ω,Aj = D(Aj)|ℝn ,Aj . By assumption, u|
Ω,Aj = wj|ℝn ,Aj for some wj ∈ H̃s(Aj) ⊂ H̃s(Ω).

Finally, w := ∑N
j=1 wj ∈ H̃s(Ω) satisfies w|ℝn ,Ω = u (using the fact that any test function ϕ ∈ D(Ω) can be

uniquely decomposed as a sum ϕ = ∑N
j=1 ϕj, where ϕj ∈ D(Aj)), and this shows that u is in the range of |ℝn ,Ω,

as required.

For s ≥ 0, we can rephrase the results of this section as follows. For any open set Ω, the restriction opera-

tor |
Ω
: H̃s(Ω) → Hs

0

(Ω) is continuous with norm one, is injective, has dense image, and the zero extension

u Ü→ u
ze
is its right inverse on its image, i.e., u

ze
|
Ω
= u for all u ∈ H̃s(Ω)|

Ω
. Furthermore, for s ≥ 0, the follow-

ing conditions are equivalent:

(i) |
Ω
: H̃s(Ω) → Hs

0

(Ω) is an isomorphism,

(ii) |
Ω
: H̃s(Ω) → Hs

0

(Ω) is surjective,
(iii) the zero extension u Ü→ u

ze
is continuous Hs

0

(Ω) → H̃s(Ω),
(iv) there exists c > 0 such that ‖Φ‖Hs(ℝn) ≥ c‖ϕ‖Hs(ℝn) for all ϕ ∈ D(Ω) and Φ ∈ Hs(ℝn) such that Φ|

Ω
= ϕ.

By Proposition 2.8, we know all these conditions hold for disjoint unions of Lipschitz open sets with bounded

boundary and s ̸∈ {1/2, 3/2, . . .}. But results about the surjectivity (or otherwise) of |
Ω
: H̃s(Ω) → Hs

0

(Ω) on
more general Ω do not seem to be available in the literature and in this casewe only know (by Lemma2.2 (iii))

that the conditions above are true for s ∈ ℕ
0
. The following therefore appear to be open questions: For which

Ω are (i)–(iv) true for all s > −1/2, s ̸∈ {1/2, 3/2, . . .}? For which values of s are they satisfied for a given Ω?

2.1 When is |Ω : H̃s(Ω) → Hs
0(Ω) a unitary isomorphism?

To study when |
Ω
: H̃s(Ω) → Hs

0

(Ω) is a unitary isomorphism, we first note the equivalences in the following

lemma. We emphasise that the norm on the left-hand side of the equality in part (ii) in the lemma is the

minimal one among the Hs(ℝn)-norms of all the extensions of ϕ|
Ω
, while that on the right-hand side uses

ϕ = 0 in Ω

c
.

Lemma 2.10. Let Ω be a non-empty open subset ofℝn and let s ∈ ℝ. The following are equivalent:
(i) |

Ω
: H̃s(Ω) → Hs

0

(Ω) is a unitary isomorphism,
(ii)

""""ϕ|Ω
""""Hs(Ω) = ‖ϕ‖Hs(ℝd) for all ϕ ∈ D(Ω),

(iii) D(Ω) ⊂ (Hs
Ω
c )⊥.
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6 | D.P. Hewett and A. Moiola, A note on properties of the restriction operator on Sobolev spaces

Proof. The implications (i)⇒ (ii) and (iii)⇒ (i) are trivial (the latter holding by the density ofD(Ω) in H̃s(Ω)
and (1.2)). (ii)⇒ (iii) follows because |

Ω
: (Hs

Ω
c )⊥ → Hs(Ω) is an isometry (cf. (1.2)). Explicitly, if ϕ ∈ D(Ω),

thenϕ = ϕ
1
+ϕ

2
for auniquepairϕ

1
∈ (Hs

Ω
c )⊥ andϕ2

∈ Hs
Ω
c . It follows that ‖ϕ‖Hs(ℝd) = ‖ϕ

1
‖Hs(ℝd)+‖ϕ2

‖Hs(ℝd),
and that ‖ϕ|

Ω
‖Hs(Ω) = ‖ϕ

1
|
Ω
‖Hs(Ω) = ‖ϕ

1
‖Hs(ℝd). So, if the equality in (ii) holds, we must have that ϕ

2
= 0,

i.e., ϕ ∈ (Hs
Ω
c )⊥.

Lemma 2.10 allows us to prove the following proposition, which shows that the unitarity property holds

whenever the complement of Ω is negligible (in the sense of s-nullity). An extreme example is the punctured

space Ω = ℝn \ {0}, for which the proposition holds for any s ≥ −n/2.

Proposition 2.11. Let s ∈ ℝ, and letΩ be an open subset of ℝn such thatΩc is s-null. Then |
Ω
: H̃s(Ω) → Hs

0

(Ω)
is a unitary isomorphism.

Proof. The assumption that Ω

c
is s-null means that (Hs

Ω
c )⊥ = ({0})⊥ = Hs(ℝn) ⊃ D(Ω). Therefore, part (iii) of

Lemma 2.10 holds and hence the result follows.

