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A l1-norm penalized orthogonal forward regression (l1-POFR) algorithm is proposed based on the concept
of leave-one-out mean square error (LOOMSE), by defining a new l1-norm penalized cost function in
the constructed orthogonal space and associating each orthogonal basis with an individually tunable
regularization parameter. Due to orthogonality, the LOOMSE can be analytically computed without
actually splitting the data set, and moreover a closed form of the optimal regularization parameter
is derived by greedily minimizing the LOOMSE incrementally. We also propose a simple formula for
adaptively detecting and removing regressors to an inactive set so that the computational cost of the
algorithm is significantly reduced. Examples are included to demonstrate the effectiveness of this new
l1-POFR approach.

Keywords: Cross validation, forward regression, leave-one-out errors, regularization

1. Introduction

One of the main aims in data modeling is good generalization, i.e. the model’s capability to ap-
proximate accurately the system output for unseen data. Sparse models can be constructed using
the l1-penalized cost function, e.g., the basis pursuit or least absolute shrinkage and selection op-
erator (LASSO) (Chen et al., 1998; Efron et al., 2004; Tibshirani, 1996). Based on a fixed single
l1-penalized regularization parameter, the LASSO can be configured as a standard quadratic pro-
gramming optimization problem. By exploiting piecewise linearity of the problem, the least angle
regression (LAR) procedure (Efron et al., 2004) was developed for solving the problem efficiently.
Note that the computational efficiency in LASSO is facilitated by a single regularization parameter
setting. For more complicated constraints, e.g., multiple regularizers, the cross validation by actu-
ally splitting data sets as the means of evaluating model generalization comes with considerably
large overall computational overheads.

Fundamental to evaluate model generalization capability is the concept of cross-validation (Rao
et al., 2008; Stone, 1974), and one commonly used version of cross-validation is the leave-one-
out (LOO) cross validation. For the linear-in-the-parameters models, the LOO mean square error
(LOOMSE) can be calculated without actually splitting the training data set and estimating the as-
sociated models, by making use of Sherman-Morrison-Woodbury theorem (Sherman and Morrison,
1950). Using the LOOMSE as the model term selective criterion, an orthogonal forward regression
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(OFR) procedure was introduced in (Hong et al., 2003). Furthermore, the l2-norm based regular-
ization techniques(MacKay, 1991; Orr, 1995) were incorporated into the orthogonal least squares
(OLS) algorithm of (Chen et al., 1989) to produce a regularized OLS algorithm that carries out
model term selection while reduces the variance of parameter estimate simultaneously (Chen et al.,
2003). The optimization of l1-norm regularizer with respect to model generalization analytically is
however less studied (Ji et al, 2008).

We propose a l1-norm penalized OFR (l1-POFR) algorithm to carry out the regularizer optimiza-
tion as well as model term selection and parameter estimation simultaneously in an OFR manner.
The algorithm is based on a new l1-norm penalized cost function with multiple l1 regularizers,
each of which is associated with an orthogonal basis vector, by orthogonal decomposition of the
regression matrix of the selected model terms. We derive a closed form of the optimal regulariza-
tion parameter by greedily minimizing the LOOMSE incrementally. To save computational costs
an inactive set is used along the OFR process by predicting whether any model terms will be
unselectable in future regression steps.

2. Preliminaries

Consider the general nonlinear system represented by the nonlinear model (Chen and Billings,
1989):

y(k) = f(x(k)) + v(k), (1)

where x(k) =
[
x1(k) x2(k) · · ·xm(k)

]T ∈ Rm denotes the input vector at sample time index k and
y(k) is the system output variable, respectively, while v(k) denotes the system white noise and
f(•) is the unknown system mapping.

