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An exact collisionless equilibrium for the Force-Free Harris Sheet with low
plasma beta

O. Allanson,a) T. Neukirch,b) F. Wilson,c) and S. Troscheitd)

School of Mathematics and Statistics, University of St Andrews, St. Andrews, KY16 9SS, United Kingdom

(Received 7 September 2015; accepted 13 October 2015; published online 26 October 2015)

We present a first discussion and analysis of the physical properties of a new exact

collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the

force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below

unity, which previous nonlinear force-free collisionless equilibria could not. The distribution

function involves infinite series of Hermite polynomials in the canonical momenta, of which

the important mathematical properties of convergence and non-negativity have recently been

proven. Plots of the distribution function are presented for the plasma beta modestly below

unity, and we compare the shape of the distribution function in two of the velocity directions

to a Maxwellian distribution. VC 2015 Author(s). All article content, except where otherwise noted,
is licensed under a Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4934611]

I. INTRODUCTION

Equilibria are a suitable starting point for investigations

of plasma instabilities and waves. Force-free equilibria, with

fields defined by

r � B ¼ 0;

r� B ¼ l0j;

j� B ¼ 0;

(1)

are, for example, of particular relevance to the solar corona

and other astrophysical plasmas, as well as the scrape-off

layer in tokamaks; see, for example, Refs. 1–3, respectively.

Equation (1) implies that the current density is everywhere-

parallel to the magnetic field

l0j ¼ aðrÞB; (2)

or zero in the case of potential fields. If ra 6¼ 0 then the

force-free field is nonlinear, whereas a constant a corre-

sponds to a linear force-free field. Extensive discussions of

force-free fields are given in Refs. 2 and 4.

We consider one-dimensional (1D), non-relativistic col-

lisionless plasmas, for which it is necessary to use kinetic

theory. An equilibrium, characterised by the one-particle dis-

tribution function (DF), is a solution of the steady-state

Vlasov equation.5 For a macroscopic equilibrium to be

described, the DF must solve Maxwell’s equations and

describe force balance, via the coupling to the charge and

current densities, as well as to the pressure. The difficulty of

the problem in general lies in achieving self-consistency

between the microscopic and macroscopic descriptions.

Current sheets are extremely important for reconnec-

tion studies, see Ref. 6, for example. Three families of

exact nonlinear force-free Vlasov-Maxwell (VM) equilibria

are known,7–10 all of which describe 1D current sheets.

The first family uses the force-free Harris sheet (FFHS) as

their magnetic field profile.7,8 The FFHS magnetic field is

given by

B ¼ B0ðtanhðz=LÞ; sechðz=LÞ; 0Þ; (3)

with L being the width of the current sheet, and B0 being the

constant magnitude of the magnetic field. The second exam-

ple uses Jacobi elliptic functions, of which the FFHS is

a special case.9 The third example10 will be discussed herein.

We note work on “nearly” force-free equilibria,11 with

the FFHS modified by adding a small Bz component.

Examples of linear force-free VM equilibria12–17 are

discussed in Ref. 18.

Two of the nonlinear force-free DFs known thus far7–9

have the “drawback” of describing plasmas with a plasma-

beta (bpl) greater than one, due to the manner in which they

were constructed. bpl is defined as the ratio of the thermal

energy density to the magnetic energy density

bpl ¼
X

s

bpl;s ¼
2l0kB

B2
0

X
s

nsTs; (4)

for ns and Ts the number density and temperature—of species

s—respectively. In Cartesian geometry, and when gravity

and electric fields are neglected, the fluid equation of

motion5 becomes

@

@xj
Pij ¼ j� Bð Þi; (5)

for Pij, the pressure tensor, and the Einstein summation con-

vention applied over repeated indices. In this case, a bpl
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much less than one is typically taken to be consistent with a

force-free magnetic field. In the case of one “dynamical”

component of the pressure tensor, P, force balance is

described by rP¼ j�B and bpl ¼ 2l0P=B2
0.

