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Matrices with multiplicative entries are tensor products

Titus Hilberdink
Department of Mathematics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

We study operators which have (infinite) matrix representation whose entries are multi-
plicative functions of two variables. We show that such operators are infinite tensor products
over the primes. Applications to finding the eigenvalues explicitly of arithmetical matrices
are given; also boundedness and norms of Multiplicative Toeplitz and Hankel operators are
discussed.

2010 AMS Mathematics Subject Classification: Primary 11C20, 15A69, 46M05; secondary
15A18, 47A80.
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Introduction
In this paper we shall consider infinite matrices A = (aij)i,j≥1 whose entries are multiplicative as a
function of two variables; i.e. amn = f(m,n), where f : N2 → C is not identically zero and satisfies

f(m1n1,m2n2) = f(m1,m2)f(n1, n2) whenever (m1m2, n1n2) = 1.

We are interested in knowing when such matrices induce bounded operators (on `2) and further-
more, what we can say about their (operator) norms and spectra.

The motivation for this investigation is twofold. In a recent paper [10], the singular values
(see §1.2 for the definition) of Mn = Mn(α), the n × n matrix with ijth-entry (i/j)−α if j|i and
zero otherwise, were shown to be approximable by the eigenvalues of the operator given by infinite
matrix

Eα =
( (ij)α

[i, j]

)
i,j≥1

.

More precisely, with sr(Mn) denoting the rth largest singular value of Mn and λr(Eα) the rth

largest eigenvalue of Eα, it was shown that for α < 1
4 ,

sr(Mn)2 ∼ λr(Eα)
n1−2α

1− 2α
as n→∞. (1.1)

Note that Eα has multiplicative entries. It leads naturally to the question of identifying these
eigenvalues and whether (1.1) remains true for 1

4 ≤ α < 1
2 . In particular whether Eα is bounded,

indeed compact, for such α — we shall settle the boundedness question here. More generally the
above was done for n × n matrices with entries f(i/j) when j|i and zero otherwise, where f is a
square summable multiplicative function on N. See also [14] for related matrices.

Another motivation comes from Multiplicative Toeplitz operators, whose matrix representation
has entries of the form aij = g(i/j) for a given g : Q+ → C. Such operators have been studied in
[11], for their connection with Dirichlet series, and in particular the Riemann zeta function. If g is
multiplicative as a function on the positive rationals, the matrix has multiplicative entries.

Our main result in this paper is to show that under a natural convergence condition, such
matrices A are tensor products of operators over the primes (like an Euler product) with the
tensor product corresponding to the prime p having matrix representation Ãp = (f(pk, pl))k,l≥0.
For finite matrices, this was inspired by a result of Codecá and Nair [4] and generalizes it. The
result for infinite matrices can be seen as a limiting case of this.

Thus for example, with aij = g(i/j) and g multiplicative as above, Ãp is the Toeplitz matrix
(g(pk−l))k,l≥0 = T (ap), where ap(t) =

∑∞
k=−∞ g(pk)tk is the ‘symbol’. Then we can deduce
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that A is bounded if
∏
p ‖ap‖∞ converges, with ‖A‖ equal to this product. For many symbols

(for instance rational symbols) this can be found explicitly. Similar remarks can be made about
multiplicative Hankel operators (i.e. those whose matrix representation has entries aij = h(ij)
with h multiplicative).

For the proof, we need to discuss tensor products and in particular, infinite tensor products.
In the case when A is compact, we can further deduce that the spectrum of A has multiplicative
structure; namely, every nonzero eigenvalue of A factorizes as an Euler product of eigenvalues of
the Ãp. Whether this continues to hold for more general bounded A is unclear, and is an interesting
open question.

After some preliminaries on multiplicative functions on N2 and tensor products in §1, we discuss
and prove the main results in §2. We follow this with examples and applications in §3.

§1. Preliminaries
1.1 Multiplicative functions of several variables; multiplicative matrices
A function of two variables f : N2 → C is multiplicative1 if f is not identically zero and

f(m1n1,m2n2) = f(m1,m2)f(n1, n2) whenever (m1m2, n1n2) = 1.

As such, f(1, 1) = 1 and f is determined by the values f(pk, pl) for k, l ∈ N0 and p prime. Indeed,
writing m =

∏
p p

α and n =
∏
p p

β for their prime factorizations, we have

f(m,n) = f
(∏
p

pα,
∏
p

pβ
)

=
∏
p

f(pα, pβ).

An infinite matrix A = (aij)i,j≥1 is multiplicative if amn = f(m,n) with f is multiplicative (as a
function of two variables).

Examples

(a) A diagonal matrix D = diag (g(1), g(2), g(3), . . .) is multiplicative if and only if g is multi-
plicative.

(b) A function f : Q+ → C defined on the positive rationals is multiplicative if f is not identically
zero and f(pa11 · · · p

ak
k ) = f(pa11 ) · · · f(pakk ) for distinct primes p1, . . . , pk and a1, . . . , ak ∈ Z.