The unknown system (1) is to be identified based on an observation data set DN =
{x(k), y(k)}Nk=1 using a linear-in-the-parameters model of the form:

ŷ(M)(k) = f (M)(x(k)) =

M∑
i=1

θiφi(x(k)), (2)

where ŷ(M)(k) is the model prediction output for x(k) based on the M -term regression model, and
M is the total number of nonlinear regressors, while θi are the model weights. While there exist
many suitable choices for regressor, without loss of generality, we choose φi(x) to be Gaussian
radial basis function (RBF)

φi(x) = e−
‖x−ci‖

2

2τ2 (3)

in which ci =
[
c1,i c2,i · · · cm,i

]T
is known as the center vector of the ith RBF unit and τ is an

RBF width parameter. We assume that each RBF unit is placed on a training data, namely, all
the RBF center vectors {ci}Mi=1 are selected from the training data {x(k)}Nk=1, and the RBF width
τ has been predetermined, for example, using cross validation.

Let us denote e(M)(k) = y(k) − ŷ(M)(k) as the M -term modeling error for the in-
put data x(k). Over the training data set DN , further denote y = [y(1) y(2) · · · y(N)]T,

e(M) =
[
e(M)(1) e(M)(2) · · · e(M)(N)

]T
, and ΦM =

[
φ1 φ2 · · ·φM

]
with φn =[

φn(x(1)) φn(x(2)) · · ·φn(x(N))]T, 1 ≤ n ≤M . We have the M -term model in the matrix form of

y = ΦMθM + e(M), (4)

2
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where θM =
[
θ1 θ2 · · · θM

]T
. Let an orthogonal decomposition of the regression matrix ΦM be

ΦM = WMAM , (5)

where

AM =


1 a1,2 · · · a1,M

0 1
. . .

...
...

. . .
. . . aM−1,M

0 · · · 0 1

 (6)

and

WM =
[
w1 w2 · · ·wM

]
(7)

with columns satisfyingwT
i wj = 0, if i 6= j. The regression model (4) can alternatively be expressed

as

y = WMgM + e(M), (8)

where gM =
[
g1 g2 · · · gM

]T
satisfies the triangular system AMθM = gM , which can be used to

determine the original model parameter vector θM , given AM and gM . The space spanned by the
original model bases φn, 1 ≤ n ≤ M , is the same space spanned by the orthogonal model bases
wn, 1 ≤ n ≤ M . Also since only the kth row of ΦM depends on x(k), only the kth row of WM

depends on x(k).
Further consider the following weighted l1-norm penalized OLS criterion for the model (8)

Le
(
ΛM , gM

)
=
∥∥y −WMgM

∥∥2 +
M∑
i=1

λi
∣∣gi∣∣, (9)

where ΛM = diag{λ1, λ2, · · · , λM}, which contains the regularization parameters λi ≥ ε, 1 ≤ i ≤
M , and ε > 0 is a predetermined lower bound for the regularization parameters. Given ΛM , the
solution for gM can be obtained by setting the subderivative vector of Le to zero, i.e. ∂Le

∂gM
= 0,

yielding

g
(olasso)
i =

(∣∣g(LS)i

∣∣− λi/2

wT
i wi

)
+

sign
(
g
(LS)
i

)
(10)

for 1 ≤ i ≤M , with the usual least squares solution given by g
(LS)
i = wT

i y
wT
i wi

, and the operator ( )+

z+ =

{
z, if z > 0,
0, if z ≤ 0.

(11)

Unlike the LASSO (Chen et al., 1998; Tibshirani, 1996), our objective Le
(
ΛM , gM

)
is constructed

on the orthogonal space and the l1-norm parameter constraints are associated with the orthogonal
bases wi, 1 ≤ i ≤M . Since the cost function (9) contains sparsity inducing l1 norm, some param-

eters g
(olasso)
i will be returned as zeros, producing a sparse model in the orthogonal space spanned

3
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by the columns of WM , which corresponds to a sparse model in the original space spanned by the
columns of ΦM .

3. Regularization parameter optimization and model construction with LOOMSE

Each OFR stage involves the joint regularization parameter optimization, model term selection
and parameter estimation. The regularization parameters with respect to their associated candidate
regressors are optimized using the approximate LOOMSE formula that is derived in Section 3.2, and
the regressor with the smallest LOOMSE is selected. This OFR procedure is inherently suboptimal
as it is based on greedy incremental optimization.

