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Matrices with multiplicative entries are tensor products

Titus Hilberdink
Department of Mathematics, University of Reading, Whiteknights,
PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract
We study operators which have (infinite) matrix representation whose entries are multi-
plicative functions of two variables. We show that such operators are infinite tensor products
over the primes. Applications to finding the eigenvalues explicitly of arithmetical matrices
are given; also boundedness and norms of Multiplicative Toeplitz and Hankel operators are
discussed.

2010 AMS Mathematics Subject Classification: Primary 11C20, 15A69, 46M05; secondary
15A18, 47AS0.
Keywords and phrases: multiplicative functions, infinite tensor products.

Introduction
In this paper we shall consider infinite matrices A = (a;5); j>1 whose entries are multiplicative as a
function of two variables; i.e. @, = f(m,n), where f : N> — C is not identically zero and satisfies

f(ming,mang) = f(my,mz2)f(n1,n2)  whenever (myma,ning) = 1.

We are interested in knowing when such matrices induce bounded operators (on ¢?) and further-
more, what we can say about their (operator) norms and spectra.

The motivation for this investigation is twofold. In a recent paper [10], the singular values
(see §1.2 for the definition) of M,, = M, (a), the n x n matrix with ij*"-entry (i/§)~ if j|i and
zero otherwise, were shown to be approximable by the eigenvalues of the operator given by infinite

matrix
B, — ((i.j)‘“) _
[i,7] /ig>1

More precisely, with s,.(M,,) denoting the r*® largest singular value of M, and \.(E,) the r*}
largest eigenvalue of E,, it was shown that for a < i,

n1—2o¢

1 -2«

5. (Mp)* ~ X\ (Ey) as n — 0. (1.1)
Note that E, has multiplicative entries. It leads naturally to the question of identifying these
eigenvalues and whether (1.1) remains true for i <a< % In particular whether E, is bounded,
indeed compact, for such a@ — we shall settle the boundedness question here. More generally the
above was done for n x n matrices with entries f(i/j) when j|i and zero otherwise, where f is a
square summable multiplicative function on N. See also [14] for related matrices.

Another motivation comes from Multiplicative Toeplitz operators, whose matrix representation
has entries of the form a;; = g(i/j) for a given g : Q* — C. Such operators have been studied in
[11], for their connection with Dirichlet series, and in particular the Riemann zeta function. If g is
multiplicative as a function on the positive rationals, the matrix has multiplicative entries.

Our main result in this paper is to show that under a natural convergence condition, such
matrices A are tensor products of operators over the primes (like an Euler product) with the
tensor product corresponding to the prime p having matrix representation /Ip = (f (pk7pl))k,lzo.
For finite matrices, this was inspired by a result of Codecd and Nair [4] and generalizes it. The
result for infinite matrices can be seen as a limiting case of this.

Thus for example, with a;; = g(i/j) and ¢ multiplicative as above, ffp is the Toeplitz matrix
(9" Nkiz0 = T(ap), where ay(t) = S po _ g(pF)tF is the ‘symbol’. Then we can deduce



that A is bounded if [] [lap|lec converges, with [|A]| equal to this product. For many symbols
(for instance rational symbols) this can be found explicitly. Similar remarks can be made about
multiplicative Hankel operators (i.e. those whose matrix representation has entries a;; = h(ij)
with h multiplicative).

For the proof, we need to discuss tensor products and in particular, infinite tensor products.
In the case when A is compact, we can further deduce that the spectrum of A has multiplicative
structure; namely, every nonzero eigenvalue of A factorizes as an Euler product of eigenvalues of
the Ap. Whether this continues to hold for more general bounded A is unclear, and is an interesting
open question.

After some preliminaries on multiplicative functions on N? and tensor products in §1, we discuss
and prove the main results in §2. We follow this with examples and applications in §3.

81. Preliminaries
1.1 Multiplicative functions of several variables; multiplicative matrices
A function of two variables f : N> — C is multiplicative! if f is not identically zero and

flming, mang) = f(my, ma) f(n1,n2) whenever (mymag,ning) = 1.

As such, f(1,1) = 1 and f is determined by the values f(p*,p') for k,1 € Ny and p prime. Indeed,
writing m = Hp p* and n = Hp p? for their prime factorizations, we have

f(m,n) = f(Hp“7Hpﬁ) =TT 700"

An infinite matrix A = (a;5); j>1 is multiplicative if ap, = f(m,n) with f is multiplicative (as a
function of two variables).