We note that this holds if and only if the function f̃ : N2 → C defined by f̃(i, j) = f(i/j) is
multiplicative as a function of two variables.

Thus a multiplicative Toeplitz matrix A = (f(i/j))i,j≥1 is multiplicative if and only if f is
multiplicative as a function on Q+.

1.2 Bounded operators on `2; Hilbert-Schmidt operators
A linear operator A : H1 → H2 between Hilbert spaces is bounded if ‖Ax‖ ≤ c‖x‖ for all x ∈ H1

for some c ≥ 0, with ‖A‖, the operator norm defined to be the infimum of such c. Let B(H1, H2)
denote the Banach space of all such operators; if H1 = H2 = H, we write B(H) – this is a Banach
algebra. The spectrum of A ∈ B(H), denoted by σ(A), is the set of complex numbers λ for which
λI −A is invertible. For A compact,

σ(A) = {λn(A) : n ∈ N} ∪ {0},

where |λn(A)| decreases to 0, the non-zero λn(A) being eigenvalues. In that case A∗A is self-adjoint
and compact, whose spectrum lies in [0,∞). The (positive) squareroots of the eigenvalues of A∗A

1More generally, f : Nk → C is multiplicative if f is not identically zero and

f(m1n1, . . . ,mknk) = f(m1, . . . ,mk)f(n1, . . . , nk) (∗)

if (m1 · · ·mk, n1 · · ·nk) = 1. (See [16] for a survey of results on multi-variable multiplicative functions.)
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are called the singular values2 of A. Denote these by s1(A), s2(A), . . ., where sn(A) decreases. For
p > 0, define the Schatten p-class Sp of operators A for which (sn(A)) ∈ `p.3 Two important
classes are S1 – the Trace-class operators — and S2 — the Hilbert-Schmidt operators.

Some relevant properties (see [7])

(a) Weyl inequalities: for all n ≥ 1, we have (i)
∏n
m=1 |λm(A)| ≤

∏n
m=1 sm(A) and (ii), for any

p > 0,
∑n
m=1 |λm(A)|p ≤

∑n
m=1 sm(A)p.

(b) The space of all trace-class operators on a Hilbert space is a Banach algebra with norm

‖A‖1 =

∞∑
n=1

sn(A).

For these the usual trace formula holds: tr (A) =
∑∞
n=1 λn(A) =

∑∞
n=1〈Aen, en〉 for any

orthonormal basis (en).

(c) If A and B are Hilbert-Schmidt, then AB is trace-class, and ‖AB‖1 ≤ ‖A‖2‖B‖2. The
Hilbert-Schmidt operators on H form a Hilbert space with inner product and norm given by

〈A,B〉 = tr(AB∗) ‖A‖2 =
√

tr(AA∗) =

√√√√ ∞∑
n=1

sn(A)2.

We have ‖A‖ = s1(A), so ‖A‖ ≤ ‖A‖2 ≤ ‖A‖1.

(d) Suppose A has matrix representation (aij) w.r.t. some orthonormal basis. Then A is Hilbert-
Schmidt if and only if ∑

i,j≥1

|aij |2 <∞,

in which case the sum equals ‖A‖22 (irrespective of the basis).

If A = (f(m,n))m,n∈N is multiplicative, we see that A is Hilbert-Schmidt if and only if

‖A‖22 =

∞∑
m,n=1

|f(m,n)|2 =
∏
p

∑
k,l≥0

|f(pk, pl)|2 converges. (1.2)

Let ∆p = (
∑
k,l≥0 |f(pk, pl)|2 − 1)1/2. Thus A ∈ S2 if and only if

∑
p ∆2

p converges, in which

case ‖A‖22 =
∏
p(1 + ∆2

p).

(e) Let A,An be compact operators and suppose An → A in operator norm. Then sr(An) →
sr(A) for every r ≥ 1. This follows directly from the inequality |sr(An)− sr(A)| ≤ ‖An−A‖
(see [7], Chapter VI, Corollary 1.6).

1.3 Tensor products of Hilbert spaces and operators
As tensor products of spaces and bounded linear operators feature heavily, we shall briefly state
some relevant facts. First, for finite matrices, the definition is elementary. For matrices A =
(aij)i,j≤n and B, the Tensor or Kronecker product A⊗B (see for example [18]) is the matrix

a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
...

. . .
...

an1B an2B . . . annB

 .

2More generally, for a bounded linear operator A : H1 → H2, one defines the nth-singular value by

sn(A) = inf{‖A− F‖ : rankF < n}.
Then A is compact if and only if sn(A)→ 0 as n→∞.