3.1. Model representation and LOOMSE in n-th stage OFR

Consider the OFR modeling process that has produced the (n− 1)-term model. The model output
vector of this (n− 1)-term model is given by

ŷ(n−1) =
n−1∑
i=1

g
(olasso)
i wi, (12)

and we denote the corresponding modeling error vector by e(n−1) = y − ŷ(n−1).
Consider the nth OFR stage where n columns of regressors are constructed as W n =[
w1 w2 · · ·wn)

]
, with wi =

[
wi(1) wi(2) · · ·wi(N)

]T
. i = 1, ..., n. Clearly, the nth OFR stage

can be represented by

e(n−1) = gnwn + e(n). (13)

The model form (13) illustrates the fact that the nth OFR stage is simply to fit a one-variable
model using the current model residual produced after the (n − 1)th stage as the desired system

output. Since wT
n ŷ

(n−1) = 0, it is easy to verify that g
(LS)
n = wT

ny
wT
nwn

= wT
ne

(n−1)

wT
nwn

.

The selection of one regressor from the candidate regressors involves initially generating candidate
wn by making each candidate regressor to be orthogonal to the (n − 1) orthogonal basis vectors,
wi for 1 ≤ i ≤ n − 1 obtained in the previous (n − 1) OFR stages, followed by evaluating their
contributions. Consider the case of 2

∣∣wT
ne

(n−1)∣∣ > ε. Applying (10) to (13), we note that clearly

as λn decreases away from 2
∣∣wT

ne
(n−1)∣∣ towards ε, g

(olasso)
n increases its magnitude at a linear rate

to λn, from zero to an upper bound
∣∣g(B)
n

∣∣ with

g(B)
n =

(∣∣g(LS)n

∣∣− ε

2wT
nwn

)
+

sign
(
g(LS)n

)
. (14)

For any candidate regressor, it is vital that we evaluate its potential model generalization perfor-
mance using the most suitable value of λn. The optimization of the LOOMSE with respect to λn
is detailed in Section 3.2, based on the idea of the LOO cross validation outlined below.

Suppose that we sequentially set aside each data point in the estimation set DN in turn and
estimate a model using the remaining (N − 1) data points. The prediction error is calculated on
the data point that has not been used in estimation. That is, for k = 1, 2, · · · , N , the models are
estimated based on DN \(x(k), y(k)), respectively, and the outputs are denoted as ŷ(n−1,−k)(k, λn).

4
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Then, the LOO prediction error based on the kth data sample is calculated as

e(n,−k)(k, λn) = y(k)− ŷ(n−1,−k)(k, λn). (15)

The LOOMSE is defined as the average of all these prediction errors, given by J
(
λn
)

=

E
[(
e(n,−k)(k, λn)

)2]
. Thus the optimal regularization parameter for the nth stage is given by

λoptn = arg min
λn

{
J
(
λn
)

=
1

N

N∑
k=1

(
e(n,−k)(k, λn)

)2}
. (16)

Evaluation of J
(
λn
)

by directly splitting the data set requires extensive computational efforts.

We show in Section 3.2 that J
(
λn
)

can be approximately calculated without actually sequentially

splitting the estimation data set. Furthermore, we also show that the optimal value λoptn can be
obtained in a closed-form expression in the orthogonal modeling space.

3.2. Optimal regularization parameter estimate

We notice from (10) that g
(olasso)
n = 0 if 2

∣∣wT
ne

(n−1)∣∣ < λn, and thus a sufficient condition
that a given wn may be excluded from the candidate pool without explicitly determining λn
is 2
∣∣wT

ne
(n−1)∣∣ < ε, which is the regularizer’s lower bound, a preset value indicating the correlation

of the candidate regressor. Hence, in the following we assume that 2
∣∣wT

ne
(n−1)∣∣ > ε, and we have

g(olasso)n = H−1n

(
WT

ny −Λnsign(g(LS)n )/2
)
, (17)

where g
(olasso)
n =

[
g
(olasso)
1 g

(olasso)
2 · · · g(olasso)n

]T
, sign(gn) =

[
sign(g1) sign(g2) · · · sign(gn)