Conversely, we can demonstrate that when the complement of Ω is not negligible, |
Ω
: H̃s(Ω) → Hs

0

(Ω) is not
in general a unitary isomorphism except when s ∈ ℕ

0
.

Proposition 2.12. Assume that Ω is non-empty, open and bounded. Then the three equivalent statements in
Lemma 2.10 hold if and only if s is a non-negative integer.

Proof. We have seen in Lemma 2.2 (iii) that |
Ω
: H̃s(Ω) → Hs

0

(Ω) is a unitary isomorphism when s ∈ ℕ
0
, for

anyΩ.When s ̸∈ ℕ
0
andΩ is bounded,we shall prove that this doesnot holdby showing that statement (iii) of

Lemma2.10 fails. Take anyϕ ∈ D(Ω)anddefine the translateϕd(x) := ϕ(x − d) ford ∈ ℝn. Thenϕd ∈ D(ℝn).
In fact, since Ω is assumed bounded, for large enough |d|, we have that ϕd ∈ D(Ω

c
) ⊂ Hs

Ω
c , so that in particu-

lar suppϕ ∩ suppϕd is empty. Define χ(d) := (ϕ, ϕd)Hs(ℝn) = (ϕ( ⋅ ), ϕ( ⋅ − d))Hs(ℝn). Then the formula for the

Fourier transform of a translate gives

χ(d) = (ϕ, ϕd)Hs(ℝn) = ∫
ℝn

e

id⋅ξμ(ξ )dξ ,

where

μ(ξ ) := (1 + |ξ |2)s|ϕ̂(ξ )|2 = (1 + ξ2
1

+ ⋅ ⋅ ⋅ + ξ2n )s|ϕ̂(ξ )|2, with ξ = (ξ
1
, . . . , ξn).

Since μ(ξ ) is an element of S(ℝn), χ(d) is also an element of S(ℝn), with Fourier transform χ̂(ξ ) = (2π)n/2μ(ξ ).
But for s ̸= 0, 1, 2, . . . , the function μ(ξ ) does not extend to an entire function on ℂn because the fac-

tor (1 + ξ2
1

+ ⋅ ⋅ ⋅ + ξ2n )s has singularities in ℂn. (For example, for n = 1, these singularities occur at the

points ξ = ±i.) Hence, by the Paley–Wiener theorem (see, e.g., [4, Theorem 2.3.21]) χ(d) cannot have com-

pact support in ℝn. As a result, we can always find d, with |d| large enough, that ϕd ∈ D(Ω
c
) ⊂ Hs

Ω
c and

χ(d) = (ϕ, ϕd)Hs(ℝn) ̸= 0.

Remark 2.13. In proving the “only if” statement in Proposition 2.12, we required Ω to be bounded. With

minor modifications, the same proof works for some unbounded Ω. A first example is when Ω

c
is bounded

with non-empty interior. A second example is when either Ω itself or Ω

c
, the interior of the complement of Ω,

assumed to be non-empty, is contained in the hypograph {x ∈ ℝn , xn > g(x
1
, . . . , xn−1)}, where g : ℝn−1 → ℝ

satisfies lim|x̃|→∞ g(x̃) = ∞; the proof of Proposition 2.12 works in this case because χ(−d) = χ(d). The result
does not hold for every open set Ω, as Proposition 2.11 demonstrates. However, we conjecture that the state-

ment of Proposition 2.12 holds for any Ω for which Ω

c
has non-empty interior. But proving this conjecture

appears to be an open problem.

Remark 2.14. Proposition 2.12 illustrates the fact that Sobolev norms with non-natural-number indices

are non-local. In particular, it implies that given any s ∈ ℝ \ ℕ
0
, any ϕ ∈ D(ℝn) and any (arbitrarily large)

bounded set Ω containing the support of ϕ, there exists ψ ∈ D(ℝn) with support in Ωc such that

‖ϕ + ψ‖Hs(ℝn) < ‖ϕ‖Hs(ℝn).
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As an illustrative example, we exhibit a sequence {ΦN}N∈ℕ
0

⊂ H−1(ℝ) of distributions with compact

support suppΦN ⊂ [0, 2N] such that each one of them is an extension of the preceding one (that is to say

ΦN+1|(−∞,2N+1/2) = ΦN |(−∞,2N+1/2) for all N ≥ 0) and their norms are strictly decreasing in N, in other words
‖ΦN+1‖H−1(ℝ) < ‖ΦN‖H−1(ℝ). Such a sequence can be defined as follows: choose any 0 < α < 1/e and set (where
δx denotes the Dirac delta² centred at x ∈ ℝ)

Φ
0
:= δ

0
, ΦN :=

2N
∑
k=0

(−α)kδk = ΦN−1 − α2N−1δ2N−1 + α2Nδ2N , N ∈ ℕ.

The Fourier transform formula δ̂x = 1

√2π
e

ixξ
and the identity ∫ℝ(1 + ξ2)−1eiaξ dξ = πe−|a| imply that the

H−1(ℝ)-scalar product of two delta functions is

(δx , δy)H−1(ℝ) = 1

2

e

−|x−y|
, (2.1)

giving

‖ΦN‖2H−1(ℝ) = 1

2

2N
∑
k=0

α2k + ∑
0≤j<k≤2N

(−α)j+ke−(k−j).