3Here, as usual, `p is the space of complex sequences (xn)n∈N for which
∑
|xn|p converges. More generally, given

F a countable set, `p(F ) is the space of complex sequences (xf )f∈F for which
∑

f∈F |xf |p converges.
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Regarding A and B as linear operators on Rn and Rm respectively (for some m), we see that A⊗B
can be regarded as a linear operator on Rmn. Tensor products satisfy many nice properties: thus
A,B normal/unitary/invertible implies A ⊗ B normal/unitary/invertible respectively. In the last
case, (A⊗B)−1 = A−1⊗B−1. More importantly for our purposes, we also have ‖A⊗B‖ = ‖A‖‖B‖
and σ(A ⊗ B) = σ(A)σ(B) = {λµ : λ ∈ σ(A), µ ∈ σ(B)}; i.e. the eigenvalues of A ⊗ B are the
products of the eigenvalues of A and B (see [18]).

More generally, tensor products of operators may be defined (see for example [5], [12], or the
notes by Berberian [1]). For this, we first need the tensor product of two Hilbert spaces, H1, H2.
This may be defined to be the Hilbert space

H1 ⊗H2 = {T : H2 → H1 such that T is conjugate-linear and Hilbert-Schmidt }.

This is indeed a Hilbert space with inner product

〈S, T 〉 =

∞∑
k=1

〈Sfk, Tfk〉,

for an orthonormal basis (fk) of H2, the sum being independent of the basis. Now for A ∈ B(H1)
and B ∈ B(H2), their tensor product A⊗B is the bounded linear operator on H1 ⊗H2 defined by

(A⊗B)(T ) = ATB∗.

Also for x ∈ H1 and y ∈ H2, define x⊗ y : H2 → H1 by (x⊗ y)(z) = 〈y, z〉x. We note that if (en)
and (fn) are orthonormal bases of H1 and H2 respectively, then (em⊗ fn) is an orthonormal basis
for H1 ⊗H2.

Some relevant properties:

(a) (A⊗B)(x⊗ y) = Ax⊗By

(b) 〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉〈y1, y2〉.

(c) σ(A⊗B) = σ(A)σ(B) = {λµ : λ ∈ σ(A), µ ∈ σ(B)} (see [3]).

(d) ‖A⊗B‖ = ‖A‖‖B‖.

(e) A,B normal/unitary/invertible implies A ⊗ B normal/unitary/invertible respectively, with
(A⊗B)−1 = A−1 ⊗B−1.

Infinite tensor products
We shall require infinite tensor products, which were originally considered by von Neumann [17],
and further developed by other authors (see for example Guichardet [8], Nakagami [15]). Consider
a family of Hilbert spaces (Hi)i∈I , where I is some indexing set. For each i ∈ I, let ti be a unit
vector in Hi. First, form the inductive limit of the finite tensor product ⊗i∈JHi, for finite subsets
J of I with respect to t = (ti)i∈I , which we denote by ⊗ti∈IHi. Thus if xi = ti for all i except
for finitely many values, then ⊗xi is in the infinite product as is every linear combination of such
terms. Define an inner product by

〈⊗xi,⊗yi〉 =
∏
i

〈xi, yi〉

and extend linearly. Now take its Hilbert space completion. By abusing notation, we shall denote
this by ⊗i∈IHi as our sequence ti will be fixed throughout. We note that any sequence of unit
vectors ui ∈ Hi for which

∏
i〈ti, ui〉 converges absolutely4 gives rise to the same space ([8], Theorem

2).
Now suppose for each i ∈ I, Ti is a bounded linear operator on Hi. We can form the infinite

tensor product of the Ti. We quote Proposition 6 from [8], supplemented by a result of Nakagami

4That is,
∑

i |〈ti, ui〉 − 1| converges.
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[15].

Theorem A (after Guichardet [8] and Nakagami [15])
Let Ti ∈ B(Hi) for each i ∈ I and suppose that

∏
i ‖Ti‖ converges to a non-zero value and the

products ∏
i

‖Titi‖ and
∏
i

〈Titi, ti〉

both converge absolutely. Then there exists a unique T ∈ B(⊗iHi) such that ⊗i∈JTi converges
strongly to T . We write T = ⊗iTi. Furthermore, T 6= 0 and if ⊗xi exists, then ⊗Tixi exists and
equals T (⊗xi). Finally, ‖T‖ =

∏
i ‖Ti‖.

Proof. The assumption that
∏
i ‖Ti‖ converges implies the existence of T (see Proposition 6

from [8]) and the strong convergence (see Theorem 3.1 (I) from [15]), including the fact that
‖T‖ ≤

∏
i ‖Ti‖. The extra assumption that

∏
i ‖Ti‖ 6= 0 further ensures T 6= 0 and ‖T‖ =

∏
i ‖Ti‖

(from the proof of Theorem 3.1 (II) from [15]).
�

Remarks 1

(a) For the purposes of this paper, our indexing set I will be P – the set of primes – and each
Hp (p ∈ P) will be a copy of `2. More precisely, with 〈p〉 = {pk : k ∈ N0}, we shall take
Hp = `2(〈p〉). After Proposition 2.3, we shall see that, with tp = e := (1, 0, 0, . . .) for all p,
we have ⊗p`2(〈p〉) ∼= `2.