]T
, and

Hn = WT
nW n. Note that (17) is consistent to (10) for all terms with nonzero gi. In the OFR

procedure, any candidate terms wi producing zero g
(olasso)
i will not be selected since they will not

contribute to any reduction in the LOOMSE.
The model residual is defined by

e(n)(k, λn) = y(k)−
(
g(olasso)

)T
w(k) = y(k)−(

yTW n −
(
sign

(
g(LS)

))T
Λn/2

)
H−1n w(k), (18)

where w(k) denotes the transpose of the kth row ofW n. If the data sample indexed at k is removed
from the estimation data set, the LOO parameter estimator obtained by using only the (N − 1)
remaining data points is given by

g(olasso,−k)n =
(
H(−k)

n

)−1((
W (−k)

n

)T
y(−k)−

Λnsign
(
g(LS,−k)

)
/2
)

(19)

where H
(−k)
n =

(
W

(−k)
n

)T
W

(−k)
n , W

(−k)
n and y(−k) are the resultant regression matrix and desired

output vector, respectively, by removing (x(k), y(k)), i.e., (wT(k), y(k)), from W (k) and y(k).
Thus we have

H(−k)
n = Hn −w(k)wT(k), (20)

5
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(
y(−k)

)T
W (−k)

n = yTW n − y(k)wT(k). (21)

The LOO error evaluated at k is given by

e(n,−k)(k, λn) = y(k)−
(
g(olasso,−k)

)T
w(k)

= y(k)−
((
y(−k)

)T
W (−k)

n −(
sign

(
g(LS,−k)

))T
Λn/2

)(
H(−k)

n

)−1
w(k). (22)

Applying the matrix inversion lemma to (20) yields(
H(−k)

n

)−1
=
(
Hn −w(k)wT(k)

)−1
=H−1n +

H−1n w(k)wT(k)H−1n
1−wT(k)H−1n w(k)

(23)

and

(
H(−k)

n

)−1
w(k) =

H−1n w(k)

1−wT(k)H−1n w(k)
. (24)

Substituting (21) and (24) into (22) yields

e(n,−k)(k, λn) = y(k)−
(
yTW n − y(k)wT(k)−(

sign
(
g(LS,−k)

))T
Λn/2

) H−1n w(k)

1−wT(k)H−1n w(k)

=
y(k)−

(
yTW n −

(
sign

(
gLS,−k)

))T
Λn/2

)
H−1n w(k)

1−wT(k)H−1n w(k)
. (25)

Assuming that sign
(
g
(LS,−k)
n

)
= sign

(
g
(LS)
n

)
holds for most data samples in DN , and applying (18)

to (25), we have

e(n,−k)(k, λn) = γn(k)e(n)(k, λn), (26)

where γn(k) = 1

1−
∑n
i=1

(
wi(k)

)2/
wT
i wi

> 0, and wi(k) is the kth element of wi. The LOOMSE can

then be calculated as

J
(
λn
)

=
1

N

N∑
k=1

γ2n(k)
(
e(n)(k, λn)

)2
. (27)

Note that for sign
(
g
(LS,−k)
n

)
and sign

(
g
(LS)
n

)
to be different, each element in g

(LS)
n needs to be

very close to zero, which is unlikely since only the model terms satisfying
∣∣wT

ne
(n−1)∣∣ > ε/2 are

considered. Hence we can treat J
(
λn
)

given in (27) as the exact LOOMSE for any ε that is not
too small.

6
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We further represent (18) as

e(n)(k, λn) = η(k) +
λn

2wT
nwn

wn(k)sign
(
g(LS)n

)
, (28)

where η(k) = e(n−1)(k) − g
(LS)
n wn(k) is the model residual obtained based on the least square

estimate at the nth step stage. By setting ∂J(λn)
∂λn

= 0, we obtain λn in the form of the weighted
least square estimate

λn = −2sign
(
g(LS)n

)
wT
nwnw

T
nΓ(n)η

/
wT
nΓ(n)wn, (29)

where Γ(n) = diag
{
γ2n(1), γ2n(2), · · · , γ2n(N)

}
and η =

[
η(1) η(2) · · · η(N)

]T ∈ RN . Finally we
calculate

λoptn = max
{

min
{

2
∣∣wT

ne
(n−1)∣∣, λn}, ε}, (30)

in order to satisfy the constraint that ε ≤ λoptn ≤ 2
∣∣wT

ne
(n−1)∣∣. For λoptn obtained using (30), we

consider the following two cases:

(1) If λoptn = 2
∣∣wT

ne
(n−1)∣∣, then g

(olasso)
n = 0, and this candidate regressor will not be selected.