The basic theory of the technique used to reach the low

plasma-beta regime, and the posing of the inverse problem

are explained in Section II. Section III explains the inversion

procedure used to find an equilibrium solution, with full

detail in Ref. 10. In Section IV, we present a discussion of

some of the properties of the distribution function in the

numerically accessible parameter regime. The first order

moments of the DF are calculated in the Appendixes, and

used in Section IV to calculate the current sheet width.

Finally, we close with a summary and conclusions.

II. BASIC THEORY

An exact solution of the Vlasov equation is necessarily a

function of the constants of motion.5 The equilibrium we shall

consider varies only in one Cartesian spatial coordinate,

namely, z. This implies that the Hamiltonian, Hs, and the x
and y canonical momenta, pxs and pys for each particle species

Hs ¼ msv
2=2þ qs/;

pxs ¼ msvx þ qsAx;

pys ¼ msvy þ qsAy;

are conserved, with qs being the charge of species s and

/ being the scalar potential. Ax and Ay are components of

the vector potential, with Az¼ 0 and B¼r�A. The

Vlasov equation can now be solved by any differentiable

function fs(Hs, pxs, pys), with the additional “physical” con-

straints being that fs is also normalisable, non-negative and

has velocity moments of arbitrary order.5 The assumption of

quasineutrality, r(z)¼ 0, implicitly defines the scalar poten-

tial as a function of the vector potential, /qnðAx;AyÞ.18 For

DFs of the form considered in this paper, see equation (11),

the quasineutral scalar potential takes the form

/qn Ax;Ayð Þ ¼
1

e be þ bið Þ ln ni=neð Þ: (6)

To be able to use the method of Channell12 (described later),

we choose our parameters such that strict neutrality (ni(Ax,

Ay)¼ ne(Ax, Ay)) is satisfied. As already pointed out in

Ref. 18, this implies that /qn ¼ 0 due to Equation (6). Our

choice of parameters is mathematically equivalent to the

condition used to derive micro-macroscopic parameter rela-

tionships, which will be discussed in Section III.

It has been shown in Refs. 18–23, for example, that

the 1D Vlasov-Maxwell equilibrium problem is analogous

to that of a particle moving under the influence of a poten-

tial; with the relevant component of the pressure tensor,

Pzz, taking the role of the potential; (Ax, Ay) the role of

position and z the role of time. Under our assumptions this

means that

d2Ax

dz2
¼ �l0

@Pzz

@Ax
; (7)

d2Ay

dz2
¼ �l0

@Pzz

@Ay
: (8)

These equations (or equivalent) are first seen in a complete

sense in Ref. 24. Furthermore, the force-free equilibrium

fields correspond to a trajectory, (Ax(z), Ay(z)), that is itself a

contour

dPzz

dz
¼ 0; (9)

of the potential, Pzz.
7 Equations (7)–(9) succinctly define

the problem of calculating a 1D, quasineutral, force-free

equilibrium. The difficulty lies in calculating the DF, fs,
given a macroscopic expression for Pzz(Ax, Ay), formally

defined

Pzz ¼
X

s

Pzz;s ¼
X

s

ms

ð
wz

2fsd
3v; (10)

for wz ¼ vz � hvzis, with vz, the particle velocity and hvzis,
the bulk velocity of species s in the z direction. Channell

developed the theory of this problem,12 with the added

assumption of zero scalar potential from the offset, and a dis-

tribution function of the form

fs ¼
n0sffiffiffiffiffiffi

2p
p

vth;s

� �3
e�bsHs gs pxs; pysð Þ: (11)

The species dependent constants are n0s, thermal velocity

vth,s and bs¼ 1/(kBTs). The “perturbation” to the Maxwellian,

gs, is an as yet unknown function of the canonical momenta.