(b) Although infinite tensor products (of spaces, operators and algebras) have been discussed by
many authors, we could not find any ready made result connecting σ(T ) and

∏
i σ(Ti). It

may be the case that in general this is false, though for compact T it is true as we show in
Theorem 2.4.

§2. Main results
Our main result is to describe the tensor structure of multiplicative A and its spectrum. We distin-
guish between the finite and infinite cases. The finite case is in many respects simpler, just using
the elementary notion of tensor (or Kronecker) product of matrices.

2.1 The finite case. The following result was inspired by a result of Codecá and Nair [4] and
generalises it. Let D(k) denote the set of divisors of k, and d(k) = |D(k)|, the number of divisors
of k.

Theorem 2.1
Let f : D(k) × D(k) → C be multiplicative. For n|k, let An denote the d(n) × d(n) matrix with
entries f(c, d) where c, d|n. Then for (m,n) = 1 with m,n|k we have5

Am ⊗An = Amn.

Proof. With (m,n) = 1 we have

Am ⊗An = (f(c, d)An)c,d|m.

The r, s entry (with r, s|n) inside ‘block’ cd is f(c, d)f(r, s) = f(cr, ds) by multiplicativity of f
(using (cd, rs) = 1). Note that cr and ds run through the divisors of mn respectively. Thus the
rows and columns of Am ⊗An are the same as those of Amn though possibly in a different order;
i.e. they are permutation similar.

�

5Here we identify two matrices A and B if they are permutation similar; i.e. if A = P−1BP for some permutation
matrix P ; equivalently, A and B have the same rows and columns but in a different order.
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Writing, as is usual, pr‖n to mean pr|n but pr+1 6 |n, we have:

Corollary 2.2
We have An = ⊗pr‖nApr and

σ(An) =
∏
pr‖n

σ(Apr ).

Remark 2 Codecá and Nair [4] proved the above for matrices with entries of the form

f(m,n) = g((m,n))h([m,n]) (CN)

where g, h are multiplicative6. As such, f is multiplicative (of two variables) as can be readily
verified, but the converse is false: there are multiplicative f(m,n) not of this form. A simple
reason is that f need not be symmetrical. But even assuming f is symmetrical, the converse still
fails. For if f is of the form (CN) then for p prime and k ≤ l,

f(pk, pl)f(pk, 1) = f(pk, pk)f(pl, 1).

But in general, f(pk, pl) can be any function of k and l (for fixed p).

2.2 The infinite case. Let k be squarefree, say k = p1 . . . pr, where p1, . . . , pr are distinct
primes. Denote by 〈k〉 the set of natural numbers whose prime factors are those of k; i.e. 〈k〉 =
{pa11 . . . parr : a1, . . . , ar ∈ N0}.

For f : N2 → C multiplicative, let fk : N2 → C be defined by

fk(m,n) =

{
f(m,n) if mn ∈ 〈k〉

0 otherwise
.

In particular, for a prime p, fp(·, ·) is supported on {(pk, pl) ∈ N2 : k, l ≥ 0}. Let Ak and Ãk denote
the operators induced by the following infinite matrices:

Ak =
(
fk(m,n)

)
m,n≥1

and Ãk =
(
fk(m,n)

)
m,n∈〈k〉

.

We can equally regard Ak on `2 or Ãk on `2(〈k〉), and ‖Ak‖ = ‖Ãk‖.
For p prime, Ãp = (f(pk, pl))k,l≥0. Note that for A Hilbert-Schmidt, (1.2) says that

‖A‖2 =
∏
p

‖Ãp‖2.

Proposition 2.3
Let k and l be coprime and squarefree, and let Ak, Al be as defined above. If Ak and Al are bounded
on `2, then Akl is bounded on `2 and

Akl = Ak ⊗Al,

in the sense that the operators on the left and right have the same matrix representations.

Proof. Ak ⊗Al is the bounded linear operator on the Hilbert space

H = {T : `2 → `2 such that T is conjugate-linear and Hilbert-Schmidt}

given by
(Ak ⊗Al)T = AkTA

∗
l .

6More specifically, they had g(n) =
l(n)
n

and h(n) = 1
n

for some multiplicative function l(n), but their argument
clearly works for the more general g, h.
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Let (en)n∈N denote the usual basis of `2 (i.e. en is the vector with a 1 in the nth-place and zeros
elsewhere). Then (em ⊗ en)m,n≥1 is an orthonormal basis of H. The matrix representation of
Ak ⊗Al is therefore given by

〈(Ak ⊗Al)(em2
⊗ en2

), em1
⊗ en1

〉 = 〈Akem2
⊗Alen2

, em1
⊗ en1

〉 (by 1.3(a))

= 〈Akem2
, em1

〉〈Alen2
, en1
〉 (by 1.3(b))

= fk(m1,m2)fl(n1, n2).