(2) If ε ≤ λoptn < 2
∣∣wT

ne
(n−1)∣∣, then calculate J

(
λoptn

)
based on (27) as the LOOMSE for this

candidate regressor.

3.3. Moving unselectable regressors to the inactive set

From Section 3.2 we noted that a candidate regressor satisfying 2
∣∣wT

ne
(n−1)∣∣ < ε does not need to

be considered at the nth stage of selection. To save computational cost, we define the inactive set
S as the index set of the unselectable regressors removed from the pool of candidates.

In the nth OFR stage, all the candidate regressors in the candidate pool are made orthogonal to
the previously selected (n− 1) regressors, and the candidate with the smallest LOOMSE value is
selected as the nth model term wn. Denote any other candidate regressor as w(−).

Main Results: If
∥∥w(−)∥∥ · ∥∥e(n−1)∥∥ < ε

2 , then this candidate regressor will never be selected in
further regression stages, and hence it can be moved to S.

Proof : At the (n+ 1)th OFR stage, consider making the regressor w(−) orthogonal to wn, and
define

w(+) = w(−) − w
T
nw

(−)

wT
nwn

wn. (31)

Clearly,

∥∥w(+)
∥∥2 =

(
w(−) − w

T
nw

(−)

wT
nwn

wn

)T(
w(−) − w

T
nw

(−)

wT
nwn

wn

)
=
∥∥w(−)∥∥2 − (wT

nw
(−))2

wT
nwn

≤
∥∥w(−)∥∥2. (32)

The model residual vector after the selection of wn is

e(n) = e(n−1) − g(olasso)n wn, (33)

7
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where g
(olasso)
n can be written as

g(olasso)n =
(
wT
ne

(n−1) − λn
2

sign
(
g(LS)n

))/
wT
nwn. (34)

Thus we have ∥∥e(n)∥∥2 =
∥∥e(n−1)∥∥2 − 2g(olasso)n wT

ne
(n−1)

+
(
g(olasso)n

)2
wT
nwn, (35)

(
g(olasso)n

)2
wT
nwn =

((
wT
ne

(n−1))2−
λnsign

(
gLS)n

)
wT
ne

(n−1) +
λ2n
4

)/
wT
nwn, (36)

and

2g(olasso)n wT
ne

(n−1) =
(

2
(
wT
ne

(n−1))2−
λnsign

(
g(LS)n

)
wT
ne

(n−1)
)/
wT
nwn. (37)

Substituting (36) and (37) into (35) yields

∥∥e(n)∥∥2 =
∥∥e(n−1)∥∥2 − ((wT

ne
(n−1))2 − λ2n

4

)/
wT
nwn

<
∥∥e(n−1)∥∥2, (38)

due to the fact that
∣∣wT

ne
(n−1)∣∣ > λn

2 . From (32) and (38), it can be concluded that

∥∥w(+)
∥∥ · ∥∥e(n)∥∥ < ∥∥w(−)∥∥ · ∥∥e(n−1)∥∥ < ε

2
. (39)

Since
∥∥w(+)

∥∥ · ∥∥e(n)∥∥ is the upper bound of
∣∣∣(w(+)

)T
e(n)

∣∣∣, this means that this regressor will not

be selected at the (n + 1)th stage. By induction, it will never be selected in further regression
stages, and hence it can be moved to S.

