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ABSTRACT 
 

Access to a safe and inexpensive source of energy is one of society’s essential needs that 

helps to support economic growth and development.  Yet, there are a number of current 

challenges in the developed world that pose a threat to its energy security such as the high 

import dependency in Europe from politically unstable regions and the long term 

environmental risks from greenhouse gas (GHG) emissions.  Based on scientific estimates 

from the United Kingdom Atomic Energy Authority’s (UKAEA) fusion research and 

development site, fusion power could generate high volumes of decarbonised electricity that 

could begin to replace electricity sources from oil, gas and coal during the middle and latter 

half of this century.  However, fusion power currently exists in a non-commercialised state 

and so the use of robust techno-economic and econometric models are required in order to 

estimate the role that fusion power could play within the context of a future energy mix.   

 

The single equation, autoregressive distributed lag (ARDL) model of cointegration analysis is 

used to estimate the nuclear fission-GDP-CO2 nexus.  Nuclear fission is used as the guide for 

fusion power due to the similarities in energy-releasing nuclear reactions and complex power 

plant technology.  A comparative analysis between nuclear fission and environmental taxes is 

performed within a multivariate framework.  The UK Government’s 2050 Energy Calculator 

is subsequently recalibrated in order to generate projections of the future energy mix with 

fusion power included.  Multiequation econometric analyses are performed using Johansen’s 

maximum likelihood (ML) estimator of cointegration analysis and the vector error correction 

model (VECM), with the latter used to estimate projections of economic variables to 2050.  

The 2050 estimates are fed into a computable general equilibrium (CGE) model and shocks 

from the different energy mix pathways are applied to the CGE model, with policy response 

adjustments and wider economic implications estimated for future policy consideration. 

 

It was found that environmental taxes have a stronger long run relationship with CO2 

emissions abatement than electricity generated from nuclear fission, with the implication that 

commercialised fusion power would need a consistent and safe level of electricity generation 

in order for it to have a strong long run correspondence to CO2 emissions abatement.  The 

next empirical chapter finds that a configuration of the UK’s future energy mix that includes 

fusion power is able to meet the 80% emissions reduction target in 2050 based on 1990 levels, 

while providing a cheaper cost of the entire energy system than the expert pathways that were 

developed by multinational organisations.  Finally, it was found that the shocks on aggregate 

capital investment in the CGE model from the Fusion Pathway and the respective policy 

response adjustments produce a more stable economic environment in 2050 than the shocks 

and policy response adjustments from a competing expert pathway, with the latter producing 

distortionary increases in overall prices, indirect taxes and its environmental tax constituent.  



1 

 

CHAPTER 1 

 

INTRODUCTION 

                                       

1.1 Global challenges within the energy system and the role of fusion power 

 

Access to a safe, inexpensive and stable source of energy supply is vital for the sustenance of 

human development and economic growth.  The harnessing and use of energy has been an 

ongoing development over the centuries, with its early use in the preparation of food and 

production of metallic tools to the generation of heat for winter protection.  Substantial 

improvements in primary energy extraction in the 19
th

 century coincided with reciprocal 

advances in the distillation of crude oil.  Innovations in the development of the internal 

combustion engine (ICE) and power plant in the late 19
th

 and early 20
th

 century led to the 

development of car assembly lines for mass car production and enhanced electricity 

distribution systems for industrial, business and household consumption.  Yet, the seemingly 

unending dependence on finite hydrocarbon fuels in the post-World War II era has posed a 

threat to the energy security of net energy importers in the developed world.  This presents an 

energy sustainability challenge to national governments and the myriad of stakeholders within 

the global energy system.   

 

Within the European Union, a major energy security issue comes in the form of its long-term 

dependence on energy imports.  The EU is the world’s largest net importer of energy products, 

with the majority of its imports being oil and gas.  The European Commission indicated that in 

2012, 53.3% of the EU’s energy supply came from imports, which was a higher figure than in 

2010 due to the increasing demand for solid fuels and crude oil for refined petroleum products.  

A disturbing fact is that during the same period, 65.8% of the EU’s gas supply and a historic 

high of 86.4% of its oil supply came from imports (EC, 2014).  A significant proportion of 

these supplies were from nations that the EU generally regards as politically unstable regions.  

Figure 1.1 shows the extent of import dependency for the UK, the EU’s four largest energy 

consumers and the EU average: 
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Figure 1.1: Percentage of energy supply made up of net imports for the UK, the  

EU’s four largest energy consumers and the EU average 

 

Source: ONS (2016) 

 

From an economic perspective, theory suggests that volatile increases in the price of oil in 

global commodity markets have a negative effect on a developed economy.  The effect is 

especially prominent in net energy importers such as the UK where the ripple effects are felt in 

the oil supply channels and the supply of goods and services.  Demand for petroleum products 

is inelastic, which means that changes to prices are unable to affect consumer purchasing 

habits, especially in the short run
1
.  As consumers are unaware of the length of time of an oil 

price increase, many lower and middle-income earners would make adjustments by reducing 

their expenditure on goods and services in order to maintain their expenditure on fuel for daily 

essential uses.  Any increases in expenditure on net oil imports through price hikes would be 

transferred abroad and do not count towards GDP, so the overall effect of price hikes in net oil 

imports is reduced household consumption and reduced GDP.  

 

The problems with energy security, sustainability and volatile oil prices are compounded by 

the urgent need to mitigate greenhouse gas (GHG) emissions that result from energy 

generation, industrial production and consumption.  The International Panel on Climate 

Change 4
th

 Assessment Report suggested that in order to stabilise GHG emissions to an 

                                                           
1
 Kilian and Murphy (2013) used a structural vector autoregression (SVAR) to estimate the short-run price 

elasticity of oil demand to be -0.2, which took into account the role of oil inventories in the smoothing of oil 

consumption.  The result was even higher than traditional estimates that do not account for oil price endogeneity. 
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average of 2 
o
C (3.6 

o
F) above pre-industrial levels, GHG emissions would need to be halved 

by 2050 in comparison to the 2005 level (IPCC, 2007a).  However, the World Energy Outlook 

report from the International Energy Agency indicated that at the current rate of relatively 

insignificant emissions abatement, fossil fuels would remain the dominant global source of 

primary energy by 2040 (IEA, 2014).
2
  Global fossil fuels consumption would account for 

80% of total primary energy consumption in the “Current Policies Scenario”, with coal 

consumption more than 50% higher in 2040 than in 2012.   

 

Based on the IPCC’s recommendation for a significant level of GHG emissions abatement in 

developed countries, the European Council in 2009 supported the EU goal for an 80-95% 

reduction in GHG emissions relative to 1990 levels.  The European Parliament also endorsed 

an 80% reduction target by 2050, with a medium-term target of a 25-40% GHG emissions 

reduction relative to 1990 levels by 2020 (EC, 2011a).  These policies had filtered through to a 

national level with the Conservative-led coalition government reiterating its commitment to 

the 2050 decarbonisation target in 2012 through its Annual Energy Statement (DECC, 2012).  

There’s an even more ambitious target that was established at an EU level by 2020: The 

British government has aligned itself with this target by committing to the actualisation of a 

“20% overall share of renewable energy in the EU and a 10% share for renewable energy in 

the transport sector” by 2020 (European Commission, 2009).   

 

It is clear that the process by which the UK meets the 80% emissions abatement target would 

be the through the decarbonisation of electricity generation.    In their Energy Roadmap 2050 

report, the European Commission stated that “Electricity will play a central role in the low 

carbon economy. The analysis shows that it can almost  totally  eliminate  CO2 emissions  by  

2050,  and  offers  the  prospect  of  partially replacing fossil fuels in transport and heating” 

(EC, 2011b).  The Committee on Climate Change, which was created under the Climate 

Change Act 2008 to advise the British government on its legal requirement towards the 2050 

decarbonisation target, echoed the sentiments towards full electrification at a European level 

while indicating major investments were needed in order to achieve this.  They stated that 

these investments would create an “opportunity for the UK to start building a decarbonised 

electricity generation system. Seizing this opportunity is vital, especially given the likelihood 

                                                           
2
 Asian countries are the main drivers of this growth.  However, the projected growth towards 2030 is slower than 

in the World Energy Outlook 2008 due to the impact of the global economic meltdown caused by the sovereign 

debt and financial crisis. 
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that electricity will play an increasing role in energy use beyond 2020, particularly in surface 

transport and heating” (Committee on Climate Change, 2008). 

 

The former Chief Scientific Advisor to the UK’s Department of Energy and Climate Change, 

Sir David MacKay assessed the move towards full electrification on behalf of the UK 

Government and recommended different scenarios that would enable the UK’s 2050 

decarbonisation target to be met (MacKay, 2012).  From a supply-side perspective, this would 

involve a significant growth in electricity generated from nuclear fission and renewable 

sources (especially offshore wind) as well as the commercial introduction of nascent 

decarbonised electricity generation sources such as carbon, capture and storage (CCS).  This 

must be weighed against the future retirement of oil and coal-fired power plants (excluding 

those fitted with CCS technology) and electricity imports through the interconnectors with 

France and the Netherlands.  From a demand-side perspective, the recommendation was for a 

significant growth in the electrification of industrial processes, increased electrification of 

commercial and residential appliances, and shifts towards plug-in hybrid and zero emission 

vehicles 

 

However, the variability of electricity supply from renewable sources, the pre-development 

status of CCS and public perceptions of the hazards from nuclear waste that were highlighted 

by OECD (2010) means that other sources of electricity supply are required for the 2050 

decarbonisation target.  When considering the 2050 period, nuclear fusion could be regarded 

as the most significant potential new source of high volume electricity.  Nuclear fusion 

involves the ‘forcing together’ of atoms, which is the process that takes place inside the sun.  

Fusion reactions are possible between certain elements but the easiest fusion reactions use 

deuterium and tritium, which are both hydrogen isotopes (Ongena and van Oost, 2006).  The 

fusion process is the opposite of fission, which involves the splitting of atoms to create energy.  

Fusion creates even more heat, light and energy and promises an almost limitless source of 

energy for the earth as deuterium is abundant in the world’s oceans.  Fusion power could 

therefore gradually replace fossil fuels as a global, high volume source of electricity if 

commercialisation takes place during the middle and latter half of this century. 

 

The €13bn International Thermonuclear Experimental Reactor (ITER) project in Cadarache, 

France has been hailed as the world’s most important fusion reactor project for the creation of 

fusion power.  The ITER fusion reactor is situated in a central area within the Cadarache site 
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where a giant magnetic field will be formed to create a container for the fusion reactions to 

take place.  The magnetic field is the only known entity that could physically contain the 

internally generated plasma with a temperature of up to 150 million degrees Celsius, the 

highest man-made temperature in world history and 10 times hotter than the sun’s core (ITER, 

2014).  A smaller reactor, the Mega Amp Spherical Tokamak (MAST) had 10 times less 

volume than ITER and was developed at the UK Atomic Energy Authority’s CCFE laboratory 

in Culham, Oxfordshire.  From a technological perspective, ITER would seek to demonstrate 

that fusion could produce almost limitless electricity that is clean, safe and emissions-free.  

From an economic perspective, the potential future roll-out of fusion power plants may 

provide a major catalyst for towards economic growth and development.  

 

1.2 Research objectives, methodology and contribution 

 

The central objective of the research involves the estimation of the potential environmental 

and economic impact of commercialised fusion power.  The assessment is estimated for the 

2050 period, which represents the British Government’s target date for an 80% reduction in 

GHG emissions, based on 1990 levels.  The research takes into account the econometric and 

techno-economic energy models used for estimation, the role of punitive government action in 

emissions abatement, the total cost of different energy mixes and the wider economic impact 

of commercialised fusion power on areas such as trade and consumption.   

 

While Chapter 2 provides a detailed review of the empirical literature and modelling 

techniques that underpins this thesis, the first empirical section of this thesis begins in Chapter 

3.  The single equation, multivariate econometric analysis in Chapter 3 provides the basis of 

our understanding of the potential role of fusion power, using nuclear fission (henceforth, 

nuclear) as a benchmark within the theoretical frameworks of the long run energy-economic-

environment nexus and the environmental Kuznets curve (EKC).   

 

The effect of nuclear energy on CO2 emissions abatement would also be of interest to the 

myriad of stakeholders in fusion power research and development due to a number of 

similarities.  The two energy sources generate decarbonised electricity from nuclear reactions 

and both are capital intensive with comparatively low fuel costs.  Both also require long lead 

times from the construction of power plants to the commencement of commercial electricity 

generation due to the complex engineering works that are undergone during the plant 
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development process.  The similarities inevitably end there as nuclear energy produces long-

lived radioactive waste and has a potential proliferation risk due to the use of fissile materials 

for nuclear weapons whereas fusion power has a much lower impact on the environment and a 

far greater abundance of primary fuel from deuterium, which is contained in seawater. 

Nevertheless, nuclear energy could provide an interesting guideline of the relationship 

between CO2 emissions and electricity generated from power plants that have long 

development periods.   

 

Chapter 3 therefore uses the single equation, autoregressive distributed lag (ARDL) / bounds 

test method of cointegration analysis (Pesaran, Shin and Smith; 2001) to assess the long run 

equilibrium and short run dynamic relationships within the nuclear-GDP-CO2 nexus.  Global 

action on climate change has necessitated the need for GHG emissions to be considered as part 

of the long-run, energy-economic-environment nexus study.  Only three known sources of 

literature had seriously considered this area: Baek and Pride (2014) used a cointegrated vector 

autoregression (CVAR) to model the long run relationship between nuclear electricity 

generation, CO2 emissions and per capita GDP in six countries.  On the other hand, Baek and 

Kim (2013) and Iwata et al (2010) used the ARDL-bounds testing method of cointegration 

analysis with similar variables solely for South Korea and France respectively.   

 

There is limited evidence in the literature of a comprehensive use of the ARDL-bounds test 

method of cointegration for the energy-economic-environment nexus in the UK.  This thesis 

therefore fills this gap by providing a significant contribution to the empirical literature that 

concerns the short and long run relationships between British nuclear energy, GHG emissions 

abatement and economic growth, represented by gross domestic product (GDP).   The nuclear-

GDP-CO2 elasticities would also provide a future guide for the UK's fusion power programme 

concerning the expected estimates of any future elasticities for fusion power within a 

multivariate framework.   

 

This chapter also assesses this relationship through the estimation of Granger causality tests.  

It is remarkable that only Iwata et al (2010) had considered CO2 emissions as an additional 

variable within the Granger causality test of the nuclear-GDP nexus.  This thesis therefore 

provides an empirical contribution to this area through the inclusion of CO2 emissions as a 

variable within a multivariate framework that includes nuclear electricity production, GDP and 

other economic variables for the UK.  An additional empirical contribution would come 
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through a comparison of the results between the Wald test from a standard multivariate 

Granger causality estimation and the modified Wald (MWald) test proposed by Toda and 

Yamamoto (1995).  The MWald tests are included as it provides a more statistically robust 

estimation than the standard Wald test through its adherence to a chi-squared      

distribution.   

 

The following research questions are addressed in Chapter 3: 

 

(a) What does the econometric modelling of nuclear fission tell us about (1) the 

environmental impact of electricity generation in conjunction with other economic 

variables and (2) the potential future impact of fusion power? 

(b) What additional information could we gain if we include an additional variable that 

enables a comparative analysis of the effect on CO2 emissions abatement between 

punitive government action and nuclear electricity generation? 

(c) While taking nuclear electricity generation into consideration, is there a point during 

the sample period where the ratio of CO2 emissions to GDP declines?  

 

The empirical analysis in Chapter 4 takes into account the modelling frameworks that were 

used by the UK Government and other organisations in its projection of the long-term energy 

mix scenarios to 2050.  The general view from the energy projections of non-governmental 

organisations (NGOs) and energy sector associations is that electricity consumption will need 

to increase dramatically in 2050 from 1990 levels based on the shift in primary energy inputs 

used in electricity production (WWF, 2007; Eurelectric, 2010; Greenpeace, 2010; WBCSD, 

2010).  DECC (2009) described how the UK's final energy consumption of electricity 

increased in 1978 from 19.3 million tonnes of oil equivalent (Mtoe) to 29.4 Mtoe in 2008, an 

increase of 52.3%.  No other major type of final energy consumption has achieved such 

growth within this 30-year period.  The energy stakeholders had also factored in an increase in 

the decarbonisation of power generating facilities, increased renewable energy sources, 

increased carbon capture and storage (CCS) and moves towards transport electrification.   

 

It is clear from these policy objectives that commercialised fusion power could potentially 

contribute to mitigating some of the disadvantages that these organisations have noted in their 

energy projections towards 2050 such as the impact on the economy, land availability for 

bioenergy, the future of fossil fuels and the role of nuclear energy.  Chapter 4 therefore 
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provides a contribution to the energy modelling literature for 2050 by including fusion power 

for the first time into the Department of Energy and Climate Change (DECC) 2050 Energy 

Calculator.
3
 This techno-economic energy model would require a unique recalibration in order 

to integrate fusion power within the UK’s 2050 energy mix.  Projections of economic 

variables include the costs of capital expenditure, operations and fuel inputs as well as 

projections of emissions, energy demand and energy supply.   

 

The following research questions are addressed in Chapter 4: 

 

(a) What are the demand, supply and economic assumptions for the “Fusion Pathway” that 

underpins the recalibration of the 2050 Energy Calculator? 

(b) How does the policy objectives from the output of the Fusion Pathway compare with 

the policy objectives from other multinational organisations that have used the 2050 

Energy Calculator to model the UK’s future energy mix? 

 

The post-Kyoto Protocol global agenda on climate change mitigation saw a flurry of literature 

that sought to determine the effects of policy instruments on GHG emissions abatement while 

assessing the overall impact to the economy.  Gottinger (1998), Zhang (1998), Rose and 

Oladosu (2002), O’Ryan et al (2005), Schaefer and Jacoby (2005) and Böhringer and Löschel 

(2006) were among a number of studies that addressed this area by using computable general 

equilibrium (CGE) models to estimate the macroeconomic impact of carbon emissions permits 

and/or carbon taxes, albeit at various permit pricing and carbon tax regimes.  The post-

financial crisis era of 2007-08 had increasingly seen CGE models used in conjunction with 

bottom-up, partial equilibrium projections of the 2050 energy mix in order to assess the future 

macroeconomic impact of differing energy and environmental policies.   

 

Chapter 5 therefore consists of a multiequation analysis, which initially involves the 

estimation of five theoretical relationships of economic and fiscal variables using Johansen’s 

maximum likelihood estimator of cointegration analysis (Johansen; 1988, 1991) and the vector 

error correction model.  Forecast evaluations and projections are then made towards 2050, 

with the projections acting as inputs into a CGE model that uses the Salter-Swan theoretical 

                                                           
3
 Since July 2016, the Department for Energy and Climate Change has merged into a new Department for 

Business, Energy and Industrial Strategy (BEIS).  The 2050 Energy Calculator still retains its original name as at 

December 2016. 
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framework.  The estimates from the Fusion Pathway and competing energy mix pathways 

from the previous chapter then act as shocks to specific areas of the British economy’s 2050 

projections.  Policy response adjustments are subsequently applied to variables such as 

environmental taxes (through the indirect tax variable), which enables the wider economic 

impact to be determined from the competing energy mixes.  This particular modelling route 

provides a major thrust to the thesis’ overall contribution as no existing studies had used the 

multiequation route to estimate the economic impact of a fusion pathway and other energy mix 

scenarios for 2050.  The study that provides the nearest methodology to this particular chapter 

is Moore (2011), who used the Salter-Swan CGE framework to model the economic impact of 

two climate change scenarios on projected economic and environmental data for 2050 

 

The following research questions are addressed in Chapter 5: 

 

(a) How does the five theoretical relationships encapsulate the UK’s economic activity?  

(b) Would the estimated econometric projections towards 2050 enable reasonable 

inferences of the British economy to be made? 

(c) What is the extent of the policy response adjustments of the competing energy mix 

scenarios for 2050 and what are the wider economic impacts of these adjustments on 

the projected economic variables?  

   

1.3 Overview of the thesis  

 

Chapter 2 provides a literature review of the role of fusion power from a technical, historical 

and economic perspective.  The econometric results from the assessments of the current 

energy mix are highlighted with a special emphasis on the use of cointegration analysis, vector 

error correction modelling and Granger causality in order to estimate the role of nuclear 

energy within a multivariate framework.  A review is given on the partial equilibrium, techno-

economic energy models that were used in the literature to generate projections of the UK’s 

energy mix to 2050, the target year for the 80% emissions reduction over 1990 levels.  The 

energy policy objectives for the 2050 target year are also provided from a number of European 

organisations.  Finally, the wider economic impacts of differing emissions abatement scenarios 

are considered through the use of computable general equilibrium models, with the literature 

focusing on the historical and empirical application of these models.   
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Chapter 3 uses the ARDL-bounds test method of cointegration analysis to estimate the long 

and short run elasticities of the energy-economic-environment nexus, with nuclear energy used 

for benchmark purposes.  The multivariate model includes an environmental tax variable as it 

would offer a comparative analysis of the effect on CO2 emissions abatement between punitive 

government action and nuclear electricity generation.  Further assessments include tests of the 

turning point on the environmental Kuznets curve and two methods of Granger causality 

analysis.  

 

Chapter 4 provides a unique recalibration of the UK government’s 2050 Energy Calculator, 

which adds fusion power into the energy mix.  The new “Fusion Pathway” consists of a 

configuration of the energy mix with professional estimates of fusion capital and operating 

costs.  Projections from the Fusion Pathway are made towards 2050, which are compared to 

two existing expert pathways that were estimated by National Grid plc and Friends of the 

Earth.  Estimates include projections of greenhouse gas emissions, measured in metric tonnes 

of CO2 equivalent as well as energy supply, energy demand and costs of the energy system. 

 

Chapter 5 uses multiequation econometric methods to project estimates of economic variables 

towards 2050.  A CGE model that follows the Salter-Swan framework then considers the 

comparative impact of the Fusion Pathway and Friends of the Earth Pathway on the projected 

estimates of the UK’s economy in 2050, with the National Grid Pathway acting as the 

reference pathway.   

 

Chapter 6 provides a summary of the main findings and a synthesis of the conclusions, which 

have implications for policy decision makers.  The limitations within the thesis are 

summarised and recommendations for future research are offered.  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction  

 

2.1.1  Review of fusion power  

 

Nuclear fusion is a fundamental energy reaction that is present in the sun and all of the stars of 

the universe.  Fusion reactions involve the forcing together of atoms in order to produce 

extraordinarily high temperatures, which result in the release of vast amounts of energy.  This 

process is the opposite of nuclear fission, which involves the splitting of atoms for the release 

of energy.  The United Kingdom Atomic Energy Authority (UKAEA) currently owns and 

operates the UK's pioneering national laboratory for fusion power research, the Culham Centre 

for Fusion Energy (CCFE).  Fusion power research in the UK and worldwide seeks to 

reproduce this naturally occurring stellar process here on earth for the production of 

unprecedented quantities of fusion power that are free from greenhouse gas emissions. 

 

CCFE (2012a) describes the easiest method of achieving a fusion reaction on earth through the 

fusion of deuterium and tritium, each being heavy forms of hydrogen.  The deuterium-tritium 

fusion process produces a helium and high-speed neutron nucleus, with both elements carrying 

energy.  The higher-energy neutrons carry kinetic energy that are decelerated by a blanket of 

dense material to produce electricity in a fusion power plant (CCFE, 2012b).    

 

Figure 2.1: Schematic of the deuterium - tritium fusion reaction 

 

   

Neutron (n) 

 

Deuterium (D) 

Tritium (T) 

Helium (He) 

Source: CCFE (2017) 
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Deuterium is a naturally occurring, non-radioactive hydrogen isotope that can be extracted 

from seawater and all of the world's oceans.  Approximately 35g of deuterium for every cubic 

metre of seawater can be extracted while tritium can be produced from lithium (an abundant 

light metal), which is subsequently recycled backed into the fusion power plant as fuel 

(EURATOM, 2004).  CCFE (2012a) provides a window into the enormous efficiency of 

fusion power by explaining that the lithium contained in one laptop battery in conjunction with 

half a bath of seawater would provide energy for 200,000 kW hours of electricity, 

approximately 70 tonnes of coal.  This is equivalent to the UK's per capita electricity 

consumption for around 30 years.   

 

Fusion reactions naturally occur within the sun with temperatures of around 6,000 
o
C on the 

surface and 15 million 
o
C at the core.  According to ITER (2014), the temperature of the sun 

combines with its density at its core to form the necessary conditions for the generation of 

fusion reactions.  The earth's gravity is far too weak in comparison so a different technique is 

required to generate fusion power at much higher temperatures than the sun's core.  In fact, the 

temperatures in a fusion reactor must reach around 150 million 
o
C or 10 times the temperature 

of the core of the sun in order to achieve the fusion reaction process on earth. 

 

Figure 2.2: Hot plasma naturally occurs in the sun and man-made at CCFE 

   

 

   
 

Source: CCFE (2010) 
 
 

2.1.2 Technology used in fusion power production 

 

Plasma is one the four states of matter with the other three states being solid, liquid and gas.  

General Atomics (2001) describes the properties of plasma as a "gaseous soup of positively 

and negatively charged particles" which result from atoms that are heated to very high 

temperatures.  In a fusion reaction, the plasma becomes exceptionally hot and fragile and must 

3 metres 1.4 billion metres 
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therefore be contained in a magnetic confinement system.  The tokamak is currently the 

world's most advanced magnetic confinement system and is the basis of future confinement 

system designs across the world
4
.  Tokamaks contain a vacuum vessel, which creates the 

plasma by driving a current through a small puff of gas.  The hot plasma would be 

contaminated and cooled if it came into contact with any surfaces so it is confined within the 

Tokamak by toroidal and poloidal magnetic coils (CCFE, 2014).   

 

The heating of the plasma is provided by a transformer but it only provides a portion of the 

heat.  Additional heating is required in order to raise the temperature of the plasma up to 150 

million 
o
C.  This is provided by a high speed injection of beams of energised hydrogen atoms.  

As they collide with the plasma, they transfer their energy to the plasma, providing the 

additional heat in the process (Fusion for Energy, 2014).  The UK is fortunate to host the 

world's largest magnetic confinement system, the Joint European Torus (JET), which has 

achieved all of its research objectives, including a world record 16 MW of generated fusion 

power
5
 (EC, 2004).  Figure 2.3 provides a general layout of the JET nuclear fusion reactor:   

 

                                  Figure 2.3: Electromagnetic coil set up of JET  

 

 
 

Source: Eurofusion (2005) 

                                                           
4
 Tokamak is a transliteration of the Russian acronym TOKAMAK, which stands for “Toroidal chamber with 

magnetic coils” 
5
 The input power for the 16MW world record was 24MW, providing a net gain of 0.7.  However, a net gain of 1 

is required in order to breakeven and higher net gains with minimal input power are required in order to achieve 

sustainable fusion power.  
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JET is based on the tokamak design and is the only experiment that is capable of using tritium 

and special materials for the lining of the inner tokamak walls such as beryllium (EFDA, 

2012).  JET research is the main focal point of the European Atomic Energy community 

(EURATOM) and is managed by UKAEA under a contract with EURATOM.  Research is 

carried out on JET by British scientists, scientists from other EURATOM laboratories and 

scientists from non-European laboratories (UKAEA, 2007). 
 

 

The EURATOM fusion power programme consists of a collaboration between member states 

and associated states (currently Switzerland) in order to pool scientific and technological 

expertise together for the eventual realisation of commercial fusion power.  The European 

Commission (2014) describes the objectives of EURATOM, which focus on a variety of 

activities such as scientific exploitation of experimental fusion reactors, plasma physics, 

diagnostic studies, tritium breeding blanket research and advanced materials testing.  Most 

EURATOM institutions operate with the tokomak model as the scientific advancements and 

performance of the tokamak were evident as early as 1968 (see Braams and Scott, 2001; ITER, 

2008; Meade, 2011).  However, some institutions use two alternative magnetic confinement 

models: the stellarator and reverse field pinch (RFP) devices.  Table 2.1 shows a summary of 

the main experimental fusion reactors at the EURATOM network of laboratories and the 

heating power for the plasma: 

 

Table 2.1: Devices within the EURATOM network of fusion power laboratories 
              

Name Device Organisation Location Operation  Heating Plasma 

    

year (MW) volume (m
3
) 

              

        

ASDEX Upgrade T IPP Garching, Germany 1991 - present 27 

 

13 

 COMPASS-D  T IPP Prague, Czech Republic  2006 - present 0.6 

 

U 

 EXTRAP-T2R RFP NFR Stockholm, Sweden 1994 - present 3 

 

0.4 

 FTU T ENEA Frascati, Italy 1990 - present 9.2 

 

U 

 ISTTOK T IST Lisbon, Portugal 1991 - present 1 

 

0.06 

 JET T UKAEA Culham, UK 1984 - present 38 

 

100 

 MAST ST UKAEA Culham, UK 1999 - 2013 5 

 

8 

 RFX RFP ENEA Padua, Italy 1992 - present 40 

 

8 

 TCV T CRPP Lausanne, Switzerland 1992 - present 4.5 

 

1.47 

 TEXTOR T FZJ Julich, Germany 1983 - 2013 9 

 

7 

 TJ-II S CIEMAT Madrid, Spain 1997 - present 2 

 

1.1 

 TORE SUPRA T CEA Cadarache, France 1988 - present 20 

 

25 

 Wendelstein 7-X S IPP Greifswald, Germany 2015 - present 14 

 

30 

 
                

T = Tokamak, ST = Spherical Tokamak, RFP = Reversed Field Pinch, S = Stellarator and U = Unavailable data 
 

Source: European Commission (2013) 
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Stellarators are similar to tokamaks as they operate with the toroidal configuration but differ 

from tokamaks in that the toroid is helically wound i.e. spiral (Braams and Scott, 2002).  

Escande et al (2000) indicated that tokamaks and RFP share similar axisymmetric properties in 

terms of the shape of the magnetic surfaces around the torus but differ in that the toroidal field 

is produced by external magnetic coils in the tokamak while the toroidal field is generated by 

the plasma in the RFP.  Escande et al (2000) further indicates that a significant issue with the 

RFP is that the plasma's role in generating the toroidal field tends to create 

magnetohydrodynamic instabilities in the plasma ring, which ruptures the torrodial symmetry 

of the magnetic field.   

 

Magnetohydrodynamic disturbances in RFP devices also causes turbulence in the magnetic 

field lines, which diminishes energy containment.  On the other hand, Helander et al (2012) 

argues that there are a number of advantages and disadvantages between the stellarator and 

tokamak including greater magnetohydrodynamic stability for the stellarator and stronger 

neoclassical energy confinement in the tokamak.  Nevertheless, the greater plasma physics 

advancements of the tokamak means that stellarators are less well understood, technically 

more complex and have a greater number of degrees of freedom in order to find the most 

suitable configuration of the magnetic field (Wolf et al, 2013).  

 

2.1.3 The International Thermonuclear Experimental Reactor (ITER) 

 

ITER is an international scheme that is currently in the development process in Cadarache, 

South of France with the aim of demonstrating the technical feasibility of fusion power.  ITER 

(2014a) points out that the scheme constitutes the largest scientific project in the world with 

the participating countries representing more than half of the world's population.  The 

participating countries are the United States, the EU, China, Japan, Russia, India and South 

Korea. 