Now, for the RHS to be non-zero, we need m1,m2 ∈ 〈k〉 and n1, n2 ∈ 〈l〉. Since (k, l) = 1, as such
we require (m1m2, n1n2) = 1. But then

fk(m1,m2)fl(n1, n2) = f(m1,m2)f(n1, n2) = f(m1n1,m2n2),

by multiplicativity of f . Thus

〈(Ak ⊗Al)(em2 ⊗ en2), em1 ⊗ en1〉 =

{
f(m1n1,m2n2) if m1m2 ∈ 〈k〉 and n1n2 ∈ 〈l〉

0 otherwise
. (A)

On the other hand,

〈Aklen, em〉 = fkl(m,n) =

{
f(m,n) if mn ∈ 〈kl〉

0 otherwise
. (B)

In (A), if m1m2 ∈ 〈k〉 and n1n2 ∈ 〈l〉, then m1n1,m2n2 ∈ 〈kl〉 is forced and moreover every
element of 〈kl〉 is (uniquely) of the form m′n′ with m′ ∈ 〈k〉, n′ ∈ 〈l〉. Thus there is a one-one
correspondence between the matrix entries in (A) and those in (B) by writing m = m1n1 and
n = m2n2.

�

It follows directly that Ak =
⊗

p|k Ap and (from section 1.3) that ‖Ak‖ =
∏
p|k ‖Ap‖ and

σ(Ak) =
∏
p|k σ(Ap).

Theorem 2.4
Let A be a multiplicative matrix such that for every prime p, Ap is bounded (i.e. Ãp is bounded on
`2(〈p〉)) and

∏
p ‖Ap‖ converges to a non-zero value. Then A is bounded on `2 and is given by the

infinite tensor product7

A =
⊗
p

Ap

and ‖A‖ =
∏
p ‖Ap‖. Furthermore, if each Ap is compact, then σ(A) ⊃

∏
p σ(Ap), while if A is

compact, then σ(A) =
∏
p σ(Ap).

Proof. We check that the conditions of Theorem A are satisfied. With tp = e = (1, 0, . . .) and
A = (f(m,n))m,n≥1, we see that 〈Aptp, tp〉 = 1 for all primes p and

1 ≤ ‖Aptp‖ =

√√√√ ∞∑
k=0

|f(pk, 1)|2 ≤ ‖Ap‖.

Thus both
∏
p〈Aptp, tp〉 and

∏
p ‖Aptp‖ converge absolutely. Applying Theorem A shows there

exists a unique non-zero T ∈ B(⊗p`2(〈p〉) for which

T (⊗pxp) = ⊗pApxp

whenever ⊗pxp exists.

7Always with respect to the sequence tp = e ∀p ∈ P.
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Now, Ak → T strongly as k →∞ through the numbers k =
∏
p≤P p. It follows that

〈(T −Ak)en, em〉 → 0

as k →∞, for all m,n ∈ N. But 〈Aken, em〉 = fk(m,n), so

〈Ten, em〉 = fk(m,n) + 〈(T −Ak)en, em〉 → f(m,n),

as k → ∞. Thus 〈Ten, em〉 = 〈Aen, em〉 for all m,n ∈ N, and so T = A. The formula ‖A‖ =∏
p ‖Ap‖ follows immediately from Theorem A.

Now suppose each Ap is compact. We need to show that if λk ∈ σ(Ak) and λk → λ, then
λ ∈ σ(A).

So suppose λk → λ but that λ 6∈ σ(A). Then (A − λI)−1 exists and ‖(A − λI)x‖ ≥ c‖x‖ for
some c > 0 and all x. (Indeed we can take c = 1/‖(A − λI)−1‖.) Let xk be such that ‖xk‖ = 1
and Akxk = λkxk. Then

‖(A− λI)xk‖ ≤ ‖(A−Ak)xk‖+ ‖(Ak − λI)xk‖ ≤ ‖A−Ak‖+ |λk − λ| → 0

as k →∞. But this contradicts ‖(A− λI)xk‖ ≥ c from above. Thus σ(A) ⊃
∏
p σ(Ap).

Finally, if also A is compact, then we need to show the converse holds. That is, we need to
show every λ ∈ σ(A) is a limit of a sequence λk ∈ σ(Ak). But this follows from a general result
about compact operators, namely Lemma 5 from [6] (Chapter XI, section 9.5). Thus in this case
σ(A) =

∏
p σ(Ap).

�

Further results on the spectrum
As we see from the above results, the spectrum of a multiplicative matrix operator has a multi-
plicative structure, at least in the case that A is compact. Whether σ(A) =

∏
p σ(Ap) holds more

generally remains to be seen. In this case, the non-zero values of σ(A) are all eigenvalues, and these
are products of the eigenvalues of the simpler operators Ap (equivalently Ãp since σ(Ap) = σ(Ãp)).
Writing

σ(A) = {λn(A) : n ≥ 1} ∪ {0} and σ(Ãp) = {λn(Ap) : n ≥ 1} ∪ {0} (2.1)

where |λn(A)| and |λn(Ap)| decrease to zero as n increases, we see that every λ ∈ σ(A) \ {0} is of
the form

λ =
∏
p

λnp(Ap) (for some np ∈ N). (2.2)

It is natural to investigate the behaviour of λn(Ap) as p→∞ for each n.