With some manipulations, it is not difficult to prove that every extension strictly reduces the norm:

‖ΦN‖2H−1(ℝ) − ‖ΦN−1‖2H−1(ℝ) = −
α4N−2

2(1 + αe)(
(1 + α2)(1 − αe) + 2(1 −

α
e

)(αe)1−2N) < 0.

We point out that while the sequence {‖ΦN‖H−1(ℝ)}∞N=1 is decreasing, our results in §3 (equation (3.1) in partic-
ular) imply that for every N ∈ ℕ

0
, the extension of ΦN |(−∞,2N+1/2) with minimal H−1(ℝn) norm is supported

in (−∞, 2N + 1/2] and has the expression ΦN + cδ
2N+1/2 for some c ∈ ℂ.

3 The space (Hs
Ωc)⊥ and minimal norm extensions

From (1.2), the elements of (Hs
Ω
c )⊥ are the extensions of the elements of Hs(Ω) with minimal Hs(ℝn) norm.

In this short section we make some remarks on the nature of the elements of (Hs
Ω
c )⊥, and on minimal norm

extensions. We also refer the reader to the related discussion in Remark 2.14 above.

For m ∈ ℕ
0
, the fact that functions with disjoint support are orthogonal in Hm(ℝn) (cf. (1.1) and the

sentence following it) implies that

∘
Hm(Ω) ⊂ (Hm

Ω
c )⊥. Thus, we have

H̃m(Ω) ⊂
∘
Hm(Ω) ⊂ (Hm

Ω
c )⊥ ⊂ (H̃m(Ωc))⊥, m ∈ ℕ

0
,

which, by duality (1.3), implies that

(H−m
Ω
c )⊥ ⊂ H̃−m(Ω) ⊂ H−m

Ω

, m ∈ ℕ
0
.

In particular, minimal extensions from H−m(Ω) to H−m(ℝn) are supported in Ω. Hence, if u ∈ H−m(Ω), then
there exists U ∈ H−m

Ω

with U|
Ω
= u. Furthermore, given any such U, the minimal extension of u is given by

Q−mU = U + w, where w ∈ H−m∂Ω .
For example, if Ω = (a, b) ⊂ ℝ, then the action of Q−m on U ∈ H−m

Ω

can be written explicitly, since H−m∂Ω is

finite-dimensional and its elements are (derivatives of) delta functions supported in ∂Ω = {a, b}. In particular,
for U ∈ H−1

Ω

,

Q−1U = U + caδa + cbδb for some ca , cb ∈ ℂ. (3.1)

Using (2.1), the minimisation of ‖U + caδa + cbδb‖2H−1(ℝ) shows that
ca =

(U, δb)H−1(ℝ) − e

b−a(U, δa)H−1(ℝ)
sinh(b − a)

, cb =
(U, δa)H−1(ℝ) − e

b−a(U, δb)H−1(ℝ)
sinh(b − a)

.

2 To fit our convention of using anti-linear functionals, δx acts on test functions ϕ ∈ S(ℝn) by δx(ϕ) = ϕ(x).
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For instance, if u ∈ H−1(Ω) is given by u = δx for some a < x < b (viewed as a distribution on Ω = (a, b)), then
clearly U := δx (viewed as a distribution onℝ) is an extension of u, whose projection onto (H−1

Ω
c )⊥ is given by

(3.1). In this case, the choice of ca , cb that minimises the H−1(ℝn) norm of (3.1) is

ca = −
sinh(b − x)
sinh(b − a)

, cb = −
sinh(x − a)
sinh(b − a)

,

which give

‖δx‖2H−1(Ω) = ‖δx + caδa + cbδb‖2H−1(ℝ) = sinh(b − x) sinh(x − a)
sinh(b − a)

<
1

2

= ‖δx‖2H−1(ℝ).
However, in general, (Hs

Ω
c )⊥ ̸⊂ Hs

Ω

when −s ̸∈ ℕ
0
, i.e., the elements of (Hs

Ω
c )⊥ do not generally have their

support in Ω. Explicit expressions for the minimal-norm extensions of the elements of H1(Ω) and H2(Ω) for
the special case Ω = (a, b) ⊂ ℝ have been presented in [2, Lemma 4.12] and lead to the following formulae

for the norms:

‖ϕ‖2H1(Ω) = |ϕ(a)|2 + |ϕ(b)|2 +
b

∫
a

(|ϕ|2 + |ϕ�|2)dx,

‖ϕ‖2H2(Ω) = |ϕ(a)|2 + |ϕ�(a)|2 + |ϕ(a) − ϕ�(a)|2 + |ϕ(b)|2 + |ϕ�(b)|2

+ |ϕ(b) + ϕ�(b)|2 +
b

∫
a

(|ϕ|2 + 2|ϕ�|2 + |ϕ��|2)dx.

(Note that we have corrected a sign typo present in [2, equation (26)].)
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