 

The ITER agreement was signed in 2006 by ministers from the 7 ITER members
6
 at Elysée 

Palace in Paris.  The establishment of the ITER organisation took place in 2007 and site 

preparation and construction began in 2007 and 2010 respectively (ITER, 2014b).  At the heart 

of the ITER project lies the €13bn tokamak fusion reactor, whose design is based on the JET 

                                                           
6
 The UK is expected to become the 8

th
 ITER member in its own right after its eventual exit from the EU 

following the June 2016 referendum vote to leave the bloc.  
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facility at CCFE but double the size.  The design of the ITER reactor is based on the success 

achieved by a wide variety of fusion experiments in Europe and around the world as well as 

successes in theoretical and modelling work (CCFE, 2012a).  ITER (2014a) describes the 

dimensions and output of its tokamak, with a weight of 23,000 metric tonnes, height and width 

of 30 metres, Plasma volume of 840m
3
, plasma core temperature of 150 million 

o
C and fusion 

power of 500MW.  A number of new technologies will be tested at ITER such as 

superconducting coils, remote maintenance and tritium breeding blankets that absorb the 

energy from neutrons.  Figure 2.4 shows a cross section of the ITER conceptual design: 

 

Figure 2.4: ITER nuclear fusion reactor 

 

 
 

Source: ITER (2013) 

 

 

2.1.4 Historical and current status of fusion power 

 

The science of fusion was already understood during the first half of the 20
th

 Century.  

Eddington (1919) understood that a fusion process of hydrogen into helium was responsible 

for a star's release of energy while Hendry (1987) describes how sufficient advancements in 

research had been made in the 1930s such as the discovery of deuterium and neutrons, which 

enabled scientists to contemplate the development of a controlled nuclear fusion device.  

However, the story of the tokamak fusion reactor starts with Oleg Lavrentiev, a Soviet Union 

soldier who drew the attention of the Soviet government to controlled thermonuclear reactions.  

His letters were passed onto two nuclear weapons scientists, Igor Tamm and Andrei Sakharov, 
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who subsequently conceived the design for their reactor which they called "tokamak" in 1950 

(Meade, 2011).  

 

Braams and Scott (2001) describes how fusion power stepped into the international limelight 

at Geneva in 1958 during the 2
nd

 UN International Conference on the Peaceful Uses of Atomic 

Energy.  At the time, the UN International Atomic Energy Agency (IAEA) seized the initiative 

by organising a series of conferences on controlled fusion and plasma physics as well as 

publishing the journal Nuclear Fusion in 1960.  The 1968 IAEA conference in Novosibirsk 

also established the tokamak's performances in the eyes of the West.  An expedition from 

Culham's UKAEA were left in no doubt about the spectacular performance of the Russian-

designed reactors and a number of fusion power experimental reactors were built in the Soviet 

Union, Europe, the United States and Japan during the 1970s,  This early work laid the 

foundation for the modern designs of the JET and ITER tokamaks. 

 

A recurring issue with fusion power research and development is the seemingly long 

timescales that have been given for commercialisation.  EURATOM was established alongside 

the European Economic Community (EEC) as part of Article 163 of the Treaty of Rome in 

1957 (Treaty of Rome, 1957), with the main purpose of pooling together resources for the 

development and civilian use of nuclear energy (Europa, 2007).  By the 1960s, it was nuclear 

fission and not nuclear fusion that set the pace as the commercialisation of nuclear fission 

went underway in the US, Europe and the Soviet Union.   

 

Rowberg (2000) describes how the United States Congress constantly probed the fusion 

programme officials in the 1960s on the timescales to fusion power commercialisation while 

advising them to focus on concepts that would save money and accelerate development 

progress.  The United States Congress Joint Committee on Atomic Energy (JCAE) responded 

by officially declaring that fusion power would be demonstrated within a 10 to 11 year period 

from 1967.  However, Rowberg (2000) further highlights that the JCAE received a report in 

1976 that fusion would not be ready for at least another 40 years and in 1984, the US 

Department of Energy indicated that commercial fusion power was around 40 - 50 years away 

due to insufficient scientific progress. 

 

A number of studies such as D’haeseleer (2003) concluded that the commercialisation phase 

of fusion power might come in the early part of the second half of this century i.e. after 2050.  
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However, one of the recent themes in fusion power R&D is the so-called "fast-track" approach 

towards commercialisation, which is further incentivised by the UK and EU-wide 80% 

decarbonisation target by 2050.  The King Report (2001) assessed the ITER-DEMO-PROTO 

route to commercialisation and concluded that ITER and IFMIF (International Fusion 

Materials Irradiation Facility) should be parallel projects.  The report also concluded that the 

post-ITER stages of DEMO (demonstration power plant) and PROTO (prototype power plant) 

should be combined into a single step.  Dr David Ward, Head of Power Plant Technology Unit 

at CCFE modelled three scenarios for a fast track option, with "Case 1" showing that an 

ambitious construction of DEMO after the completion of the ITER/IFMIF build is the riskiest 

but most financially rewarding scenario, with a potential time to commercialisation of 25 years 

(Ward et al, 2004).  Furthermore, a group of scientists from the EURATOM/UKAEA Fusion 

Association concluded that the first commercial power plant could potentially be in operation 

43 years after the decision to proceed with ITER and IFMIF i.e. 2006.  They mentioned that 

the inclusion of buttresses to reduce overall risk would shave 4 years off the 

commercialisation date, giving 2045 as the year when the commercialisation of fusion power 

could take place (Cook et al, 2005).  These fast-track routes had necessitated the need for 

modelled scenarios that would assess the contribution of fusion power as a green, sustainable 

energy source towards the UK's 2050 decarbonisation target. 

 

Global optimism in the fusion R&D programme has evidently increased with the development 

work that is currently taking place at ITER.  The UK is part of the European Fusion 

Development Agreement (EFDA) and the 2012 "Roadmap" stipulates their aim to achieve 

market penetration of fusion power by 2050 with a 30% market of electricity production by 

2100 (EFDA, 2012).  Despite the global ITER collaboration, EFDA specifically names China 

as embarking on an "aggressive programme aimed at fusion electricity production well before 

2050", which they say, should drive Europe to focus its efforts and keep up the pace (EFDA, 

2012).  A brief summary of the EFDA 2012 Roadmap is as follows: 

 

Stage 1 Construction of the 500 MW International Thermonuclear Reactor (ITER) 

currently underway at Cadarache, south of France with completion scheduled for 

2020.  Seeks to demonstrate tritium breeding and extraction.  Full exploitation to 

be carried out from 2020 until 2040. 

Stage 2 Development of the JT-60SA tokamak.  This Europe-Japan joint venture is 

scheduled to have a 6-year assembly and commissioning period.  The JT-60SA is 
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based in Naka, Japan with first plasma production expected by 2019.  The main 

purpose of JT-60SA would be to support and complement the work of ITER. 

Stage 3 The International Fusion Materials Irradiation Facility (IFMIF) is a facility whose 

construction is currently underway in conjunction with ITER.  This facility seeks 

to test materials that would be used for ITER, DEMO and future fusion power 

plants.  Design and prototyping were carried out by agreement between Europe 

and Japan. 

Stage 4 Construction of the demonstration fusion power plant (DEMO) to begin in the 

early 2030s with full tritium breeding capability.   

  

There are challenges highlighted by the EFDA 2012 Roadmap that must be faced by DEMO 

prior to the realisation of commercial fusion power such as tritium self-sufficiency, 

maintenance of plasma at high temperatures and the development of strong materials that are 

able to tolerate the high-speed onslaught of 14MeV neutrons.  The recommendation at the 

DEMO stage is for industry to gradually shift its focus from materials and components 

suppliers to drivers in innovation and fusion power development.  Stork (2009) questions the 

sustainable nature of fusion power if it is dependent on helium and urges the DEMO planners 

to pursue the development of high-temperature superconducting magnets that do not require 

helium cooling.  Bradshaw et al (2011) also expressed reservations about the "virtually 

limitless" energy term often given to fusion power as the reactors currently rely on the rare 

beryllium metal as an interior wall coating for neutron multiplication.  They suggest that other 

neutron multiplier options should be sought for commercial fusion power plants.   

 

2.1.5 The costs and potential benefits of fusion power 

 

During the early 1980s, the United States Congress supported fusion power R&D at the 

expense of renewables R&D.  Rowberg (2000) describes how the administration of Ronald 

Reagan chose to reduce federal funding of R&D budgets that they felt the private sector could 

handle.  The first Reagan budget for fusion power in FY1982 was USD460m and USD241.7m 

for renewable energy.  This contrasted sharply with the FY1981 budget of USD396m for 

fusion power and USD654.4m for renewable energy.  Relatively slow scientific progress 

impacted the fusion power budget five years into the Reagan administration to USD333m, a 

27.6% decrease from the FY1982 budget.    
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The past, present and future costs from the global fusion R&D programme are highlighted in 

Table 2.2, with data from the "Current Status" publication by the European Parliament (2003).  

On assessment, the EU’s 5
th

 Framework budget (1999-2002) has an average annual fusion 

R&D expense that is less than the 4
th

 Framework budget (1995-1999) and is in line with the 

decline in R&D spending on fusion in the United States.  However, despite EURATOM 

(2004) classifying fusion power research as a "Priority Thematic Area", the 6
th

 EU Framework 

budget (2002-2006) for fusion power declined from €788m to €750m.  Among the major costs 

of global fusion expenditure is ITER, which had a budget of €4.6bn in 2004 (EC, 2004).  

However, as at 2011, the project costs of ITER were nearly triple the 2004 estimate at €13bn 

(ITER, 2014a), drawing stinging criticism about its "exorbitant" costs from the German 

government's Federal Ministry of Education and Research (EUobserver, 2011).  From a UK 

perspective, spending on fusion power research is carried out by the Research Councils via the 

RCUK Energy Programme.  DECC (2013) highlighted UK fusion power budget of £31.9m in 

2011/12, which is relatively modest in comparison to other leading fusion power developers.  

However, this represents a £2.1m decline from the 2010/11 RCUK fusion power budget 

(House of Lords, 2011) and leaves open the question of what the most appropriate level of UK 

Research Council and EURATOM funding that is required for the implementation of the fast 

track objective of commercial fusion power by 2050.   

  

Table 2.2: Historical and future expenditure on fusion power research and development 

Fusion power expenditure Total spent (€) 

OECD fusion power spending from 1974 - 1998 30bn 

Amount spent on fusion R&D in the EU up to the late 1990s 10bn 

Annual investment in fusion power R&D (as at the late 1990s) 1.4bn 

Annual EU spend on fusion power R&D from 1995-1999 470m 

US Dept of Energy (DOE) request for fusion R&D budget (2001) 249m 

Planned fusion power budget for Germany in 2001  116m 

"5th Framework" 3 year EU budget for fusion R&D (1999-2002) 788m 

Investment in ITER  13bn 

Investment in IFMIF (vital prerequisite for DEMO) 600m 

Scheduled investment in DEMO (1,000 MW fusion power plant)   8bn 

Estimated global R&D spending up to the point of future fusion electricity 

generation 
60 - 80bn 

 

Source: Data cited in the European Parliament (2003) 
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In relation to fusion electricity costs, the levelised cost of electricity (LCOE) methodology was 

used in a number of studies to determine the estimated discounted costs of producing fusion 

electricity per kWh.  For example, in their study of the deployment options for fusion power 

plants, Sheffield et al (2000) highlighted the decline in the estimated fusion LCOE relative to 

the capacity of a future proposed power plant.  They described LCOE ranges for two proposed 

power plant models of $0.038 to $0.055/kWh based on the power plant capacity range of 

4000MWe to 1000MWe and an LCOE range of $0.055 to $0.087/kWh for an alternative 

proposed power plant model with a similar capacity range.  Furthermore, EFDA (2005) found 

that the estimated LCOE in four different conceptual fusion power plants ranged from 5 to 9 

Eurocents/kWh, dropping down to 3 to 5 Eurocents/kWh when taking into account 

technological maturity in power plant physics and engineering.     

 

In terms of benefits, scientists from the EURATOM/UKAEA Fusion Association at CCFE and 

the EURATOM/CIEMAT Fusion Association at Madrid carried out a socioeconomic analysis 

of commercialised fusion power and used probabilistic decision analysis to assess its overall 

future value (Ward et al, 2005).  The costs and benefits were then discounted to provide an 

NPV of the fusion power programme.  Their calculations indicated a total discounted 

development cost of between USD 10-20bn in 50 years from 2005 with an overall discounted 

future benefit of USD 400-800bn based on a 10-20% market share.  The market share 

calculation is consistent with Gnansounou and Bednyagin (2007), who used a probabilistic 

electricity simulation model, PLANELEC-Pro and concluded that commercialised fusion 

power may potentially capture up to 20% of the global energy market.  

 

2.2. Modelling the current energy mix 

 

2.2.1 Growth of energy as a commodity 

 

The accelerated growth of global energy consumption finds its roots in the transition from the 

more traditional agricultural economy where land was used for farming and housing to a more 

industrial economy.  Innovations during the Industrial Revolution such as the steam engine 

marked the major acceleration of coal as a primary source of fuel over wood fuels.  The post-

World War II oil and gas boom of the mid 20
th

 century accompanied the socio-economic and 

political changes that were taking place around the world as oil and gas dominated the 

landscape for transportation fuels, heating, lighting and manufacturing. 
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The International Energy Agency highlighted the continued strength of demand for oil in 2014 

with global demand estimated to increase by 1.3 million barrels per day (mb/d) to 92.6 mb/d, 

while 9 of the world’s top 10 consumers of oil are projected to increase their demand from 

2013 levels (IEA, 2014).  Despite the rapid progress that developed nations have made in 

reducing their carbon emissions after the Kyoto Protocol, BP plc (2016) estimated that global 

oil (including biofuels) and coal consumption between 2014 and 2035 would increase on 

average by 1.02% and 0.48% per annum respectively, with non-OECD consumption growth 

driving demand.  Their more significant 2011-2035 energy consumption projections came 

from renewables at 15.66% p/a, nuclear energy at 2.37% p/a and hydroelectric power at 2.14% 

p/a.   

 

However, these projections contrast with the Shell (2011) future energy scenarios where 

global coal consumption is expected to double between 2000 and 2030.  The so-called 

“scramble” to cheap coal is envisaged because of the expected pressure from national 

governments to encourage energy independence, even in the face of strong opposition from 

environmental groups and non-governmental organisations.  Renewables (including biofuels) 

are also projected to have a greater share of global fuel consumption in 2030 than the BP plc 

(2016) projections.  The contrasting projections between two of the world’s largest energy 

companies raises the question: which modelling techniques produce the best forecasts and 

projections of the UK’s energy mix and what are the relative merits of each technique? 

 

It is arguable that there is no model that could accurately forecast the future scenarios for 

either the UK or global energy mix as Box and Draper (1987) famously stated that “all models 

are wrong, but some are useful”.  However, the role of energy as one of the dominant drivers 

of the global economy as well as the strong projected growth in primary energy consumption 

and power generation has warranted the use of a variety of sophisticated econometric and 

techno-economic energy models.  These models have greatly helped policy makers, energy 

producers and investors to have an idea of the direction of the future energy mix in order to 

develop a strategy that helps them to maximise their benefits from the energy sector.   
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2.2.2 Energy models 

 

There are general features that are common among energy models.  For example, energy 

models should be a reflection of economic theory and should use suitable energy and 

economic explanatory variables that have some form of causal influence on the dependent 

variable such as energy price.  Energy models can be classified in many ways such as static 

versus dynamic, bottom-up versus top-down, univariate versus multivariate or they could be 

classified by energy type such as oil, gas, coal, solar and nuclear.  The energy type may 

determine the type of energy model used for forecasting or scenarios projections e.g. oil may 

use an autoregressive model for forecasting price.  On the other hand, future energy sources 

such as fusion power could benefit from a bottom-up, partial equilibrium energy model as this 

source of energy has yet to be commercialised, which means that estimates of the price of 

future inputs, such as materials, are a contributory factor on the projection of electricity 

demand and supply scenarios. 

 

The purpose of the energy model may also determine the modelling technique.  For example, 

Sftetsos (2002) provides a typical scenario where wind speeds are modelled as wind energy 

load is a factor of wind speed, while Chen et al (2011) builds on the significant literature on 

the forecasting of photovoltaic power production by using a hybrid model that captures the 

hourly solar irradiation and air temperature levels of a region.  The structural form of the 

energy model should be developed based on an understanding of the following: 

 

(1) What is the purpose of the energy model (e.g. demand forecasting, price prediction, 

energy load factor analysis etc)? 

(2) What theoretical assumptions are the energy models based on? 

(3) Which types of models are best suited to adequately represent the different energy 

types and systems? 

(4) Does the sample size of the data allow for sufficient inferences to be drawn from the 

model’s estimates? 

(5) What are the implications of the mathematical approach to the modelling technique? 

(6) What is the wider impact of the results to the specific energy sector and economy? 

 

A review is carried out on the models that were previously used to generate estimates and 

forecasts of the existing energy mix in order to understand the validity of the techniques 
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against the different sources of energy.  This assessment will form the basis of the modelling 

techniques that will act as a guide as to what to expect from fusion power.   

 

Frey et al (2009) provides an example of a broad classification of energy price models into (a) 

times series models that study the statistical properties of energy data over time (b) financial 

models that model the relationships between spot and futures prices and (c) structural models 

that study causal relationships between economic and energy price data.  However, the review 

in this section narrows down the classification as the econometrics literature on energy 

modelling is dominated by three techniques: (1) ARMA models (2) cointegration and the 

vector error correction (VECM) models and (3) Granger causality models.  

 

2.2.3 Autoregressive moving average (ARMA) model 

 

One of the earliest uses of the autoregressive (AR) family of univariate time series models in 

the 20
th

 century came from Yule (1927) where he used an autoregressive process to model 

Wolfer’s annual sunspot numbers, using data from 1749 to 1924.  Slutsky (1927, 1937) 

extended the understanding of the moving average (MA) model, which he called a “moving 

summation with weights of one kind or another”.  However, the foundation of the ARMA 

model came from Wold (1938), whose “Wold decomposition” demonstrated that a stationary 

time series can be separated into a deterministic part and a moving average part.  The Wold 

decomposition has come to play a central role in univariate time series analysis as it implies 

that the dynamic of the purely indeterministic part of a covariance-stationary process can be 

approximated by an ARMA process (Diebold, 2004). 

 

The influential Box-Jenkins (1976, first edition 1970) approach for the autoregressive moving 

average model (ARMA) has come to set the benchmark for the estimation of univariate energy 

models and takes the following form: 

 

                                                

 

Where   represents the lag lengths for the autoregressive part of the equation and   represents 

the lag lengths for the moving average part of the equation.  In this methodology, a 3-stage 

process is carried out which involves: (a) model selection, with an examination of the 

autocorrelation and partial correlation functions, while ensuring that the variables are 

(2.1) 
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stationary; (b) parameter estimation and examination of the   and   coefficients; and (c) 

checking to confirm that the residuals display a white-noise process with constant mean and 

variance.  In ARIMA models, the integrated element “I” denotes the order of integration of the 

differenced dependent variable. 

 

The use of the Box-Jenkins methodology in forecasting grew as a result of influential studies 

such as Newbold and Granger (1974), who indicated that the Box-Jenkins method of 

forecasting performed better in a majority of time series samples than alternative methods such 

as the Holt-Winters and stepwise autoregression, especially over the short run.  However, 

there were criticisms concerning the usefulness of the model, such as Makridakis et al (1979), 

who criticised the "accuracy" of the Box-Jenkins methodology despite the fact that forecasts 

can never truly be accurate and implied that exponential smoothing provides better forecasts 

than the Box-Jenkins method.  Huss (1985) also indicated that the Box-Jenkins methods 

required repeated diagnostic runs and skilled judgment, which he felt was unnecessary as the 

forecast results should not be dependent on the forecaster’s expertise.  

 

One of the most important recent developments in the field of energy modelling is the 

development of hybrid models, which aim to combine the favourable aspects of the 

forecasting power of different modelling techniques.  The literature on the combination of 

models for time series forecasts is well documented, with Newbold and Granger (1974) 

providing an early endorsement for such a modelling technique.  ARIMA models can be 

successfully hybridised for electricity prices, with Conejo et al (2005) providing a typical 

example of a hybrid ARIMA model through the combination of an ARIMA and wavelet 

transform model to forecast day-ahead electricity prices in Spain.  The wavelet transform 

converts a single electricity price series into multiple price series, which demonstrates a more 

stable variance due to the filtering effect of the wavelet transform.  The ARIMA model is then 

applied to each of the constituent price series in order to provide hourly forecasts for a 24 hour 

day. 

 

A more recent example of a hybrid ARMA model for day-ahead electricity prices is 

Bordignon et al (2013), who combined an ARMA exogenous (ARMAX) model, time-varying 

regressions models and Markov regime switching models, which capture fluctuations between 

normal and high price time series.  Price data from the UK power exchange from April 2005 

to September 2006 was used with 48 observations per day, based on the half hour intervals.  
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The results from the Conejo et al (2005) and Bordignon et al (2013) tests showed that 

univariate hybrid forecasts could produce more reasonable forecasts than the single model 

forecasts and provide less risk than the selection and prediction risk that could be inherent in 

individual models. 

 

ARIMA models have been used to forecast primary sources of sustainable energy.  However, 

the uniqueness of the primary sustainable energy type may contribute to the complexity of the 

forecasting problem, e.g. fluctuations in wind speed could impair the forecasting power of 

wind energy models.  Early studies such as Hennesey (1978) had attempted to understand the 

wind speed forecasting challenge by comparing different distribution functions to model wind 

speed.  Others such as Huang and Chalabi (1995) and Poggi et al (2003) had used 

conventional autoregressive models to successfully simulate wind speeds.  Zhang et al (2012) 

continued the modern theme of model hybridisation through their development of a complex 

hybrid ARIMA model that was used to forecast day-ahead wind energy in China.  Among the 

models that were aggregated include an ARIMA model, a group of univariate least squares 

support vector machine (LS-SVM) models and a group of multivariate LS-SVM models, with 

a fuzzy aggregator used to aggregate the results.  The ARIMA hybrid model was compared 

with the individual models using forecast evaluation methods such as mean absolute 

percentage error, with the ARIMA hybrid showing a consistently stronger performance in 

forecasting short-term wind energy.   

 

In the case of solar energy, Pedro and Coimbra (2012) chose a hybrid ARIMA model in order 

to capture the uncertainty from solar irradiance for a 1MW solar power plant in Merced, 

California.  Exogenous variables were used to provide a number of different forecasts from an 

ARIMA model, two Artificial Neural Network model types and the persistent model.  The 

persistent model is a simple forecasting model where calculations are performed for future 

values of a time series and are based on the assumption that weather conditions stay 

unchanged between time t and time t + ∆t (∆t can be 1 or 2 hours in this example).  As is the 

case with most weather based models, the viability of estimates from the ARIMA hybrid 

model is predominantly dependent on the seasonal variability of sunlight. 
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2.2.4 Cointegration and elasticity studies 

 

While the contribution from univariate time series modelling techniques such as the ARIMA is 

undoubted, the empirical contribution to the energy modelling literature in this thesis is 

predominantly focused on the estimation of multivariate time series models.  Multivariate time 

series analysis is commonly used by econometricians to assess economic relationships 

between variables and there is a considerable amount of interest in the theoretical 

improvement and empirical extension of such techniques.  The concept of cointegration was 

published by Engle and Granger (1987) and can be described as a long-run linear relationship 

between variables that are individually integrated of order n.  For example, a stationary linear 

combination of nonstationary variables that are individually integrated of order one - I(1), are 

said to be cointegrated.  Johansen (1988, 1991) contributed significantly into the cointegration 

space with his maximum likelihood (ML) estimator circumventing the limitations of the two-

step Engle-Granger approach.   

 

On the other hand, a vector autoregression (VAR) is a system of equations that models linear 

interdependencies among lagged variables.  Sims (1980) is generally viewed to be one of the 

early leading advocates of the VAR model as an alternative representation of multivariate 

simultaneous equation models that were used at the time.  Since then, a number of VAR 

models were used to model the energy mix with Keng (1985) providing an early example of 

how causal energy and economic variables were used for a VAR model in order to generate 

forecasts for Canada’s early-stage nuclear industry.  However, a VAR model can only be fitted 

to cointegrating variables for energy elasticity studies if it is reparameterised into a vector 

error-correction model (VECM) as VARs fitted to I(1) cointegrating variables exhibit 

misspecification errors.        

 

Despite the recent strides in the use of cointegration and VECM for energy demand elasticity 

studies such as those connected to oil, the literature in the field of electricity demand 

elasticities based on aggregated primary energy is less prevalent.  Notable studies of industrial 

electricity demand elasticities at a national and international level were conducted by 

Beenstock et al (1999), Stern (2000), Galindo (2005), Polemis (2007), Yuan et al (2008), 

Hatzigeorgiou (2011), Polemis and Dagoumas (2013), Lin and Ouyang (2014) and Lim et al 

(2014).  In these studies, the long-run electricity demand elasticities in relation to industrial 

activity ranged from 0.85 to 1.44 with a short-run elasticity of 0.61 as in the case of Polemis 
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(2007).  For price, the long-run electricity demand elasticities ranged from -0.25 to -0.85 and 

the short-run elasticities range from -0.08 to -0.35.  The lack of general consensus in these 

studies comes as a result of the countries assessed, varying industrial sectors, model 

specification, data frequency and the length of time span.  Yuan et al (2008) further points out 

that it would be unwise to expect consensus on industrial electricity demand elasticities due to 

the subject country's stage of economic development and its relative impact on the energy-

economy nexus.  Nevertheless, the price-inelastic nature of electricity demand runs in 

conjunction with the theoretical assumption that energy use is generally regarded as a 

necessity (Belke et al, 2011). 

 

The UK and EU’s action against GHG emissions, the volatility of oil and gas prices, and the 

geopolitical problems faced by fossil fuels-rich nations have led to an increasing emphasis on 

the role of nuclear fission within the future global energy mix.  The current installed global 

nuclear fission energy capacity as at January 2015 is 373 GW (Nuclear Energy Institute, 

2015).  However, the International Energy Agency (IEA, 2010) put forward a powerful appeal 

for political backing and public acceptance towards the tripling of global nuclear capacity to 

1,200 GW by 2050.  This would generate nearly 10,000 TWh of annual electricity production 

with nuclear's share of global energy output reaching 24%.  This projected increase in nuclear 

capacity is consistent at a UK level where the House of Lords (2011) urged the UK 

Government to make plans for the early decarbonisation of UK power generation and for 

nuclear capacity to increase from its current 12 GW of capacity to a potential high of 38 GW 

by 2050
7
.   

 

While the importance of nuclear fission for the world's sustainable energy future is undoubted, 

the literature that focuses specifically on the long-run modelling of elasticities between nuclear 

fission energy production / consumption and other variables is especially scarce with only a 

handful of available studies such as Apergis and Payne (2010), Lee and Chiu (2011) and 

Jobert et al (2013).  These studies mainly had a multi-country focus and used different 

cointegration modelling techniques and data ranges to generate elasticities between nuclear 

fission energy and other variables such as GDP, CO2 emissions and oil prices.  Table 2.3 

provides a summary of the energy-economic studies with nuclear electricity demand or supply 

variables modelled within a multivariate framework: 

                                                           
7
 The House of Lords also expressed their serious doubts about this target through their rebuke of the 

government’s lack of “leadership and strategic thinking” and that UK’s past strengths in nuclear R&D were 

diminishing as many experts were near retirement.  
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Table 2.3: Elasticity studies for nuclear fission electricity generation and demand  

Literature Country Method Data Dep. variable Estimates of elasticity 

Apergis and 

Payne 

(2010) 

16 countries 

(incl. nuclear 

dependent 

France) 

Panel 

cointegration 

Panel data 

(annual) 

1980 - 2005 

GDP Nuclear 

demand 

LR: 0.32% 

Capital 

formation 

LR: 0.17% 

Baek and 

Kim (2013) 

South Korea ARDL /  

Bounds test 

method of 

cointegration 

Time series 

(annual) 

1978 - 2007 

CO2 emissions 

(metric ton per 

capita) 

Per capita 

GDP 

 

LR: 7.8% 

Nuclear 

generation 

(% of total 

energy) 

LR: −0.45% 

Baek and 

Pride  

(2014) 

US, France, 

Japan, South 

Korea, 

Canada and 

Spain 

Cointegrated 

VAR 

Time series 

(annual) 

1965/80 - 2007  

CO2 emissions 

(metric ton per 

capita) 

Per capita 

GDP 

 

LR: 0.85% 

to -4.3% 

Nuclear 

generation 

(% of total 

energy) 

LR: -0.5% to      

-1.8% 

Iwata et al  

(2010) 

France ARDL /  

Bounds test 

method of 

cointegration 

Time series 

(annual) 

1960 - 2003 

CO2 emissions 

(metric ton per 

capita) 

Per capita 

GDP 

 

LR: 3.1% to 

37.21% 

Nuclear 

generation 

(% of total 

energy) 

LR: -0.26% 

to -0.31% 

Jobert et al  

(2013) 

21 countries Panel 

cointegration 

/ DOLS 

Panel data 

(annual) 

1980 - 2009 

Petroleum 

demand 

 Nuclear 

demand 

LR: -14.44 

Lee and 

Chiu  

(2011) 

Canada, 

France, 

Germany, 

Japan, UK 

and the US 

Panel 

cointegration 

/ DOLS 

Panel data 

(annual) 

1971 - 2006 

Per capita 

nuclear 

demand 

Oil prices 

 

LR: 0.12% 

Per capita 

GDP 

LR: 0.89% 

Key: LR = long-run elasticity, Dep. = dependent, DOLS = dynamic ordinary least squares, ARDL = 

autoregressive distributed lag 

 

In summary, the Baek and Kim (2013) results for South Korea, the Baek and Pride (2014) 

results for six developed countries and the Iwata et al (2010) results for France show that 

electricity generated from nuclear fission within the nuclear-GDP-CO2 nexus corresponds to 

the long run decarbonisation strategies of the subject countries.  This is because a 1% increase 

in nuclear electricity generation corresponds to a -0.26 to -1.8% decrease in CO2 emissions.  

From an economic perspective, there is a long run relationship between income/GDP growth 

and increases in nuclear energy demand in the estimates from Apergis and Payne (2010), and 

Lee and Chiu (2011).  The results therefore provide the hypothetical foundation from which 

the long run estimates in the following chapter would be assessed. 

 



30 

 

2.2.5 Granger causality studies 

 

One way to test causality between variables in a VAR is to assess whether the past value of an 

independent variable influences the current value of the dependent variable.  Granger (1969) is 

credited with formulating the "Granger-causality" test, which is regarded as a straightforward 

and general method of causality testing.  Quite simply, variable X is deemed to Granger-cause 

variable Y if, based on the past values of Y, past values of X are effective in predicting Y.   