Note that the DF defined in Equation (11) is an even function

of vz, giving no bulk flow in the z direction, and hence

hvzis ¼ 0. After integrating over vz, the assumption of

Equation (11) in Equation (10) leads to

Pzz Ax;Ayð Þ ¼
be þ bi

bebi

n0s

2pm2
s v

2
th;s

�
ð1
�1

ð1
�1

e�bs pxs�qsAxð Þ2þ pys�qsAyð Þ2ð Þ= 2msð Þ

� gs pxs; pysð Þdpxsdpys: (12)

Equation (12) defines mathematically the inverse problem at

hand: given a known macroscopic equilibrium, characterised

by Pzz(Ax, Ay), can we invert the integral equation to solve

for gs(pxs, pys)?

The inverse problem is not only non-unique regarding

the form of the distribution function for a particular macro-

scopic equilibrium, but also for the form of Pzz(Ax, Ay) for a

given magnetic field. Given a specific magnetic field, i.e., a

specific (Ax, Ay), and a known Pzz that satisfies Equations

(7)–(9), one can construct infinitely many new �Pzz that also

satisfy them

�Pzz ¼ w0ðPf f Þ�1wðPzzÞ; (13)
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for differentiable and non-constant w, provided the LHS is

positive (see Ref. 18 for a discussion). These �Pzz maintain a

force-free equilibrium with the same magnetic field as Pzz.

The value of Pzz evaluated on the force-free contour is Pff.

This paper takes the Pzz used in Refs. 7, 8, and 25 and trans-

forms it as in Equation (13) with the exponential function

according to

w Pzzð Þ ¼ exp
1

P0

Pzz � Pf fð Þ
� �

; (14)

with P0 a free, positive constant. This gives �Pzz;ff ¼ P0, and

so the plasma pressure can be as low or high as desired.

Channell showed12 that under the assumptions used in this

paper

Pzz Ax;Ayð Þ ¼
be þ bi

bebi

n Ax;Ayð Þ; (15)

where n¼ ni¼ ne. Equation (4) then gives

bpl ¼
2l0Pzz;ff

B2
0

¼ 2l0P0

B2
0

:

Hence, a freely chosen P0 corresponds directly to a freely

chosen bpl.

We note here that this pressure transformation can also

be implicitly seen for the different linear force-free cases

presented in the literature,12,16,22,23 although this connection

has never been made. The pressure function in Ref. 22 (and

implicitly in Ref. 16) is an exponentiated version of that in

Refs. 12 and 23. A further interesting aspect is that the mo-

mentum dependent parts of the distribution functions are

also related to each other exponentially.

III. CALCULATING THE DISTRIBUTION FUNCTION

The Harrison-Neukirch pressure function7 is given by

Pzz ¼
B2

0

2l0

1

2
cos

2Ax

B0L

� �
þ exp

2Ay

B0L

� �
þ b

" #
; (16)

with b> 1=2 contributing to a “background” pressure

sourced by a Maxwellian distribution, required for positivity.

This is the pressure function that describes bpl> 1 regimes,

and we are to transform according to Equations (13) and (14)

in order to realise bpl< 1, resulting in

�Pzz ¼ P0 exp
1

2bpl

cos
2Ax

B0L

� �
þ 2 exp

2Ay

B0L

� �
� 1

" #( )
:

The� 1/(2bpl) term comes from results in Ref. 7 regarding

the b> 1=2 term and the fact that Pf f ¼ B2
0=ð2l0Þ

ð1þ ðb� 1=2ÞÞ, readily seen for z¼ 0, for example. Note

that Pzz is constant over z, and so we can evaluate at any z to

calculate Pff. Exponentiation of Pzz has clearly resulted in a

complicated LHS of Equation (12), and so the inverse prob-

lem defined above is mathematically challenging.