Proposition 2.5
Let A be multiplicative, non-zero and compact such that each Ap is in S2. With σ(A) and σ(Ap)
as given by (2.1), we have, as p→∞

λn(Ap)→
{

1 if n = 1
0 if n > 1

.

Consequently, every non-zero eigenvalue of A is of the form

λ1(A)
∏
p∈F

λnp(Ap)

λ1(Ap)

for some finite set F of primes and some np ∈ N.

Proof. First note that λ1(A) =
∏
p λ1(Ap) since it is the largest eigenvalue (in modulus). This

implies (using λ1(A) 6= 0) that λ1(Ap)→ 1 as p→∞. Recall from the end of section 1.2 we had

‖Ap‖22 = 1 + ∆2
p.
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Let E = (eij)i,j≥0 with e00 = 1 and eij = 0 otherwise. Trivially s1(E) = 1 and sn(E) = 0 for
n > 1. Then, by 1.2(e),

|sn(Ap)− sn(E)| ≤ ‖Ap − E‖ ≤ ‖Ap − E‖2 = ∆p → 0 as p→∞.

Thus s1(Ap) = 1 +O(∆p)→ 1 and sn(Ap) ≤ ∆p → 0 for n > 1. By 1.2(a), we have

|λ1(Ap)λ2(Ap)| ≤ s1(Ap)s2(Ap).

From above it now follows that λ2(Ap)� ∆p and so λn(Ap)→ 0 for n ≥ 2.
Thus for λ 6= 0, we need np = 1 for all but finitely many p in (2.2). In other words,

λ = λ1(A)
∏
p∈F

λnp(Ap)

λ1(Ap)

for some finite set F of primes, as required.

�

Remark 3 If |λ1(Ap)| > |λn(Ap)| for all n > 1 and all p, then |λ1(A)/λ| =
∏
p∈F γp, where

γp = |λ1(Ap)/λnp(Ap)| > 1; i.e. the (multi-)set{∣∣∣λ1(A)

λ

∣∣∣ : λ ∈ σ(A)

}
can be regarded as the squarefree numbers of a generalized prime system with generalized primes
γp. This happens for example when A is non-negative; i.e. where f(m,n) ≥ 0 for all m,n ∈ N.
This is due to the Krĕın-Rutman theorem [13].

§3. Examples, applications and some open questions
First we give an example to illustrate the results, showing how much rich structure the spectrum
can have, even in a simple case. Then we consider more involved examples, including multiplicative
Toeplitz and Hankel operators. First we start with a ‘trivial’ case.

(a) Let A = (f(m,n))m,n≥1 where f(m,n) = g(m)h(n) with g, h multiplicative8. Note that A is
bounded if and only if A ∈ S2 if and only if g, h ∈ `2. As such, we find that the only (non-
zero) eigenvalue of A is λ =

∑∞
n=1 g(n)h(n), with corresponding eigenvector vg = (g(n))n≥1.

For let x = (xn)n≥1. Then
Ax = AgA

T
hx = cvg,

where Ag is the matrix with first column vg and zero elsewhere (ditto for Ah), and c =∑∞
n=1 h(n)xn. So we have a (non-zero) eigenvector if and only if x = avg for some a; i.e.

xn = ag(n). As such c = aλ and Ax = λx; i.e. λ is the only eigenvalue.

Thus for interesting examples, we need f non-firmly multiplicative.

(b) A = (f(m,n))m,n≥1 with f multiplicative such that f(pk, pl) = 0 if both k, l ≥ 1. Note that
in this case, for some g, h multiplicative

f(m,n) =

{
g(m)h(n) if (m,n) = 1

0 if (m,n) > 1
.

Note that Af is Hilbert-Schmidt if and only if
∑
n∈N(|g(n)|2 + |h(n)|2) converges.

Then each Ap has two (non-zero) eigenvalues;

1

2
±
√

1

4
+ κ(p) where κ(p) =

∞∑
n=1

g(pn)h(pn).

8Such functions f are also called firmly multiplicative.

9



To see this, consider (equivalently) the equation Ãpx = λx with λ, x = (xk)k≥0 6= 0; i.e.

Ãpx =


1 h(p) h(p2) . . .
g(p) 0 0 . . .
g(p2) 0 0 . . .

...
...

...
. . .




x0
x1
x2
...

 = λ


x0
x1
x2
...

 .

This gives the equations

x0 +

∞∑
n=1

h(pn)xn = λx0, g(pn)x0 = λxn (n ≥ 1).