 

Apergis and Payne (2010) highlighted four hypotheses that concern the causal relationship 

between economic growth and energy consumption.  The first is a growth hypothesis which 

proposes that energy consumption   influences economic growth   as well as labour and 

capital indirectly through the production process.  The presence of a unidirectional causality in 

this instance would be from    .  The second is a conservation hypothesis which proposes 

that energy conservation policies will not have a negative impact on economic growth and the 

presence of unidirectional causality would be from    .  The third is a feedback hypothesis 

which proposes that economic growth and energy consumption are interlinked and the 

presence of bidirectional causality would be between    .  Here,   and   interdependently 

drive each other with the implication of negative growth if energy conservation policies are 

pursued.  The fourth is a neutrality hypothesis, which proposes that energy consumption 

represents a small section of the economy with little or no effect on economic growth.  In this 

instance, the absence of causality between         supports this hypothesis and energy 

conservation policies might be pursued with minimal or no impact on economic growth. 

 

Early causality studies such as Kraft and Kraft (1978) provided strong evidence of a 

unidirectional causal relationship from income to energy consumption.  However, despite the 

format of the previously stated hypotheses, the literature concerning the causal relationship 

between nuclear energy and GDP is scarce, with only a handful of available studies for 

consideration.  Furthermore, there is a lack of consensus concerning the causal relationship 

between GDP and the generation and/or consumption of nuclear energy with developed 

nations reporting a mixture of      ,       and       causal relationships.  Table 

2.4 highlights the limited number of studies that had delved into the causal relationship 

between nuclear and other variables.   
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Table 2.4: Studies of Granger causality between nuclear energy and other variables 

Literature Data Country Direction of 

causality 

Number of 

variables 

Iwata et al 

(2010) 

Time series 

(annual) 1960 to 

2003 

France         

         

Bivariate 

Yoo and Jung 

(2005) 

Time series 

(annual) 

1977 - 2002 

South Korea          

 

Bivariate 

Yoo and Ku 

(2009) 

Time series 

(annual) 

Min: 1984 - 2005 

South Korea 

France 

Switzerland 

         

         

          

Bivariate 

Apergis and 

Payne (2010) 

Panel data 

(annual) 

1980 - 2005 

16 countries          

       

        

         

Multivariate 

Lee and Chiu 

(2011) 

Panel data 

(annual) 

1971 - 2006 

Japan 

Canada 

Germany 

UK 

         

         

         

         

Multivariate 

Wolde-Rufael 

(2010) 

Time series  

(annual) 

1971 - 2005 

Canada 

Japan 

Netherlands 

Switzerland 

Sweden 

France 

Spain 

UK 

US 

         

         

         

         

         

         

         

         

         

Multivariate 

Key: NucC = nuclear electricity consumption, NucG = nuclear electricity generation, GDP = gross domestic 

product, Cf = Real gross fixed capital formation, Lab = labour force, Inc = GDP per capita. 

 

The results point to a mix of unidirectional and bidirectional causal relationships in a number 

of countries between nuclear electricity consumption and income/GDP growth as well as a 

unidirectional causal relationship running from nuclear electricity generation to CO2 emissions 

in Iwata et al (2010).  However, the main issue with the first three results from Iwata et al 

(2010), Yoo and Jung (2005) and Yoo and Ku (2009) is that they use the “pairwise” bivariate 

approach, which may result in omitted variable bias (Lutkepohl, 1982).  An omitted variable 

bias scenario arises where the possible effect of other variables are not regarded within the 

nuclear-GDP link, which may lead to estimation results that are biased and inconsistent.  The 

additional studies in Table 2.4 mitigated this risk with their multivariate approach to Granger 

causality analysis.  Apergis and Payne (2010) provides an example of a successful application 
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of a multivariate Granger causality test that used nuclear electricity consumption, GDP, capital 

formation and labour force variables.   

 

2.3 Long run modelling of the future energy mix 

 

2.3.1 Background to the energy scenario studies for 2050  

 

Climate change has been identified by scientists and governments in the last few decades as 

one of the most significant environmental risks that the world faces and this view led to the 

formation of the United Nations Framework Convention on Climate Change (UN, 1992).  The 

1997 Kyoto Protocol subsequently laid the foundation for most of the world's leading 

industrialised nations to set binding targets for the reduction of greenhouse gas emissions 

(GHG).  IPCC (2007a) describes how the UN Environment Programme and the World 

Meteorological Organisation established the Intergovernmental Panel on Climate Change 

(IPCC) for the purpose of assessing the potential future risks from climate change.  The 

IPCC’s 4
th

 Assessment Report was a thorough scientific report that concluded that climate 

change has a significant impact on a wide range of areas within the human and natural 

environment such as ecosystems, food security, human health, industry and human settlements 

(IPCC, 2007a).   

 

The European Commission (2013a) highlighted the European Parliament climate commitment 

in 2008 for the legally binding 80% - 95% reduction in GHG emissions by 2050 in 

comparison to 1990 levels (base year).  The result from the European Parliament climate 

commitment in the UK was the Climate Change Act (2008), which aligns the UK to the EU's 

2050 GHG emissions target with an additional CO2 emissions target of at least 26% below 

1990 levels by 2020.  This initiative was deemed necessary as part of the global GHG 

mitigation effort to limit the average temperature increase to no more than 2
o
C compared to 

preindustrial levels and to prevent further lasting harm to the environment.   

 

The Climate Change Act (2008) also set the institutional framework for the creation of the 

Committee on Climate Change (CCC), the provision of a carbon budgeting system as well as 

amendments to the Energy Act 2004 concerning the obligations towards renewable transport 

fuel.  In their first report, the Committee on Climate Change (2008) developed long-term 

energy projections and suggested that the UK should move towards a near total electrification 

of light duty vehicles (cars and light vans) as well as other energy-need areas such as heating 
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and lighting.  However, Foxon (2013) criticised the incomplete nature of the modelled 

scenarios from the Committee on Climate Change, indicating that very little was discussed on 

the motivations of energy participants and that specific policy actions were required from 

energy stakeholders in order for the decarbonisation targets to be met. 

 

The projection of energy scenarios to 2050 therefore present a challenge to econometric 

energy modellers as long term energy projections do not take into account many unknown 

future aspects such as developments in energy technology and changes in the mix of primary 

energy inputs.  Forecasts and projections of energy demand and supply in 1970 would have 

yielded significantly different data to what we have today.  For example, North Sea oil and gas 

production and nuclear energy were still at an early stage in 1970 yet the British government's 

Department of Energy and Climate Change (DECC) highlighted the nuclear industry’s large 

share of total primary energy consumption at 19% as of 2012 (DECC, 2013).  In 1970, wind 

energy was not commercialised but is now seen as a critical sustainable element in the energy 

mix for 2050.  Coal and oil were also long established as the dominant sources of primary 

energy for electricity production but have seen a dramatic decline that accelerated sharply after 

the UK recession of the early 1990s.  Figure 2.5 shows a breakdown of the dramatic changes 

in primary sources of electricity between 1970 and 2014
8
: 

 
Figure 2.5: Breakdown of sources of electricity (1970 -2014) 

      

 
 

Source (DECC, 2014) 

                                                           
8
 Data in the graph after 1987 are for all energy generating companies (public and private ownership).  Before 

1987 the data are solely for large power producers, industrial hydro, transport undertakings and nuclear power 

stations. 
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Despite the early stage nature of the 1970s British nuclear, gas and renewable energy sectors, 

their electricity production technologies were developed to an extent where long term 

projections could be made of their overall contribution to future energy mix.  The UK 

Government’s Parliamentary Office of Science and Technology (2012) suggested that many 

uncertainties relating to the future nature of these energy technologies at the time were 

somewhat mitigated by the desire of the UK Government to improve energy security and 

increase diversity of the energy resources that are used in the economy.   

 

Unforeseen energy treaties in 1970 such as the Kyoto Protocol of 1997 had also contributed to 

the increased interest in renewable energy and would not have been picked up in any energy 

scenario projections that may have existed in 1970.  Despite the environmental benefits and 

promise of long-term energy security, the entry of fusion power into the commercial energy 

space is deemed to be dependent on the technical feasibility of existing R&D activity and 

economic competitiveness of future power plants (Lechon et al, 2005).  However, the 

technical progress of fusion is sufficient enough to warrant the creation of energy scenarios in 

2050 with fusion power firmly included within the commercial energy mix. 

 

2.3.2 Partial equilibrium modelling of long-term energy scenarios 

 

IPCC (2014) classifies models that provide projections of varying energy scenarios as "bottom 

up" energy models.  They are sometimes preferred to econometric models for long-term 

energy and GHG projections due to the highly disaggregated nature of the energy sector.  Top-

down modellers may use econometric techniques and macroeconomic theory on aggregated 

historical variables in order to generate relatively short-term forecasts of energy supply and 

demand.  Lans and Rausch (2011) suggests that partial equilibrium energy models focus on 

energy generation at a microeconomic level with limited interactions at a macroeconomic 

level while top-down general equilibrium models assess economic and energy activities via 

aggregate production functions.  IPCC (2014) indicated that bottom-up models are stronger for 

energy projections where long-term GHG mitigation policies and complex energy sector data 

require more detailed analyses.  The focus of bottom-up models in this scenario lies with the 

technological energy-gains that manifest at a microeconomic level as well as analyses of the 

technical and economic consequences of energy-specific policy options.  
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Most bottom-up energy models use partial equilibrium analysis, which is based on the 

maximisation of total economic surplus.  Loulou et al (2005) emphasises that partial 

equilibrium energy models simultaneously arrange the production and consumption of energy-

related resources (such as primary fuels, materials and services) with their respective prices.  

The price of producing the energy-related commodity affects the demand and conversely, the 

demand of the commodity affects its price with an equilibrium market achieved when no 

producer desires to produce in excess of quantity   at price   and no consumer desires to buy 

less than  .  Alongside the maximisation of economic surplus is the linearity concept based on 

outputs of an energy technology being a function of its inputs.  Linear programming is 

therefore built into some partial equilibrium models as there is usually a minimum cost that 

must go into capital intensive energy projects (e.g. nuclear power plants) otherwise they 

cannot be implemented (Loulou et al, 2005). 

 

Partial equilibrium energy models have a long history in the literature with Hotelling (1931) 

providing an early contribution to the literature with his focus on extractable energy resources.  

The Hotelling (1931) framework was extended by Dasgupta et al (1980), who demonstrated 

the impact of tax policy on resource extraction.  Recent developments in partial equilibrium 

models have gone beyond the analysis of hydrocarbons and into the entire energy system.  

There are two major categories of technology-focused partial equilibrium models: the first 

category (e.g. MARKAL) use optimisation methods to calculate a minimum cost or maximum 

surplus pathway for the entire energy system; the second category such as the GHG mitigation 

model used by Jaccard et al (2003) consists of simulation models where investment decisions 

by producers and consumers are only partially based on profit maximisation.  In the second 

category, sustainable energy technologies can still capture a small or significant share of the 

market even if their costs over their lifecycle exceed the costs of other energy technologies 

(Loulou et al, 2005).  Some well-known partial equilibrium models are summarised below in 

order to determine the effectiveness in meeting the GHG emissions targets for 2050. 

 

2.3.3 MARKAL model 

 

The MARKAL energy model (short for MARKet ALlocation) is a widely used optimisation 

model that applies linear programming methods to generate least cost scenarios from a list of 

energy technologies (Fishbone and Abilock, 1981).  The model deals with an evolution of 

optimal costs energy systems, which is the key element of generalised variants that include the 
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maximisation of economic utility and maximisation of energy producer and consumer 

parameters (Kannan and Strachan, 2009).  Van Vliet et al (2011) explains how the energy 

production technologies in the model convert primary energy to final-use energy for 

consumers, with demand technologies converting final-use energy for the benefit of energy 

services companies.  Additional drivers of the production-side of the model such as economic 

and population growth are expressed as demand for final-use energy.  The in-built linear 

programming system then calculates a minimum discounted cost for the entire energy system, 

which is subject to change depending on factors such as the availability of new technologies.  

However, Lee et al (2013) identifies the main weakness of the MARKAL model through its 

preference for selecting the most cost effective energy route while ignoring other important 

factors in energy selection.  The model also does not account for planning and construction 

costs in the lead time towards development for capital intensive energy projects (Kannan, 

1875). 

 

The UK Government funded the development of the original MARKAL model, with early 

results of the application of MARKAL published in Finnis (1980).  The following decade saw 

a decline in the use of the MARKAL in the UK to the point where the Department of Energy 

was reported to had not made a "comprehensive use of the MARKAL facility in recent years” 

(Taylor et al, 2014).  During the 1990s, the model was modified and updated and in 2000, the 

use of MARKAL improved due to climate change policy playing an important role in UK 

energy policy.  The Royal Commission on Environmental Pollution (2000) published an 

influential report to the UK Government and used the MARKAL model to generate a number 

of scenarios for GHG emission mitigation towards 2050.  The MARKAL model has been a 

core model for the UK Government’s energy policy since the Royal Commission's report in 

2000, with the DTI (2003) and DEFRA (2007) demonstrating it's important role in producing 

the UK's 2050 projections for GHG emissions mitigation. 

 

2.3.4 TIMES model 

 

The TIMES (The Integrated MARKAL-EFOM System) model is an energy model that was 

developed by the IEA under the Energy Technology Systems Analysis Program (ETSAP) 

agreement.  Figure 2.6 shows the inputs and outputs from the TIMES model:   
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Figure 2.6: Schematic of TIMES inputs and outputs 

 

Source: Remme et al (2001) 

 

Labriet et al (2009) describes the TIMES energy model as being global in reach, driven by 42 

energy demand areas in industry, residential, commercial, transport and agriculture.  Remme 

et al (2001) stated that the TIMES model is based on a reference energy system that models 

the entire energy system of a country from the primary energy inputs to the conversion and 

distribution of energy to the end-users.  The model uses an NPV approach for all energy-

related costs in order to generate outputs such as energy prices, CO2 emissions levels, 

investment levels and reductions in demand.   

 

Similarly to its MARKAL predecessor, the TIMES model performs a partial equilibrium 

calculation based on the flows of energy types, materials and prices.  The calculations are 

performed in order for the energy suppliers to produce energy at the price that consumers are 

prepared to buy i.e total economic surplus is maximised.  The TIMES model has a long 

projection horizon from 2005 to 2100 and is able to capture seasonal and time-of-day 

variations.  Model assumptions such as competitive energy markets with perfect foresight are 

held in the same way as the MARKAL model and linear programming is used to enable 

energy technology output to be a linear function of its inputs (Loulou et al , 2005).   
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However, TIMES differs from MARKAL in that the length of time periods can be defined in a 

flexible way, unlike MARKAL which has fixed time periods.  Investments in energy 

technology in MARKAL are also defined as fixed payments at any given time period whereas 

in the TIMES model, investments in the construction of energy projects follow a real situation 

in that they are staggered over a period of time until completion (Loulou et al , 2005).  The 

model has been widely used to create projections of scenarios for the future energy mix and 

importantly, it has been used by Biberacher (2006) to model the future energy mix with fusion 

power included as a result of the dynamic structural nature of the model. 

 

2.3.5 PRIMES model  

 

The PRIMES energy model is a partial equilibrium model that simulates a market equilibrium 

situation for energy producers and consumers.  The model was developed by the Energy-

Economy-Environment modelling laboratory (E3Mlab) at the National Technical University 

of Athens.  E3Mlab (2011) describes how the model is divided into sub-models with each sub-

model representing the behaviour of an energy producer (price maker) and consumer (price 

taker).  The modelling framework is based on the microeconomic foundation of maximisation 

of profit and utility under certain constraints such as technology and fuel availability.  The 

model calculates GHG emissions from energy production and consumption based on GHG 

emissions and technology policies.  Economic decision-making, capital formation and capital 

turnover are dynamic functions and the model is able to calculate projections for demand, 

supply and price variables in 5 year blocks up to 2050. 

 

PRIMES has a number of advantages over alternative partial equilibrium models that were 

used to generate energy projections to 2050.  Models such as MARKAL formulate single 

optimisation solutions that cover the entire energy production and supply system, with no 

consideration of energy price formation, whereas PRIMES performs individual objective 

functions per energy supplier and demander and creates detailed simulations of energy price 

formation (EM3lab, 2011).  However, Capros (2011) points out that PRIMES cannot convey 

short-term projections and long-term projections are statistically independent from past data.  

The PRIMES model also lacks spatial information at a below-country level, which hampers its 

ability to comprehend areas such as energy distribution and transport infrastructure.  Figure 

2.7 shows the structure of the PRIMES model in terms of its primary energy inputs and final 

energy uses:   
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Figure 2.7: Modular Structure of the PRIMES model 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Source: E3Mlab (2011) 

 

2.3.6 The 2050 Energy Calculator 

 

Mackay (2009) published an influential study that consisted of a variety of assumptions of a 

sustainable energy mix in 2050, with associated energy consumption options.  The 2050 

Energy Calculator model and energy pathways analysis were subsequently published the 

following year by the Department of Energy and Climate Change (DECC), using many of the 

assumptions highlighted in MacKay (2009).  The UK Government’s main objective for the 

2050 Energy Calculator is to encourage national debate and dialogue concerning the UK’s 

collective responsibility towards the reduction of GHG emissions (Allen and Chatterton, 

2013).  The key to its success lies in its ability to translate simple energy policy options into 

viable projections of a variety of technical, economic, energy and environmental variables into 

the long run. 
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Unlike the previous models discussed, the 2050 Energy Calculator does not automatically 

carry out an optimisation approach for the calculation of the least costly route to 2050.  

Instead, this model considers the feasibility of what could be delivered by each element of the 

energy sector under various scenarios.  The underlying focus of the 2050 Energy Calculator is 

in meeting the UK's legally binding 80% decarbonisation target in 2050, based on the 1990 

level.  Other critical dimensions such as cost implications, land use impacts, technological 

risk, socioeconomic and environmental impacts are also important in determining the possible 

pathways to 2050 (HM Government, 2011).  Essentially, the 2050 Energy Calculator must 

meet the government's GHG target by 2050 while ensuring that supply and demand needs are 

fully met.   

 

Marginal abatement cost (MAC) curves had frequently been used by energy economists and 

policy makers to assess the options available for the mitigation of GHG emissions.  However, 

Ekins et al (2010) demonstrates that there are weaknesses in MAC curves for GHG 

mitigations such as interdependences and intersectoral interactions.  For example, a significant 

shift towards electric vehicles in 2050 would have the proportional effect of increasing GHG 

emissions if the primary fuel used in generating the electricity is not decarbonised.  The 2050 

Energy Calculator counters this weakness through its consideration of the dynamic 

interactions between demand, supply and across energy sectors.   

 

However, HM Government (2010) implied that the model does not gather the positive or 

negative feedback effects from the economy that become apparent through the decarbonisation 

effort.  The model might also be perceived to be less useful for business than it would be for 

government policy makers and non-government organisations (NGOs) due to cost 

minimisation not being its central focus (UKERC, 2013).  The 2050 Energy Calculator would 

therefore suit the British fusion power R&D programme as it is currently implemented at a UK 

governmental level but there are no existing studies that explicitly show the application of 

fusion power within the model.  However, despite the detailed nature of the 2050 Energy 

Calculator, it is flexible enough to permit adjustments for the purpose of generating GHG 

mitigation scenarios with fusion power added to the UK's 2050 energy mix. 
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2.3.7 Energy policy objectives of the 2050 decarbonisation target 

 

Energy policy analysts have a significant interest in the 80% - 95% emissions reduction target 

for 2050, which is widely accepted by organisations and governments at a UK and EU level.  

However, European non-governmental organisation and global sustainable energy sector 

associations have developed policies that diverge, to varying degrees, from the UK 

Government and EU parliament’s 2050 emissions target.  Eurelectric (2010) set a target of a 

75% reduction in CO2 emissions in their modelling scenario, which was based on the 

Intergovernmental Panel on Climate Change (IPCC) target of a 70% - 80% reduction relative 

to 2005 emissions levels.  The European Climate Foundation (2010) takes an aggressive 

decarbonisation approach in their modelling by declaring that "it is virtually impossible to 

achieve an 80% GHG reduction across the economy without a 95 to 100% decarbonised 

power sector".  Business Europe (2010) takes a pro-growth approach by declaring that GHG 

emissions would need to be at least 50% in 2050 compared to 1990 while emphasising the 

need to prioritise investments in the industrial sector in order to protect future growth and 

employment.  The World Business Council for Sustainable Development goes further by 

declaring their critical pathway for emissions in 2050 as 50% of 2005 levels with global action 

seen as necessary to meet this target (WBCSD, 2010). 

 

Renewable energy sources have played an important role in the 2050 modelling scenarios of 

EU nations, NGOs and organisations.  However, alongside the differences in opinion 

regarding the 2050 emissions scenarios comes the general lack of consensus on how to 

appropriately deploy energy technologies, primary energy sources and end-use energy sources 

within their modelling frameworks.  The European Renewable Energy Council (2010) 

supports a 100% renewable energy system in the EU by 2050 while the "advanced scenario" 

of Greenpeace (2010) sees 92% of heating and 97% of electricity generated from renewables.  

On the other end of the spectrum, the WBCSD had modelled renewables with a 50% share of 

the energy mix in 2050 with fossil fuels having a future decarbonised role through carbon, 

capture and storage (CCS) technologies.  Eurelectric (2010) had lowered their estimation of 

the share of renewables to 40.4% with nuclear at a relatively high 28.4% in 2050.   

 

The high nuclear energy input for the scenarios of Eurelectric (2010) would cause issues for 

the policy frameworks of many modellers at a UK and EU level due to the perceived long-

term hazards that are inherent in nuclear waste.   WWF (2007) factored in a complete 
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decommissioning of nuclear energy in their modelling work due to the potential environmental 

impact of radiotoxic emissions and the risks from nuclear proliferation.  The Stockholm 

Environment Institute (SEI, 2009) and Friends of the Earth (2012) also take a hard line against 

nuclear in their 2050 energy scenarios, again due to similar concerns shared with WWF.  

There are also differences in opinion regarding the future role of biomass.  Eurelectric (2010) 

envisages a lesser role for biomass due to limitations in the availability of land for energy 

crops.  However, WWF (2007) seem to contradict their core values of the conservation of wild 

habitats and preservation of farmland for food crops with their recommendation for a "rapid 

expansion of biomass energy" towards 2050.  Shell (2008) predictably concurs with this 

opinion by declaring that biomass would have a greater market share than gas in 2050 with as 

much as 15% of primary energy supply in the ‘scramble’ energy scenario.    

 

2.4. Macroeconomic impact of the energy mix on the British economy  

 

2.4.1 Background 

 

Energy is a vital resource that is fundamental to the operations of the global economy.  Energy 

is required by the primary production processes of industry and final consumers such as 

households and transport services.  The interrelationship between energy use and economic 

activity means that factors that affect energy production such as price and government policy, 

directly have an impact on economic growth.  Turton (2008) emphasised that the critical role 

that policy-makers play is to predict the impact of existing energy policies on socioeconomic 

and environmental security as good projections could enable the adoption of policy 

instruments via resource allocation. 

 

One of the leading challenges faced by energy policy-makers over the last two decades are the 

potential future risks from climate change.  A significant number of global environmental 

organisations such as the Intergovernmental Panel on Climate Change had followed the EU by 

producing a series of statistics that pushed this risk firmly into the public conscience (IPCC, 

2007b).  The central message is that the global economy must seriously reduce its emissions 

actions and Faehn et al (2013) was among a number of commentators who suggested that 

shifts in technological adaptation must accompany changes in industrial structures and 

consumption in order to directly confront the challenge of climate change.  However, a group 

of British academics who were affiliated with the ESRC's Centre for Climate Change and 
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Economic Policy (CCCEP) found that increased CO2 emissions from fossil fuels were 

positively correlated to increases in GDP in the United States between 1950 and 2007 with a 

similar but moderately less prominent pattern in the UK (Bowen et al, 2009).  The European 

Commission took an opposing line and claimed that economic growth and GHG emissions 

reductions were not contradictory and produced a report showing GDP growth in the EU 

between 1990 and 2012 at 45% compared to -19% for GHG emissions (EC, 2014). 

 

In order to manage these uncertainties, policy-makers require effective assessment tools that 

can consider a range of future energy and GHG emissions scenarios in order assess their 

impact on key macroeconomic variables.  In the literature, two modelling approaches have 

dominated the long-term GHG mitigation scenarios for 2050: Bottom-up models are 

disaggregated models that focus on future energy technology scenarios and their 

corresponding GHG emissions at a microeconomic level, whereas top-down models are 

aggregated models that assess the interactions between the energy sector and the wider 

economy (IPCC, 1995).  The latter category commonly use computable general equilibrium 

(CGE) models that aims to predict economic development levels, energy use and GHG 

emissions while factoring in resource constraints and energy activity at a microeconomic level 

(Faehn et al, 2013).  Pezzy and Lambie (2001) emphasise that the essential feature of a CGE 

energy model is that it estimates the indirect sectoral impacts of potential GHG abatement 

policies on the economy that are caused by substitutable sources of energy. 

 

2.4.2 History of computable general equilibrium modelling 

 

The history of general equilibrium theory finds its roots in Leon Walras' (1874) contribution 

Elements D'économie Pure, ou Théorie de la Richesse Sociale.  Walras represented the state of 

an economy as a system of simultaneous equations of the demand and supply of goods and 

services.  The assumption was that consumers sought to maximise their utility and producers 

aimed to maximise their profit, with the equilibrium condition apparent where supply = 

demand in every market of an economy.  Arrow and Debreu (1954) expanded the Walrasian 

equilibrium by developing an equilibrium solution that is defined by production levels and 

prices such that (a) demand = supply for all goods and services (b) income = expenditure and 

(c) the break-even of production activity happens at solution prices that conform to Walras's 

Law.   
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Johansen (1960) is credited with creating the first computable general equilibrium (CGE) 

model by using a system of linear equations based on economy-wide assumptions that 

identified the behaviours of different agents.  The behaviours of agents included households 

that sought to maximise their utility based on their budget restrictions and industries that 

sought to minimise their expenditure due to their production-function restrictions.  The 

outcome for the economy in Johansen's CGE model is decided by actions from agents 

harmonised through price adjustments that match supply and demand.  Dixon and Rimmer 

(2010) recognised Johansen's pioneering work but indicated that the main early objection to 

Johansen's model in North America was that his linear solutions were derived from a linear 

depiction of the theory, which only gave approximate answers that result from "linearization 

error".  Nevertheless, Johansen's CGE model was a major improvement on the previously 

dominant economy-wide assumptions of Leontief's (1936, 1941) input-output model, whose 

fixed coefficients did not permit important substitutable effects from an economy's production 

side. 

 

Energy policy gave CGE models a new emphasis in the 1980s due to its role as one of the 

largest and most influential sectors in the global economy.  Early applications of the CGE 

model to energy and economy-related issues came with Despotakis and Fisher (1988) through 

their assessment of the impact of oil price shocks to a sub-section of the US economy while 

Bergman (1988) considered the impact of changing energy conditions to economic welfare 

issues related to product and factor prices.  The 1990s saw a major shift in CGE emphasis 

from energy-economy to energy-economy-environment with Jorgenson and Wilcoxen (1990) 

providing an insight into the negative economic impact to GDP from environmental 

regulations that were designed to mitigate pollution from energy companies, industries and 

consumers.  Moreover, Perroni and Wigle (1994) found that international trade policies had a 

minor impact on environmental degradation and advocated the promotion of trade 

liberalisation to support greater efficiency in global resource management.   

 

The post-Kyoto Protocol literature typically contains bottom-up, techno-economic energy 

models that take the GHG emissions, electricity cost and quantity impacts from the bottom-up 

model and effectively force them into the CGE model as external shocks.  This process is 

easier with static than dynamic CGE models, as the latter requires an iterative process of 

adjustment between the bottom-up model and the CGE model.  Messner and Schrattenholzer 

(2000) gives an example of an iterative approach with their MESSAGE-MACRO model and 
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the iterative approach is also used by the International Energy Agency (IEA, 2008) in their 

global WEM-ECO model.  However, most analyses that are apparent in the literature are 

usually based on static or “soft” link between the bottom-up and CGE model (Helgesen, 

2013), which is also the basis of the latter empirical section of this thesis. 

 

2.4.3 Outline of the CGE model 

 

CGE models generally estimate the behaviours of producers and consumers in order to assess 

how differing policies will impact all sections of an economy in a way that runs consistent 

with economic theory.  RTI International (2008) describes the circular flows that a CGE model 

considers within an economy based on households owning factors of production (such as 

capital and labour), which are supplied to firms in order to make income for households.  

Firms combine those factors of production with intermediate goods and services in order to 

generate output that is sold to consumers and other industries.  International trade is also 

conducted through the export and import of goods and services.  The general equilibrium 

element of the CGE model arises when all sectors of the economy and income equals 

consumer expenditure and all supply of commodities and factors of production equals demand. 

 

Energy production technologies and energy commodities are generally defined using a 

constant elasticity of substitution (CES) functions, which explain how various types of inputs 

can be substituted for other inputs (Burniaux and Truong, 2002).  The degree of substitution is 

determined by elasticities that manage the exchange among inputs.  For example, rises in 

energy prices may cause energy companies to switch towards employing more labour as 

permitted by CES equations, which consequently enable firms to move towards energy 

production methods that are more energy efficient.  For CGE energy-focused models, there are 

different substitution possibilities.  Peterson (2011) describes substitution options such as 

between a primary factor and capital-energy composite and also inter-fuel options such (a) 

electricity and non-electricity (b) coal and non-coal and (c) between fossil fuels.  The 

consumption of energy commodities by households is determined by their utility function, 

which shows the willingness of commodity consumers to substitute based on prices changes. 

 

CGE models are generally viewed as an essential macroeconomic impact tool for many 

modellers and have many strengths, with one of the most important being that CGE models 

are robustly grounded on economic theory.  The quantitative evaluation of general equilibrium 



46 

 

effects are also an important aspect of CGE models and has proved to be an essential tool for 

evaluating climate policies and their impact on energy costs (Qi et al, 2004).  The use of CGE 

models at the highest levels of government and business has cemented its status as one of the 

main macroeconomic policy models of choice.  For example, Arora (2013) highlighted their 

wide use in energy-related US government departments such as the Department of Energy 

(DOE), Environmental Protection Agency (EPA) and the Department of Agriculture.   

 

However, Allan et al (2007) sets out the weaknesses of the CGE model by indicating that CGE 

models were information intensive through its requirement of multi-sectoral accounts i.e. the 

social accounting matrix (SAM), as well as a significant number of behavioural connections 

and parameter values.  Allan et al (2007) also criticised the supply-side rigidity of some of the 

assumptions such as cost minimisation for firms as there has been a growing contribution to 

literature such as Sorrell et al (2004) concerning barriers to acceptance of technologies that are 

energy efficient.  Nonetheless, the CGE modelling framework will be a key tool in 

understanding the impact of commercialised fusion power operating in an equilibrium 

economy in 2050. 