4. The proposed l1-POFR algorithm

The proposed l1-POFR algorithm integrates (i) the model regressor selection based on minimizing
the LOOMSE; (ii) regularization parameter optimization also based on minimizing the LOOMSE;
and (iii) the mechanism of removing unproductive candidate regressors during the OFR procedure.
Define

Φ(n−1) =
[
w1 · · ·wn−1 φ

(n−1)
n · · ·φ(n−1)

M

]
∈ RN×M , (40)

with Φ(0) = ΦM . If some of the columns in Φ(n−1) have been interchanged, this will still be referred
as Φ(n−1) for notational simplicity.

8



June 8, 2017 International Journal of Systems Science l1nofrIJSSREV

Table 1. The nth stage of the selection procedure.

For {n ≤ j ≤ M} ∩ {j /∈ S}, denote the kth element of φ
(n−1)
j as φ

(n−1)
j (k) and compute

αj =
(
φ
(n−1)
j

)T
e(n−1), and βj =

∥∥φ(n−1)
j

∥∥ · ∥∥e(n−1)∥∥.

Step 1): If βj < ε/2, S = S ∪ j; Else if
∣∣αj∣∣ < ε/2, set J

(j)
n as a very large positive number so

that it will not be selected in Step 4). Otherwise goto step 2).
Step 2): Calculate

κ(j)n =
(
φ
(n−1)
j

)T
φ
(n−1)
j , (41)

g(LS,j)n =
αj

κ
(j)
n

, (42)

Γ(n,j) = diag

 1(
ζ(n−1)(1)−

(
φ
(n−1)
j (1)

)2/
κ
(j)
n

)2 ,
1(

ζ(n−1)(2)−
(
φ
(n−1)
j (2)

)2/
κ
(j)
n

)2 , · · · ,
1(

ζ(n−1)(N)−
(
φ
(n−1)
j (N)

)2/
κ
(j)
n

)2
 ∈ RN×N , (43)

η(j) = e(n−1) − g(LS,j)n φ
(n−1)
j , (44)

λ(opt,j)n = max
{

min
{

2
∣∣αj∣∣,−2sign

(
g(LS,j)n

)
κ(j)n(

φ
(n−1)
j

)T
Γ(n,j)η(j)

/(
φ
(n−1)
j

)T
Γ(n,j)φ

(n−1)
j

}
, ε
}
. (45)

Step 3): If λ
(opt,j)
n = 2

∣∣αj∣∣, set J
(j)
n as a very large positive number so that it will not be selected

in Step 4); Otherwise calculate

g(olasso,j)n =
(∣∣g(LS,j)n

∣∣− λ
(opt,j)
n /2

κ
(j)
n

)
+

sign
(
g(LS,j)n

)
, (46)

e(n,j) = e(n−1) − g(olasso,j)n φ
(n−1)
j , (47)

J (j)
n =

(
e(n,j)

)T
Γ(n,j)e(n,j)/N. (48)

Step 4): Find

Jn = J (jn)
n = min

{
J (j)
n , {l ≤ j ≤M} ∩ {j /∈ S}

}
. (49)

Then update e(n) and g
(olasso)
n as e(n,jn) and g

(olasso,jn)
n , respectively. The jnth and the nth

columns of Φ(n−1) are interchanged, while the jnth column and the nth column of AM are
interchanged up to the (n−1)th row. This effectively selects the nth regressor in the subset model.
The modified Gram-Schmidt orthogonalisation procedure (Chen et al., 1989) then calculates the

nth row of the matrix AM and transfers Φ(n−1) into Φ(n) as follows

wn = φ
(n−1)
n ,

an,j = wT
nφ

(n−1)
j

/
wT
nwn, {n+ 1 ≤ j ≤M} ∩ {j /∈ S},

φ
(n)
j = φ

(n−1)
j − an,jwn, {n+ 1 ≤ j ≤M} ∩ {j /∈ S}.

 (50)

Then update ζ(n)(k) = ζ(n−1)(k)−
(
wn(k)

)2/
wT
nwn for 1 ≤ k ≤ N .
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Figure 1. Engine Data: (a) the system input u(k), (b) the system output y(k), and (c) the evolution of the size of S with
respect to the chosen ε.