Then x0 6= 0 (otherwise x = 0 follows) and so λ2 = λ+ κ(p). Observe that

∑
p

|κ(p)| ≤ 1

2

∑
p

∞∑
n=1

|f(pn, 1)|2 + |f(1, pn)|2 <∞,

so κ(p)→ 0 as p→∞. Thus the eigenvalues λ of A are given by

λ =
∏
p

(1

2
±
√

1

4
+ κ(p)

)
where there are only finitely many minus signs. We can rewrite this as

λ = λ1
∏
p∈F

1
2 −

√
1
4 + κ(p)

1
2 +

√
1
4 + κ(p)

where λ1 is the largest eigenvalue and F is a finite set of primes. If κ(p) > 0 for each p, we
can further rewrite this as

λ1(−1)|F |∏
p∈F γp

,

where γp > 1 for all p. As such, the set of |λ1/λ| can be regarded as the squarefree numbers
of the generalized prime system with g-primes γp.

(c) Let A = ( (ij)α

[i,j] )i,j≥1 (= Eα as discussed in the introduction). It is easy to see that A is

Hilbert-Schmidt precisely for α < 1
4 (see [10]), while it is clearly unbounded for α ≥ 1

2 . Now
we can show that in the remaining range, A is bounded. We do this by finding explicitly the
spectrum. Indeed, we shall show that for α < 1

2 , the eigenvalues of Ap are all the λ which
satisfy

∞∑
n=1

(−1)n−1(1− 1
p )n

p(1−2α)
n(n−1)

2 λn

n∏
r=1

( 1

1− p−2α+r(2α−1)
)( 1

1− pr(2α−1)
)

= 1 (3.1)

from which we deduce that

‖Ap‖ = 1 +O
( 1

p2−2α

)
. (3.2)

Thus
∏
p ‖Ap‖ converges for α < 1

2 and A is bounded by Theorem 2.4.

Proof of (3.1) and (3.2). We have Ãp = (pα(k+l)−max{k,l})k,l≥0, which is of the form Bx,y =
(xmax{k,l}ymin{k,l})k,l≥0, with x = pα−1 and y = pα. It is straightforward to show that for
general x, y

Bx,y is compact⇐⇒ Bx,y ∈ S2 ⇐⇒ |x| and |xy| < 1

in which case

‖Bx,y‖2 =

√
1 + |x|2

(1− |x|2)(1− |xy|2)
.
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In our case xy = p2α−1 < 1 and each Ãp is Hilbert-Schmidt, with ‖Ap‖2 = 1 +O(p−2(1−2α)).
Note further that ‖Ap‖ → 1 as p→∞ since 1 ≤ ‖Ap‖ ≤ ‖Ap‖2.

We find the eigenvalues by solving Bx,ya = λa for λ 6= 0 and a = (a0, a1, . . .) ∈ `2, a 6= 0.
We do it in general for x, y real such that 0 < x, xy < 1. Equating coefficients we find that

λan = xn
n∑
k=0

aky
k + yn

∞∑
k=n+1

akx
k for each n ≥ 0. (3.3)

A simple manipulation of (3.3) shows that an satisfies

an+1 − (x+ y)an + xyan−1 =
x− y
λ

(xy)nan for each n ≥ 1. (3.4)

Let A(z) =
∑∞
k=0 akz

k, which has radius of convergence ρ say. We prove that ρ ≥ 1
x . From

(3.3) note that an � nxn + (xy)n, so ρ > 1. Write y = ( 1
x )β for some β < 1 and assume

ρ ≥ ( 1
x )γ . If γ > β, then ρ > y and so λan = (A(y) + o(1))xn and ρ ≥ 1

x . So suppose
0 ≤ γ ≤ β; i.e.

an = O((1 + ε)nxγn) for all ε > 0.

Now from (3.3),

λan �ε x
n

n∑
k=0

(1 + ε)kx(γ−β)k + yn
∞∑

k=n+1

(1 + ε)kxγk+k �ε (1 + ε)nx(γ+1−β)n.

Hence ρ ≥ ( 1
x )γ+1−β ; i.e. if ρ ≥ ( 1

x )γ and γ ≤ β, then ρ ≥ ( 1
x )γ+1−β . If γ + 1 − β ≤ β, we

can apply the same procedure, adding 1 − β to the exponent. Eventually, we increase the
lower bound to find γ > β. As we have seen, ρ ≥ 1

x follows.

It follows that y < ρ and so
λan = (A(y) + o(1))xn.

Again using (3.3), we can obtain better approximations. By induction it is easy to prove
that for each R ≥ 1,

λan = A(y)xn
R−1∑
r=0

cr(xy)rn +O(xn(xy)Rn),

where9

cn =
λ−n(xy − 1)n(xy)

n(n+1)
2∏n

r=1(1− x
y (xy)r)(1− (xy)r)

.

Let bn be defined by

λbn = A(y)xn
∞∑
r=0

cr(xy)rn,

the series converging absolutely for any n. Then bn also satisfies (3.4) as can be readily
verified. Let δn = an − bn which again satisfies (3.4), and from above we see that δn � A−n

for all A > 1. Thus D(z) :=
∑∞
n=0 δnz

n is entire and satisfies

(1− xz)(1− yz)D(z) = δ0 + t0z +
x− y
λ

zD(xyz).