Examples

(a) A diagonal matrix D = diag (g(1),9(2),9(3),...) is multiplicative if and only if g is multi-
plicative.

(b) A function f : QT — C defined on the positive rationals is multiplicative if f is not identically
zero and f(pi*---p*) = f(pi') - f(py¥) for distinct primes p1,...,pp and aq,...,a, € Z.
We note that this holds if and only if the function f : N> — C defined by f(i,j) = f(i/) is
multiplicative as a function of two variables.

Thus a multiplicative Toeplitz matrix A = (f(¢/J))i,;>1 is multiplicative if and only if f is
multiplicative as a function on Q7.

1.2 Bounded operators on ¢?; Hilbert-Schmidt operators

A linear operator A : Hy — Hy between Hilbert spaces is bounded if | Az|| < ¢||z|| for all x € Hy
for some ¢ > 0, with ||A||, the operator norm defined to be the infimum of such c¢. Let B(Hy, H)
denote the Banach space of all such operators; if H; = Hy = H, we write B(H) — this is a Banach
algebra. The spectrum of A € B(H), denoted by o(A), is the set of complex numbers A for which
A — A is invertible. For A compact,

0(A) = {An(A) :n € N} U{0},

where |\, (A)| decreases to 0, the non-zero A, (A) being eigenvalues. In that case A* A is self-adjoint
and compact, whose spectrum lies in [0, 00). The (positive) squareroots of the eigenvalues of A*A

1More generally, f : N¥ — C is multiplicative if f is not identically zero and

f(mlnl""7mknk) = f(mlw":mk:)f(nl»"wnk) (*)

if (my1 -+ -mg,ny1---ng) = 1. (See [16] for a survey of results on multi-variable multiplicative functions.)



are called the singular values® of A. Denote these by s1(A), s2(A), ..., where s, (A) decreases. For
p > 0, define the Schatten p-class S, of operators A for which (s,(4)) € ¢*.* Two important
classes are S; — the Trace-class operators — and Sy — the Hilbert-Schmidt operators.

Some relevant properties (see [7])

(a)

(b)

()

Weyl inequalities: for all n > 1, we have (i) [T _; [Am(A4)| < T1_; sm(A) and (ii), for any
p>0, 30 A (AP < 300 sm(A)P.

The space of all trace-class operators on a Hilbert space is a Banach algebra with norm

Al = 3" sa(A).

n=1

For these the usual trace formula holds: tr(A) = 07 A\,(A4) = D07 (Aep, e,) for any
orthonormal basis (e,).

If A and B are Hilbert-Schmidt, then AB is trace-class, and |[AB|1 < ||All2||Bll2- The
Hilbert-Schmidt operators on H form a Hilbert space with inner product and norm given by

(A,B) = tr(AB*) | Alls = Vtr(AA*) =

We have [|Al| = s1(A), so [[A]l < [|A]l2 < [|A]l1-
Suppose A has matrix representation (a;;) w.r.t. some orthonormal basis. Then A is Hilbert-
Schmidt if and only if
Z |a7;j|2 < 00,
4,5 =1
in which case the sum equals ||A||3 (irrespective of the basis).
If A= (f(m,n))m nen is multiplicative, we see that A is Hilbert-Schmidt if and only if

1AIE= D" Ifmnm)> =T D  1F@" 0> converges. (1.2)
m,n=1 p k,0>0

Let Ay, = (X450 |f(p*, p")|? = 1)1/2. Thus A € S, if and only if > A2 converges, in which
case | Alj3 = Hp(l + Ag).
Let A, A,, be compact operators and suppose A, — A in operator norm. Then s.(A,) —

sr(A) for every r > 1. This follows directly from the inequality |s,(A,) — s-(4)] < ||An — A||
(see [7], Chapter VI, Corollary 1.6).

1.3 Tensor products of Hilbert spaces and operators

As tensor products of spaces and bounded linear operators feature heavily, we shall briefly state
some relevant facts. First, for finite matrices, the definition is elementary. For matrices A =
(@ij)ij<n and B, the Tensor or Kronecker product A® B (see for example [18]) is the matrix

CL11B a12B e alnB
(121B a22B e agnB
amB apeB ... ap,B

2More generally, for a bounded linear operator A : Hy — Ho, one defines the n

th_gingular value by

sn(A) = inf{||]A — F|| : rank F < n}.