The initial conditions are as follows. Preset ε > 0 as a very small value. Set e(0) = y, ζ(0)(k) = 1
for 1 ≤ k ≤ N , and S as the empty set ∅. The nth stage of the selection procedure is listed in
Table 1. The OFR procedure is automatically terminated at the (ns+1)th stage when the condition

Jns+1 ≥ Jns (51)

is detected, yielding a subset model with ns significant regressors. It is worth emphasizing that
there always exists a model size ns, and for n ≤ ns, the LOOMSE Jn decreases as n increases,
while the condition (51) holds (Chen et al., 2004; Hong et al., 2003).

Note that the LOOMSE is used not only for deriving the closed form of the optimal regularization
parameter estimate λoptn but also for selecting the most significant model regressor. Specifically, a
regressor is selected as the one that produces the smallest LOOMSE value as well as offering the
reduction in the LOOMSE. After the ns stage when there is no reduction in the LOOMSE criterion
for a few consecutive OFR stages, the model construction procedure can be terminated. Thus, the
l1-POFR algorithm automatically constructs a sparse ns-term model, where typically ns �M .

Also note that it is assumed that ε should not be too small such that the LOOMSE estimation
formula can be considered to be accurate. This means that if ε is set too low, many insignificant
candidate regressors will have inaccurate LOOMSE values for competition. However, we emphasize
that these terms with inaccurate LOOMSE values will not be selected as the winner to enter
the model. Hence in practice we only need to make sure that ε is not too large, which would
introduce unnecessary bias to the model parameter estimates. Clearly, a relatively larger ε will save
computational costs by 1) resulting in a sparser model, and 2) producing a larger sized inactive set
during the OFR process.

Finally, regarding the computational complexity of the l1-POFR algorithm, if the unproductive
regressors are not removed to the inactive set S during the OFR procedure, it is well known that
the computational cost is in the order of O(N) for evaluating each candidate regressor (Chen
et al., 2004). The total computational cost then needs to be scaled by the number of evaluations in
forward regression, which is M(M − ns)/2. By removing unproductive regressors to S during the
OFR procedure, the computational cost can obviously be reduced significantly. It is not possible
to exactly assess the computational cost saving due to removing the unproductive regressors, as
this is problem dependent.

5. Simulation Study

Example 1 : This Engine Data set (Billings et al., 1989) contains the 410 data samples of the fuel rack
position (the input u(k)) and the engine speed (the output y(k)), collected from a Leyland TL11
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turbocharged, direct injection diesel engine which was operated at a low engine speed. The 410
input and output data points of the engine data set are plotted in Fig. 1 (a) and (b), respectively.
The first 210 data samples were used in training and the last 200 data samples for model testing.
The previous study has shown that the data set can be modeled adequately using the system input
vector x(k) =

[
y(k−1) u(k−1) u(k−2)]T, and the best Gaussian RBF model was provided by the

l2-norm local regularization assisted OLS (LROLS) algorithm based on the LOOMSE (LROLS-
LOO) (Chen et al., 2004) which was quoted in Table 2 for comparison. The ε-SVM algorithm
(Gun, 1998) and the LASSO were also experimented based on the Gaussian kernel with a common
variance τ2. For the ε-SVM, the Matlab function quadprog.m was used with the algorithm option
set as ‘interior-point-convex’. The tuning parameters in the ε-SVM algorithm, such as soft margin
parameter C (Gun, 1998), were set empirically so that the best possible result was obtained after
several trials. For the LASSO, the Matlab function lasso.m was used with 10-fold CV being used
to select the associated regularization parameter. For both the ε-SVM and LASSO, we list the
results obtained for a range of kernel width τ values in Table 2, for comparison.

Similar to the LROLS-LOO algorithm (Chen et al., 2004), we also used the Gaussian RBF kernel
(3) for the proposed l1-POFR algorithm with an empirically set τ = 2.5 and the RBF centers ci
were formed using all the training data samples. With a preset value of ε, a sparse model of size ns
was automatically selected when the condition (51) was met. Fig. 1 (c) illustrates the evolution of
the size of S with respect to a range of the preset ε values. The test MSE values produced by the
sparse models and the sizes of the models associated with the same range of ε values are recorded in
Table 2, which show that the excellent model generalization capability of all the models generated
by the proposed algorithm. Moreover, the l1-POFR algorithm produces the sparsest model.