Since exponentiation of the “summative” pressure func-

tion results in a “multiplicative” one, we shall exploit separa-

tion of variables by assuming gs / g1s(pxs)g2s(pys), whilst

noting that �Pzz / �P1ðAxÞ �P2ðAyÞ. This assumption leads to

integral equations of the form

�P1ðAxÞ /
ð1
�1

e�bsðpxs�qsAxÞ2=ð2msÞg1ðpxsÞdpxs; (17)

�P2ðAyÞ /
ð1
�1

e�bsðpys�qsAyÞ2=ð2msÞg2ðpysÞdpys; (18)

in which the LHS are formed of exponentiated cosine and

exponential functions, respectively. These equations are 1D

integral transforms, known primarily as Weierstrass

transforms26

W f½ � xð Þ ¼ 1ffiffiffiffiffiffi
4p
p

ð1
�1

e� x�yð Þ2=4f yð Þdy; (19)

used as Green’s function solutions of the diffusion equation,

see Ref. 27, for example. One method of inversion28

involves the use of Hermite polynomials

Hn xð Þ ¼ �1ð Þnex2 d

dx
e�x2

;

a complete orthogonal set for f 2 L2ðR; e�x2

dxÞ.29 If one can

expand the LHS of Equation (19) in a Maclaurin series (with

coefficients of expansion an) then the unknown function f(y)

can be written as

f ðyÞ ¼
X1
n¼0

anHnðy=2Þ:

This is the method that we use to invert Equations (17) and

(18), to solve for g1(p1s) and g2(pys).

In Ref. 10, this inversion procedure was performed,

and we shall only outline the approach here. The first step

is to Maclaurin expand the exponentiated pressure func-

tion of Equation (16) according to Equations (13) and

(14). Exponentiation of a power series is a combinatoric

problem and was tackled by Bell in Ref. 30. If hðxÞ
¼ exp kðxÞ and

k xð Þ ¼
X1
n¼1

1

n!
fnxn;

then

h xð Þ ¼
X1
n¼0

1

n!
Yn f1; f2;…; fnð Þxn;

for Yn the nth Complete Bell Polynomial (CBP), and

Y0¼ 1. These can be defined explicitly for n� 1 by Fa�a di

Bruno’s determinant formula31 as the determinant of an

n� n matrix
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Yn f1; f2;…fnð Þ ¼

n� 1

0

� �
f1

n� 1

1

� �
f2

n� 1

2

� �
f3 …

n� 1

n� 2

� �
fn�1

n� 1

n� 1

� �
fn

�1
n� 2

0

� �
f1

n� 2

1

� �
f2 …

n� 2

n� 3

� �
fn�2

n� 2

n� 2

� �
fn�1

0 �1
n� 3

0

� �
f1 …

n� 3

n� 4

� �
fn�3

n� 3

n� 3

� �
fn�2

..

. ..
. ..

. ..
. ..

.

0 0 0 …
1

0

� �
f1

1

1

� �
f2

0 0 0 … �1
0

0

� �
f1

																											

																											

: (20)

For example, Y1(f1)¼ f1 and Y2ðf1; f2Þ ¼ f2
1 þ f2. We include

this determinant form here since this is the representation we

use to plot the distribution function. Using these results and a

simple scaling argument in Ref. 30, the Maclaurin expansion

of the transformed pressure is found to be

�Pzz ¼ P0e�1= 2bplð ÞX1
m¼0

a2m
Ax

B0L

� �2mX1
n¼0

bn
Ay

B0L

� �n

; (21)

with

a2m ¼ e1= 2bplð Þ �1ð Þm22m

2mð Þ!
Y2m 0;

1

2bpl

; 0;…; 0;
1

2bpl

 !
; (22)

and

bn ¼ e1=bpl
2n

n!
Yn

1

bpl

;…;
1

bpl

 !
: (23)

This allows us to formally solve the inverse problem for the

unknown functions g1s(pxs) and g2s(pys) in terms of Hermite

polynomials, giving

fs Hs;pxs;pysð Þ¼
n0sffiffiffiffiffiffi

2p
p

vth;s

� �3
e�1= 2bplð ÞX1

m¼0

C2m;sH2m

"

� pxsffiffiffi
2
p

msvth;s

� �X1
n¼0

DnsHn
pysffiffiffi

2
p

msvth;s

� �#
e�bsHs ;