Then A is compact if and only if s, (A) — 0 as n — oo.
3Here, as usual, £P is the space of complex sequences (2, )nen for which 3 |x,|P converges. More generally, given
F' a countable set, (P (F') is the space of complex sequences () fer for which - o |z [P converges.



Regarding A and B as linear operators on R™ and R™ respectively (for some m), we see that A® B
can be regarded as a linear operator on R™". Tensor products satisfy many nice properties: thus
A, B normal/unitary /invertible implies A ® B normal/unitary/invertible respectively. In the last
case, (A®B)~! = A~'®@ B~1. More importantly for our purposes, we also have [|A® B|| = || A|||| B|
and 0(A® B) = 0(A)o(B) = {\u: A € 0(A),u € o(B)}; i.e. the eigenvalues of A ® B are the
products of the eigenvalues of A and B (see [18]).

More generally, tensor products of operators may be defined (see for example [5], [12], or the
notes by Berberian [1]). For this, we first need the tensor product of two Hilbert spaces, Hy, Ho.
This may be defined to be the Hilbert space

Hy ® Hy = {T : Hy — H; such that T is conjugate-linear and Hilbert-Schmidt }.

This is indeed a Hilbert space with inner product

(5,T) :Z<ka7Tfk>7

k=1

for an orthonormal basis (fy) of Ha, the sum being independent of the basis. Now for A € B(H;)
and B € B(Hs), their tensor product A ® B is the bounded linear operator on H; ® Hs defined by

(A® B)(T) = ATB".

Also for x € Hy and y € Ha, define x ® y : Hy — H; by (x ® y)(z) = (y, z)xz. We note that if (e,)
and (f,) are orthonormal bases of H; and Hs respectively, then (e, ® f,) is an orthonormal basis
for Hy ® Hs.

Some relevant properties:

(a) (A® B)(z®y) = Az ® By
(

b) (z1 ® y1, 22 @ Y2) = (@1, x2) (Y1, Y2)-

c(A®B)=0(A)o(B) ={ u: A€ c(A),u € c(B)} (see [3]).

(c
(d) [[A® B| = [|AlllB].

)
)
d)
(e) A, B normal/unitary/invertible implies A ® B normal/unitary/invertible respectively, with
(A B '=A"1® BL.

Infinite tensor products

We shall require infinite tensor products, which were originally considered by von Neumann [17],
and further developed by other authors (see for example Guichardet [8], Nakagami [15]). Consider
a family of Hilbert spaces (H;);cr, where I is some indexing set. For each i € I, let ¢; be a unit
vector in H;. First, form the inductive limit of the finite tensor product ®;csH;, for finite subsets
J of T with respect to t = (¢;);cs, which we denote by ®f€1Hi. Thus if x; = t; for all i except
for finitely many values, then ®x; is in the infinite product as is every linear combination of such
terms. Define an inner product by

(®zi, ®ys) = H<$i,yi>

%

and extend linearly. Now take its Hilbert space completion. By abusing notation, we shall denote
this by ®;crH; as our sequence t; will be fixed throughout. We note that any sequence of unit
vectors u; € H; for which [T, (¢;, u;) converges absolutely? gives rise to the same space ([8], Theorem
2).

Now suppose for each i € I, T; is a bounded linear operator on H;. We can form the infinite
tensor product of the T;. We quote Proposition 6 from [8], supplemented by a result of Nakagami

4That is, 3, |(ti, u;) — 1| converges.



[15].

Theorem A (after Guichardet [8] and Nakagami [15])
Let T; € B(H;) for each i € I and suppose that [], ||T;|| converges to a non-zero value and the

products
[TITtl and  T[(Titi,t)

K2

both converge absolutely. Then there exists a unique T € B(®;H;) such that Q;c T; converges
strongly to T. We write T' = ®;T;. Furthermore, T # 0 and if @x; exists, then QT;x; exists and
equals T(®x;). Finally, |T| =TI, | T

Proof. The assumption that [[, ||T;| converges implies the existence of T' (see Proposition 6
from [8]) and the strong convergence (see Theorem 3.1 (I) from [15]), including the fact that
IT|| <TI I73]]- The extra assumption that ], ||73|| # O further ensures 7" # 0 and ||T'|| = [, ||Z5||
(from the proof of Theorem 3.1 (II) from [15]).