 

2.5 Concluding remarks 

 

Continuous research and development within the fusion power programme has become a key 

energy policy objective over the last few decades in a number of OECD and non-OECD 

countries.  The literature suggests that despite the significant levels of investment over the last 

few decades into the global fusion R&D programme, there appears to be no decline in the 

excitement that fusion power stakeholders feel towards the potential realisation of a near 

limitless source of high-volume decarbonised electricity.  It is this view that motivates the 

selection of the modelling techniques that were highlighted in this chapter.  The results from 

the econometrics literature for nuclear energy were intended to present a guideline for a future 

commercialised source of fusion power, based on the similar processes that are used in the 

generation of electricity.  The range of nuclear energy elasticities for several different 

countries in section 2.2.4 offers a theoretical basis for understanding the role of nuclear energy 

within the energy-economic-environment nexus.  This provides the foundation for a similar 

empirical study for the UK in the next chapter. 
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Furthermore, the energy policy objectives of several European organisations in section 2.3.7 

demonstrates the lack of consensus concerning the optimal energy mix that should be pursued 

in their aim of meeting the 80% decarbonisation target by 2050, based on 1990 levels.  The 

empirical literature highlights a wide spectrum of modelled energy scenarios, which range 

from the need to maintain economic growth in a limited decarbonisation effort to the need for 

full electrification of the energy system regardless of the economic consequences.  A different 

approach is pursued in this thesis as it aims to provide modelled scenarios of fusion power’s 

contribution towards the decarbonisation effort in 2050 while maximising the various 

economic benefits that could arise from its commercial introduction into the UK’s future 

energy mix.  
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CHAPTER 3 

 

SINGLE EQUATION MODELLING: COINTEGRATION 

ANALYSIS OF THE NUCLEAR-GDP-CO2 NEXUS 

 

3.1 Introduction 

 

A number of studies in the previous chapter had used a variety of multivariate econometric 

methods to explore the relationship between energy production and economic growth.  

Furthermore, recent studies highlighted in the previous chapter saw the global decarbonisation 

agenda pushed more prominently into this relationship, which was spurred by the greenhouse 

gas (GHG) abatement policies that were highlighted in the 1992 UN Framework Convention 

on Climate Change (UNFCCC) and the 1997 Kyoto Protocol.  This resulted in policy makers 

and researchers including CO2 emissions in their analysis of the energy-economy nexus.  The 

global combustion of fossil fuels is widely viewed as the principal human cause of CO2 

emissions and the UK Government’s attention has increasingly been drawn towards the 

generation of electricity from decarbonised sources.  As a potentially large future source of 

decarbonised electricity, fusion power can be viewed as an important counterbalance to fossil 

fuels in the UK’s long-term fight towards the reduction of GHG emissions.  Therefore, 

econometric models that draw plausible inferences from the fusion-GDP-CO2 relationship 

could have an impact on the UK Government’s long-term decarbonisation strategy.   

 

In the case of fusion power, it would be impossible to estimate the long or short run 

econometric relationships between fusion power, CO2 emissions and other economic variables 

based on past or present data.  This is due to its current non-commercialised status and there 

are no hypothetical econometric studies in existence for fusion power.  However, it is 

important to consider existing primary energy sources in terms of their trend from 1970 and 

compare them with the projected time path and market share of fusion power.  This would 

help to determine a primary energy source that would provide a guideline of what to expect 

from fusion.  A number of studies offer projected estimates of the market share of fusion 

power in the future energy mix.  Konishi et al (2005) estimated that electricity generated from 
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fusion could have a significant market share towards the latter half of this century of 

approximately 23% in Japan and 30% globally.  This is consistent with the Lako et al (1998) 

report that was authorised by the European Commission where a steady projection of fusion 

power was estimated from a potential commercialisation point in the middle of this century up 

to 2100.  Therefore, a guideline energy source would need to have a significant current market 

share of electricity generation based on a consistent trend over the long run.  

 

UK energy statistics from DECC (2014) shows that oil had a 20.8% market share of total UK 

electricity generation in 1970 but declined sharply from the 1990-1991 recession to the point 

where it now has a 1% market share as at 2012.  Coal was the dominant source of electricity 

generation in 1970 at 67.5% but declined due to action against CO2 emissions and now 

occupies a 44.4% share of total electricity generation as at 2012.  Gas had experienced a boom 

in recent years and enjoyed a 23.8% market share in 2012.  However, its market share never 

rose above 4% in the 21 years from 1970 to 1991 and would not be suitable for guideline 

purposes.  Of the four main primary sources of energy for electricity production, nuclear 

fission (henceforth, nuclear) has shown a trend that could be considered as the guideline in this 

chapter for the potential future growth curve of fusion power.  Electricity generated from 

nuclear fission had steadily increased during the 42 years from 1970 to 2012, from 11% of 

total UK electricity generation in 1970 to 20% in 2012.  Moreover, the Institute of Physics 

(2008) highlighted the similarities between fission and fusion in terms of the nuclear reactions 

for energy generation, the high power plant construction costs and complex power plant 

engineering. 

 

Building on the above arguments, this chapter seeks to provide new evidence by extending the 

existing empirical literature through two lines of analysis: the greater part, which assesses the 

nuclear-GDP-CO2 nexus in the UK as a guideline for fusion and the lesser section, which tests 

the environmental Kuznets curve (EKC) hypothesis.  The autoregressive distributed lag 

(ARDL) method of cointegration analysis (Pesaran, Shin and Smith, 2001) is therefore the 

selected procedure for the nexus study.  This chapter uses the unrestricted error correction 

form of the ARDL model to assess the long run elasticities of the variables prior to the 

application of a restricted error correction model (ECM) for the estimation of the short run 

elasticities.  This method of cointegration analysis is well suited to handle variables that 

display different statistical profiles such as variables that have different orders of integration as 

well as variables that have endogenous properties.  Multivariate Granger causality is 
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subsequently applied to the variables using two comparative systems: the standard Wald test 

and the modified Wald test proposed by Toda and Yamamoto (1995). 

 

Another long run form of the ARDL model is used to test the EKC hypothesis, which was first 

proposed by Grossman and Krueger (1992, 1995) and the World Bank (1992)
9
.  EKC theory 

suggests that an inverted U-shaped relationship exists between environmental degradation 

(commonly measured by CO2 emissions per capita) and economic growth (commonly 

measured by GDP per capita).  During the earlier stages of economic development, the growth 

rate of a country’s CO2 emissions may disproportionately exceed the rate of economic growth.  

As a country’s development stage reaches maturity, a turning point is reached, after which the 

rate of CO2 emissions declines as a ratio of GDP growth.   

 

Many feasible explanations were proposed for the inverted U-shaped curve and EKC turning 

point such as Stokey (1998), who suggested that poorer countries predominantly use the most 

polluting methods of production until they reach a GDP threshold where they turn towards 

cleaner technologies.  Arrow et al (1995) supported this view by suggesting that high pollution 

is a tolerable part of the early stages in a country’s economic development path but rising 

income leads to the promotion of national institutional reforms such as environmental 

protection and market-based incentives, which help to reduce environmental degradation.  

There is also a substantial debate as to whether the EKC hypothesis could be supported when 

considering the impact of energy variables.  Examples such as Richmond and Kaufmann 

(2006) were unable to provide evidence to support the EKC hypothesis when considering total 

primary energy consumption in a number of OECD nations with small sample sizes.  

However, Balaguer and Cantavella (2016) supported the EKC hypothesis when considering oil 

prices in Spain and Ang (2007) supported the EKC hypothesis when considering commercial 

energy use in France. 

 

As mentioned in the previous chapter, there is an acute scarcity of literature that analyses the 

econometric link between nuclear energy, GDP and CO2 emissions.  An important study of the 

effect of nuclear electricity generation on CO2 emissions in France comes from the work of 

Iwata et al (2010) who included the rate of urbanisation, energy consumption and trade as 

additional variables within a multivariate framework.  The results showed that those three 

                                                           
9
 The EKC hypothesis is a development of the original Kuznets curve hypothesis (Kuznets, 1955), which 

suggests that in the early stages of an economy’s development, income inequality is higher but decreases as a 

nation undergoes industrialisation and populations shift from the rural agrarian communities to the cities.  
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additional variables had a statistically insignificant relationship with CO2 emissions in the long 

run.   

 

However, there are two reasons for considering a different approach to the Iwata et al (2010) 

study in the choice of appropriate variables for estimation purposes.  The first argument is 

based on the mixing of ‘share’ variables such as nuclear (% of total electricity) with ‘level’ 

variables such as GDP per capita.  Level variables are generally unbound without limitation 

but share variables have a different time series profile as they are bound between 0 and 1.  

Mixing share and level variables may result in estimations that lead to distorted inferences on 

the long run behaviour of nuclear electricity generation against the unbound variables.  

Therefore, nuclear in this chapter is changed from a share variable to kilowatt hours (kWh) of 

nuclear electricity generated per capita and trade is changed from a share variable (% of GDP) 

to British pounds (GBP) per capita. 

 

The second argument is based on the total omission of the role of government action in the 

studies of the nuclear-GDP-CO2 nexus.  National governments and the agencies of 

government departments play a leading role in assuring the decarbonisation pathway through 

the implementation of legislation, regulation, enforcement and taxation.  For example, the 

Electricity Market Reforms (EMR) stipulated in the Energy Act 2013 provides powerful 

incentives for investors to significantly participate in decarbonised electricity generation.  This 

is mainly administered through (a) the Capacity Market (CM), which guarantees long-term, 

predictable revenues streams to electricity generators on the condition that certain electricity 

supply capacities are met and (b) Contracts for Difference (CFD), which the UK Government 

uses to stabilise revenues for electricity generators by paying them the difference between the 

‘strike price’ – the market price of electricity and the ‘reference price’ – the cost of investing 

in decarbonised electricity generation.  The Climate Change Act 2008 is another example of 

environmental legislation that spurred the UK Government to take a dominant position in the 

climate change debate within the European Union.  This subsequently resulted in the 

successful lobbying of the EU to agree a landmark deal in October 2014 for a 40% reduction 

in GHG emissions across the EU by 2030 (European Council, 2014). 

 

In light of the second argument, a suitable proxy variable for the UK Government’s action 

against climate change would come in the form of environmental taxes.  The potential effect 

of environmental taxes on environmental preservation was highlighted as far back as the early 
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20
th

 century by Pigou (1920), who stated that “the whole movement for conservation in the 

United States is based on this conviction. It is the clear duty of Government, which is the 

trustee for unborn generations as well as for its present citizens, to watch over, and, if need 

be, by legislative enactment, to defend, the exhaustible natural resources of the country from 

rash and reckless spoliation...either out of taxes, or out of State loans”.  FT (2015) highlighted 

the powerful modern-day effects of environmental taxation by describing how high carbon 

taxes were blamed for the closure of two of the largest coal-fired power plants in the UK: the 

2,000 MW plant in Ferrybridge, West Yorkshire and the 2,400 MW plant in Longannet, 

Scotland
10

.   

 

Further rationale for using environmental taxes as a proxy variable for UK Government action 

stems from its growing impact on the total government revenues from taxation.  The Office of 

National Statistics described how the UK had seven different types of environmental tax at a 

total tax intake of £14.9bn in 1990, which represents the decarbonisation base year of the 

Kyoto Protocol (ONS, 1999).  However, heavy government pressure on industry has seen the 

number of different environmental taxes rise to thirteen in 2014, with a tax intake triple the 

1990 value at £44.6bn.  This represents 7.5% of total UK Government revenues from taxation 

and is the 4
th

 largest aggregate source of tax revenue after income tax, national insurance 

contributions (NIC) and value added tax (VAT)
11

.  Therefore, an analysis of the comparative 

impact of environmental taxes against nuclear electricity generation on CO2 emissions would 

provide an important new contribution to the empirical literature of the nuclear-GDP-CO2 

nexus and EKC hypothesis.   

 

3.2 Description of environmental taxes 

 

Environmental taxes have taken on an increasingly high profile in the UK’s environmental 

policy in recent years.  The Stern Review (2006) is the largest report generated for the UK 

Government on the effects of climate change and its findings provided the UK Government 

with the techno-economic and environmental rationale for the implementation of the ‘double 

dividend’ i.e. increasing the number of environmental taxes on the ‘public bad’ while allowing 

for a decrease in other disproportionate taxes.  There are three categories of environmental 

taxes according to the Office of National Statistics’ definition based on EU regulation 

                                                           
10

 This follows an overall trend in the closure of coal-fired power plants, whose capacity is expected to be 

reduced substantially before the end of the 3
rd

 carbon budget of 2022.   
11

 VAT and environmental taxes make up the majority of indirect taxes that are levied in the UK 
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691/2011: energy taxes, transportation taxes and pollution/resources taxes (ONS, 2015a).  

Table 3.1 shows the data for each of the three categories and a comparative summary between 

the environmental taxes paid in 1990 (base year of the Kyoto Protocol) and environmental 

taxes paid in 2014, in current prices:  

 

Table 3.1: Environmental taxes in 1990 and 2014 
Classification of 

environmental tax 

Name of tax  Start 

year 

End 

Year 

Taxes paid 

in 1990 

(£ million) 

  Taxes paid 

in 2014 

(£ million) 

Energy taxes Tax on hydrocarbon oils 1928 → 9.335 27,094 

 
Climate Change Levy 2001 → - 1,500 

 
Fossil Fuel Levy 1990 2012 875 - 

 
Gas Levy 1980 1998 291 - 

 
Hydro-Benefit 1992 2005 - - 

 
Renewable Energy Obligations 2002 → - 2,931 

 

Emissions Trading Scheme  

(EU-ETS) 
2009 → - 356 

 
Carbon Reduction Commitment 2012 → - 618 

Transport taxes Air Passenger Duty 1994 → - 3,154 

 
Car Tax 1973 1992 1,464 - 

 
Rail Franchise Premia 1996 →   - 1,417 

 
N. Ireland Driver Vehicle Agency 2007 →  - 16 

 

Motor vehicle excise duty  

Businesses 
1920 → 1,134 958 

 

Motor vehicle excise duty  

Households   
1920 → 1,837 5,029 

 
Boat Licenses 1987 2000 4 - 

Pollution/Resources taxes Landfill Tax  1996 → - 1,146 

 
Fishing Licenses   1995 → - 21 

 
Aggregates levy 2002 → - 345 

Total environmental taxes    
 

  14,940 44,585 

 

Source: Data collated from ONS (1999) and the dataset of ONS (2015b) 

 

The data shows that five of the eighteen individual energy and transportation taxes were 

retired by 2012.  However, all environmental taxes have observations that fall within the 

period of the sample (1975 to 2014), so the aggregate environmental tax variable consists of 

data from the eighteen individual environmental taxes in Table 3.1.  The following provides a 

brief description of the individual levies during the sample period that collectively make-up 

the aggregate environmental tax variable: 

 

 



54 

 

3.2.1 Energy taxes 

 

Tax on Hydrocarbon oils – is a tax paid on petroleum products used by the majority of road 

vehicles.  Petroleum products consist of diesel (standard and ultra-low sulphur), unleaded 

petrol (including super unleaded), leaded petrol, lead replacement petrol and ultra-low sulphur 

petrol).  Ultra-low sulphur petroleum products attract higher tax incentives as their emissions 

release fewer particulates, thereby causing less adverse effects on the environment. 

 

Climate Change Levy – is a tax paid on the supply of energy to industrial and commercial 

users of energy.  Renewable energy supply is exempt from this tax and businesses could 

obtain discounts of 65% on fossil fuel supply and 90% on electricity supply if they enter into a 

voluntary Climate Change Agreement (CCA) to improve energy efficiency and reduce carbon 

emissions.  The Climate Change Levy also consists of an additional tax called the Carbon 

Price Floor (CPF), which was included in 2013 for the purpose of encouraging investment in 

decarbonised energy generation. 

 

Fossil Fuel Levy – was a tax paid for the supply of non-renewable sources of energy, which 

was essentially designed to raise funds for investment in renewable energy generation.  The 

cost of this tax was borne by suppliers and by consumers through the inclusion of part of the 

tax in the energy bill.   

 

Renewable Energy Obligations – is a tax whose commencement in 2002 coincided with the 

end of the fossil fuel levy.  The central purpose of this tax is to encourage electricity 

generators to source an increasing proportion of their primary energy from renewable sources.  

This is in order for the UK to meet the EU legal obligation to source 15% of its energy 

consumption from renewable sources by 2020. 

 

Gas Levy – was a tax on some of the profits that were amassed by the former British Gas 

Corporation (BGC), which arose from the surging price of gas that was bought by BGC under 

the petroleum revenue tax (PRT) exempt contracts prior to 1975.  The rationale for this tax 

was based on HM Treasury under-recovering tax revenues from PRT exempt contracts at pre-

1975 gas prices that had failed to keep up with the increase in oil prices.    
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Hydro-Benefit – was a tax on Scottish and Southern Energy (SSE), which was used to 

subsidise electricity distribution in the North of Scotland (Highlands and Islands).  This was in 

order to prevent electricity customers in this sparsely populated region from paying 

disproportionately high electricity costs based on the region that they lived within the UK. 

 

Emissions Trading Scheme (EU-ETS) – is an EU-wide scheme where national governments 

generate revenue by auctioning ETS allowances, which subsequently enable power stations 

and energy-intensive industries to release carbon emissions up to certain limit called a ‘cap’.  

If emissions are to exceed the cap, then further ETS allowances must be purchased from other 

companies within a trading environment, otherwise the company would be subject to heavy 

fines.  If the company cuts its emissions, then they either sell their allowances to other 

companies or reserve the allowances for future needs. 

 

Carbon Reduction Commitment (CRC) – is a mandatory scheme that encourages large 

companies and public sector organisations that are not energy intensive to reduce their carbon 

emissions and improve energy efficiency.  Similarly to the EU-ETS, the UK Government 

would generate revenue by auctioning CRC allowances to large companies and organisations 

that do not generate enough emissions to pass the EU-ETS emissions threshold. 

 

3.2.2 Transport taxes 

 

Air Passenger Duty – is a tax that is charged for the transportation of passengers from airports 

in the UK and Isle of Man.  Exemptions from this tax apply to light aircraft of less than 10 

metric tons or aircraft with a seating capacity of less than 20 seats. 

 

Car tax – was a tax that was exclusively applied to the purchase of cars.  It ran for 20 years 

prior to its abolition in the early 1990s. 

 

Rail Franchise Premia – is a premium paid to the Department for Transport (DfT) for the 

operation of a UK franchise for rail passengers. 

 

Northern Ireland Driver Vehicle Agency – is an agency of the Department of the Environment 

(DOE) for Northern Ireland.  It is responsible for the collection of vehicle excise duties for 

vehicles that are based in Northern Ireland. 
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Motor vehicle excise duties – are annual taxes that are payable by business and household 

drivers of vehicles that are used on public roads within Great Britain.  This tax is administered 

by the Driving Vehicle and Licensing Agency (DVLA) who previously issued a tax disc for 

display on the vehicle’s windscreen prior to the introduction of the digital system in 2014. 

 

Boat Licence – was a charge for boat owners to use and park their boats on rivers and canals. 

 

3.2.3 Pollution/Resources taxes  

 

Landfill Tax – is a tax paid on the disposal of most types of waste that are dumped at 

registered landfill sites.  Exemptions are given to waste cleared from mines and contaminated 

land.  Landfill taxes are designed to lessen the environmental impact of waste disposal as well 

as encourage alternatives to waste disposal e.g. incineration and recycling. 

 

Fishing License – is an annual charge that permits anglers to use a rod and line for fishing. 

 

Aggregates levy – is a tax that is charged on sand, rock and gravel that is used for industrial 

and other purposes.  The tax is charged on matter that is extracted from the ground (mainland 

and beneath UK’s coastal waters) and on imports. 

 

3.3 Statistical properties of the data  

 

This chapter uses UK annual time series data, which consists of 40 observations spanning 

from 1975 to 2014.  The length of the sample period was chosen subject to the availability of 

data.  CO2 emissions (co2) are measured in metric tons (MT) per capita, real GDP (gdp) is 

measured as GDP per capita in constant 2010 British pounds, nuclear electricity generation 

(nuc) is measured as KWh of electricity produced per capita, environmental taxes (entax) are 

measured as environmental taxes per capita in constant 2010 British pounds, trade (trade) is 

measured as total imports and exports of products and services per capita in constant 2010 

British pounds and industrial electricity consumption (indelec) is measured in MWh per capita 

 

Data for CO2 emissions and the UK population are obtained from the Sustainable 

Development Indicators of the Office of National Statistics (ONS, 2015b).  Data for industrial 

electricity consumption and nuclear electricity generation are obtained from the Department of 

Energy and Climate Change (DECC, 2015).  Data for GDP and environmental taxes are 
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obtained from the United Kingdom National Accounts (the Blue Book), published by the 

Office of National Statistics (ONS, 1999).  Lastly, data for trade are obtained from the World 

Development Indicators from the World Bank’s 2015 database (World Bank, 2015).  Table 3.2 

shows the data prior to their conversation to natural logarithms for estimation purposes.  

 

Table 3.2: Summary statistics of the data 
              

Variable Measurement Obs.    Mean Stan. deviation Minimum Maximum 
    

 
        

    

 
        

co2 MT per capita 40 9.66 1.20 6.53 12.02 

gdp 2010 GBP per capita 40 £19,739.11  £4,616.22  £12,490.15  £26,218.33  

nuc KWh per capita 40 1,030.41 313.01 470.66 1,549.21 

entax 2010 GBP per capita 40 £496.86  £125.01  £268.72  £648.15  

trade 2010 GBP per capita 40 £10,559.75 £3,130.90 £6,404.02 £15,867.85 

indelec MWh per capita 40 1.65 0.20 1.31 1.96 
              

Note: co2 is measured in MT per capita, gdp, trade and entax are measured in per capita 2010 British pounds 

(GBP), nuc is measured in KWh per capita and indelec is measured in MWh per capita.  Obs represents the 

number of observations for each variable 

 

The preceding sections saw the introduction of these variables and a justification was provided 

for their selection.  In this section, graphs are generated for the variables in both their level and 

first difference in order to facilitate a visual survey of the trends.  The variables are then 

subjected to testing and analysis of their orders of integration, with the augmented Dickey-

Fuller (ADF) and the Dickey-Fuller Generalised Least Squares (DF-GLS) used to determine 

the presence of unit root processes.  Finally, evidence of any significant structural breaks 

would render the time series subject to additional testing by means of the breakpoint unit root 

test, which is based on a conventional Dickey-Fuller unit root equation. 

 

3.3.1  CO2 emissions per capita  

 

The Office of National Statistics (2015c) provides data on the UK’s CO2 emissions and human 

population in order to generate the CO2 emissions per capita time series during the 40 years of 

the sample period.  The following is a list of CO2 emissions sources and their average 

percentage shares of total CO2 emissions throughout the sample period: energy supply 

(39.5%), transportation (19.8%), business (19.4%), residential (14.6%) and miscellaneous 

emissions (6.7%).  Figure 3.1 represents the graph for total CO2 emissions in metric tons (MT) 

per capita. 
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Figure 3.1: CO2 emissions (metric tons per capita): 1975 - 2014  
 

 
Source: ONS (2015c) 

 

At a glance, the CO2 emissions per capita curve seems to show a steady decline throughout 

most of the sample period.  CO2 emissions per capita peaked at 12.02 metric tonnes (MT) in 

1979 followed by a fall of 9.8% to 10.84 MT in 1980.  Apart from the 1979 peak, there seems 

to be little variation in the long-term downward trend.  This downward trend is driven by a 

strong undercurrent of CO2 emissions abatement in energy supply and business, the two 

sectors that had received the most pressure from the UK Government’s decarbonisation 

agenda.  The curve also displays a slight hint of a bow-shaped pattern from 1984 until the end 

of the sample period.  Figure 3.2 represents the graph of the first difference, natural logarithm 

of CO2 emissions per capita (MT). 

 

Figure 3.2: First difference of the natural logarithm of CO2 emissions: 1975 - 2014 
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The first difference graph shows a general fluctuation above and below the zero level, with a 

pronounced dip in 1979.  There are also more pronounced fluctuations during the last few 

years of the sample period, starting from 2008.  It may be possible that the beginning of the 

dip in 2008 caused a structural break in the intercept as a result of the global financial crisis.   

 

3.3.2  Gross Domestic Product per capita  

 

The Office of National Statistics (2015c) provides data on the UK’s real gross domestic 

product (GDP) via its annual publication of the United Kingdom National Accounts (the Blue 

Book).  The data is based on the sum of all UK economic activity resulting from the 

production and provision of goods and services, represented in constant 2010 British pounds.  

Figure 3.3 represents the graph for total CO2 emissions in metric tons (MT) per capita. 

 

Figure 3.3: GDP per capita (constant 2010 GBP): 1975 – 2014 
 

 
Source: ONS (2015c) 

 

 

The real GDP per capita curve seems to show a steep rising trend throughout most of the 

sample period.  The trend is smooth apart from three noticeable dips.  The first dip in 1980 

coincided with the end of the Winter of Discontent of 1978-79, a period that was marked by 

numerous public sector strikes, high inflation and high unemployment.  This was followed by 

a steep decline in the manufacturing sector and increased unemployment during the early 

1980s.  The second dip marked the recession of 1990, which coincided with a general 

contraction of the British economy, high interest rates, high inflation and losses made through 

the UK’s entry and abrupt exit from the European Exchange Rate Mechanism (ERM).   
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However, the most significant dip came in 2007-08 during the global financial crisis, which 

was triggered by the subprime mortgage crisis and subsequently led to widespread property 

repossessions, bank liquidity squeezes and bankruptcies of large corporations and small 

businesses.  The graph indicates that this event is likely to have caused a structural break in the 

intercept of the data.  Figure 3.4 represents the graph of the first difference, natural logarithm 

of GDP per capita: 

 

Figure 3.4: First difference of the natural logarithm of real GDP per capita: 1975 - 2014 
 

 
 

 

The first difference graph shows the curve mildly fluctuating above zero by approximately 2% 

throughout the sample period with the exception of three clearly defined recessionary periods.  

The 2007-08 financial crisis is prominently reflected as the steepest dip in the graph.   

 

3.3.3  Nuclear electricity generation per capita  

 

As in the case of industrial electricity consumption, DECC (2015) provides data on nuclear 

electricity generation during the sample period from its annual Digest of the United Kingdom 

Energy Statistics (DUKES).  The time series averages approximately 19% of total electricity 

production throughout the sample period and forms the largest source of decarbonised 

electricity generation in the UK.  Figure 3.5 represents the graph for nuclear electricity 

production in kilowatt hours (kWh) per capita: 
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Figure 3.5: Nuclear electricity production (kWh per capita): 1975 - 2014 

 

 
 

Source: DECC (2015) 

 

The nuclear electricity generation curve contains a number of volatile fluctuations throughout 

the sample period.  The upward trend starts at 471 kWh per capita in 1975 and is punctuated 

by dips and peaks until it reaches a high point at 1,549 kWh per capita in 1998.  The 

downward trend in nuclear electricity production starts at the end of 1999, which Bolton 

(2013) describes as caused by the cessation of nuclear power plant production in 1995.  The 

steady decline from 1999 was also punctuated by a sharp dip during the financial crisis of 

2007-08 and this period was marked by the complete closure of some power stations and a 

high number of unplanned outages at other power stations.  Nuclear’s electricity production 

experienced a jump during the 2008-09 period, which coincided with EDF’s takeover of 

British Energy and its portfolio of eight nuclear power plants.  

 

Figure 3.6: First difference of the natural logarithm of nuclear electricity production: 1975 - 2014  
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Figure 3.6 represents the graph of the first difference, natural logarithm of nuclear electricity 

production (kWh per capita).  Despite the changing trends of the previous graph, the first 

difference graph shows a consistent volatile fluctuation of the curve above and below zero.  

Nevertheless, there are still some noticeable peaks such as the spike in 2009 after the financial 

crisis as well as dips such as the decline in 1998 after the cessation of investment in new 

power plants.   

 

3.3.4  Environmental taxes per capita  

 

The Office of National Statistics (2015c) provides data on environmental taxes from the 

United Kingdom National Accounts.  The aggregate environmental tax curve is based on data 

highlighted in Table 3.1, which consisted of different energy taxes, transport taxes and 

pollution/resource taxes.  Figure 3.7 represents the graph for environmental taxes per capita in 

constant 2010 British pounds: 

 

Figure 3.7: Environmental taxes per capita (constant 2010 GBP): 1975 - 2014 

 

 
 

Source: ONS (2015c) 

 

 

The environmental taxes per capita curve follows a predictable inclining trend that is 

punctuated by three minor dips during the sample period.  The first dip period of 1977 was 

marked by a fall of 2.1%, caused by a moderate decline in the UK population and a relatively 

lower rate of environmental tax receipts between 1977 and 1979.  The second dip period 

started in 1988 and coincided with the decline in environmental tax receipts from the fossil 

£0 

£100 

£200 

£300 

£400 

£500 

£600 

£700 



63 

 

fuel levy as well as the stabilisation of vehicle excise duties paid by businesses.  The third dip 

period started in 1999 and came a year after the end of the gas levy in 1998.  Figure 3.8 

represents the graph of the first difference, natural logarithm of environmental taxes per 

capita: 

 

Figure 3.8: First difference of the natural logarithm of real environmental taxes per capita:  

1975 - 2014 

 

 
 

 

The first difference graph shows the curve predominantly hovering above zero.  This reflects a 

consistent push by the British government to generate revenues through the penalisation of 

CO2 emissions.  The curve experiences irregular oscillations of peaks and dips during the 

sample period.   

 

3.3.5  Total trade  

 

The World Bank (2015) provides data on total British trade during the sample period.  The 

data consists of total imports and exports of goods and services, which the World Bank 

produces through its annual publication of the World Bank Development Indicators.  Figure 

3.9 represents the graph for trade in constant 2010 British pounds: 
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Figure 3.9: Total trade per capita (constant 2010 GBP): 1975 - 2014 
 

 
 

Source: World Bank (2015) 

 

The curve displays an upward trend with dips that are consistent with the recessionary periods 

of the last 40 years.  As in the case of the GDP curve, British trade was impacted by the 

economic downturn of the early 1980s where the decline in manufacturing and high inflation 

brought an end to the UK’s surplus in the net trade in goods account by 1982.  Trade picks up 

again due to the UK government’s focus on strengthening services growth but experiences 

stagnation from 1986 that lasted until the recession of 1991.  The UK Government’s former 

Department of Business, Innovation and Skills (BIS, 2010) hinted at the pre-recession 

stagnation by indicating that the net trade in services surplus offset the deficit in net trade in 

goods from 1982 until 1987, which subsequently led to the overall long term deficit of the 

trade account.  Trade picks up again in 1993 but there are areas of trade volatility that could be 

seen during the final 10 years of the sample period, especially during and after the global 

financial crisis of 2007-08.   

 

Figure 3.10: First difference of the natural logarithm of trade per capita: 1975 - 2014 
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Figure 3.10 represents the graph of the first difference, natural logarithm of total trade per 

capita.  The first difference graph shows a consistent volatile fluctuation of the curve above 

and below zero, with frequent periods of dips and peaks.  Some dips are noticeable in the 

graph such as the commencement of the UK’s trade deficit and the financial crisis of 2007-08.   

 

3.3.6  Industrial electricity consumption per capita  

 

The British Government’s Department of Energy and Climate Change (DECC, 2015) provides 

data on industrial electricity consumption during the sample period.  The time series averages 

approximately 34% of total electricity consumption during the sample period and forms a 

major subset of electricity consumption statistics obtained from its annual energy statistics 

publication, DUKES.  Figure 3.11 represents the graph for industrial electricity consumption 

per capita in megawatt hours (MWh): 

 

Figure 3.11: Industrial electricity consumption per capita (MWh): 1975 - 2014 

 

 

 
 

 

Source: (DECC, 2015) 
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industries during the period of high inflation.  The graph shows a slow recovery after this 

period that reaches its peak in 1990 followed by another dip.   