(24)

for species-dependent and as yet unknown coefficients C2m,s

and Dns. The reason for this ambiguity is that the transforms

defining our problem in Equations (17) and (18) are not quite

of the perfect form of the Weierstrass transform in Equation

(19). Since Pzz is independent of species—see Equation

(21)—we have to ensure that taking the second moment of fi
gives the same result as that of fe, i.e., when computing the

integral of Equation (12). This is solved by fixing the param-

eters according to

n0i ¼ n0e ¼ n0; P0 ¼ n0

be þ bi

bebi

C2m;s ¼
dsffiffiffi

2
p
� �2m

a2m; Dns ¼ sgn qsð Þn
dsffiffiffi

2
p
� �n

bn:

The dimensionless parameter ds> 0 is the species-dependent

magnetisation parameter,32 also used as the fundamental

ordering parameter in gyrokinetics33

ds ¼
msvth;s

jqsjB0L
) de

di
¼

ffiffiffiffiffiffiffiffiffiffi
meTe

miTi

r
: (25)

It is the ratio of the thermal Larmor radius of species s,

qs¼ vth,s/Xs, for Xs¼ qsB0/ms, to the characteristic length

scale of the system, L. When ds� 1 then particle species s is

highly magnetised.

As yet, the distribution of Equation (24), together with the

micro-macroscopic conditions, is only a formal solution to the

inverse problem posed. To be valid, it must be convergent,

bounded, and non-negative. We note here that infinite series in

Hermite polynomials in velocity were used in Vlasov

equilibrium studies in Refs. 34 and 35, with the particular

question of convergence raised in Ref. 34. Convergence of our

infinite series, as well as non-negativity and boundedness prop-

erties are proven in Ref. 10, and so will not be repeated here.

IV. PROPERTIES OF THE DISTRIBUTION FUNCTION

The nature of the inverse problem is to calculate a mi-

croscopic description of a system, given certain prescribed

macroscopic data. Hence, one of the main tasks is to find the

relationships between the characteristic parameters of each

level of description. That is to say, given (B0, P0, L), for

example, what is their relation to (ms, qs, vth,s, n0s)?

A. Current sheet width

Currently, there are six free parameters that will deter-

mine the nature of the equilibrium. These are n0, bpl, bth,i,

bth,e, di, and de. n0 is in principle fixed by ensuring that the

DF is normalised to the total particle number. As yet we

have no information regarding the width of the current sheet

L. To this end, we shall consider bulk velocities hvxis and
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hvyis, obtained from the first moment of the DF. The calcula-

tions in Appendixes A and B, together with the fact that

B0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l0P0=bpl

q
give

hvxis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

l0bplP0

s
1

Lqsbs

sinh
z

L

� �
cosh2 z

L

� � ;
hvyis ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

l0bplP0

s
1

Lqsbs

1

cosh2 z

L

� � :

We can identify the coefficient of the z dependent profiles as

the amplitude of the bulk velocities, hvxis and hvyis, as us,

given by

us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

l0bplP0

s
1

Lqsbs

; (26)

giving

ui � ueð Þ2 ¼
2

l0bplP0L2q2

be þ bi

bebi

� �2

; (27)

) L ¼ 1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 be þ bið Þ

l0n0bebi ui � ueð Þ2bpl

s
; (28)

where q ¼ jqsj. Interestingly, this is almost identical to the

expression found in Ref. 25 for the current sheet width of the

Harrison-Neukirch equilibrium, with the addition of the b1=2
pl

factor in the denominator. It is readily seen that, given some

fixed B0, L / b�1=2
pl . This makes sense in that, by raising the

number density n0, and hence bpl, there are simply more cur-

rent carriers available to produce j, and hence the width L
can reduce. By manipulating Equation (26), one can show

that the amplitudes of the fluid velocities are given by

us

vth;s
¼ 2sgn qsð Þ

ds

bpl

¼ 2sgn qsð Þ
qs

Lbpl

: (29)

Once again, this is almost identical to the expression found

in Ref. 25, with the addition of a bpl factor in the

denominator.