O

Remarks 1

(a) For the purposes of this paper, our indexing set I will be P — the set of primes — and each
H, (p € P) will be a copy of ¢2. More precisely, with (p) = {p* : k € Ny}, we shall take
H, = *({p)). After Proposition 2.3, we shall see that, with ¢, = e := (1,0,0,...) for all p,
we have ®,02((p)) = ¢%.

(b) Although infinite tensor products (of spaces, operators and algebras) have been discussed by
many authors, we could not find any ready made result connecting o(7') and [], o(T;). It
may be the case that in general this is false, though for compact T it is true as we show in
Theorem 2.4.

§2. Main results

Our main result is to describe the tensor structure of multiplicative A and its spectrum. We distin-
guish between the finite and infinite cases. The finite case is in many respects simpler, just using
the elementary notion of tensor (or Kronecker) product of matrices.

2.1 The finite case. The following result was inspired by a result of Codeca and Nair [4] and
generalises it. Let D(k) denote the set of divisors of k, and d(k) = |D(k)|, the number of divisors
of k.

Theorem 2.1
Let f : D(k) x D(k) — C be multiplicative. For n|k, let A, denote the d(n) x d(n) matriz with
entries f(c,d) where c,dn. Then for (m,n) =1 with m,n|k we have®

Ap @ Ap = A
Proof. With (m,n) =1 we have
Am ® An = (f(C, d)An)c,d|m-

The 7, s entry (with r, s|n) inside ‘block’ ¢d is f(c,d)f(r,s) = f(cr,ds) by multiplicativity of f
(using (cd,rs) = 1). Note that ¢r and ds run through the divisors of mn respectively. Thus the
rows and columns of A,, ® A,, are the same as those of A,,, though possibly in a different order;
i.e. they are permutation similar.

O

5Here we identify two matrices A and B if they are permutation similar; i.e. if A = P~1BP for some permutation
matrix P; equivalently, A and B have the same rows and columns but in a different order.



Writing, as is usual, p”||n to mean p”|n but p" ™t fn, we have:
Corollary 2.2
We have A,, = Qpr|n Apr and
a(An) = [] o(4p).

prlin
Remark 2 Codecd and Nair [4] proved the above for matrices with entries of the form
f(m,n) = g((m,n))h([m,n]) (CN)

where ¢, h are multiplicative®. As such, f is multiplicative (of two variables) as can be readily
verified, but the converse is false: there are multiplicative f(m,n) not of this form. A simple
reason is that f need not be symmetrical. But even assuming f is symmetrical, the converse still
fails. For if f is of the form (CN) then for p prime and k < I,

FO8 PN (08 1) = FF, M) F(0' D).

But in general, f(p*,p') can be any function of k and I (for fixed p).

6

2.2 The infinite case. Let k be squarefree, say k¥ = py...p,, where p1,...,p, are distinct
primes. Denote by (k) the set of natural numbers whose prime factors are those of k; i.e. (k) =

{p?*...p% :ai,...,ar € No}.
For f : N2 — C multiplicative, let f; : N2 — C be defined by

~f flm,n) i mne (k)
fr(m,n) = { 0 otherwise

In particular, for a prime p, f, (-, ) is supported on {(p*,p') € N2 : k,1 > 0}. Let Aj and A, denote
the operators induced by the following infinite matrices:

Ay = (fk(m,n)> and Ay = (fk(mm))

m,n>1 m,ne(k)'

We can equally regard Ay on % or Ay, on 2((k)), and || Ag|| = ||Ax]|-
For p prime, A, = (f(p*,p"))x.1>0. Note that for A Hilbert-Schmidt, (1.2) says that

1A =TT 4 1l2.
p

Proposition 2.3
Let k and 1 be coprime and squarefree, and let Ay, A; be as defined above. If Ax and A; are bounded
on 02, then Ay is bounded on £2 and

At = A ® Ay,
in the sense that the operators on the left and right have the same matriz representations.
Proof. Ar ® A; is the bounded linear operator on the Hilbert space
H = {T : {* - (2 such that T is conjugate-linear and Hilbert-Schmidt}

given by
(Ak ® Al)T = AkTAT

6More specifically, they had g(n) = @ and h(n) = % for some multiplicative function [(n), but their argument
clearly works for the more general g, h.