 

The overall upward trend declines from 2001 and the most significance dip after 2001 

coincided with the global financial crisis of 2007-08, which lasted for the final 7 years of the 

sample period.  Figure 3.12 represents the graph of the first difference, natural logarithm of 

industrial electricity consumption per capita (MWh). 

 

Figure 3.12: First difference of the natural logarithm of  

industrial electricity consumption per capita: 1975 - 2014 

 
 

 

The first difference graph shows a general fluctuation of the curve above and below the zero 

level, with a dip that started in 1979.  A dip could also be seen in 2008 but the graph quickly 

reverts back to a fluctuating stationary process.   
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3.4 Estimation methodology 

 

3.4.1 Order of integration and unit root processes in time series data 

 

Energy-economic variables that are used in time series analysis exhibit stochastic processes 

that model the transformation of a random variable over time.  The transformation process is 

comprised of a random walk where the current value of a random variable consists of the 

previous value plus a white noise, which itself has a mean of zero.  This is represented by the 

following equation: 

 

           

 

The issue with this process is that the current value of the random variable    is in fact the best 

forecast for the next period of     , which means that the random walk does not allow a 

predictive change between    and     .  Therefore, a random walk without a predictive trend 

is known as a nonstationary process.  Granger and Newbold (1974) demonstrated that 

regressions produced from unrelated nonstationary variables would generally produce 

spuriously significant relationships.  The expected output from a spurious regression would 

consist of a high R-squared, low Durbin-Watson statistic and high t-statistic for the slope 

coefficient.   On the other hand, a random walk with drift allows for the modelling of a 

stochastic trend process and consists of the following form: 

 

            ,      

    

where   is the drift, which is also known as an intercept or constant.  The stochastic trend 

model may have a tendency to move in an upward or downward direction and any random 

shock to the nonstationary process may increase or decrease the gradient of the stochastic 

trend.  A third process involves the combination of the stochastic trend in equation (3.2) and a 

deterministic trend.  This is represented by the following equation: 

 

                

 

where    is the time trend component of the deterministic trend      and         is the 

stochastic trend.  While polynomial functions of time represent the most common 

(3.1) 

(3.2) 

(3.3) 



68 

 

deterministic trends, integrated processes such as those found in energy-economic variables 

represent the most common stochastic trends.  The order of integration of an energy-economic 

variable should be determined from the outset as invalid statistical inferences can result from 

regression analyses that use nonstationary variables.  As such, a variable that is stationary at 

‘level’ is integrated of order zero i.e.           Conversely, an I(1) variable is a random walk 

that exhibits a unit root process at level and is integrated of order one.  This means that the 

variable is nonstationary at level and stationary at first difference. 

 

The procedure for verifying the existence of a unit root was developed by Dickey and Fuller 

(1979), who tested the null hypothesis of a unit root against the alternative hypothesis of a 

stationary process.  The main problem with the Dickey-Fuller test is that it is unable to control 

for the possibility of autocorrelation in the error terms.  This would have a distortionary effect 

on the tests of significance and overlooking the autocorrelations could lead to a rejection of the 

null hypothesis of a unit root at the 5% significance level, where in reality, the significance 

level might be well above 20%.  To control for autocorrelation, Dickey and Fuller (1981) 

suggested the inclusion of lagged variables within the model.  Thus, the augmented Dickey-

Fuller test (ADF) takes on the following form: 

 

Δ                Δ       Δ             Δ        

 

where   is the first difference operator,   is the unit root testing parameter,   is the parameter 

of the lagged first-differenced variable and   is the lag order of the first-differenced variable.  

The ADF test in equation (3.4) is based on the assumption that    is a random walk with drift 

and time trend          .  In this case, testing a variable for the presence of a unit root 

is based on the null hypothesis of a random walk with drift and time trend            , 

against the alternative hypothesis of a stationary process            .  Both    and    

can also be tested as a random walk or stationary process with drift and no time trend       

                    and as a random walk or stationary process with neither a drift 

nor a deterministic trend                . 

 

The t-statistic that is derived from the unit root testing parameter   can be shown as follows: 

 

   
  

      
 

(3.4) 
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where    is an estimate of the parameter   and        is the standard error of the estimated 

coefficient.  Dickey and Fuller (1979) indicated that when a unit root is present, the t-statistic 

does not follow a t-distribution and they developed critical values from Monte Carlo 

simulations that would be tested against the t-statistic at various sample sizes.  Mackinnon 

(1991, 1996) provides more recent critical values that are used in this chapter, which are based 

on a greater number of Monte Carlo simulations than those provided by Dickey and Fuller 

(1979).  Furthermore, the Mackinnon critical values can be calculated for more specific 

sample sizes than in the original Dickey-Fuller critical values. 

 

The t-statistic from the unit root test is compared with the critical value at the 1%, 5% and 

10% levels of significance.  If the t-statistic is higher than the critical value (at say the 5% 

significance level), then we do not reject the null hypothesis of a unit root at level.  The unit 

root test is therefore performed again on the variable at first difference and if the t-statistic is 

less than the critical value at the relevant significance level (i.e. large negative number), then 

we reject the null hypothesis of a unit root at first difference i.e. the variable is I(1).  As 

previously mentioned, the unit root test can be calculated based on the selection of any three 

options: no drift (intercept) and no time trend, drift only and drift with time trend.  A number 

of different lags lengths can be chosen in order to find the minimum lag length that removes 

serial correlation from the residuals.  

 

Another unit root test that is usually performed alongside the ADF test is the Dickey-Fuller 

generalised least squares (DF-GLS) test proposed by Elliott, Rothenberg, and Stock (1996, 

henceforth ERS).  The DF-GLS test equation corresponds to the ADF test equation but the 

DF-GLS is performed on GLS-detrended time series in order to provide efficient estimates for 

the deterministic parameters of the variables.  The DF-GLS test takes on the following form: 

 

Δ  
       

    Δ    
    Δ    

          Δ    
     

  

where   is the detrend operator.  ERS demonstrated that when the deterministic term in the 

equation is 1, the asymptotic distributions between the ADF and DF-GLS test are the same but 

the DF-GLS test has a better overall performance in small sample sizes in relation to its ability 

to detect near-nonstationarity.  ERS also implied that the DF-GLS had more power than the 

ADF test in cases where there is an unknown deterministic trend and it is more likely to reject 

a false null hypothesis. 

(3.6) 
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Despite the usefulness of ADF and DF-GLS, the presence of a structural break in data may 

call into question the validity of the results.  Therefore, the breakpoint unit root test could be 

used to categorically determine the order of integration of a variable around a breakpoint.  

Vogelsang and Perron (1998) describes two versions of the breakpoint unit root tests that 

assesses the break motion: an innovation outlier (IO), which assumes the break follows a 

gradual path and the additive outlier (AO), which assumes the break happens immediately.  

The following is a representation of the Dickey-Fuller IO breakpoint unit root test, which 

allows for a break in the intercept (such as from a global financial crisis or an oil shock) as 

well as a break in the trend, which involves a gradual change in the long run rate of growth: 

 

                                           Δ     

 

   

   

 

where    is the date when the break took place and  ,   and   are the break parameters.      

is the intercept break dummy which takes on the value       if      but otherwise takes 

on the value of 0,     is the trend break dummy which takes on the value             

         but otherwise takes on the value of 0 prior to the break date.     is a one-time 

break dummy which takes on the value      if      but otherwise takes on the value of 0.   

 

As equation (3.7) tests for a break in the intercept and trend, the second option is based on an 

intercept-only break, which requires the removal of    .  The third option is based on a trend-

only break, which requires the removal of     and   .  Each of these three options tests for 

the null hypothesis of a unit root with break with the alternative hypothesis being a time trend 

stationary process with break.  The fourth option is based on the removal of time trend    

from the second option of the intercept-only break, with    based on a unit root with break 

and    based on a stationary process with break.   

 

An issue of the IO approach that was implied by Perron (1989) is that in the event of a known 

or estimated break date, the first, second and fourth options permit breaks under the null 

hypothesis of a unit root but the third option (trend-only break) does not allow breaks under 

the null hypothesis of a unit root.  Furthermore, Harvey et al (1998) specifically criticised the 

IO framework by declaring it to be an unsuitable tool for the detection of structural breaks and 

recommended that they should not be used at all. 

 

(3.7) 
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The implementation of the more common AO break framework involves a two-stage process.  

The first stage requires the use of the intercept, trend and break dummy variables to detrend 

the time series via Ordinary Least Squares (OLS) and the second stage involves a modified 

Dickey-Fuller test for a unit root on the detrended time series.  The following is a 

representation of the Dickey-Fuller AO breakpoint unit root test: 

 

   
             

 

   

       
     Δ     

  

 

   

   

 

where    
  are the residuals gained from the first stage of the detrending process.  Equation 

(3.8) can be used to test data that was detrended on the following three bases: non-trending 

data with an intercept-only break, trending data with intercept-only break and trending data 

with intercept and trend breaks.  Detrended data based on trend-only break requires the 

replacement of the first part of the equation (3.8)            
 
          

  with         If a 

break date is known then it can be defined prior to model estimation but if a break date is 

estimated, it is chosen using a selection method that minimises the Dickey-Fuller t-statistic   .  

Finally, unlike the ADF and DF-GLS tests, which assess    by using the t-statistic to compare 

  with 0, both the IO and AO Dickey-Fuller breakpoint unit root tests use the t-statistic to 

compare   with 1.   

 

The unit root tests and subsequent time series regressions in this chapter require the use of a 

truncation lag (for example,  ) which denotes the lag order of a variable.  The significance of 

the lag order selection process must be emphasised as Ng and Perron (1995, 2001) 

demonstrated that there is a strong relationship between the value of   and the extent of size 

distortions.  The value of   may also have an impact on the power attribute of the unit root 

test, which is especially important as unit root tests are generally noted for having low power.  

 

The main approach to estimating the maximum desirable value of   is through lag selection 

criteria such as the Akaike Information Criterion (AIC) and the Schwarz Information Criterion 

(SIC).  Calculations are made on the information criteria functions for models with different 

lag orders and the selection criteria is based on the model that minimises the value of the 

function.  The following are the representations of AIC and SIC model selection criteria:  
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where LL is the log likelihood function, T is the number of included observations in the model 

(after adjustments) and    is the total number of parameters to be estimated.  For both 

information criteria, preference is given to parsimonious models that are correctly specified 

and have the least lagged coefficients to estimate.  However, Davidson and Mackinnon (2004) 

suggested that if there was an option to select two or more nested models, AIC may not choose 

the most parsimonious one.  Furthermore, SIC imposes a penalty for additional lagged 

coefficients and this helps to provide a safety-first mechanism in its restriction of the lag order.  

Lütkepohl (2005) also demonstrated the theoretical superiority of SIC in large sample sizes, 

which provides more reliable estimates of the true lag order than AIC, which tends to 

overestimate the true lag order.  However, Lütkepohl (2005) argues that although AIC 

overestimates the true lag order in large sample sizes, AIC is more consistent in being able to 

select the correct lag order in small sample sizes than SIC.  

 

3.4.2 Description of ARDL / bounds testing model of cointegration analysis 

 

The empirical literature has firmly established the link between CO2 emissions and GDP.  

However, a very small number of literature sources have attempted to provide a theoretical 

framework to support this link such as the environmental Kuznets curve (EKC), which 

suggests that an inverted U-shaped quadratic relationship exists between CO2 emissions and 

economic growth.  As previously highlighted in Chapter 2, there is a particularly scarce 

number of studies that assesses the role of nuclear energy in the nuclear-GDP-CO2 nexus such 

Jobert et al (2013), who proved a rare analysis of the role of nuclear energy consumption that 

provided mixed results from a basket of 21 countries.   

 

Most of these studies had followed a bivariate approach in their analysis of this relationship.  

The main problem from the bivariate estimates stems from omitted variable bias, which 

implies that a model’s results are likely to be biased and inconsistent if there is an omission of 

other potential variables that have a direct influence on CO2 emissions.  Our analysis thus 

 

(3.9) 

 

(3.10) 
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follows the Iwata et al (2010) selection of additional variables in their study of the nuclear-

GDP-CO2 nexus: energy consumption and trade (imports and exports of products and 

services).  Energy consumption in the Iwata et al (2010) selection consists of total energy 

consumption whereas energy consumption in this chapter differs as it consists of total 

industrial electricity consumption.  This is based on the focus on electricity consumption 

related to manufacturing and trade.  This inclusion also stems from the key role that industrial 

energy demand has on CO2 emissions (Polemis, 2007) as well as the British government’s 

heavy promotion of electricity consumption to industries in order to meet the UK’s CO2 

emissions abatement targets.   

 

The study is based on a comparative analysis of nuclear electricity generation and 

environmental taxes so the general model takes on the following logarithmic form: 

             

                                             

 

where co2 is CO2 emissions per capita, gdp represents real GDP per capita, nuc represents 

nuclear electricity generation in KWh per capita and entax represents real environmental taxes 

per capita.  The general model is incrementally increased by one variable in order to assess the 

comparative impact between nuc and entax on CO2 emissions.  The total trade variable (trade) 

is first added to the general model, followed by the industrial electricity consumption variable 

(indelec).  As previously mentioned in the introduction section, trade and nuc are changed 

from share variables to total trade in British pounds (GBP) and KWh per capita respectively. 

 

The theoretical pre-estimation assumptions based on previous studies of the nuclear-GDP-CO2 

nexus are that the sign for nuc is expected to be negative and the sign for gdp is expected to be 

positive.  For this chapter, the sign for entax is expected to be negative due to the UK 

Government’s affirmative action against climate change while the sign for indelec is expected 

to be positive as there was a slight decline in industrial electricity consumption between 2000 

and 2007, with the declining trend becoming steeper between the financial crisis of 2008 and 

the end of the sample period of 2014.  The expected sign for trade is unknown at this stage.  

  

Cointegration analysis is subsequently used for the empirical estimation of the long run 

relationship between these variables.  Cointegration theory asserts that nonstationary time 

series that are I(1) share a cointegrating relationship if a linear combination of two or more 

(3.11) 
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variables are stationary i.e. I(0).  The relationship between the cointegrating variables is often 

underpinned by economic theory as they share an equilibrium relationship in the long run.  

Engle and Granger (1987) describe a set of time series where their cointegrating relationships 

are drawn together by economic theory such as commodities prices and their substitutes in the 

same market and household incomes and expenditure.  The implication is that cointegrating 

variables are unable to stray too far from each other in the long run because economic forces 

tend to draw them back towards their long run equilibrium relationship. 

 

For a clearer picture, let                      represent a     vector of I(1) variables.   

   consists of a cointegrating relationship if a     vector of                linearly 

combined parameters exist, such that: 

 

                                   

 

If any part of   is equal to zero, then only the non-zero parts of   are cointegrated within      .  

Thus, the cointegrated elements within       are said to share a long run equilibrium 

relationship.  Although   is the cointegrating vector, its identity is not unique as any scalar on 

  would still render           .  Therefore a normalisation process would be carried out by 

choosing which coefficient to normalise to unity as this would provide a unique identification 

for  .  The normalised cointegration relationship can now be uniquely expressed as follows: 

 

                                

 

There are a number of cointegration modelling techniques that are used for time series 

analysis, with the most well-known methods consisting of the two-step method originated by 

Engle and Granger (1987) and the maximum likelihood (ML) estimator proposed by Johansen 

(1988, 1991).  Johansen’s approach has several advantages over the Engle-Granger approach 

such as the greater clarity offered on the statistical significance tests on the speed of 

adjustment parameters as well as its ability to identity multiple cointegrating relationships on 

more than two I(1) variables.  However, Johansen’s approach requires that all variables in a 

model must have a symmetry of lag lengths and obstacles inevitably arise for modellers who 

have a specific desire to demonstrate the relationships between variables that have varying lag 

lengths.   

 

(3.12) 
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The autoregressive distributed lag (ARDL) model for cointegration analysis, which was 

popularised by Pesaran and Shin (1999) and expanded into the bounds testing framework by 

Pesaran, Shin and Smith (2001) can override this inflexibility as valid assumptions could be 

made from models whose regressors have varying lag lengths.  The ARDL-bounds test 

approach has also demonstrated a strong capability in handling relatively small sample sizes.  

Furthermore, endogenous variables do not hinder the model’s ability to provide unbiased 

estimates of the long run parameters.    

 

The ARDL model is an OLS regression that consists of lags that are distributed among the 

dependent and independent variables.  The model is usually written in the (p,q) format where p 

is the maximum number of lags for the dependent variable and               is the 

maximum number of lags for each of the independent variables up to the k-th independent 

variable.  Based on the Patterson (2000, p.349) notation, the general form of a multivariate 

ARDL model is based on the following representation: 

 

          
         

    
    

 

   

 

   

 

 

where L is the lag operator and    is a vector of independent variables.     may have dynamic 

variables which consist of lagged terms or static variables, which do not have any lagged 

terms i.e.    .  The actual number of lags for each of the variables in the ARDL model will 

be truncated using the AIC (equation 3.9) due to its greater accuracy in selecting the true lag 

order in small sample sizes (Lütkepohl, 2005).  

 

The relationship between the variables in equation (3.11) follows a time path prior to the 

achievement of a long run relationship.  Therefore, equation (3.11) can be written in the 

following unrestricted error correction form of the ARDL model:  

 

                            

 

   

                

 

   

                    

 

   

     

 

   

                                               

                     

                                             (3.15) 
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where    is the error term.  The steps of the ARDL-bounds testing procedure are as follows:  

First, we test for the existence of a long run relationship between the variables in equation 

(3.15) by testing the null hypothesis of no cointegration,                      , 

against the alternative hypothesis,    requiring at least one of the   relationships to be   .   

 

Pesaran, Shin and Smith (2001) provide critical values for ARDL-bounds testing cases where 

all of the variables are I(0) and critical values where all of the variables are I(1).  These critical 

values would then act as the lower and upper bounds in cases where the model contains a 

combination of I(0) and I(1) variables.  The F-statistic that is calculated from the ARDL-

bounds test is compared to the reported asymptotic critical value bounds.  If the F-statistic is 

below the lower bound, then we do not reject the null hypothesis of no cointegration 

relationship between the variables.  Conversely, if the F-statistic is above the upper bound, 

then we reject the null hypothesis of no cointegration relationship between the variables.  

However, if the F-statistic falls between the two bounds, then the results are uncertain. 

 

The next step involves the estimation of the long run coefficients of the cointegrating model in 

equation (3.15).  The final step involves an estimation of the short run coefficients from the 

restricted error correction representation, which is defined below: 

 

                    

 

   

                

 

   

                    

 

   

     

 

   

                           

                                                                

where       is the lagged error correction term obtained from the residuals of the preceding 

ARDL model and φ is the speed of adjustment parameter that converges the ECM towards its 

long run equilibrium state.  Diagnostic tests are subsequently carried out in order to determine 

the statistical robustness of the model.  The Lagrange Multiplier (LM) test known as the 

Breusch-Godfrey LM test is used to assess for the presence of autocorrelation and the 

Breusch-Pagan-Godfrey LM test is used to assess the residuals for the presence of 

heteroskedasticity.  The Jarque-Bera normality test assesses whether the residuals follow a 

normal distribution and provides information on the kurtosis and skewness of the residuals 

 
(3.16) 
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while the Ramsey RESET test is a structural test that determines whether there are any 

specification errors in the functional form of the model. 

 

Stability tests are performed on the recursive residuals of the error correction model in order to 

determine its structural stability.  The recursive residuals are the error terms of the one-step 

ahead forecasts that are generated from recursive least squares.  The recursive residuals are 

independent and identically distributed (i.i.d.) and can be viewed as demonstrating the 

cumulative effect of removing successive observations from the data set.  The two stability 

tests that are performed are the cumulative sum (CUSUM) and the cumulative sum of squared 

recursive residuals (CUSUMSQ) proposed by Brown, Durbin, and Evans (1975).  The 

CUSUM test shows the systematic adjustments in the recursive residuals over time and the 

CUSUMSQ test identifies any unusual or sudden instabilities in the recursive residuals.  A 

graph shows the recursive residuals fitted between two straight bars in the CUSUM and 

CUSUMSQ test, with each bar representing the 5% significance level.  The null hypothesis of 

stability is rejected if the recursive residuals breach the 5% significance bars for a consistent 

length of time. 

 

3.4.3 Environmental Kuznets Curve (EKC) 

 

In order to test the hypothesis of an EKC turning point for CO2 and GDP per capita, we 

estimate a number of models that consist of a combination of the previously identified 

variables: ln co2, ln indelec, ln gdp, ln trade, ln nuc and ln entax.  The basic relationship in the 

EKC hypothesis between CO2 emissions and GDP is given by the following representation:    

 

                               
     

 

where         
  constitutes the quadratic form of ln gdp, which allows the EKC to follow an 

inverted “U” shaped path.  EKC equation (3.17) seeks to determine the long run relationship 

between the variables so an unrestricted error correction form of the ARDL model can be 

estimated as follows:  

 

 
(3.17) 
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The multivariate group in equation (3.18) is increased by 1 with the addition of ln trade, and 

then with the addition of ln indelec, which brings the number of estimated models to three.  

The EKC hypothesis is supported if      and      and if confirmed, the GDP per capita 

turning point can be calculated as the exponent             applied to base e (2.7182818).  

At this point, an increase in GDP per capita would proportionately correspond to a decrease in 

environmental degradation, which is measured by CO2 emissions.  Figure 3.13 provides an 

illustration of an EKC based on equation (3.17): 

 

Figure 3.13: Quadratic representation of an environmental Kuznets curve 

 

 

 
 
 
 
 
                                
 
 
 
 
 
  
 

Source: Created by author based on EKC hypothesis 

 

Richmond and Kaufmann (2006) describe three alternative scenarios that could arise from the 

estimated results that would not support the EKC hypothesis: a linear relationship based on 

     and     , a U-shaped relationship based on      and      and an exponential 

relationship based on      and    shares the same sign as   .  The EKC hypothesis would 

also lack support if    or    were found to be statistically insignificant, regardless of the 

correctness of the coefficients’ signs. 
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3.4.4 Granger causality: Wald test and the Toda-Yamamoto (T-Y) approach   

 

As previously mentioned in the literature review, the Granger (1969) approach of causality 

assesses whether variable X has a causal relationship with variable Y based on the predictive 

quality of past values of X on past values of Y.  However, an X Granger causes Y result does 

not imply a strict cause and effect relationship between the two variables but provides a 

measurement of antecedence that could supplement the results from the cointegration and 

error correction models.  Furthermore, non-Granger causality between variables does not mean 

that the variables cannot share a long run equilibrium relationship and care should be taken to 

distinguish the meaning of the results from these differing assessment tools.  

 

Pairwise Granger causality is based on a bivariate vector autoregression (VAR) with a p lag 

order that follows the following specification: 

 

 

         

 

   

               

 

   

 

 

             

 

   

    

 

   

        

 

The Wald test assesses the linear restrictions on the coefficients of the VAR and is performed 

on the   coefficients from equations (3.19) and (3.20).  This in order to test the null hypothesis 

of no Granger causality,                  , against the alternative,           for all  .  

The Wald test produces an F-statistic and chi-squared      statistic, which are matched 

against their respective probability values.  If the probability value is below a predetermined 

significance level (say 5%), then the null hypothesis of no Granger causality is rejected.    

 

The typical representation of Granger causality in the literature involves an assessment of the 

causal aspects of the predictor variable from the bivariate VAR equations (3.19) and (3.20).  

However, causal interactions between two variables usually involve complex and coordinated 

interactions with additional variables in a multivariate framework, which may result in 

spurious inferences from a bivariate causal analysis.  Therefore, a multivariate Granger 

(3.19) 

 
(3.20) 
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causality analysis is deemed to be more statistically appropriate where causal inferences are 

sought between two variables in a multivariate group (Barrett et al, 2010).   

 

Another problem with Granger causality arises where some of the variables in a VAR model 

are non-stationary.  The Wald test statistic in this scenario does not follow a typical asymptotic 

   distribution under the null hypothesis of no Granger causality and the limiting distribution 

often contains unobservable nuisance parameters (Sims, Stock and Watson, 1990; Toda and 

Phillips, 1993).  To overcome this problem, Toda and Yamamoto (1995) proposed a method of 

Granger causality based on the maximum order of integration (m) of the variables in a VAR.  

The augmented VAR model in this scenario is estimated at level (not first difference) and 

consists of a (p + m) lag order.  The Wald test is then carried out on all of the lagged p 

coefficients of the predictor variables apart from the final lagged (p + m) coefficients, which 

are ignored.  The resulting Wald test statistic follows an asymptotic    distribution with the 

usual degrees of freedom and this is applicable regardless of the order of integration of the 

variables.   

 

Based on Toda-Yamamoto (T-Y) methodology, the following is the representation of the 

augmented VAR(p + m) that is estimated in this chapter prior to the modified Wald (MWald) 

test for Granger causality: 

 

            

   

   

    

 

where    is a     vector of dependent variables, c is a     vector of intercept parameters, 

                is a     matrix of parameters and    is a     vector of error terms.  

The break dummy variable     is also included in the estimation.  Similarly to the 

cointegration and ECM cases, the main variable of interest is ln co2 and this variable is 

assessed for bidirectional causality against ln nuc, ln entax and the other variables within the 

multivariate group.  The results from the MWald test are compared to the Wald test results 

from a standard Granger causality analysis in order to determine their economic significance.  

 

 

 

(3.21) 
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3.5 Empirical analysis 

 

This section contributes to the empirical literature on the nuclear-GDP-CO2 nexus by 

providing an assessment of the econometric effect of electricity supply from nuclear fission on 

CO2 emissions in the UK.  The findings in this section provide an important reference point 

for the future commercialisation of electricity from fusion power due to the similarities with 

nuclear fission, based on their nuclear reactions for energy generation, capital-intensive nature 

and the long periods of power plant construction.  A key contribution comes in the form of a 

comparative analysis on the effect on CO2 emissions between environmental taxes and nuclear 

fission, which ultimately compares the UK government's action against GHG emissions with 

the generation of decarbonised electricity respectively.   

  

The results of the empirical analysis are based on the methodology that was highlighted in 

section 3.4, which consists of estimates generated from the unrestricted and restricted ECMs, 

an EKC turning point and competing Granger causality analyses from the Wald and MWald 

tests.  The estimates in Tables 3.3 to 3.15 and Figures 3.14 to 3.20 are based on the variables 

from section 3.3, which consists of annual data from 1975 to 2014. 

 

3.5.1 Unit root tests for the ARDL variables 

  

Table 3.3 shows the results from the unit root tests on each of variables highlighted in section 

3.3.  The unit root tests are based on a lag order of 1 and the t-statistic results are shown for 

each variable alongside their corresponding probability value.  The first difference operator is 

represented by Δ and a star denotes the existence of a stationary process at first difference: 

 

The option of selecting “intercept” or “intercept and trend” is determined by the pattern of the 

data and graphical representation.  The ADF and DF-GLS results show that ln gdp is I(1) at 

the 5% significance level and the remaining five variables are I(1) at the 1% significance level.  

Therefore based on ADF and DF-GLS results, we can reject the null hypothesis of a unit root 

at first difference for all variables. 
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Table 3.3: ADF and DF-GLS unit root tests  
                  

Variable  
 

Included in test 
 

ADF t-statistic 
  

DF-GLS t-statistic  
                  

         ln co2 
 

Intercept and trend 
 

-0.826 (0.954) 
  

-1.254 
 Δln co2 

 
Intercept and trend 

 
-7.286 (0.000) *** 

 
-7.176 *** 

                  

  
  

      ln gdp 
 

Intercept only 
 

-2.082 (0.539) 
  

-2.277 
 Δln gdp 

 
Intercept only 

 
-3.583 (0.045) ** 

 
-3.686 ** 

                  

         ln nuc 
 

Intercept only 
 

-2.365 (0.158) 
  

-1.044 
 Δln nuc 

 
Intercept only 

 
-5.931 (0.000) *** 

 
-4.916 *** 

                  

         ln entax 
 

Intercept and trend 
 

-1.308 (0.871)   -1.498 
 Δln entax 

 
Intercept and trend 

 
-4.759 (0.002) *** 

 
-4.852 *** 

   
            

      

      ln trade 
 

Intercept only 
 

-0.764 (0.818) 
  

0.353 
 Δln trade 

 
Intercept only 

 
-5.752 (0.000) *** 

 
-4.453 *** 

                  

         ln indelec 
 

Intercept only 
 

-1.546 (0.500) 
  

-1.086 
 Δln indelec 

 
Intercept only 

 
-5.023 (0.000) *** 

 
4.111 *** 

                  

1. ***, ** and * denotes I(1) at the 1%, 5% and 10% significance levels respectively 

2. The numbers in parentheses are the probability values of the t-statistics 

 

 

Perron (1989) indicated that a rejection of the null of a unit root does not necessarily mean that 

the data is stationary around a structural break.  Furthermore, Stock (1994) demonstrated that 

structural breaks in detrended variables may deteriorate the power of unit root tests as well as 

cause severe size distortions.  These distortions often point towards an over-rejection of the 

true null hypothesis i.e. a random walk falsely declared as a stationary process.  For some time 

series, a moderate structural break may not have any real impact on the conclusion of the unit 

root tests.  However, if there is a reason to believe the existence of an important structural 

break, a more specific test is carried out in order to determine the true order of integration.   

 

The unit root breakpoint test is therefore performed in order to test the null hypothesis of a unit 

root process with break against a stationary process with break.  The break date of 2008 is 

easily determined from the first difference graphs of ln co2 and ln gdp  in section 3.3.  The 

break motion assessment is solely based on the additive outlier as a result of the Harvey et al 

(1998) rejection of the innovation outlier.  Table 3.4 provides a summary of the results from 

the breakpoint unit root tests based on 1 lag: 

 

 

 

 



83 

 

Table 3.4: Breakpoint unit root tests  
          

 Break Type:  Break Specification Est. / Known      t-statistic 
 

  
break date 

                

ln co2 Additive outlier Intercept and trend 2008 -4.331 (<0.025)•• 
Δln co2 Additive outlier Intercept and trend 2008 -8.066 (<0.01)*** 
      

 
  

     ln gdp Additive outlier Intercept  2008 -0.418 (>=0.50) 

Δln gdp Additive outlier Intercept  2008 -4.904 (0.012)** 
          

1. •••, •• and • denotes I(0) at the 1%, 5% and 10% significance levels respectively  

2. ***, ** and * denotes I(1) at the 1%, 5% and 10% significance levels respectively 

3. The numbers in parentheses are the probability values of the t-statistics 

 

 

The uncertainty surrounding ln co2 is confirmed as the null hypothesis of a unit root with break 

is rejected at level for the 5% significance level, thereby providing strong evidence that ln co2 

is an I(0) process around a structural break.  The null hypothesis of a unit root with break is 

also rejected at first difference at the 1% significance level.  