B. Plots of the distribution function

Having found mathematical expressions for the DFs, we

now present different plots of their dependence on vx and vy,

for z/L¼ 0, �1, 1. Plotting fs is a challenging numerical task,

particularly for the low-bpl regime as when bpl< 1/2, the

C2m,s are readily seen to be of the order

1ffiffiffi
2
p
� �2m �1ð Þm

2mð Þ!
ds

bpl

 !2m

;

since Y2m is a polynomial of order 2m in 1/(2bpl). While it

has been proven that the series’ with which we represent the

DFs are convergent for all values of the relevant parameters,

attaining numerical convergence for the low-bpl regime, par-

ticularly for the pxs dependent sum is thus far proving diffi-

cult. Here we present plots for bpl¼ 0.85 and di¼ de¼ 0.15.

As aforementioned we use Fa�a di Bruno’s determinant for-

mula in Equation (20) to calculate the CBP’s, and a

FIG. 1. The vx variation of fe for z/L¼ 0 (a), z/L¼�1 (b), and z/L¼ 1 (c).

bpl¼ 0.85 and de¼ 0.15. Note the antisymmetry of the z¼61 plots with

respect to each other.
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recurrence relation for the Hermite Polynomials. We

acknowledge that this bpl is only modestly below unity, how-

ever, it represents a value of which we are confident of our

numerics for both the px and py dependent sums. In Figures

1(a)–1(c), we plot the vx variation of our electron distribution

function, as a representative example (the vy plots are

qualitatively similar). First of all, we note that the DFs

appear to have only a single maximum, and fall off as vx

!61. This is to be contrasted with the plots of the DF

using the additive pressure,25 which can have multiple peaks.

Thus far we have not found any indication of multiple peaks

in the parameter regime that we have been able to explore.

FIG. 2. The vx variation of fi/fMaxw,i for z/L¼ 0 (a), z/L¼�1 (b), and z/L¼ 1

(c). bpl¼ 0.85 and di¼ 0.15. Note the antisymmetry of the z¼61 plots with

respect to each other.

FIG. 3. The vy variation of fi/fMaxw,i for z/L¼ 0 (a), z/L¼�1 (b), and z/L¼ 1

(c). bpl¼ 0.85 and di¼ 0.15. Note the symmetry of the z¼61 plots with

respect to each other.
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However, this does not mean that multiple peaks cannot

appear, for example, for lower values of the bpl.

A first look at the plots also seems to indicate that the

shape of the DF resembles the shape of a Maxwellian.

Motivated by this similarity, we define a Maxwellian DF by

fMaxw;s ¼
n0ffiffiffiffiffiffi

2p
p

vth;s

� �3
exp

v� hvis zð Þ

 �2

2v2
th;s

" #
: (30)

The Maxwellian distribution reproduces the same first order

moment in terms of z as the equilibrium solution does,

FIG. 4. The vx variation of fe/fMaxw,e for z/L¼ 0 (a), z/L¼�1(b), and z/L¼ 1

(c). bpl¼ 0.85 and de¼ 0.15. Note the antisymmetry of the z¼61 plots with

respect to each other.

FIG. 5. The vy variation of fe/fMaxw,e for z/L¼ 0 (a), z/L¼�1 (b), and z/L
¼ 1 (c). bpl¼ 0.85 and de¼ 0.15. Note the symmetry of the z¼61 plots

with respect to each other.
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namely, n0hvis, and a spatially uniform number density,

namely, n0. However, it is not a solution of the Vlasov

equation and hence not an equilibrium solution. See Ref.