(for some constant t0). Considering the maximum size of |D(z)| on |z| = r (large) shows this
is only possible if D(z) is identically zero; i.e. δn = 0. Thus an = bn for all n ≥ 0; i.e.

λan = A(y)xn
∞∑
r=0

cr(xy)rn.

9We use the convention that
∏0

r=1 · · · = 1.

11



Multiplying through by yn and summing over n ≥ 0 gives

λ =

∞∑
r=0

cr
1− (xy)r+1

. (3.5)

Let Q0(x, y) = 1 and for n ∈ N,

Qn(x, y) =

n∏
r=1

(1− xryr−2)(1− xryr).

Define the entire function

H(z) = Hx,y(z) =

∞∑
n=0

(xy)
n(n+1)

2

Qn(x, y)
zn.

Inserting the formula for cr into (3.5), we see that the non-zero eigenvalues of Bx,y are all
the λ which satisfy

H
( x
y − 1

λxy

)
= 0.

In our case, x = pα−1 and y = pα. With these values, the above equation becomes (3.1).
Now take λ = λ1, the largest eigenvalue. Since Ap is non-negative we have λ1 = ‖Ap‖, and
so λ1 → 1 as p→∞. Write β = 1− 2α(> 0) and put µp = 1

λ1
(1− 1

p ). Thus µp → 1. Then

(3.1) says
∞∑
n=1

(−1)n−1µnpp
− βn(n−1)

2

Qn(pα−1, pα)
= 1. (3.6)

Now, for n ≥ 1,

Qn(pα−1, pα) =
(

1− 1

p

) n∏
r=1

(
1− 1

pβr

)
·
(

1 +O
( 1

p1+β

))
.

Insert this into the LHS of (3.6) to give

∞∑
n=1

(−1)n−1µnpp
− βn(n−1)

2∏n
r=1(1− p−βr)

=
(

1− 1

p

)(
1 +O

( 1

p1+β

))
.

Using the identity
∏∞
n=1(1 + axn) =

∑∞
n=0

anx
n(n+1)

2∏n
r=1(1−xr)

(see [9], Theorem 348) leads to

∞∏
n=0

(1− µpp−βn) =
1

p
+O

( 1

p1+β

)
.

Separating the n = 0 term from the rest gives 1 − µp = 1
p + O( 1

p1+β
), which leads to

λ1 = 1 +O( 1
p1+β

); i.e. ‖Ap‖ = 1 +O( 1
p2−2α ). Thus A is bounded for α < 1

2 .

Problem. Can we deduce that A is compact or even in some Schatten class?

(d) In [11], Multiplicative Toeplitz operators – i.e. those induced by matrices with ijth entry
of the form c(i/j) – were studied, particularly in the case where c(·) is multiplicative as a
function on the rationals; i.e. C(m,n) := c(m/n) is multiplicative on N2.

Let f denote the ‘symbol’ given by the formal series

f(t) =
∑
q∈Q+

c(q)qit.
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For p prime, let fp(t) =
∑
k∈Z c(p

k)pkit, which we assume converges absolutely. Further let

f ]p : T → C denote the function f ]p(eiθ) = fp(
θ

log p ). Denoting the operator A = (c(i/j)i,j≥1

by Mf , we have Ãp = (c(pk−l))k,l≥0 = T (f ]p), the usual Toeplitz operator with symbol f ]p.

Note that ‖T (f ]p)‖ = ‖f ]p‖∞. Theorem 2.4 says that if
∏
p ‖f ]p‖∞ converges, then Mf is

bounded with
Mf =

⊗
p

T (f ]p) and ‖Mf‖ =
∏
p

‖f ]p‖∞.

Problem: When can we say that σ(Mf ) =
∏
p σ(T (f ]p))?

As the spectrum of Toeplitz operators can often easily be identified, a positive answer means
we can find σ(Mf ). Note that in this case the T (f ]p) are not even compact (except in the

trivial case when f ]p = 0).

(e) In the same way, Multiplicative Hankel operators may be defined as operators induced by
matrices of the form (c(ij))i,j≥1 for some arithmetical function c(·). A simple exercise shows
that c(ij) is multiplicative (as a function of two variables) if and only if c(·) is multiplicative.

As such, let A denote the matrix induced by (c(ij))i,j≥1. Then Ãp is the Hankel operator
H(f ]p) = (c(pk+l))k,l≥0. Thus, if

∏
p ‖H(f ]p)‖ converges, we have

A =
⊗
p

H(f ]p) and ‖A‖ =
∏
p

‖H(f ]p)‖.

This tensor property was noted in [2]. If furthermore A is compact, then also

σ(A) =
∏
p

σ(H(f ]p)).

This certainly holds if A is Hilbert-Schmidt (i.e. when
∑∞
n=1 d(n)|c(n)|2 converges).

Problem: More generally, when does this hold?

Acknowledgement. I am grateful to Oscar Bandtlow for some useful discussions regarding infi-
nite tensor products.
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