 

Despite the breakpoint unit root test confirming the I(1) status of ln gdp, the break date for Δln 

gdp was endogenously determined rather than predefined so it is useful to view a graph of the 

Dickey-Fuller t-statistics in order to view the location of the break.  

 

Figure 3.14: Graph of the Dickey-Fuller t-statistics - Δln GDP 

 

 
 

 

The indicator line and sharp dip in 2008 appears to confirm the year that the break took place.  

2008 is therefore the selected break year that will be used for estimation purposes in 

subsequent sections in this chapter. 
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To summarise, the ADF and DF-GLS unit root tests demonstrates that all variables are I(1) but 

the unit root breakpoint test shows that ln co2 is appears to be I(0) around a structural break at 

the 5% significance level.  The appearance of the graphs, their first difference representations 

and the unit root test results were largely expected, especially considering the major economic 

events that took place over the last 40 years such as the political and economic turmoil of the 

late 1970s and early 1980s, the recession of the early 1990s and the financial crisis of 2007-08.    

 

3.5.2 Johansen’s maximum likelihood (ML) estimator for cointegration analysis 

 

Section 3.5.1 showed the results of the unit root tests of the orders of integration, with five 

variables demonstrating their I(1) status.  However, the unit root breakpoint test demonstrated 

that ln co2 is an I(0) variable around a structural break at the 5% level and near unit root at the 

10% level via the ADF unit root test.  Elliott (1998) demonstrated that false inferences could 

be drawn from Johansen’s (1988, 1991) maximum likelihood (ML) estimator results if the 

model contained variables with near unit root processes.  Such results are likely to suffer from 

significant size distortions that produce spurious rejections of the null hypothesis of a 

cointegrating rank (r).  Furthermore, Hjalmarsson and Österholm (2007) carried out Monte 

Carlo simulations to test the effect of near unit root processes in cointegrating vectors using 

Johansen’s method and concluded that there was a substantial chance of erroneously 

concluding that unrelated variables were cointegrated. 

 

Nevertheless, Johansen’s ML estimator of cointegration analysis is used in this section to 

provide additional information on the number of cointegrating vectors at a specific lag order.  

Cointegration test results are therefore obtained for the models that are to be estimated.  This is 

important as Pesaran, Shin and Smith (2001) indicated that the ARDL-bounds test method is 

only appropriate where r = 1 as their ARDL-bounds test critical values are inappropriate 

where r > 1.  However, considering the structural break in 2008, the statistical importance 

from Johansen’s test is slightly weakened as the 5% critical values that are reported assume 

that no exogenous variables are included within the test.  Nevertheless, a breakpoint dummy is 

included in all versions of Johansen cointegration test. 

 

For brevity, the procedure for Johansen’s ML estimator for cointegration analysis begins with 

the following VAR specification with p lag order: 
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where    is a     vector of I(1) variables, v is a     vector of parameters,         is a 

    matrix of parameters and    is a     vector of error terms.  The VAR(p) can be 

rewritten in the following vector error correction model (VECM) format: 

 

                    

   

   

    

where: 

        

 

   

            

 

     

 

 

where    constitutes an identity matrix of order    .  If the coefficient matrix   

experiences a reduced rank such that      , then coefficient matrix   can be defined as 

     , where   are the speed of adjustment parameters in the VECM and   is the 

cointegrating vector of long run coefficients such that          .  Therefore, the objective 

of Johansen’s procedure involves the use of an unrestricted VAR to estimate the number of 

cointegrating relationships (r) within  .  The implementation of Johansen’s test involves the 

estimation of the trace and the maximum eigenvalue statistics, which are compared to their 

respective critical values in order to test the null hypothesis of r cointegrating relationships 

against the alternative of r      cointegrating relationships.   

 

Table 3.5 provides a summary of the results for Johansen’s test for both the trace statistic and 

the maximum eigenvalue (max) statistic at 1 lag.  The results are shown for the case 1 general 

model in equation (3.11) and the additional comparative models for the general model with ln 

trade (case 2) and the general model with ln trade and ln indelec (case 3): 

 

 

 

 

 

 

(3.22) 

(3.23) 

(3.24) 
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Table 3.5:  Johansen’s cointegration rank test - trace and max eigenvalue statistics 
                            

 Models:    : Coint. 

 
Eigen Trace 5% Crit. Prob. 

  
Eigen  Max 5% Crit. Prob. 

 (1 lag) 

 
equations 

 
value Statistic  Value 

   
value  Statistic   Value 

      
          

 
          

  

 
  

            Case 1 

 
None 

 
0.572 55.447 47.856 0.008 (R) 

 
0.572 32.219  27.584 0.012 (R) 

  
At most 1 

 
0.336 23.229 29.797   0.235 (A) 

 
0.336 15.543  21.132 0.253 (A) 

  
At most 2 

 
0.151 7.686 15.495   0.500 

  
0.151 6.201  14.265 0.588 

         
  

     
  

  

 
  

 
        

  
        

 Case 2 

 
None 

 
0.697 92.680 69.819   0.000 (R) 

 
0.697 45.374  33.877 0.001 (R) 

  
At most 1 

 
0.452 47.306 47.856   0.056 (A) 

 
0.452 22.878  27.584 0.179 (A) 

  
At most 2 

 
0.274 24.428 29.797   0.183 

  
0.274 12.163  21.132 0.532 

 
  

 
  

 
          

 
          

               Case 3 

 
None 

 
0.813 132.713 95.754   0.000 (R) 

 
0.813 63.706  40.078 0.000 (R) 

  
At most 1 

 
0.458 69.007 69.819   0.058 (A) 

 
0.458 23.273  33.877 0.510 (A) 

  
At most 2 

 
0.417 45.734 47.856   0.078 

  
0.417 20.478  27.584 0.309 

 
                             

 (R) denotes a rejection of the null hypothesis at the 5% level 

(A) denotes a non-rejection of the null hypothesis at the 5% level 

  

The ‘  : coint. equations’ part of the first column of Table 3.5 indicates the null hypothesis of 

r cointegrating relationships among the variables while the main column of interest contains 

the trace statistic results.  The eigenvalue is used to calculate the trace statistic and if the trace 

statistic is greater than the 5% critical value, then the null hypothesis of no cointegration is 

rejected among the 5 variables in each section.  In Table 3.5, (R) denotes the rejection of the 

null hypothesis of no cointegration at the 5% level and there is no rejection of the null 

hypothesis for the ‘at most 1’ row.  Therefore, the three models are shown to have one 

cointegrating vector.  

 

The max statistic in the second section below tells a similar story to the trace statistic 

concerning the rejection of the null hypothesis of no cointegrating vectors for all models and 

the non-rejection of the null hypothesis for one cointegrating vector.  The results of a single 

cointegration vector for all models therefore support the use of the ARDL-bounds test methods 

of cointegration for further analysis and testing. 

 

3.5.3 Lag selection for the ARDL model 

 

The procedure for selecting the most parsimonious ARDL(p, q) model involves the estimation 

of the maximum possible combination of models with different lag lengths of the individual 

variables.  The total number of regression models to be estimated is        where   is the 

maximum number of lags and   is the number of variables in the regression.   Given the 

relatively small sample size of 40 observations and the number of variables used in the model, 

the lag order is truncated to 1 lag, which allows for a sufficient number of degrees of freedom 
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for econometric estimation.  Therefore, a total number of           ARDL models were 

generated for the case 1 general model using the Akaike Information Criteria (AIC).  The 

model selection criteria are therefore based on the models that minimises the AIC value.  

 

A structural break in the intercept and/or trend in 2008 was confirmed so a break dummy 

variable is included.  This follows the procedure of Balaguer and Cantavella (2016), whose 

ARDL model reflected a break in the intercept and trend in their consideration of the 

relationship between crude oil, GDP and CO2 emissions abatement in Spain.  Table 3.6 

provides a comparative analysis of the top 5 ARDL(p, q) models for case 1, 2 and 3: 

 

Table 3.6: AIC selection criteria for case 1, 2 and 3 
                  

 
   Case 1  -  General model 

 
   Case 2  -  General model 

 
  Case 3  -  General model  

   
                   with ln trade 

 
  with ln trade and ln indelec 

      

 
    

 
    

         Rank AIC Specification 

 
AIC Specification 

 
AIC Specification 

      

 
    

 
    

         1 -4.089 ARDL(1, 1, 1, 0) 

 
-4.049 ARDL(1, 1, 1, 0, 0) 

 
-4.729 ARDL(1, 1, 1, 0, 1, 0) 

2 -4.061 ARDL(1, 1, 1, 1) 

 
-4.046 ARDL(1, 1, 1, 0, 1) 

 
-4.716 ARDL(1, 1, 0, 0, 1, 0) 

3 -4.017 ARDL(1, 0, 1, 0) 

 
-4.031 ARDL(1, 1, 1, 1, 1) 

 
-4.715 ARDL(1, 1, 1, 1, 1, 0) 

4 -4.007 ARDL(1, 0, 1, 1) 

 
-4.023 ARDL(1, 1, 1, 1, 0) 

 
-4.687 ARDL(1, 1, 0, 1, 1, 0) 

5 -4.003 ARDL(1, 1, 0, 0) 

 
-3.967 ARDL(1, 0, 1, 0, 0) 

 
-4.680 ARDL(1, 1, 1, 0, 1, 1) 

                  

 

The results from the AIC procedure show that optimum models for cases 1, 2 and 3 are 

ARDL(1, 1, 1, 0), ARDL(1, 1, 1, 0, 0) and ARDL(1, 1, 1, 0, 1, 0) respectively.  These three 

ARDL models will now be subjected to further testing and analysis. 

 

3.5.4 Bounds test for cointegration analysis 

 

After determining the optimum lag order for the four ARDL models, the next step involves the 

verification of a long run cointegrated relationship between the variables.  This is done by 

means of the bounds test procedure, which checks the joint significance of the lagged level 

coefficients that are estimated from equation (3.15).  The null hypothesis of no cointegrating 

relationship among the variables requires that all these coefficients are jointly equal to zero 

and the alternative hypothesis of a cointegration relationship requires at least one of the   

relationships in equation (3.15) is equal to any figure other than zero.  The calculated F-

statistic is compared with the critical value I(0) lower bound and I(1) upper bound to confirm 

the existence of cointegration.  Table 3.7 provides a list of the critical value bounds and the F-

statistics from the ARDL models: 
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Table 3.7: Bounds test of ARDL models  
 

                    

Model 

 
Signif. level 10% 5% 1% 

 
F-Stat Result 

          
  

 
  

    
      

Case 1 - ARDL(1, 1, 1, 0)  

 
I(0) Bound 2.37 2.79 3.65 

 
3.915 ** Cointegration 

General model 

 
I(1) Bound 3.20 3.67 4.66 

              
  

      
      

Case 2 - ARDL(1, 1, 1, 0, 0)  

 
I(0) Bound 2.20 2.56 3.29 

 
3.176 * Cointegration 

General with ln trade 

 
I(1) Bound 3.09 3.49 4.37 

              
  

      
      

Case 3 - ARDL(1, 1, 1, 0, 1, 0)  

 
I(0) Bound 2.08 2.39 3.06 

 
4.428 *** Cointegration 

General with ln trade and ln indelec 

 
I(1) Bound 3.00 3.38 4.15 

    
    

   
          

***, ** and * are based on the 1%, 5% and 10% significance levels respectively 

 

For the case 1 general model, the calculated F-statistic is higher than the upper bound at the 

10% and 5% significance levels.  This means that we reject the null hypothesis of no 

cointegration at these levels of significance.  The bounds test is also applied to case 2, which 

shows cointegration at the 10% significance level and uncertainty at the 5% significance level.  

Case 3 shows the strongest confirmation of cointegration at the 1% significance level.  

Overall, the results show that there is evidence of a long run cointegrating relationship among 

the variables for all cases.   

 

3.5.5 Cointegration and long run representation of the ARDL model 

 

We initially consider case 1 for demonstration purposes, which consists of the ARDL(1, 1, 1, 

0) model that was selected by the AIC.   The following is the general specification of the 

model's ARDL(1, 1, 1, 0) equation:    

 

                                                                 

          

                            

              

The case 1 general model assumes that ln co2 is dependent on its own lag, one lag each for ln 

gdp and ln nuc and the levels of all independent variables.  There is also an assumption that 

the global financial crisis of 2008 had an impact on CO2 emissions and some of the other 

independent variables, which is denoted by the break dummy variable   .  Additional 

variables are added to the general case 1 model in order to provide a comparative analysis 

between government action against GHG emissions (ln entax) and decarbonised electricity 

generation (ln nuc).  Table 3.8 provides the ARDL coefficients from the estimated regressions 

in all three cases: 

(3.25) 
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Table 3.8: ARDL regression output  
                    

Dep variable 
 

     Case 1 
 

         Case 2 Case 3 

ln co2 
 

  ARDL(1, 1, 1, 0) ARDL(1, 1, 1, 0, 0) ARDL(1, 1, 1, 0, 1, 0) 
                    

                    

 

3.717 (0.966) 

 

3.749 (0.978) 

 

7.579 (0.954) 

            

 

0.212 (0.186) 

 

0.169 (0.202) 

 

-0.331 (0.167) 

      

 

0.550 (0.304) 

 

0.638 (0.344) 

 

0.416 (0.256) 

         

 

-0.543 (0.269) 

 

-0.572 (0.277) 

 

-0.590 (0.210) 

      

 

-0.036 (0.053) 

 

-0.038 (0.053) 

 

-0.023 (0.039) 

          

 

0.128 (0.060) 

 

0.126 (0.060) 

 

0.060 (0.044) 

        

 

-0.323 (0.112) 

 

-0.336 (0.115) 

 

-0.357 (0.084) 

        

    

-0.048 (0.084) 

 

-0.286 (0.087) 

           

       

0.191 (0.082) 

          

       

0.500 (0.091) 

   

 

-0.032 (0.007) 

 

-0.032 (0.008) 

 

-0.033 (0.006) 

 -        

 

0.962 

  

0.963 

  

0.983 

                  

 

0.029 

  

0.029 

  

0.020 

 
                    

The numbers in parentheses are the standard errors. 

 

As previously mentioned, if the variables exhibit a cointegrated long run equilibrium 

relationship, they would have a tendency not to stray too far from their equilibrium values.  

Based on the ARDL regression results, we can determine the long run equilibrium relationship 

for the case 1 ARDL(1, 1, 1, 0) model in lag polynomial terms:   

 

          
  

    
 

     

    
       

     

    
       

  

    
         

 
  

    
        

 

where     are the residuals from the case 1 ARDL regression model,   is the coefficient of the 

ARDL model's lagged dependent variable, 
  

    
 is the coefficient of the equilibrium model's 

intercept and  
     

    
 for all           are the long run coefficients of the equilibrium  

model's independent variables.  All of the variables are measured in their natural logarithms so 

the long run equilibrium coefficients can be construed as long run elasticities.  The long run 

coefficients from equation (3.26) are given in Table 3.9: 

 

 

 

(3.26) 
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Table 3.9: Long run coefficients from the unrestricted error correction representation 
                       

Dependent variable:       Case 1 Case 2 Case 3 

ln co2    ARDL(1, 1, 1, 0)   ARDL(1, 1, 1, 0, 0) ARDL(1, 1, 1, 0, 1, 0) 

 
 

          
                       

intercept  4.716 (0.591) *** 4.513 (0.660) *** 5.694 (0.366) *** 

ln gdp  0.009 (0.105) 
 

0.080 (0.156) 
 

-0.130 (0.079) 
 ln nuc  0.117 (0.043) *** 0.107 (0.045) ** 0.028 (0.023) 
 ln entax  -0.410 (0.108) *** -0.404 (0.104) *** -0.269 (0.051) *** 

ln trade  
   

-0.057 (0.097) 
 

-0.072 (0.047) 
 ln indelec  

      
0.376 (0.063) *** 

dv   -0.040 (0.005) *** -0.039 (0.005) *** -0.025 (0.003) *** 

 
 

          1. The numbers in parentheses are the standard errors. 

2. The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 

 

The coefficients from the regression estimates are largely economically significant as they 

have the right signs and most are statistically significant.  The ln trade variable in cases 2 and 

3 is statistically insignificant due to the higher volatility of international trade activity and the 

same applies to ln gdp.   For case 1, the results shows that a 1% increase in nuclear electricity's 

share of total electricity generation corresponds to a 0.117% increase in CO2 emissions per 

capita in the long run.  A similar result is given for case 2, with a 1% increase in nuclear 

electricity's share of total electricity generation corresponding to a 0.107% increase in CO2 

emissions per capita.  These elasticities have a much weaker relationship than the 0.27% 

decrease in CO2 emissions per capita that was demonstrated by Iwata et al (2010) in their 

study of the nuclear-GDP-CO2 nexus in France.  The stronger elasticity in France could be 

explained by the complete dominance of nuclear electricity and a lack of decarbonised 

electricity generation alternatives.  World Bank (2015) highlighted this by indicating that 

nuclear electricity production in France averaged approximately 77% of total electricity 

generation in the 24 years from 1989 to 2013, with a standard deviation of only 1.8% during 

this period. 

  

On the other hand, the results for case 1 shows that a 1% increase in environmental taxes per 

capita corresponds to a 0.41% decrease in CO2 emissions per capita in the long run.  For case 

2 and 3, a 1% increase in environmental taxes per capita corresponds with decreases of 0.40% 

and 0.27% in CO2 emissions per capita respectively.  This indicates that, ceteris paribus, CO2 

emissions abatement corresponds far more strongly in the long run to environmental tax 

increases than to nuclear electricity generation.  The British Government's long term 

promotion of industrial electricity consumption has also not yet translated into the desired long 

run equilibrium relationship with CO2 emissions abatement.  This is because a 1% increase in 
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industrial electricity consumption per capita actually leads to a 0.38% increase in CO2 

emissions per capita.  Evidence of the declining trend of the indelec variable could be seen in 

graph in figure 3.11, which shows a very mild decline between 2000 and 2007 followed by a 

shaper decline during the 2007-08 financial crisis.  This ultimately led to a much weaker 

industrial demand for electricity between 2008 and the end of the sample period.   

 

3.5.6 Restricted error correction representation of the ARDL model 

 

The residuals in equation (3.15) consist of a series of deviations from the long run equilibrium 

relationship, which are used in the estimation of the restricted error correction model (ECM).  

The ECM acts to restrict the long run behaviour of the variables by converging them to their 

cointegrated relationship, which consequently produces estimates of the short run 

relationships.  The residual series from equation (3.15) can be obtained as follows:  

 

                
  

    
 

     

    
       

     

    
       

  

    
         

  

    
     

 

and the restricted error correction model is given by the following:  

 

                                                                    

  
  

    

 
     

    

       
     

    

       
  

    

         
  

    

         

 

which can now be simplified as:   

 

                                                               

 

where      is the speed of adjustment parameter towards long run equilibrium,        is 

the error (or equilibrium) correction term,    are the new residuals of the restricted error 

correction representation and         are the short run coefficients.  Table 3.10 provides a 

comparison of the short run coefficients between the case 1 general model, case 2 general 

model with ln trade and case 3 general model with ln trade and ln indelec:    

 

 

 

 

(3.27) 

(3.28) 

(3.29) 
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Table 3.10: Short run coefficients for the restricted error correction model (ECM) 
                    

Dependent variable: Case 1 Case 2   Case 3  

ln co2 ARDL(1, 1, 1, 0) ARDL(1, 1, 1, 0, 0)   ARDL(1, 1, 1, 0, 1, 0) 

          
                    

intercept -0.014 (0.009) 
 

-0.014 (0.010) 
 

-0.008 (0.007) 
  ln gdp 0.620 (0.280) ** 0.759 (0.320) ** 0.352 (0.274) 
  ln nuc -0.024 (0.050) 

 
-0.023 (0.051) 

 
-0.008 (0.039) 

  ln entax -0.269 (0.145) * -0.298 (0.154) * -0.202 (0.099) ** 

 ln trade 
   

-0.103 (0.120) 
 

-0.130 (0.089) 
  ln indelec 

      
0.317 (0.138) ** 

 dv  -0.026 (0.015) * -0.024 (0.015) 
 

-0.022 (0.011) * 

      -0.832 (0.233) *** -0.902 (0.257) *** -1.460 (0.242) *** 

          R-squared 0.486   0.490   0.735 

  SE of regression 0.031   0.031   0.023 

  
                    

1. The numbers in parentheses are the standard errors. 

2. The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 

3. SE = standard error 

 

The coefficients in all three cases show a greater statistical significance for ln entax in the 

short run as there are no statistically significant coefficients for ln nuc.  The results for 

environmental taxes across the three cases are also economically significant with the right 

signs.  The results shows that a 1% increase in environmental taxes corresponds to a 0.2% to 

0.3% decrease in CO2 emissions per capita in the short run.  GDP also increases with CO2 

emissions but interestingly, the       coefficient indicates that there is a 83.2% speed of 

adjustment to its long run equilibrium for case 1 and 90.2% for case 2.  These are very quick 

rates that indicate a near instantaneous speed of adjustment to the disequilibrium in the 

previous year.  The       coefficient in case 3 indicates that the inclusion of ln indelec in case 

3 leads to an improbable overadjustment to long run equilibrium as the coefficient should be 

between 0% (no adjustment) and -100% (full adjustment).    

 

3.5.7 Diagnostic and stability tests 

 

A series of diagnostic tests are performed on the residuals of the error correction model in 

order to check the robustness of the model and the reliability of its estimates.  This is 

important as the inclusion of irrelevant variables, the omission of important variables and/or 

data issues could present estimation problems such as inefficient estimates with high 

parameter variability and incorrect standards errors of coefficients and hence, erroneous t-

statistics.  These problems could be evident even in the presence of a high R
2
 and strong 

statistical significance within a model. 
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The Durbin-Watson statistic from the regression output is an indicator that tests for the 

presence of autocorrelation, also known as serial correlation.  For a model with a small sample 

size, a strong indicator of the presence of autocorrelation would be a Durbin-Watson statistic 

that is below 1.5.  The Durbin-Watson statistics for cases 1, 2 and 3 are 2.02, 2.07 and 2.56 

respectively.  However, an important limitation is that while the test is valid for first order 

autocorrelation, it is not suitable for dynamic models that have already captured an element of 

autocorrelation in the autoregressive model.  This limitation can be overcome by the Breusch-

Godfrey Lagrange Multiplier (LM) test, which can produce valid autocorrelation test results 

from higher order autoregressive errors.   

 

Table 3.11 shows the results from the Breusch-Godfrey LM test for autocorrelation in all four 

cases as well as the results for three additional tests for heteroskedasticity, normality and 

functional form: 

 

Table 3.11: Diagnostic tests for cases 1 to 4 
                  

Diagnostic test Autocorrelation   Functional form      Normality Heteroskedasticity 

 
     (p-value)   F-stat (p-value)    (p-value)    (p-value) 

         
                  

Case 1: ARDL(1, 1, 1, 0)  1.267 (0.260) 1.768 (0.193)   0.904 (0.636) 6.960 (0.224) 

Case 2: ARDL(1, 1, 1, 0, 0)  2.343 (0.126) 1.932 (0.175) 0.778 (0.678) 8.668 (0.193) 

Case 3: ARDL(1, 1, 1, 0, 1, 0)  1.238 (0.266) 0.677 (0.417) 1.710 (0.425) 15.260 (0.033) 
                  

The numbers in parentheses are the probability values (p-values) 

 

The Breusch-Godfrey LM test statistic is based on a supplementary regression on the residuals 

and is calculated as the number of observations   the   .  The test statistic follows an 

asymptotic    distribution with the null hypothesis of no autocorrelation at lag order p tested 

against the alternative hypothesis at the 5% significance level.  In all cases, we do not reject 

the null hypothesis of no autocorrelation at the 5% significance level as the probability value 

of the test statistics are higher than 5%.   

 

The Breusch-Pagan-Godfrey LM test is another test that uses the observations      

calculation to detect the presence or absence of heteroskedasticity.  The Breusch-Pagan-

Godfrey LM test statistic also follows a    distribution with the null hypothesis of no 

heteroskedasticity tested against the alternative hypothesis.  The probability values in Table 

3.11 indicate that the null of no heteroskedasticity is not rejected at the 5% significance level 

for case 1 and 2.  However, the case 3 model with the additional variable ln indelec shows 
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evidence of heteroskedasticity at the 5% significance level.  This means that although the 

model with ln indelec has unbiased parameter estimates and appropriate tests of significance, 

the OLS estimates for the ECM are suboptimal and the standard errors are biased.  There 

might also be some interplay between the heteroskedasticity in case 3 and the over-adjustment 

in the error correction coefficient. 

 

The Jarque-Bera statistic is a test that assesses whether the residuals follow a normal 

distribution and is displayed as a bell-shaped histogram.  The Jarque-Bera test equation 

produces the kurtosis and skewness estimates and the Jarque-Bera statistic follows a    

distribution with the null hypothesis of a normal distribution tested against the alternative 

hypothesis.  Again, cases 1, 2 and 3 shows that we cannot reject the null hypothesis of a 

normal distribution at the 5% significance level.  The functional form of a model can be 

determined by Ramsey's RESET test, which assesses the model for problems that could bias 

the least squares estimates such as omitted variables and incorrect functional formats such as 

certain variables not in their natural logarithms.  Further evidence of these specification and 

functional form problems consists of the generation of a non-zero mean for the residuals.  

Therefore, the null hypothesis is based on the residuals following a normal distribution with a 

mean of zero and a variance of one against the alternative hypothesis of a non-zero mean for 

the residuals.  The F-statistic is produced in cases 1, 2 and 3, which shows that we cannot 

reject the null hypothesis of a correct functional form for the model. 

 

Parameter stability is assessed by the cumulative sum (CUSUM) of the recursive residuals 

from the one-step ahead forecasts. The test statistic assesses whether the recursive residual 

diverges from its zero mean over time.  Two 5% significance bars act as containers of the 

recursive residuals throughout the sample period.  Any extended upward or downward breach 

of the 5% significance bars would imply that the estimates of the non-zero mean coefficient 

are unstable.  While the CUSUM test highlights the systematic adjustment of recursive 

residuals, the cumulative sum of squared residuals (CUSUMSQ) is a stronger test that 

demonstrates the impacts of shocks in the data, which are subsequently reflected as 

instabilities in the recursive residuals.  Similarly to the CUSUM test, the CUSUMSQ test 

statistic considers the departure from its expected value of zero and is assessed by reference to 

its confinement within or breach of two parallel 5% significance bars.  Figures 3.15 to 3.20 

show the graphs of the CUSUM and CUSUMSQ statistics for the ECM cases 1, 2 and 3:  
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Figure 3.15: CUSUM and CUSUMSQ test for case 1: General ECM (no break) 
        

 

 

 

 

 

 

 
     
 
 

 

Figure 3.16: CUSUM and CUSUMSQ test for case 1: General ECM (with break) 

                                                                                            
 

 
 

Figure 3.17: CUSUM and CUSUMSQ test for case 2: General ECM with ln trade (no break) 
 

 
        
 
 
 
 
 
 
 
 
 
 

Figure 3.18: CUSUM and CUSUMSQ test for case 2: General ECM with ln trade (with break) 
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Figure 3.19: CUSUM and CUSUMSQ test for case 3: General ECM with ln trade & ln indelec (no break) 

 
 
         
 
 
 
 
 
 
 

 

 
 

Figure 3.20: CUSUM and CUSUMSQ test for case 3: General ECM with ln trade & ln indelec (with break) 

 

 

 
 

 
 

 

 
 

 

 
 
 

 

All of the CUSUM tests for ECM cases 1, 2 and 3 demonstrate that the systematic adjustments 

of the recursive residuals are stable during the course of the sample period.  However, the 

CUSUMSQ tests for the case 1, 2, and 3 ECM models without a break dummy variable show 

that the null hypothesis of parameter stability is rejected at the 5% significance level due to the 

breach of the lower bar at approximately 2007 and 2008.   Both breaches unsurprisingly 

coincide with the 2007-08 global financial crisis and this event is now proven to have had the 

greatest statistical impact on the data during the 40 year sample period.  However, we do not 

reject the null hypothesis of parameter stability for the CUSUMSQ case 1, 2 and 3 graphs with 

a break dummy variable included as the graphs are all stable after the shock period. 

 

3.5.8 EKC results 

 

Similarly to the nuclear-GDP-CO2 nexus study in the previous section, the EKC estimation 

process involves the selection of the most parsimonious ARDL models, using the AIC model 

selection criteria.  The parsimonious ARDL models that were initially selected for the pre-

EKC estimation were as follows: ARDL(1, 1, 0, 1, 0) general model, ARDL(1, 1, 0, 1, 0, 1) 
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general model with ln trade,  ARDL(1, 0, 1, 0) model with ln nuc only and ARDL(1, 0, 1, 0, 

0) model with ln nuc and ln trade.  The ARDL estimation results for all models can be found 

in Appendix 3.1.  Table 3.12 provides the long run pre-EKC estimation results from the 

unrestricted error correction models: 

 

Table 3.12: Pre-EKC long run estimates for general models and models with ln nuc  
                  

Dep. var:  General model General with ln trade      ln nuc only   ln nuc and ln trade 

ln co2     (1, 1, 0, 1, 0)       (1, 1, 0, 1, 0, 1)      (1, 0, 1, 0)       (1, 0, 1, 0, 0) 

               

  

        
      

intercept -25.402 (25.188) -28.737 (28.684) -48.994 (53.705) -73.938 (77.635) 

ln gdp 6.080 (5.078) 6.704 (5.744) 10.600 (10.839) 15.537 (15.542) 

(ln gdp)
2
 -0.306 (0.256) -0.340 (0.294) -0.548 (0.547) -0.806 (0.796) 

ln nuc 0.064 (0.060) 0.067 (0.056) -0.111 (0.107) -0.134 (0.127) 

ln entax -0.410 (0.103)*** -0.423 (0.095)*** 

    ln trade 

  

0.067 (0.121) 

  

0.155 (0.302) 

dv -0.041 (0.005)*** -0.042 (0.005)*** -0.055 (0.011)*** -0.059 (0.015)*** 
                  

1. The numbers in parentheses are the standard errors. 

2. The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 

 

The ln entax shows strong statistical significance at the 1% level for the general model: 

ARDL(1, 1, 0, 1, 0) and the general mode with ln trade: ARDL(1, 1, 0, 1, 0, 1).  However, the 

centre of our focus lies with the estimates of the long run coefficients for ln gdp and (ln gdp)
2
.  