36 for an example of Particle in Cell simulations with a

force-free field, initiated with a distribution of this type. To

highlight the difference between the two distribution func-

tions, we plot the both the vx and vy variation of the ratio of

the DF, with the Maxwellian of Equation (30) for both ions

and electrons in Figures 2(a)–5(c). As we can see, in all plots

the ratio deviates from unity, and in some cases these

FIG. 6. Contour plots of fi� fMaxw,i for z/L¼ 0 (a), z/L¼�1 (b), and z/L¼ 1

(c). bpl¼ 0.85 and di¼ 0.15. Note the antisymmetry of the z¼61 plots with

respect to each other.

FIG. 7. Contour plots of fe� fMaxw,e for z/L¼ 0 (a), z/L¼�1 (b), and z/L¼ 1

(c). bpl¼ 0.85 and de¼ 0.15. Note the antisymmetry of the z¼61 plots with

respect to each other.
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deviations are substantial. This shows that the initial impres-

sion is somewhat misleading. We also observe a symmetry in

that the vy dependent plots are even in z, since Ay and hvyis are

even in z.
To further see the deviations of fs from the Maxwellian,

we present contour plots of the difference fs� fMaxw,s in

Figures 6(a)–7(c) over (vx, vy) space for various z values.

One observation we can make from these is that there is a

certain symmetry with respect to both velocity direction and

the value of z. For example, it seems that fs is symmetric

under the transformation (vx ! �vx, z ! �z). This seems

reasonable since Ax is dynamically equivalent to an odd

function of z, by a gauge transformation, as By is even. For a

plasma-beta modestly below unity, and thermal Larmor ra-

dius roughly 15% of the current sheet width, we find distri-

butions that are roughly Maxwellian in shape, but

“shallower” at the centre of the sheet. At the outer edges of

the sheet, this shallowness assumes a drop-shaped depression

in the vx direction, with localised differences for large vy.

V. SUMMARY AND CONCLUSIONS

This paper contains a first analysis of a DF capable of

describing low plasma beta, nonlinear force-free collision-

less equilibria. In this paper, the emphasis has been on a dis-

cussion of properties of the DF. By using expressions for the

moments of the DFs, we have derived the relationships

between the micro- and macroscopic parameters of the equi-

librium, in particular, the current sheet width. We have pre-

sented line-plots of the electron DF in the vx direction as a

representative example. These show that the DF has a single

maximum in the vx direction, and seems to resemble a

Maxwellian, at least for the parameter range studied.

However, a detailed comparison with a Maxwellian describ-

ing the same particle density and average velocity/current

density shows that there are significant deviations. This was

corroborated by contour plots of the difference between the

DF and the Maxwellian in the (vx, vy) plane.

While it has been shown10 that the infinite series over

Hermite polynomials are convergent for all parameter val-

ues, plotting the DF has been difficult for the low-beta

regime, particularly the vx dependent sum. Hence, further

work on attaining numerical convergence for a wider param-

eter range is essential. It would be particularly interesting to

find out whether the DF develops multiple peaks similar to

the DF found for an additive form of Pzz.
25
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APPENDIX A: THE vx MOMENT

The first order moments of the DF are used to calculate

the bulk velocity, and in turn the current density. It is useful

to calculate the current density from the DF not only as a

procedural check, but also to derive relations between the

micro- and macroscopic parameters. We now take the first

moment of the DF by vx denoted by [vxfs]

vxfs½ � ¼ 1

m3
s

ð1
�1

ð1
�1

ð1
�1

vxfsd
3p;

¼ n0e
� 1

2bplffiffiffiffiffiffi
2p
p
 �

msvth;s

X1
n¼0

bn
Ay

B0L

� �nX1
m¼0

C2m;s

ð1
�1

vxe�
bs

2ms
pxs�qsAxð Þ2 H2m

pxsffiffiffi
2
p

msvth;s

� �
dpxs|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ivx

;

after both the pys and pzs integrations. Now, use the Hermite expansion of the exponential,37 to give