Let (e,)nen denote the usual basis of £2 (i.e. e, is the vector with a 1 in the n**-place and zeros
elsewhere). Then (e ® €p)mn>1 is an orthonormal basis of H. The matrix representation of
A ® A is therefore given by

<(Ak: & Al)(emg & eng)a eml ® €n1> = <Akem2 ® Al€n27 eml X €n1> (by 13(&))
= <Ak6mzv €m1><A16n2, 67L1> (by lg(b))
= fe(ma,m2) fi(ni,n2).

Now, for the RHS to be non-zero, we need my, mo € (k) and ny,ns € (). Since (k,1) = 1, as such
we require (mima,ning) = 1. But then

fr(my,ma) fi(ni,n2) = f(my,ma) f(ni,n2) = f(ming, mang),

by multiplicativity of f. Thus

(A)

| flmini,mong)  if mimg € (k) and nine € ()
((Ar ® A)(em, ® €ny), em, ® €n,) = { 0 otherwise

On the other hand,

B [ fim,n) if mn e (ki)
(Agien, em) = fri(m,n) = { 0 otherwise

(B)
In (A), if mymy € (k) and niny € (), then mini, mong € (ki) is forced and moreover every
element of (kl) is (uniquely) of the form m'n’ with m’ € (k), n’ € (I). Thus there is a one-one
correspondence between the matrix entries in (A) and those in (B) by writing m = min; and
n = mana.

O

It follows directly that Ay = ), 4p and (from section 1.3) that [|Ax| = ]I, |4l and
o(Ai) = [Ty o (Ap).

Theorem 2.4 R
Let A be a multiplicative matriz such that for every prime p, A, is bounded (i.e. A, is bounded on
((p))) and T, | Ap|| converges to a non-zero value. Then A is bounded on €* and is given by the

A=) A,
p

and ||A|| = L, [[Apll. Furthermore, if each A, is compact, then o(A) D [],0(Ay), while if A is
compact, then o(A) =[], 0(4,).

infinite tensor product’

Proof. We check that the conditions of Theorem A are satisfied. With ¢, = e = (1,0,...) and
A= (f(m,n))mn>1, we see that (A,t,,t,) =1 for all primes p and

1< ||Aptp|| =

D@ D2 < 4.
k=0
Thus both [ (Aptp,tp) and [, [[Aptp|l converge absolutely. Applying Theorem A shows there
exists a unique non-zero T' € B(®,¢%((p)) for which
T(®prp) = RpApTp

whenever ®,x, exists.

7 Always with respect to the sequence t, = e Vp € P.



Now, A — T strongly as k — oo through the numbers k = ]_[pS pp- It follows that
(T — Ap)en,em) — 0
as k — oo, for all m,n € N. But (Axen, em) = fr(m,n), so
(Ten, em) = fe(m,n) + (T — Ax)en, em) — f(m,n),

as k — oo. Thus (Tey,en) = (Aep,enm) for all myn € N, and so T = A. The formula ||A|| =
[, Al follows immediately from Theorem A.

Now suppose each A, is compact. We need to show that if A\, € o(Ay) and A\, — A, then
A€ a(A).

So suppose A\, — A but that A € 0(A). Then (A — A\)~! exists and ||[(A — X\)z|| > ¢|z| for
some ¢ > 0 and all z. (Indeed we can take ¢ = 1/[[(A — AI)7!|.) Let zj be such that ||zx| =1
and Az = A\pzr. Then

[(A = ADay|| < (A= Ax)ze| + [1(Ax — ADaill < [[A = Agll + [Ae — Al = 0

as k — oo. But this contradicts [[(A — A)zx[| > ¢ from above. Thus o(A) D[], o(4,).

Finally, if also A is compact, then we need to show the converse holds. That is, we need to
show every A € o(A) is a limit of a sequence A\, € o(Ax). But this follows from a general result
about compact operators, namely Lemma 5 from [6] (Chapter XI, section 9.5). Thus in this case
o(4) = I, o(4,).