Both are statistically insignificant for all three models, which shows that the EKC hypothesis 

is not supported with the inclusion of ln nuc in a multivariate group.  For a comparison, Table 

3.13 provides the estimation results from the unrestricted error correction models with ln nuc 

omitted: 

 

Table 3.13: Pre-EKC long run estimates for models with ln entax  
              

Dep. variable:             ln entax only ln entax and ln trade   ln entax, ln trade and ln indelec 

ln co2     (1, 0, 1, 0)      (1, 0, 1, 0, 1)        (1, 0, 1, 0, 1, 0) 
              

       ln gdp 9.240 (3.974)** 11.033 (4.747)** 0.831 (2.362) 

(ln gdp)
2
 -0.463 (0.199)** -0.559 (0.243)** -0.049 (0.120) 

ln entax -0.390 (0.107)*** -0.402 (0.101)*** -0.246 (0.048)*** 

ln trade  

  

0.108 (0.138) -0.070 (0.061) 

ln indelec 

    

0.408 (0.063)*** 

dv -0.045 (0.005)*** -0.047 (0.005)*** -0.025 (0.004)*** 

intercept -41.437 (19.468)** -50.663 (23.605)** 0.815 (11.788) 
              

1. The numbers in parentheses are the standard errors. 

2. The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 
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As expected, the long run coefficients of the first two models show much stronger results than 

the previous four models with ln nuc in Table 3.12.  The ln gdp and (ln gdp)
2
 variables are 

statistically significant at the 5% level for ARDL(1, 0, 1, 0) and at the 5% significance level 

for ARDL(1, 0, 1, 0, 1).  Crucially, the coefficients for ln gdp and (ln gdp)
2
 in both models 

have the rights signs for EKC estimation purposes based on the criteria set out in section 3.4.3 

i.e. ln gdp coefficient > 0 and (ln gdp)
2
 coefficient < 0.   

 

The turning points based on the                  formula can now be calculated as follows: 

 

(a)  ARDL(1, 0, 1, 0):                          = £21,556 per capita (2010 GBP) 

(b)  ARDL(1, 0, 1, 0, 1):                           = £19,313 per capita (2010 GBP) 

 

Based on the data from the Office of National Statistics (2015c) used for the GDP per capita 

graph (figure 3.3), the ARDL(1, 0, 1, 0) turning point of £21,556 per capita was approximately 

reached in 1999.  Furthermore, the ARDL(1, 0, 1, 0, 1) turning point of £19,313 per capita was 

approximately reached in 1995.  The EKC hypothesis is easily supported for the models with 

ln entax and the approximate turning point of 1995 to 1999 is conveniently located near the 

mid-point section of the 1975 to 2014 sample period.  The results for the models therefore 

indicate that as annual UK GDP per capita increases beyond 1999, environmental taxes have a 

statistically measurable impact on the decline of CO2 emissions-related environmental 

degradation.  The 1999 turning point also comes relatively soon after the 1992 UN Framework 

Convention on Climate Change (UNFCCC) and the 1997 Kyoto Protocol.  This therefore 

statistically confirms the UK Government’s immediate compliance to international 

environmental treaties through a controversial and aggressive environmental tax policy.  

 

3.5.9 Multivariate Granger causality: Wald test versus modified Wald test 

 

A standard VAR is estimated prior to the multivariate Granger causality test.  The p lag order 

of the VAR must be sufficient to ensure the removal or minimisation of serial correlation in 

the error terms.  However, lag selection criteria are applied as preference is given to the most 

parsimonious model that consists of the minimum information criterion.  The lag order is 

initially restricted to 2 and consideration is given to the results from different information 

criteria as well as information criteria from a lower lag order of 1 in order to determine the 
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appropriate lag order for the VAR.  Table 3.14 provides a summary of the lag selection criteria 

results for the VAR model with all variables included: 

 

Table 3.14: lag selection criteria for VAR  
              

Lag LogL LR FPE AIC SIC HQIC 
  

             0 241.76                          NA 1.6e-13   -12.41 -12.32   -12.15   

1 466.73   449.94      8.1e-18*   -22.35*   -21.71*   -20.54* 

2 497.47        61.47*    1.2e-17   -22.08    -20.88  -18.72 
              

* Denotes the minimum value from each information criterion 

 

According to the various information criteria, the unanimous lag length that should be chosen 

is 1 lag.  However, diagnostic tests were performed on the residuals of the VAR, which 

showed evidence of serial correlation at this lag order.  The lag order is therefore increased by 

a 1 lag increment until serial correlation is removed.  Therefore, a new lag order of 2 is chosen 

for the VAR models for estimation purposes.  The results from the VAR estimation can be 

seen in Appendix 3.2 for both VAR(p) and augmented VAR(p + m).  Granger causality tests 

were performed on both of the VAR models using the standard Granger causality Wald test 

and the T-Y Granger causality MWald test.  The results of the Granger causality tests are 

shown below in Table 3.15:  

 

Table 3.15: Multivariate Granger Causality tests  
                

  : X does not Granger cause Y        Wald test 

  
      T-Y MWald test 

         
      

 
      

 
      Prob.  Result 

 
     Prob.  Result 

        

 
      

        ln co2 does not Granger cause ln gdp 1.414  0.493 

  

1.574  0.455 

 ln gdp does not Granger cause ln co2 18.263  0.000 Reject   *** 

 

1.287  0.525 

 
. 

       
ln co2 does not Granger cause ln nuc 0.112  0.946 

  

0.695  0.706 

 ln nuc does not Granger cause ln co2 2.271  0.321 

  

0.084  0.959 

 
. 

       ln co2 does not Granger cause ln entax 5.203  0.074 Reject   * 

 

6.216  0.045  Reject   ** 

ln entax does not Granger cause ln co2 16.523  0.000 Reject   *** 

 

12.961  0.002  Reject   *** 
. 

       ln co2 does not Granger cause ln trade 0.895  0.639 

  

5.769  0.056  Reject   * 

ln trade does not Granger cause ln co2 15.453  0.000 Reject   *** 

 

15.920  0.000  Reject   *** 
. 

       ln co2 does not Granger cause ln indelec 3.450  0.178 

  

1.086  0.581 

 ln indelec does not Granger cause ln co2 18.213  0.000 Reject   *** 

 

16.760  0.000  Reject   *** 
                

The asterisks ***, ** and * are based on the rejection of the null    at the 1%, 5% and 10% significance levels 

 

 



100 

 

As expected, the null hypothesis of no Granger causality in the standard Wald test is rejected 

from ln indelec   ln co2 at the 1% significance level, which highlights the causal role that 

increased electrification of industry has on CO2 emissions abatement.  Strong unidirectional 

causality is also evident from ln gdp   ln co2 and from ln trade   ln co2 at the 1% significance 

level.  Bidirectional causality also exists from ln entax   ln co2, which demonstrates the 

strong causal effect that punitive fiscal action from the UK Government has on CO2 emissions 

abatement.   

 

Although the MWald test results in Table 3.15 shows strong causality that follows a robust 

asymptotic    distribution, the T-Y MWald test omits the strong unidirectional causality from 

ln gdp   ln co2 in the Wald test.  The difference in the results could be explained by Dolado 

and Lütkepohl (1996) who used multiple Monte Carlo replications to demonstrate the 

inefficiencies of T-Y’s MWald test for Granger causality.  They concluded that if the VAR(p 

+ m) model has many variables (6 in their case) and the lag length is short, then the MWald 

results could exhibit a severe reduction in power, thereby increasing the likelihood of a false 

acceptance of the null hypothesis of no Granger causality.  A large number of variables are 

used for this section (6 in this case) with a relatively low lag order, which may support the 

Dolado-Lütkepohl inference of low power in MWald tests. 

 

3.6 Conclusion  

 

This chapter sets out to provide an assessment of the impact of several energy-economic 

variables on environmental degradation, commonly measured as CO2 emissions per capita (ln 

co2).  The multivariate assessment for the UK was based on previous studies of the nuclear-

GDP-CO2 nexus and economic theory.  Testing was carried out using suitable econometric 

methods to generate estimates for comparison and analysis.  The statistical attributes of the 

variables led to the use of the ARDL-bounds test model for cointegration analysis as it 

provides statistically robust results for small sample sizes with different orders of integration.  

The long run estimates were obtained from the unrestricted ECM form of the most 

parsimonious ARDL models in order to determine the impact of the energy-economic 

variables on CO2 emissions abatement.  The restricted ECM was used to obtain the short run 

estimates as well as estimates of the speed of adjustment towards long run equilibrium.  

Granger causality tests on the variables provided the measures of antecedence and the 
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environmental Kuznets curve (EKC) hypothesis was tested in order to confirm the turning 

point of CO2 emissions decline as a ratio of GDP. 

 

A number of contributions to the empirical literature on the nuclear-GDP-CO2 nexus field 

were made in this chapter.  Firstly, this is the first time series analysis of the nuclear-GDP-CO2 

nexus for the UK that uses the total trade (ln trade) and industrial electricity consumption (ln 

indelec) variables in a multivariate group.  There were two notable previous studies among the 

very sparse literature that used the ARDL-bounds test method of cointegration and similar 

variables in their analysis.  Baek and Kim (2013) assessed the nuclear-GDP-CO2 nexus on 

South Korea while considering aggregate energy consumption (ln en) as an additional variable 

while Iwata et al (2010) assessed the CO2-GDP-nuclear nexus in France with consideration 

given to ln en and trade.  This chapter follows the Iwata et al (2010) choice of trade as an 

additional variable but converts trade and nuc from share variables in the Iwata et al (2010) 

study to the natural logarithms of GBP per capita (ln trade) and KWh per capita (ln nuc) 

respectively.   This chapter also replaces their choice of ln en with industrial electricity 

consumption (ln indelec) as it was deemed to be more relevant in the context of this analysis.   

  

Secondly, this chapter goes much further than previous studies by contributing a first of a kind 

comparison of decarbonised nuclear electricity generation (ln nuc) against the UK 

Government’s action against climate change through the inclusion of aggregate environmental 

taxes (ln entax) as a proxy variable.  This comparison was carried out throughout the 

cointegration and ECM sections of this chapter.  Thirdly, new insights were gained through a 

comparison of Granger causality analyses between the Wald test and modified Wald (MWald) 

test for the 6 variables used in this chapter.  The final contribution goes towards the EKC 

hypothesis literature and is based on the answers gained from the question of whether nuclear 

electricity generation offers a better statistical impact to a British EKC than the UK 

government’s controversial environmental tax policy, especially when considering ln trade 

and ln indelec in a multivariate framework. 

 

The statistical analysis of the variables confirmed the presence of a structural break in 2008, 

the year of the global finance crisis.  Unit root tests confirmed that all but one of the variables 

were guaranteed to be I(1), with the unit root breakpoint test confirming that ln co2 was an I(0) 

variable around a structural break at the 5% significance level.  Evidence of this can be seen in 

the figure 3.1 graph, which has a relatively smooth bow shape after 1983 and a noticeable 
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break around 2008.  The dependent variable throughout this chapter is ln co2 and the 

diagnostic tests indicate that an omission of a break dummy variable (dv) impedes the stability 

of the parameters during and after the 2008 structural break as evidenced by the CUSUMSQ 

graphs, which showed a parameter breach of the 5% significance bars for the models without 

dv and parameter stability within the 5% significance bars for the models with dv.    

 

The estimated elasticities for cases 1, 2 and 3 demonstrate that in the long run, increases in ln 

entax correspond to strong reductions in ln co2 but increases in ln nuc correspond to a slight 

increase in ln co2.  This is expected due to the volatility of the UK’s nuclear power plant 

capacity and the exponential growth in the environmental tax curve.  The same is true in the 

short run as the three restricted ECM models show ln entax as having a stronger statistical 

effect on ln co2 reduction than ln nuc.  The results imply that in the short run, environmental 

taxes are able to decrease CO2 emissions but has a knock on effect on reducing overall 

industrial electricity capacity, thereby affecting the consumption of electricity from primary 

energy substitutes of nuclear such as coal.  The implied negative consequences for the UK of 

high environmental taxes would be the gradual erosion of national energy security and 

increased energy bills to households and businesses. 

 

The short run inferences from the restricted ECMs also receive support in the Granger 

causality MWald test, which are statistically more appropriate than the standard Wald test 

results through its adherence to an asymptotic    distribution.  The multivariate MWald test 

shows ln entax as having a statistically stronger causal influence on ln co2 than ln nuc.  Two of 

the variables that show a strong unidirectional causality at the 1% level of significance (ln 

indelec and ln entax) are the same two variables that share a strong short and long run 

elasticity with ln co2. 

 

The question of whether the EKC hypothesis could be supported for the UK while taking into 

account the additional variables is answered through the results.  The EKC hypothesis is not 

supported for all combinations of the model with ln nuc.  However, there is strong evidence to 

support the existence of an EKC at the 5% significance level when ln entax is solely added to 

the base group of three variables: ln co2, ln gdp and (ln gdp)
2
 and at the 5% significance level 

when ln entax and ln trade are added to the base group.  The seamless assimilation of ln entax 

into this theoretical relationship indicates the key role that environmental taxes plays in the 

economy-environment relationship.  Environmental taxes are able to have a decisive impact on 
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increased business electrification, greater home insulation, cleaner methods of transport and 

stronger carbon markets, thereby inducing the EKC turning point. 

 

The lessons for fusion power from the nuclear-GDP-CO2 nexus, Granger causality and EKC 

hypothesis estimates are that a secure, steady and sustainable source of high volume electricity 

generation is vital for the UK’s objective of increased CO2 emissions abatement towards the 

2050 decarbonisation target.  The pre-1998 upward trend in the nuclear electricity generation 

curve (see Figure 3.5) and the post-1998 downward trend have seriously weakened the long 

run equilibrium relationship between nuclear fission electricity with CO2 emissions and 

removed altogether any potential for a bidirectional causal relationship between the two 

variables.  The long run equilibrium relationship could be weakened further as there is a 

distinct lack of a like-for-like replacement strategy for ageing nuclear power plants that are 

coming towards the end of their technical lives.  The risks to the long run equilibrium 

relationship could be further compounded by construction risks and possible changes in 

government policy that may question the commercial viability of increasingly pricy quotations 

of nuclear power plant construction
12

 

 

The econometric methods of analysis and the underlying theoretical assumptions were 

appropriate with the data and provided consistent, interpretable results that were analogous to 

the underlying assumptions.  There are of course limitations to this study.  For example, 

attempts to replicate this study on the same variables in other developed countries would 

require pre-testing of the variables in order to determine the number of cointegrating 

equations.  Currently, the ARDL-bounds test can only provide statistically robust results for 

cointegration if there is one cointegrating equation (r).  If r > 1, the analysis would be 

improper as the critical values from Pesaran, Shin and Smith (2001) tables would be 

unsuitable.  The model is also unable to statistically determine the additional benefit to CO2 

emissions abatement that would come from further increases in environmental taxes above the 

current 2014 level and so sensitivity analysis models may be used to expand the research 

further. 

                                                           
12

 The government provisionally agreed to a deal that supported the construction of a new nuclear power plant at 

Hinkley Point, Somerset.  This was the first site that a nuclear licence was awarded for since Suffolk’s Sizewell B 

nuclear power plant in 1987.  The deal was made with NNBG, a subsidiary of French energy company EDF and 

China General Nuclear Power Corporation.  The problem lies with the financial terms of the deal, which have 

been widely decried as overpriced as the government has agreed to pay an index-linked £92.50 per MWh based 

on 2012 prices as well as the offer of a guarantee of up to £2bn in bonds if NNBG wishes to issue debt to finance 

its construction (National Audit Office, 2016) 
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CHAPTER 4 

 

THE ROLE OF FUSION POWER IN THE UK'S FUTURE 

ENERGY MIX: LONG-TERM ENERGY SCENARIOS TO 2050 

 

4.1 Introduction 

 

The Climate Change Act (2008) sets out the UK's legal requirement to reduce its emissions of 

greenhouse gases (GHG) by at least 80% of the 1990 baseline level by 2050.  Among the other 

provisions within the Climate Change Act (2008) are the establishment of the Committee on 

Climate Change (CCC) and the system of carbon budgets, which ensures the UK's compliance 

with the law and its determination to stay on its decarbonisation course.  The UK Government 

highlighted its policies for meeting the carbon budgets based on a minimum reduction of 23% 

of the 1990 level during the 1
st
 carbon budget of 2008-2012, 29% during the 2

nd
 carbon budget 

of 2013-2017, 35% during 3
rd

 carbon budget of 2018-22 and 50% during the 4
th

 carbon budget 

of 2023-2027 (HM Government, 2011).  Further highlights were provided on the progress of 

the decarbonisation agenda between 1990 and 2010, with emissions from power stations 

falling by a third, emissions from buildings falling by 18%, emissions from agriculture falling 

by nearly a third, emissions from transport staying roughly the same and emissions from 

industrial output falling by 46% (HM Government, 2011).   

 

However, there remains a considerable number of techno-economic uncertainties beyond the 

4
th

 carbon budget of 2023-2027.  For example, the long period beyond 2027 would suggest 

that it is impossible to know the changing contributions from various energy sources, the 

future energy production costs, the projected energy demand levels and the shape of the 

emissions abatement trajectory.  The UK’s vote to leave the European Union during the 2016 

referendum also adds uncertainty to its commitment to costly EU-derived energy regulations 

that are aimed at reducing GHG emissions such as the UK Renewable Energy Strategy, whose 

cost is £4.7bn per annum (Open Europe, 2015).  Furthermore, the projected role of a fast-track 

fusion power option in 2050 adds to these uncertainties as its potential market share and ability 

to compete with existing energy sources are uncertain in the long run.  Nevertheless, what is 
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certain is that the UK is legally required to meet the GHG emissions reductions targets while 

ensuring its energy security in order for supply to meet demand.  Indeed, choices can be made 

now by policymakers and the energy industry regarding the different pathways that could be 

followed towards 2050 as well as the tough trade-offs on the costs that would be incurred. 

 

The last decade has seen a growing number of studies from governments, NGOs and industries 

that focused on the decarbonisation scenarios towards 2050 (IPCC, 2007a; WWF, 2007; 

Business Europe, 2010; Eurelectric, 2010; ECF, 2010; Greenpeace, 2010; HM Government, 

2010; IEA, 2010; Shell, 2011; UKERC, 2013).  Despite the presentation of well-researched, 

detailed trajectories in these existing studies, there is no presence of fusion power as a 

powerful decarbonised energy option in 2050.  Also, many of these studies strictly follow the 

cost optimisation route towards 2050.  This means that the "minimisation of total system 

costs” approach of their partial equilibrium models can represent a barrier to adoption of 

energy-efficient technologies that assist with climate change mitigation (Fleiter et al, 2011).  

On the other hand, careful consideration should be given to the overall benefits of high 

expenditure budgets for energy decarbonisation.  The House of Commons (2011) 

demonstrated the need for such considerations in their National Policy Statement (NPS) based 

on their preference of an "all electric" decarbonisation solution from 2010 - 2050, despite this 

costing an estimated £700 billion more than a "green gas" solution over the same period. 

 

Much of the empirical literature on long-term energy scenarios consists of the use of techno-

economic energy models, which Timmerman et al (2013) describes as providing a holistic 

approach to the configuration of energy systems for the identification of optimal trade-offs 

between energy, economic and environmental performances.  The empirical literature for 

scenarios of the UK's 2050 energy mix generally consists of projections of several energy 

variables such as primary energy supply, electricity generation and capital expenditure data.  

The UK's former Department for Energy and Climate Change (DECC) created its own energy 

model, the 2050 Energy Calculator in order to stimulate public engagement in energy 

modelling scenarios and widen the debate on climate change mitigation.  However, despite the 

abundance of energy scenarios studies that provide energy-economic projections towards 

2050, the vast majority have energy supply trajectories that are capital-intensive. There is also 

no current evidence in the literature of a cost-effective, future commercialised fusion power 

scenario, despite the UK's technical expertise in fusion power engineering and strong UK 

Government backing (Energy White Paper, 2003).   
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The next section highlights the decarbonisation policies from different pathways that were 

developed by HM Government (2010) as well as the contrasting modelling assumptions from 

two expert pathways that used the 2050 Energy Calculator for their future energy mix.  Based 

on this background, this chapter provides a unique contribution to the field by recalibrating the 

2050 Energy Calculator in order to consider the impact of fusion power within the future 

energy mix, with a commercialisation year of 2045.  More importantly, this chapter will aim to 

achieve the 80% decarbonisation target for 2050 with fusion power while demonstrating the 

cost-effectiveness of the new “Fusion Pathway” when compared to two competing expert 

pathways. 

 

4.2 UK Government's use of the 2050 Energy Calculator for the "2050 Pathway 

Analysis"  

 

4.2.1  Pathway scenarios 

 

HM Government (2010) carried out the "2050 Pathway Analysis", which is based on 

projections of future scenarios of the UK’s energy system.  The 2050 Energy Calculator was 

used to develop a range of trajectories in five year intervals from 2010 to 2050.  A so-called 

"Reference Case" was developed, which is based on scenario projections in the absence of 

new technologies for emissions abatement.  There is little or no attempt to decarbonise the 

energy system in this scenario and there is a relatively weak effort to enhance sustainable 

sources of energy that will help meet the 80% decarbonisation target in 2050.  This pathway 

leaves the UK in a weakened position to defend its energy security and supply shocks may 

leave the UK exposed to significant economic instabilities.   

 

Another pathway that was developed by HM Government (2010) is called "Pathway Alpha", 

which takes into account the coordinated effort that government, industry and society would 

put into the decarbonisation agenda.  This scenario employed a balanced effort to decarbonise 

across the three main routes: nuclear fission (henceforth, nuclear), renewables (e.g. wind) and 

carbon capture and storage (CCS) from fossil fuel power stations.  Despite the need for food 

production sustainability, Pathway Alpha consists of a determined effort to increase the UK's 

production of bioenergy within the energy mix.  Imports of bioenergy from foreign suppliers is 

also an important consideration and forms half of the projected market share for the UK's 

consumption of bioenergy. 
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Five additional pathways were developed in the HM Government (2010) report, with varying 

volumes of energy output from different primary energy sources: Pathway Beta (no carbon 

capture & storage), Pathway Gamma (no development of new nuclear plants), Pathway Delta 

(minimum renewables), Pathway Epsilon (limited bioenergy) and Pathway Zeta (limited 

behavioural change in consumers and businesses).  However, the Reference Case and Pathway 

Alpha could be assumed to represent the two baseline cases: the Reference Case representing a 

minimal decarbonisation effort and Pathway Alpha representing a proportional and balanced 

cross-sectional decarbonisation effort. 

 

4.2.2 Assumptions used in the "Reference Case" and the "Pathway Alpha" 

 

Among the input assumptions provided by HM Government (2010) for the "Reference Case" 

and the "Pathway Alpha" are GDP growth of 2.5% per annum based on projections used by 

HM Treasury and population growth of 0.5% per annum based on the Office of National 

Statistics (ONS) "central scenario".  The projections of energy production costs (oil, hydro, 

wave, tidal stream and tidal range) are based on DECC estimates, with the projection of the 

remaining energy sources carried out by Mott MacDonald (2010).  Economic decisions 

surrounding energy production are driven by technological innovation and market forces 

within the backdrop of the Climate Change Act (2008).  The fuel price assumptions take an 

initial upward trend towards 2020 but stabilise due to uncertainty in an overly volatile energy 

price climate.   

 

The drivers of the trajectories include lifestyle changes, improvements in energy technology, 

structural change in the economy, differing energy technologies, industrial energy intensity 

and fuel choices.  The trajectories are also created within the framework of the freedoms 

permitted by UK Government policies such as the Emissions Performance Standard (EPS) to 

boost CCS deployment and the National Policy Statement (NPS) for the removal of barriers to 

private sector participation in nuclear power development.  Table 4.1 highlights the scenarios 

for the assumptions of capital costs of energy production: 

 

 

 

 

 

 

 



108 

 

Table 4.1: Capital cost assumptions for energy production based on 2009 prices 
Capital cost: £/kW  Low  Central  High     Low   Central     High     Low   Central    High 

  2020    2030     2040 

CCS (coal, ASC, FGD)  1,530 2,035 2,500  1,440 1,943 2,500  1,387 1,914 2,500 

Nuclear (PWR)  2,114 2,686 3,125  1,983 2,584 3,125  1,924 2,549 3,125 

Gas (CCGT)  470 588 688  454 580 688  440 572 688 

Tidal range  2,000 2,600 3,100  2,000 2,600 3,100  2,000 2,600 3,100 

Tidal stream  1,698 2,043 2,462  1,024 1,239 1,466  637 768 921 

Wave  1,979 2,380 2,771  904 1,097 1,284  532 644 754 

Onshore wind  997 1,258 1,500  966 1,241 1,500  934 1,223 1,500 

Offshore wind  1,900 3,000 3,250  1,627 2,369 3,250  1,559 2,328 3,250 

Oil  853 1,075 1,266  741 1,002 1,266  715 987 1,266 

Hydro  1,438 1,594 1,688  1,438 1,594 1,688  1,438 1,594 1,688 

Key:  ASC = Advanced supercritical, FGD = Flue gas desulphurisation, PWR = Pressurised water reactor,  

CCGT = Combined Cycle Gas Turbine. 

 

Source: HM Government (2010) 
 

Apart from onshore wind, the capital costs for most low carbon energy technologies in Table 

4.1 are much higher than the capital costs for oil and gas.  In most cases, this is offset by the 

lower primary fuel costs that are incurred for the decarbonised energy generation sources.  

Pathway Alpha therefore, involves a shift in expenditure on primary fuel costs towards capital 

costs of power plant construction. 

 

4.2.3 Summary of the "Reference Case" and the "Pathway Alpha" results 

 

The results focused on the main decarbonised energy sources, including fossil fuels that use 

carbon capture and storage (CCS).  However, there are no trajectories of fossil fuels without 

CCS due to the assumption that these energy sources are available from national and 

international sources in the required quantities.  The model subsequently uses fossil fuels 

without CCS once all of the decarbonised energy sources are exhausted.  The energy 

consumption and power generation trajectories of the Reference Case and Pathway Alpha 

were generated by HM Government (2010) and can be summarised as follows: 

 

4.2.3.1 Energy consumption 

 

Domestic energy demand for lighting and kitchen appliances is stable towards 2050 in the 

Reference Case as opposed to Pathway Alpha where energy demand is reduced by 30% due to 

efficiency measures such as the increased use of compact fluorescent lamp (CFL) bulbs.  
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Energy demand for cooking in Pathway Alpha is 10% lower than the Reference Case by 2050 

due to improvements in the efficiency of cooking appliances.  Energy demand for consumer 

electronics is up 50% in the Reference Case by 2050 compared to a 40% increase in Pathway 

Alpha.  Therefore, the total domestic energy demand increases by 20% in 2050 for the 

Reference Case compared to a 15% increase in Pathway Alpha.   

 

Non-domestic energy demand for lighting would increase by 25% in 2050 in the Reference 

Case as opposed to a decrease of 30% in Pathway Alpha due to the extensive use of CFL bulbs 

and other efficiency measures.  Energy for catering in the Reference Case is stable but 

decreases in Pathway Alpha due to a greater use of energy efficient appliances.  Energy use in 

computing for Pathway Alpha is limited to a 10% increase, which is in line with the total 

increase in non-domestic energy demand in Pathway Alpha at 10% as opposed to the total 

increase in the Reference Case at 25%.  Industrial output in the Reference Case is expected to 

rise by 33% by 2050 with a corresponding increase in emissions of 4%.  This contrasts with 

Pathway Alpha where industrial output increases by 130% with a reduction in emissions of 

56% due to better efficiency of industrial plants and the role that the emissions trading system 

(ETS) cap plays in the reduction of energy intensity.   

 

Transport activity in terms of the mode of transport is stable in the reference scenario when 

compared to historic trends with a slowing of growth towards 2050 based on the weakening 

relationship between car ownership and income.  The average number of people per mode of 

transport with the Reference Case and Pathway Alpha is the same for both cars (1.6 people) 

and vans (1 person).  The average number of passengers per bus for the Reference Case is 9 

but is a third higher for Pathway Alpha at 12, which comes as a result of policies that 

encourage shifts away from car use.  Growth in domestic aviation is the same with the 

Reference Case and Pathway Alpha and reflects the advice given to the UK Government by 

the Committee on Climate Change within its "likely scenario".  Similarly, domestic aviation 

emissions are the same in both scenarios.  Efforts in Pathway Alpha to decrease emissions 

caused by road freight activity would lead to rail and water taking an 11% and 19% share of 

total freight transport by 2050 as opposed to the reference scenario, where rail and water 

freight experiences a 9% and 13% share of total freight transport respectively. 
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The Reference Case shows a continuous domination of internal combustion engines (ICE) in 

2050 at nearly 80% of car and van travel.  Plug-in hybrid vehicles represents 20% of car and 

van travel in the Reference Case and 54% in Pathway Alpha while fully electric vehicles only 

cover 2.5% of car and van travel in the Reference Case as opposed to 10% for Pathway Alpha.  

ICE-hybrid buses experience a 40% share in 2050 for the Reference Case but enjoys a very 

strong level of growth in Pathway Alpha from 20% of distance travelled to a 100% 

replacement of ICE buses by 2050 due to the expected economies of scale that could be 

achieved in the production of ICE-hybrid buses.  For rail, there is a slight increase in the share 

of electric trains for Pathway Alpha from the 64% projected share in the Reference Case and 

energy efficiency is greater for Pathway Alpha by 6%.  Energy efficiency in freight transport 

is also greater in Pathway Alpha than the Reference Case for ICE rigid heavy goods vehicles 

(HGVs) and rail freight by 33% and 22% respectively. 

 

Figure 4.1: Energy demand projection of the "Reference Case" and "Pathway Alpha" 

 

                                   Reference Case                              Pathway Alpha 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            Lighting and appliances 

           Heating and cooling 

           Industry 

         Transport 

 

Source: HM Government (2010)  
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4.2.3.2 Power generation 

 

Table 4.2 provides the key highlights of the 2050 projections, which shows Pathway Alpha’s 

greater effort in meeting the objectives of the UK’s decarbonisation agenda: 
 

Table 4.2: Power generation projections for the Reference Case and Pathway Alpha 

Energy source Reference case  Pathway Alpha  

Fossil fuels using 

CCS 

The first of four demo plants 

operates by 2015.  No commercial 

deployment beyond 2015 

Build-rate at 1 GW p/a from 2030, resulting in 

40 GW of total capacity from fossil fuels.  This 

generates 239 TWh of electricity p/a by 2050. 

Nuclear  

 

Output decline due to lower finance 

available for decommissioning of 

nuclear energy facilities. 

Development of 1 to 1.5 GW p/a results in 39 

GW of total capacity that generates 275 TWh 

of electricity p/a by 2050 

Hydroelectric 

power 

 

The existing installed capacity of 

1.6 GW is preserved through major 

refurbishment works 

Efficiency upgrades and refurbishment works 

to existing plants.  Development of smaller 

micro-power plants, which increases the 

capacity by 0.5 GW to 2.1 GW in 2050. 

Onshore wind  

 

Build rate steady at around 0.55 

GW p/a.  Total capacity rises to a 

maximum of 11 GW in 2025, with 

a steady decline thereafter to 2050.   

Total capacity reaches 20 GW in 2030 at a 

build rate of 1 GW p/a.  The maximum 

capacity is steady towards 2050 and generates 

around 53 TWh of electricity per annum.   

Offshore wind Build rate at 0.5 GW p/a.  Total 

installed capacity of 8 GW in 2025 

declines towards 2050.  

Capacity at 60 GW by 2050, due to new sites 

leased from the Crown Estate and the 

extension of projects in the North Sea. 184 

TWh of electricity p/a by 2050. 

Micro solar 

 

Lack of major solar photovoltaic 

(PV) installations and 0% average 

growth towards 2050 

20% p/a growth during 2020 - 2030 and 13% 

p/a from 2030 onwards. Total installed 

capacity to 70 GWp by 2050. 