Example 2 : This regression benchmark data set, Boston Housing Data, is available at the UCI
repository (Frank and Asuncion, 2010). The data set comprises 506 data points with 14 variables.
The previous study (Chen et al., 2009) performed the task of predicting the median house value from
the remaining 13 attributes using the ε-SVM (Gun, 1998), the LROLS-LOO (Chen et al., 2004) and
the nonlinear OFR based on the LOOMSE (NonOFR-LOO) (Chen et al., 2009). The NonOFR-
LOO algorithm (Chen et al., 2009) constructs a nonlinear RBF model in the OFR procedure,

Table 2. Comparison of the modeling performance for Engine Data. The computational cost saving is based on the same size

of model without removing unproductive regressors in the l1-POFR.

Algorithm MSE MSE Model Cost
training set test set size saving

LROLS-LOO (Chen et al., 2004) 0.000453 0.000490 22 NA
ε-SVM (τ = 3) 0.000502 0.000482 208 NA
ε-SVM (τ = 2.5) 0.000480 0.000475 208 NA
ε-SVM (τ = 2) 0.000461 0.000486 208 NA
ε-SVM (τ = 1.5) 0.000415 0.000579 208 NA
ε-SVM (τ = 1) 0.000370 0.000794 208 NA

LASSO (τ = 1.5) 0.000923 0.001010 70 NA
LASSO (τ = 1) 0.000708 0.000748 44 NA

LASSO (τ = 0.5) 0.000706 0.000842 54 NA
LASSO (τ = 0.2) 0.000565 0.000800 81 NA
LASSO (τ = 0.1) 0.000644 0.001907 76 NA

l1-POFR (ε = 10−4) 0.000498 0.000502 20 27%
l1-POFR (ε = 10−5) 0.000492 0.000480 20 18%
l1-POFR (ε = 10−6) 0.000484 0.000485 20 8%
l1-POFR (ε = 10−7) 0.000481 0.000476 20 3%
l1-POFR (ε = 0) 0.000452 0.000472 21 0%
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where each stage of the OFR determines one RBF node’s center vector and diagonal covariance
matrix by minimizing the LOOMSE. In the experiment study presented in (Chen et al., 2009),
456 data points were randomly selected from the data set for training and the remaining 50 data
points were used to form the test set. Average results were given over 100 realizations. For each
realization, 13 input attributes were normalized so that each attribute had zero mean and standard
deviation of one. We also experimented with the LASSO supplied by Matlab lasso.m with option
set as 10-fold CV to select the associated regularization parameter. For the LASSO, a common
kernel width τ was set for constructing the kernel model from the 456 candidate regressors of each
realization, and a range of τ values were experimented.

For the l1-POFR, τ = 15 was empirically set for constructing 456 candidate Gaussian RBF
regressors of each realization. We experimented a range of the preset ε values for the l1-POFR
algorithm, and the results obtained are as summarized in Table 3, in comparison with the results
obtained by the ε-SVM and the LASSO, as well as the LROLS-LOO and NonOFR-LOO, which
are quoted from the study (Chen et al., 2009).

6. Conclusions

We have developed an efficient data model algorithm, referred to as the l1-norm penalized or-
thogonal forward regression (l1-POFR), for linear-in-the-parameters nonlinear models based on a
new l1-norm penalized cost function defined in the constructed orthogonal modeling space. The
LOOMSE is used for simultaneous model term selection and regularization parameter estimation
in a highly efficient OFR procedure. Additionally, we have proposed a lower bound of the regular-
isation parameters for robust LOOMSE estimation as well as detecting and removing insignificant
regressors to an inactive set along the OFR process, further enhancing the efficiency of the OFR
procedure. Numerical studies have been utilized to demonstrate the effectiveness of this new l1-
POFR approach.
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