O

Further results on the spectrum
As we see from the above results, the spectrum of a multiplicative matrix operator has a multi-
plicative structure, at least in the case that A is compact. Whether o(A) =[], o(A4,) holds more
generally remains to be seen. In this case, the non-zero values of 0(A) are all eigenvalues, and these
are products of the eigenvalues of the simpler operators A, (equivalently A, since o(4,) = o(4,)).
Writing

o(A) = {\(A):n>13U{0} and o(4,) = {\(A4,):n>1}U{0} (2.1)
where |\, (A)| and |\, (A,)| decrease to zero as n increases, we see that every A € o(A) \ {0} is of
the form

A= H An,(Ap)  (for some n, € N). (2.2)

It is natural to investigate the behaviour of A, (A,) as p — oo for each n.

Proposition 2.5
Let A be multiplicative, non-zero and compact such that each A, is in Sy. With o(A) and o(Ap)
as given by (2.1), we have, as p — 00

R I

Consequently, every non-zero eigenvalue of A is of the form
A, (4,)
A (A) H Znp 1P
pEF )‘I(Ap)
for some finite set ' of primes and some n, € N.

Proof. First note that A1(A) = [[, A1(Ap) since it is the largest eigenvalue (in modulus). This
implies (using A1 (A) # 0) that A\ (4,) — 1 as p — co. Recall from the end of section 1.2 we had

145113 =1+ A7



Let E = (e;5)i j>0 with ego = 1 and e;; = 0 otherwise. Trivially s1(E) = 1 and s,(EF) = 0 for
n > 1. Then, by 1.2(e),

[sn(Ap) = sn(E)| < [Ap — E|| < |Ap = Ell2=A, =0 asp— oo.
Thus s1(A4p) =1+ O(Ap) = 1 and s,(A4,) < A, — 0 for n > 1. By 1.2(a), we have
[A1(Ap) A2 (Ap)] < 51(Ap)sa(Ap).

From above it now follows that A2(4,) < A, and so \,(A,) — 0 for n > 2.
Thus for A # 0, we need n, = 1 for all but finitely many p in (2.2). In other words,

An, (Ap)
A=M4) J] 22
pEF /\1(Ap)
for some finite set F' of primes, as required.

O

Remark 3 If [\i(4,)] > [A(4,)] for all n > 1 and all p, then [A\1(A)/A] = [[,cp7p, where
Yp = [A1(Ap)/An, (Ap)] > 15 ie. the (multi-)set

{’Alf\A)’:AEU(A)}

can be regarded as the squarefree numbers of a generalized prime system with generalized primes
~p- This happens for example when A is non-negative; i.e. where f(m,n) > 0 for all m,n € N.
This is due to the Krein-Rutman theorem [13].

§3. Examples, applications and some open questions

First we give an example to illustrate the results, showing how much rich structure the spectrum
can have, even in a simple case. Then we consider more involved examples, including multiplicative
Toeplitz and Hankel operators. First we start with a ‘trivial’ case.

(a) Let A= (f(m,n))mn>1 where f(m,n) = g(m)h(n) with g, h multiplicative®. Note that A is
bounded if and only if A € Sy if and only if g,h € £2. As such, we find that the only (non-
zero) eigenvalue of Ais A =Y > | g(n)h(n), with corresponding eigenvector vy, = (g(n))n>1-
For let & = (xy)n>1. Then

Az = A ATz = cvy,

where A, is the matrix with first column v, and zero elsewhere (ditto for Ay), and ¢ =
oo h(n)z,. So we have a (non-zero) eigenvector if and only if z = av, for some q; i.e.
Zp = ag(n). As such ¢ = a\ and Az = A\z; i.e. A is the only eigenvalue.

Thus for interesting examples, we need f non-firmly multiplicative.

(b) A= (f(m,n))m.n>1 with f multiplicative such that f(p*,p') = 0 if both k,I > 1. Note that
in this case, for some g, h multiplicative

(m)h(n) if (m,n) =1
f(m,n):{ ? 0 if (m,n) >1

Note that Ay is Hilbert-Schmidt if and only if >°, - (lg(n)[* + [h(n)|*) converges.

Then each A, has two (non-zero) eigenvalues;

% + i + k(p) where k(p)= Zg(pn)h(Pn)-

8Such functions f are also called firmly multiplicative.