Ivx
¼ 1

ms

ð1
�1

pxs � qsAxð ÞH2m
pxsffiffiffi

2
p

msvth;s

� �
e�

bsp2
xs

2ms

X1
j¼0

1

jð Þ!
qsAxffiffiffi
2
p

msvth;s

 !j

Hj
pxsffiffiffi

2
p

msvth;s

� �2
4

3
5dpxs: (A1)

Define an inner product according to

hf1ðxÞ; f2ðxÞi ¼
ð1
�1

e�x2

f1ðxÞf2ðxÞdx: (A2)

Then orthogonality of the Hermite polynomials, hHkðxÞ;HlðxÞi ¼
ffiffiffi
p
p

2kk!dkl, and the recurrence relation, Hnþ1ðxÞ ¼ 2xHnðxÞ
�2nHn�1ðxÞ, are used to give
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hxHj xð Þ;H2m xð Þi ¼ jhHj�1 xð Þ;H2m xð Þi þ 1

2
hHjþ1 xð Þ;H2m xð Þi

¼
ffiffiffi
p
p

22m 2mð Þ! jdj�1;2m þ
1

2
djþ1;2m

� �
:

(A3)

This allows us to write

Ivx
¼

ffiffiffiffiffiffi
2p
p

vth;s2
2m 2mð Þ!

X1
j¼0

1

j!

qsAxffiffiffi
2
p

msvth;s

 !j

�
ffiffiffi
2
p

msvth;s jdj�1;2m þ
1

2
djþ1;2m

� �
� qsAxdj;2m

� �
:

So we have

vxfs½ � ¼ n0e
� 1

2bpl

ms

X1
n¼0

bn
Ay

B0L

� �nX1
m¼0

C2m;s2
2m 2mð Þ!

�
X1
j¼0

1

j!

qsAxffiffiffi
2
p

msvth;s

 !j

�
ffiffiffi
2
p

msvth;s jdj�1;2m þ
1

2
djþ1;2m

� �
� qsAxdj;2m

� �

reducing to

vxfs½ �¼
msv2

th;s

qsB0L

 !
n0e
� 1

2bpl

X1
n¼0

bn
Ay

B0L

� �nX1
m¼1

a2m2m
Ax

B0L

� �2m�1

¼
msv2

th;s

qsP0

 !
n0

@ �Pzz

@Ax
¼ bebi

beþbi

1

qsbs

� �
@ �Pzz

@Ax
: (A4)

The x component of current density is defined as jx ¼
P

s

qs½vxfs�, giving

jx ¼
bebi

be þ bi

@ �Pzz

@Ax

X
s

1

bs

¼ @
�Pzz

@Ax

) jx ¼
@ �Pzz

@Ax
; (A5)

reproducing the familiar result.5,12,18,24 The first moment of

the DF can also be used to calculate the bulk velocity in

terms of the microscopic parameters

hvxis ¼
vxfs½ �
ns
¼ jx

qsbsP0

; (A6)

using Equation (A4). Then, by using the current density for

the FFHS,

j ¼ B0

l0L

sinh
z

L

� �
cosh2 z

L

� � ; 1

cosh2 z

L

� � ; 0
0
BBB@

1
CCCA; (A7)

we have the fluid flow in x

hvxis ¼
B0

l0LqsbsP0

sinh
z

L

� �
cosh2 z

L

� � : (A8)

APPENDIX B: THE vy MOMENT

By a completely analogous calculation, we derive the vy

moment of the DF

vyfs½ � ¼
msv2

th;s

P0qs

 !
n0

@ �Pzz

@Ay
¼ bebi

be þ bi

msv2
th;s

qs

 !
@ �Pzz

@Ay
:

Again, the current density jy ¼
P

s qs½vyfs� gives

jy ¼
bebi

be þ bi

@Pzz

@Ay

X
s

msv
2
th;s ¼

@ �Pzz

@Ay

) jy ¼
@ �Pzz

@Ay
:

We can also calculate the bulk velocity in terms of the mi-

croscopic parameters

hvyis ¼
B0

l0LqsbsP0

1

cosh2 z

L

� � : (B1)
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