To see this, consider (equivalently) the equation Apa: = Az with A\, z = (zx)k>0 # 0; L.e.

1 h(p) h(p?) o o
. 9(p) 0 0 1 1
Apzr = a(p?) 0 0 T =A| 2

This gives the equations
xo + Z h(p™)xn = Axo, g(p")xo = Az, (n>1).
n=1
Then xg # 0 (otherwise x = 0 follows) and so A2 = X + k(p). Observe that

S Is)| < 5 3 S 1R D + 1AL < oo,

p n=1

so k(p) — 0 as p — oco. Thus the eigenvalues A of A are given by

=Gy o)

where there are only finitely many minus signs. We can rewrite this as

A:)\ln

peF 3 +1/ %+ K(p)

ol
I
=
+
2
s
S—

where A is the largest eigenvalue and F is a finite set of primes. If x(p) > 0 for each p, we
can further rewrite this as

A (=1)1F

HpEF T

where «y, > 1 for all p. As such, the set of |A1/A| can be regarded as the squarefree numbers
of the generalized prime system with g-primes .

Let A = (%)”21 (= E, as discussed in the introduction). It is easy to see that A is
Hilbert-Schmidt precisely for o < 1 (see [10]), while it is clearly unbounded for o > 1. Now
we can show that in the remaining range, A is bounded. We do this by finding explicitly the

spectrum. Indeed, we shall show that for a < %, the eigenvalues of A, are all the A which

satisfy 1
S M) () 1 0
n=1 p(lf%‘)%)\” rei 1 —p_2a+’"(20‘—1) 1— pr(2a—1)

from which we deduce that .

Thus [],, [[Apl| converges for a < 1 and A is bounded by Theorem 2.4.

Proof of (3.1) and (3.2). We have A, = (po(k+th—maxtkily, o which is of the form B, =
(Jcma"{k’l}ymin{k’l});CJZO7 with £ = p®~! and y = p®. It is straightforward to show that for
general x,y

B, , is compact <= B, , € S2 <= |z| and |zy| < 1

in which case

1+ |z|?
B, = .
1Baslo \/(1 — [22)(1 = |zy|?)

10



In our case zy = p?*~! < 1 and each A, is Hilbert-Schmidt, with |4, |2 = 1+ O(p~2(1—2%).
Note further that ||4,] — 1 as p — oo since 1 < || A, ]| < ||4p2.

We find the eigenvalues by solving B, ya = Aa for A # 0 and a = (ag, a1,...) € €3, a # 0.
We do it in general for x,y real such that 0 < z,zy < 1. Equating coefficients we find that

Aay, = 2" Zakyk +y" Z axz®  for each n > 0. (3.3)
k=0 k=n-+1

A simple manipulation of (3.3) shows that a,, satisfies

3 y(my)"an for each n > 1. (3.4)

x
ant1 — (+y)an + zyan,—1 =

Let A(z) = > 10, arz"®, which has radius of convergence p say. We prove that p > % From
(3.3) note that a, < na" + (zy)", so p > 1. Write y = (1)” for some 8 < 1 and assume
p > (). If v > B, then p > y and so Aa, = (A(y) + o(1))2™ and p > L. So suppose
0<y<Bsie

an, =0((1+¢)"2"™) foralle>0.

Now from (3.3),

Ay, <o " Z(l + g)kx(V*ﬁ)k + " Z (1 4 e)szﬁLk <. (1 4 E)nx(7+1*5)”_
k=0 k=n-+1

Hence p > (£)7"17F:je. if p > ()7 and y < B3, then p > (1)1 P If vy +1 - 3 < B, we
can apply the same procedure, adding 1 — 8 to the exponent. Eventually, we increase the
lower bound to find v > . As we have seen, p > % follows.

It follows that y < p and so
Aay, = (A(y) + o(1))z™.

Again using (3.3), we can obtain better approximations. By induction it is easy to prove
that for each R > 1,

Aay, = A(y)z" Y e(zy)™ + Oz (zy) ™),

where?
n(n+1)
2

AT(E — 1) ()
T (1 — Z(@y)") (1 — (2y))

Cn =
Let b, be defined by

Aby = A(y)z™ Y er(zy)™,
r=0

the series converging absolutely for any n. Then b, also satisfies (3.4) as can be readily
verified. Let d,, = a,, — b,, which again satisfies (3.4), and from above we see that §,, < A™"
for all A > 1. Thus D(z) := >~ 6,2" is entire and satisfies

z—
A

(for some constant tg). Considering the maximum size of |D(z)| on |z| = r (large) shows this
is only possible if D(z) is identically zero; i.e. §, = 0. Thus a,, = b, for all n > 0; i.e.

(1 —z2)(1 —yz)D(z) = 6o + toz + yzD(:cyz).

Aa, = A(y)a" Z er(zy)™.
r=0

9We use the convention that ngl o= 1.
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Multiplying through by y™ and summing over n > 0 gives

A= Z 1— :cy 7‘+1 (35)

r=0

Let Qo(z,y) =1 and for n € N,
Qn(z,y) = [JA =27y )1 —a"y").

Define the entire function

0o n(n+1)
2

H(z) = Hyy(2) = > (Zy)(xy)z
n 0 n )

Inserting the formula for ¢, into (3.5), we see that the non-zero eigenvalues of B, , are all
the A which satisfy
1
H(L—) =0
Azy

In our case, x = p*~! and y = p®. With these values, the above equation becomes (3.1).
Now take A = A1, the largest eigenvalue. Since A, is non—negative we have \; = ||4,]|, and
so Ay — 1 as p — co. Write f =1 — 2a(> 0) and put p, = (1 - 7) Thus p, — 1. Then
(3.1) says

0o n 1 n _ Bn(n—1)

/’Lp 2 _
Z T 1. (3.6)

Now, for n > 1,
I\ 1 1
o= (1 10 ) (ofii).
( ) ) 7«1;[1 pBr p1+6
Insert this into the LHS of (3.6) to give
o _n(n-1)

S (- Y uso(k)

n(n+1)

Using the identity []77 (1 +az™) =307, % (see [9], Theorem 348) leads to

o0

[T =) = +0(5).

n=0

Separating the n = 0 term from the rest gives 1 — p, = = + O( 7 +B), which leads to
A =1+0( 1+,3) Le. [|[Ap]| =14 O(5= —152). Thus A is bounded for o < 3.
Problem. Can we deduce that A is compact or even in some Schatten class?
In [11], Multiplicative Toeplitz operators — i.e. those induced by matrices with ;" entry

of the form ¢(i/j) — were studied, particularly in the case where ¢(-) is multiplicative as a
function on the rationals; i.e. C(m,n) := c(m/n) is multiplicative on N2.

Let f denote the ‘symbol’ given by the formal series



For p prime, let f,(t) = >, o5 c(p*)p*™, which we assume converges absolutely. Further let
fE:T—C denote~ the function f(e?) = fp(@). Denoting the operator A = (¢(i/7):,j>1
by My, we have A, = (c(p*"))k1>0 = T(fg), the usual Toeplitz operator with symbol fg.
Note that [|T(fi)| = [If}llec- Theorem 2.4 says that if [T, || f2]lec converges, then M; is

bounded with
My =QT(f5  and Mg =[Sl
P p

Problem: When can we say that o(My) =[], o(T(f1)?

As the spectrum of Toeplitz operators can often easily be identified, a positive answer means
we can find o(My). Note that in this case the T'( fg) are not even compact (except in the

trivial case when f} = 0).

(e) In the same way, Multiplicative Hankel operators may be defined as operators induced by
matrices of the form (c(é5)); j>1 for some arithmetical function ¢(-). A simple exercise shows
that ¢(ij) is multiplicative (as a function of two variables) if and only if ¢(-) is multiplicative.

As such, let A denote the matrix induced by (c(ij))i j>1. Then A, is the Hankel operator
H(fg) = (c(p**"))k,1>0. Thus, if Hp HH(fg)H converges, we have

A=QH(ff) and |A| =[] IHEFI.

This tensor property was noted in [2]. If furthermore A is compact, then also

o(A) = [[o(H ().

This certainly holds if A is Hilbert-Schmidt (i.e. when Y 7, d(n)|c(n)|? converges).
Problem: More generally, when does this hold?

Acknowledgement. I am grateful to Oscar Bandtlow for some useful discussions regarding infi-
nite tensor products.
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