Bioenergy 

 

Just under 100 TWh by 2050  Just over 100 TWh due to the focus on energy 

recovery and less waste to landfill 

Biomass imports Decline towards zero by due to 

sustainability concerns. 

50% of the UK market in 2050 due to an 

increase in the international biomass trade.   

Geothermal 

 

No interest beyond the two demo 

power plants in Cornwall.  0% 

average growth in electricity 

generation towards 2050.   

32% p/a growth based on the successful 

deployment of geothermal plants in Cornwall.  

Electricity generation capacity reaching a peak 

of 1 GW by 2050.  

Total capital 

costs p/a in 2050 

(new plants) 

No new capital costs.  Electricity 

cost of £40 per MWh (low fossil 

fuel price).  Medium and high 

electricity costs per MWh are more 

costly than Pathway Alpha 

£16bn per annum in 2050.  Electricity cost of 

£40 per MWh (low fossil fuel price) to £85 per 

MWh (very high fossil fuel price). 

Total fuel costs 

p/a in 2050 

(undiscounted) 

In excess of £25bn per annum Less than half of the 2009 cost at £5bn per 

annum 

Key: p/a = per annum, GW = gigawatt, GWp = gigawatt peak, TWh = Terwatt hours 

 

Source: Based on data compiled from HM Government (2010) 
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4.2.4 Summary 

 

HM government (2010) used the 2050 Energy Calculator to model a number of long-term 

scenarios, with the Reference Case assuming the business as usual scenario of a minimal 

decarbonisation effort.  The Reference Case was only able to reduce GHG emissions in 2050 

by 3% on 1990 levels while Pathway Alpha successfully reduces emissions by 82% in 2050.  

In both cases, there was sufficient energy supply to meet the demand requirements of 

domestic, commercial and industrial consumers.  However, version 3.4.6 of the 2050 Energy 

Calculator was used in the "Response to the Call for Evidence" report by HM government 

(2011a) and Pathway Alpha was subsequently found to have total costs (capital, operating and 

fuels costs) of the UK energy system that reached a very high level at £386.8bn p/a by 2050, 

£41.6bn higher than the total costs of the Reference Case at £345.2bn p/a by 2050.   

 

This raises the question of whether there would be sufficient public acceptance for 

prohibitively high expenditure on energy supply, which subsequently feeds back to energy 

consumers in the form of higher energy bills.  The rest of this chapter aims to address this 

issue by comparing the results of two expert pathways to a third fusion power-related pathway 

in order to assess the significance of the supply, demand, GHG emissions, energy security and 

cost implications of alternative pathways towards the 2050 energy mix.  

 

4.3 Methodology 

 

4.3.1 The 2050 Energy Calculator  

 

This chapter aims to assess the variations that are possible within the energy system that would 

enable the UK's 80% decarbonisation target to be reached by 2050, with the projections using 

a base year of 2007 (using existing data) and a start year of 2010.  The 2050 Energy Calculator 

is a bottom-up, scenario model for the generation of energy production and consumption 

projections and has a robust techno-economic framework around the choice of energy 

production infrastructure and the cost of substitute fuels.  There is a detailed representation of 

electricity generation by the relevant sector as well as technical performance definitions such 

as energy efficiency and emissions levels by consumer type.  The model acknowledges the 

competition for primary energy resources and simultaneously produces solutions based on the 

relative cost of emissions abatement. 
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The 2050 Energy Calculator (version 3.6.1) is a comprehensive model that offers 42 energy-

related topics for consideration.   Slightly more than half of the energy-related topics relate to 

energy supply from various sectors and the remaining ones relate to GHG abatement methods 

in final energy demand such as moves towards high electrification in industries.  Each of the 

42 energy-related topics contains a mini-model that incorporates data in order to perform 

calculations for the model's projections.  Figure 4.2 shows the overall structure of how the 

model estimates GHG emissions, energy supply and consumption while Figure 4.3 shows the 

structure of how costs are estimated: 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Source: DECC (2012) 

 
Figure 4.2 and 4.3 maps each of the 42 energy-related topics in the "control" worksheet (e.g. 

nuclear energy) to their respective sector worksheet (e.g. II.a).  Each of the 42 energy-related 

topics consists of 4 pathway choices per topic.  A large number of pathway choices relate to 

the scale of ambition and these choices range from level 1 (low effort to decarbonise at 

relatively low cost) to level 4 (maximal effort to decarbonise at a high cost).  The level also 

depends on the lead time towards the development of new energy production facilities as well 

as improvements in technology.  On the other hand, a smaller number of pathway choices 

relate to specific energy routes rather than a scale (e.g. choice of fuel) and these are 

highlighted as trajectories A, B, C and D.   

Figure 4.3: How the model produces costs Figure 4.2: How the model produces GHG emissions, 

energy supply and consumption trajectories 
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After the user-defined pathway choices are made, the 2050 Energy Calculator determines their 

implications, for example, whether or not the GHG emissions abatement target of 80% on the 

1990 baseline has been reached.  The most important outputs that will be generated from the 

2050 Energy Calculator are the full range of demand and supply possibilities (by sector), cost 

implications and GHG emissions levels in a sequence of five year intervals until 2050.  

Among the other important outputs include the impact of choices on the electricity sector, land 

use, air quality and energy security (DECC, 2015a).   

 

4.3.2 Description of scenarios 

 

The 2050 Energy Calculator is used to assess the previously projected energy scenarios from 

two expert pathways.  The first expert pathway consists of the projections that were developed 

by the British multinational energy company and FTSE 100 constituent, National Grid plc.  

The second expert pathway is based on the projections that were developed by Friends of the 

Earth, a global multi-tiered network of environmental organisations in 75 countries that 

campaigns extensively on energy sustainability and environmental preservation issues.  Both 

pathways are compared to the new “Fusion Pathway”, which involves a complete recalibration 

of the 2050 Energy Calculator with fusion power included in the energy mix.   

 

The National Grid Pathway acknowledges the threat from climate change and the widespread 

behavioural changes that are required in energy generation and demand.  However, there is a 

strong emphasis on the need for a wide range of primary energy sources and versatile 

interconnected energy networks in order to sustain the security of supply.  This pathway 

therefore seeks a balanced economic approach to the range of existing primary energy sources 

with a limited focus given to future primary energy sources that are yet to be commercially 

exploited.  Cost effectiveness of energy supply is balanced with the importance of meeting the 

customer's needs in their energy requirements.  This pathway also anticipates the move of 

heating and transport away from fossil fuels but recognises the techno-economic challenges of 

a push towards the maximal electrification of heating. 

 

The Friends of the Earth Pathway seeks to demonstrate the environmental benefits of a 

dramatic increase in the percentage reduction of emissions against 1990 levels through an 

aggressive reduction in the UK energy system's emissions, measured in 'million tonnes of 

carbon dioxide equivalent' (MtCO2e).  There is a high use of renewables and other 

decarbonised energy generation that is currently not at a commercialised state.  Due to the 
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configuration of the highly-decarbonised energy infrastructure, there is a weaker emphasis on 

cost containment.  High importance is given to energy efficiency in homes and commercial 

premises and there is also a significant amount of consideration given to the behavioural 

changes that are needed in the varying modes of transport during the course of the modelling 

time period.  This pathway notably omits and reduces primary energy generation from sources 

that are contrary to the organisation's core values. 

 

The new Fusion Pathway affirms its commitment to the 2050 decarbonisation target and every 

effort is put into arranging the energy system to meet this objective.  It adopts a similar energy 

demand pathway to the one generated by National Grid plc due to the optimistic view of 

efficiencies and behavioural changes in transport and commercial premises as well as 

uncertainties in home energy use.  However, the most significant difference in this pathway is 

the inclusion of fusion power within the energy mix.  The commercialisation year of fusion 

power commences in 2045 and is based on the Cook et al (2005) report from scientists at 

EURATOM/UKAEA.  The strong commercial viability of a future supply of fusion power fits 

into a wider emphasis on cost control, thereby favourably impacting the energy bills of 

households and businesses.  The 2050 Energy Calculator therefore requires a recalibration in 

order to incorporate the demand side, supply side, economic and emissions assumptions from 

this future source of electricity from commercialised fusion power.  

 

There are a number of additional differences in the primary energy generation assumptions of 

the Fusion Pathway and some of the recent UK Government policy announcements have 

helped to shape its scenarios.  For example, the UK Government recently accepted a £6bn 

investment from China General Nuclear Power Corporation (CGN) for the Hinkley Point 

nuclear plant in Somerset and this signal of China's new role in the UK's nuclear future has 

been reflected in the model (BBC, 2015a).  The model also considers the cancellation of the 

£1bn CCS fund by the British Chancellor of the Exchequer in 2015.  This effectively ended 

the interest of the UK Government and its partner in the Peterhead CCS scheme, Royal Dutch 

Shell, in this decarbonisation route for the short term at least (Royal Dutch Shell, 2015).  

Furthermore, the UK Government's cuts to rooftop solar subsidies have eroded confidence in 

solar PV's future within the model as a medium to high volume producer of electricity 

(Reuters, 2015).  The UK’s Secretary of State for Energy and Climate Change also announced 

the closure of all UK coal power plants by 2025 (BBC, 2015b).  However, no consideration is 
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given to this declaration in the model due the viability of the Shell (2008) “flight into coal" 

expectation that was envisaged for the global economy beyond 2025. 

 

4.4 Socio-economic assumptions of the recalibrated model 

 

4.4.1 Demand-side assumptions 

 

The National Grid and Fusion Pathways share similar demand-side assumptions, which are 

designed to show a general gravitation of consumers towards electrification and increased 

energy efficiencies while maintaining cost effectiveness in their energy choices.  The demand-

side assumptions from the Friends of the Earth Pathway shows a greater level of public 

awareness of the UK’s decarbonisation targets.  The Friends of the Earth Pathway also 

anticipates that all energy stakeholders would be involved in a concerted effort towards 

maximal electrification and energy efficiency with significant reductions in non-zero 

emissions road and air travel.  All demand assumptions are projected from a base year of 2007 

and shows the pattern of demand over the course of the projection period.     

 

UK energy demand from domestic transport is expected to decrease by 52% in 2050 from the 

base year to 203 TWh/yr in the National Grid and Fusion Pathway assumptions through 

greater efficiencies in public transport and a decline in the use of personal vehicles.  There is 

also a greater shift towards zero emission personal vehicles by 2050 with a 65% decline in 

energy consumption to 151 TWh/yr.  Domestic freight is expected to see a 36% decrease to 70 

TWh/yr by 2050 due to the shift towards electrified rail freight   Increases in shipping and air 

travel are expected, especially when considering the expected increase in aviation capacity in 

the southeast of England but energy consumption would be tempered by a new generation of 

fuel efficient ships and aircraft.  On the other hand, the Friends of the Earth assumption sees a 

greater decline in energy use for domestic transport through a larger shift towards public 

transport and bicycles.  Emissions from personal vehicles are expected to fall by 73% in 2050 

and there is a greater emphasis on the move away from road freight. 

 

Average UK home temperatures in the National Grid and Fusion Pathway assumptions are 

expected to have a moderate increase of 0.5% from the base year as there is a significant 

increase in home insulation.   For lighting and appliances, energy demand per household 

decreases by 34% in 2050 due to greater efficiencies and energy displays on appliances while 

commercial premises sees a modest decrease of 5% by 2050.  Domestic and commercial 
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energy for heating, cooling and cooking is predominantly electric with the remaining (if any) 

portion of primary energy coming from gas. The Friends of the Earth route sees a nationwide 

drive towards greater insulation in homes, full electrification of cooking and bigger 

efficiencies in home lighting and appliances.  This pathway shares a similar objective with the 

National Grid / Fusion route through a near full electrification of commercial premises. 

 

The assumptions in the National Grid and Fusion Pathways sees a 30% increase in the UK’s 

industrial output by 2050.  Industrial energy intensity is the ratio of industrial energy 

consumption to GDP and is expected to decrease by 20% for the National Grid and Fusion 

Pathways.  The Friends of the Earth assumption expects industrial energy intensity to decline 

by 40%, which means that half of all industrial emissions are captured by 2050 and the total 

contained emissions amount to 8.2MtCO2e.  Table 4.3 and 4.4 contains a list of the share of 

energy consumption per demand sector for the Friends of the Earth and the National Grid / 

Fusion Pathways. 

 

Table 4.3: Percentage of energy consumption per demand sector: National Grid and Fusion Pathways 
        

Category Energy demand Setting  Percentage share of the total in 2050 
    

 
  

    Transport  Domestic transport  3 Vehicles (74%), rail (8%), bus (13%), foot (2%), air (2%) & bicycle (1%).   

 
Zero emissions 3 Conventional car (20%), hybrid (32%), zero emissions car (48%).   

 
Battery technology 1 Share of zero emissions cars - electric (100%).   

 
Domestic freight 3 Road (58%), rail (19%), waterway (19%), pipeline (4%).   

Residential Insulation  3 No. of homes: loft insulation (18m), triple glazing (14m), floor (7m). 

 
Electric heating  4 Share of new home heating systems - electric (80% - 100%). 

 
Non-electric heating  1 Share of remaining new home heating systems - non-electric (0% - 20%). 

 
Electric cooking 1 Share of energy in cooking - electric (63%) and gas (37%). 

Industrial Energy intensity 2 Industrial electricity demand (40%), coal, oil, gas & district heating (60%) 

Commercial Electric heating  4 Share of new commercial heating systems - electric (80% - 100%). 

 
Non-electric heating  4 Fossil fuels, bioenergy and power stations heat (0% - 20%). 

 
Electric cooking 2 Share of commercial cooking - electric (100%). 

        

 
Table 4.4: Percentage of energy consumption per demand sector: Friends of the Earth Pathway 
        

Category Energy demand Setting  Percentage share of the total in 2050 
        

    Transport  Domestic transport  4 > Vehicles (62%), rail (10%), bus (19%), foot (2%), air (2%) & bicycle (5%). 

 
Zero emissions  4 > Share of car travel - zero emissions car (100%).   

 
Battery technology 2 > Share of zero emissions cars - electric (80%), hydrogen fuel cell (20%).   

 
Domestic freight 4 > Share of freight - road (50%), rail (23%), waterway (23%), pipeline (4%).   

Residential Insulation  4 > No. of homes - loft insulation (21m), triple glazing (22m), floor (11m). 

 
Electric heating  3 < Share of new home heating systems - electric (30% - 60%). 

 
Non-electric heating  3 > Share of remaining new home heating systems - non-electric (40% - 70%). 

 
Electric cooking 2 > Share of energy in cooking - electric (100%)  

Industrial Energy intensity 2 >  Industrial electricity demand (66%), coal, oil, gas & district heating (34%). 

Commercial Electric heating  4 =  Share of new commercial heating systems - electric (80% - 100%). 

 
Non-electric heating  4 =  Fossil fuels, bioenergy and power stations heat (0% - 20%). 

 
Electric cooking 2 =  Share of commercial cooking - electric (100%). 

        

Key: > Table 4.4 setting greater than table 4.3 

 < Table 4.4 setting less than table 4.3 

 

Source: Estimated assumptions from the 2050 Energy Calculator (MacKay, 2012) 
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4.4.2 Supply-side assumptions 

 

The National Grid Pathway is a scenario where fossil fuels form the largest share of primary 

energy supply.  Total installed capacity is 62.6 GW in 2010 but steadily declines during the 

course of the projection period due to a lack of renewal of oil and coal plants for electricity.  

Some fuel fossil generation is mitigated by CCS deployment, which is commercialised by 

2020 but experiences a slow build rate until 2035.  Between 2035 and 2050, CCS enjoys a 

build rate of approximately 4 GW every five years until 2050.  Nuclear fission plays a 

prominent role in the energy mix behind fossil fuels with a steady build-up of capacity until 

2030, then experiencing a peak build rate of 0.8 GW per annum until 2050.  There are a 

limited number of new-build biomass power plants during a 10 year period until 2040, where 

600 MW p/a of new capacity is installed due to the retirement of ageing biomass plants.  There 

is no consideration for wave, tidal stream, geothermal and small scale wind in the energy mix.  

However, offshore wind experiences a build rate of just over 300 wind turbines p/a at 5.8 MW 

per turbine from 2025.  On the other hand, onshore wind experiences a new-build decline from 

328 turbines p/a in 2015 to 240 new turbines p/a at 2050 at a capacity of 2.5 MW per turbine.  

There is a large investment in bioenergy as 10% of British land is used for bioenergy crops 

and imported bioenergy amounts to approximately 70 TWh/year. 

 

In contrast, the impact of China's £6bn investment in the Hinkley Point nuclear plant sees 

nuclear fission enjoying the largest share of primary energy in the Fusion Pathway at 39.2 GW 

of installed capacity by 2050.  There is a marginally weaker emphasis on CCS but the Fusion 

Pathway acknowledges the national importance of CCS as mentioned by the former British 

Prime Minister, David Cameron who stressed the need for investment in CCS technology in 

the 2011 Carbon Plan (HM Government, 2011).  Primary energy from fossil fuels is at a lower 

level than the National Grid Pathway but remains high.   

 

Fusion power is added to the energy mix and is commercialised in 2045 with a total output of 

7.2 GW of installed capacity from 2 power plants in 2050.  The anticipation of fusion has a 

direct impact on unpopular onshore wind farms, which see a decline in installed capacity from 

11 GW in 2025 to a mere 33 MW in 2045, with no new turbines built after 2025.  Fusion also 

impacts wave, tidal stream and tidal range, which receive no significant investment for 

commercialisation due to technological uncertainties but geothermal achieves a maximum 

capacity of 1 GW p/a from 2035 due to the relatively high confidence in the Cornwall 
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resource.  Less confidence is given to solar energy in this pathway than in the National Grid 

Pathway as the high costs and low efficiency act as a barrier to mass deployment.  However, 

more commitment is given to increasing hydroelectric capacity in Scotland as well as 

moderate increases in the small-scale wind. 

 

The Friends of the Earth pathway is notable for its commitment to a very high investment in 

renewable energy generation.  Figure 4.4 shows how the GW capacity of this pathway is 

similar to the National Grid and Fusion Pathways in 2010 and 2015 but far exceeds these 

pathways from 2020 onwards.  Onshore wind increases rapidly to a maximum capacity of 23.6 

GW by 2035 and remains stable towards 2050 while offshore wind has an installed capacity in 

excess of 70 GW by 2040.  Hydroelectric power would use most of the UK's available sites 

and reaches a maximum capacity of 3.1 GW by 2035.  There is a large amount of investment 

in Solar PV, which is widely deployed at an average capacity of 6m
2
 per person and 108.7 GW 

of power by 2050.  Wave, tidal stream, tidal range and geothermal all receive significant 

investment with capacities in 2050 of 36 GW, 22 GW, 13 GW and 3 GW respectively.   There 

is also a significant amount of carbon dioxide sequestration with 110 million tonnes p/a of 

carbon dioxide pumped underground by 2050.  There is a much greater move towards gas 

supply than the other two pathways but there is an immediate halt to the development of new 

nuclear plants and existing plants are expected to come to the end of their useful life by 2035. 

 

Figure 4.4:  UK total energy production capacity (GW) 

 
Source: Fusion Pathway capacity by author, other capacities are from DECC (2015a) 
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4.4.3 Economic assumptions  

 

There are a wide variety of technologies within the model that are associated with energy 

production, consumption and GHG emissions such as petroleum refineries, power plants, 

electricity grid distribution, land use, storage, insulation, heating, transport and industrial 

processes.  These technologies incur costs with the principal cost estimates consisting of 

capital expenditure, operations and fuel (both own use fuel and converted primary fuel).  The 

2050 Energy Calculator categorises costs between a low, point and high cost.  The low and 

high costs are based on published expert opinions of the future path of the UK’s energy system 

such as Mott MacDonald (2010) and Parsons Brinckerhoff (2011) whereas the 'point' estimates 

are based on an intermediate cost that corresponds to the energy model, MARKAL 3.26.   

  

For fusion, the power plant low cost was derived from the £2,150/kW, 3.6 GW PPCS Model B 

design that was highlighted by the European Fusion Development Agreement (EFDA, 2005) 

whereas the high cost of $3940/KW (£2550.95 at $1.54452015 to £1) was based on the 

estimates from scientists at EURATOM/UKAEA (Han and Ward, 2009).  The operating costs 

are based on the Tokimatsua et al (2003) estimate of 4% of fusion capital costs.  Where no 

MARKAL estimates exist for the intermediate point cost (e.g. wave, tidal stream and fusion), 

a 35th percentile is used by the 2050 Energy Calculator between the low and high cost 

estimates in order to produce the “point” cost estimates.  As the total cost estimates are 

produced, the low and high costs per kW remains the same as they are considered to be 

exogenous.  However, provisions are made in the model for incremental progress in efficiency 

and technical improvements in energy infrastructure over time.  In addition, the per capita cost 

uses ONS projections of the UK’s population over the model’s projection period (ONS, 2008). 

 

Table 4.5 shows a list of the techno-economic parameters used for the model.  The table 

highlights the typical sizes for primary energy plants as well as capital expenditure (£/kW), 

operating costs (£/kW), fuel costs (£/kW) and plant availability in terms of the load factor.  

Capital expenditure is a function of new build plants while operating and fuels costs are a 

function of total installed capacity at any given time.  Costs are generally dependent on the 

extent of the work that goes into the set-up and operation of energy generation as well as the 

lifetime of the plant.  For example, nuclear fission plants are assumed to have a 60 year 

lifetime, with a price per kW that is more expensive than coal due to the more complex 

engineering works and greater isolation of the plants from residential, commercial and 



121 

 

industrial areas.  Some costs for power plants such as oil are retired during the course of the 

projection period while other costs for power plants such as CCS are uncertain due to the 

residual cost of the long-term storage of carbon.  Costs for renewables such as offshore wind 

may experience significant low / high differences in the £/kW cost due to technical challenges 

of deep water wind turbines that are a significant distance away from the UK’s coastline. 

 

Table 4.5: Techno-economic parameters used for the model 
            

Primary  Generation  Plant size     Capital costs    Operating costs  Plant  

energy type (MW)    £/kW (Point) £/kW (Point) availability  
            

      

Oil Power plant    2,000       725 52   6% 

Coal Power plant    2,000    1,749 53 90% 

Gas Power plant    2,000       462 27 70% 

Biomass Power plant       500    1,774 87 90% 

CCS - coal Power plant    1,200    2,115 81 85% 

CCS - gas Power plant    1,200       995 61 85% 

Nuclear fission Power plant    3,000    2,744 76 80% 

Onshore wind Wind turbine       2.5    1,365 14 30% 

Offshore wind  Wind turbine       5.8    1,968 73 45% 

Hydroelectric Hydro plant      100    1,036            104 38% 

Wave Wave turbine       1.5    3,573            272 25% 

Tidal range Tidal range project      240    3,423 32 24% 

Tidal stream Tidal stream turbine         2    2,997 63 40% 

Geothermal Geothermal plant       10    4,138            146 80% 

Fusion  Power plant   3,600    2,290 92 83% 

Solar PV Solar source 0.0025    2,027 26 10% 

Small scale wind Wind turbine 0.0050    1,230 27 24% 
            

1. Additional parameters for solar thermal and bioenergy are excluded from the model 

2. Point costs for fusion are based on a 35% percentile between the low cost (EFDA, 2005) and high cost (Han 

and Ward, 2009)     

 

The 2050 Energy Calculator contains oil price assumptions that were based on DECC fossil 

fuel projections in 2010.  The oil prices that were projected in the model for 2015 were based 

on a low price of $80/bbl, a point price of $94/bbl and a high price of $104/bbl.  However, in 

light of the 2015 collapse in oil prices, these assumptions are now obsolete so the DECC 

(2015b) assumptions would now be used instead for all fossil fuels prices.  The new oil price 

assumptions are based on a low price of $44/bbl, a point price of $64/bbl and a high price of 

$83/bbl.  New gas price assumptions are based on a low price of 38p/therm, a point price of 

47p/therm and a high price of 55p/therm.  The new coal price assumptions are based on a low 

price of $53/tonne, a point price of $60/tonne and a high price of $67/tonne.  Fossil fuel price 
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assumptions beyond 2015 are set in accordance with the projected schedule presented by 

DECC (2015b).  

 

The economic performance of fusion power is assessed through the levelised cost of electricity 

generation (LCOE), which is essentially the discounted lifetime costs of ownership and 

generation of electricity, converted to £/MWh or £/kWh.  The levelised cost of fusion power 

would be compared to the costs of competing energy sources, using the following formula 

highlighted by Ward et al (2010): 

 

      
                         

 

          
 

 

Where: 

 

  = Capital costs in year   

   = Operation and maintenance costs in year   

  = Fuel costs in year   

  = Replaceable components costs in year   

  = Decommissioning costs in year   

  = Electricity generation in operating year   

  = Discount rate 

 

There is no consideration for the residual cost of decommissioning energy infrastructure 

unless it was originally implied in the capital costs.  The discount rate used in the formula, 

which is based on the recommended Green Book discount rate (HM Treasury, 2011) is 3.5% 

from 2010 to 2040 and 3% from 2041 to 2050. 

 

4.5 Empirical results 

 

This section presents the results of the energy scenarios that were generated from the 

recalibrated 2050 Energy Calculator.  A unique recalibration of the 2050 Energy Calculator 

provides a significant contribution to the empirical use of the model as it permits the inclusion 

of fusion power into the UK’s future energy mix.  The recalibrated model integrates the 

underlying assumptions for the new Fusion Pathway from a demand-side, supply-side and 

economic perspective.  Various possible configurations of the UK’s energy system were 

considered prior to the generation of the Fusion Pathway scenarios, which are compared to the 

two expert pathways from National Grid plc and Friends of the Earth.  The author’s 

comprehensive estimates of the results are shown in the “chapter 4 appendices” section.  

(4.1) 
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Figures 4.5 to 4.15 provides a visual comparison of the three energy mix pathways, which are 

subject to further interpretation and analysis. 

 

4.5.1 Electricity demand and supply: National Grid Pathway versus Fusion Pathway  

 

As the Fusion and National Grid Pathways share similar demand assumptions, the electricity 

supply outcomes are of particular interest.  Figure 4.5 and 4.6 shows the percentage share of 

fusion power within the primary energy mix in 2050.  Fusion power’s share of UK primary 

energy is 6% and this has had a direct effect on gas, which has a 3% lower market share in the 

Fusion Pathway than in the National Grid Pathway due to the substitution effect.  Oil imports 

and reserves also have a 3% lower market share in the Fusion Pathway than in the National 

Grid Pathway due to the energy system's recognition of the UK's move towards domestic and 

commercial electrification.   

 

 

          
 
 

Figure 4.7 and 4.8 shows the UK's total electricity supply (line graph) and demand (bar graph) 

by sector from the National Grid Pathway and the Fusion Pathway in TWh/yr.  The total 

electricity supplied for both pathways is projected to increase at a similar rate between 2010 

and 2040.  However, there is a noticeable acceleration in the amount of the electricity that is 

supplied by 2050 during the commercialisation phase of fusion.  The total electricity supplied 

for the Fusion Pathway in 2050 is 668 TWh/yr with a growth rate of 70% between 2010 and 

2050 while the total electricity supplied for the National Grid Pathway in 2050 is 578 TWh/yr 

with a growth rate of 55% during the same period. 
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Figure 4.7:  Total UK electricity supply and demand by sector - National Grid Pathway  

 

 

Figure 4.8:  Total UK electricity supply and demand by sector - Fusion Pathway 
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The Fusion Pathway proposes a stronger drive towards higher nuclear and offshore wind than 

in the National Grid Pathway in order to act as a buffer against weaker CCS deployment, 

onshore wind retirement and limited confidence in solar PV distribution due to major UK 

Government cuts in rooftop solar subsidies.  Nuclear energy is therefore 43% higher in the 

Fusion Pathway than the National Grid Pathway at 275 TWh/yr and offshore wind enjoys the 

second largest share of electricity output at 189 TWh/yr, which is 33% higher than the output 
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Fusion Pathway has an output of 31% of all electricity supply in 2050 while renewables in the 

National Grid Pathway has a greater share at 34% of all electricity supply. 

 

Conventional thermal generation is retired in the Fusion Pathway in 2040 in preparation for 

fusion commercialisation but still has an output of 24 TWh/yr for the National Grid Pathway.  

CCS experiences the highest rate of growth in the National Grid Pathway throughout the 

length of the modelled time period from 0 TWh/yr in 2010 to 189 TWh/yr in 2050.  This is 

approximately 50 TWh/yr more than the total electricity generated from CCS in the Fusion 

Pathway.  However, the 52.6 TWh/yr of fusion electricity in 2050 offsets this deficit in 

decarbonised output. 

 

4.5.2 Electricity demand and supply: Friends of the Earth Pathway versus the Fusion 

Pathway  

 

Figure 4.9 shows the UK's total electricity supply and demand by sector from the Friends of 

the Earth Pathway, with electricity demand in this pathway projected to be 13% higher than 

the Fusion Pathway.  Industrial processes are the highest electricity-consuming sector in the 

Friends of the Earth Pathway at 197 TWh/year, approximately 42 TWh/yr higher than the 

Fusion Pathway.  The high level of demand is driven by high electrification and approximately 

48% of carbon emissions captured by CCS.  This has had a knock-on effect on the 

exceptionally high geosequestration intensity of 110 million tonnes of CO2 a year at a 

consumption rate of 99 TWh/yr.  This is a very high level of electricity demand, especially 

when considering the findings in the HM Government (2010) "2050 Pathway Analysis" report, 

which consisted of 5 out of 7 distinct pathways with a maximum CO2 sequestration level of 1 

million tonnes p/a in 2050 and the remaining 2 pathways at 30 million tonnes p/a.   

Nevertheless, the increased CCS capacity in the Friends of the Earth Pathway means that the 

UK's total energy supply from fossil fuels represents 45% of total primary energy compared to 

the Fusion Pathway where fossil fuels represents just 28% of the primary energy. 

 

 

 

 

 

 



126 

 

Figure 4.9:  Total UK electricity supply and demand by sector - Friends of the Earth Pathway  

 

 

Electricity demand in the domestic sector (heating, lighting, appliances and cooking) for the 

Fusion Pathway shows demand at approximately 36% of the UK's total electricity demand.  

However, the national drive towards greater home insulation and electrification would pay off 

in the Friends of the Earth Pathway, which exhibits a strong level of efficiency in its electricity 

demand level at 20% of total energy demand.  A similar scenario is envisaged in the 

commercial sector, with commercial electricity consumption in the Fusion Pathway 

approximately 32% higher than the Friends of the Earth Pathway.   

 

The UK's total electricity supply level in 2050 for the Friends of the Earth Pathway is 24% 

higher than in the Fusion Pathway.  The main drivers of this very high output is offshore wind, 

which is a third of total supply at 284 TWh/yr and CCS, which at 191 TWh/yr represents 

nearly a quarter of total supply.  There is perhaps an element of overconfidence in the Friends 

of the Earth Pathway concerning the technical ability of wave, tidal and solar to produce mass 

electricity at a combined output of 257 TWh/yr by 2050, while the Fusion Pathway 

demonstrates a lack of confidence in the mass appeal in these electricity sources with supply at 

0 TWh/yr.  Geothermal electricity is three times greater in the Friends of the Earth Pathway 

than in the Fusion Pathway at 21 TWh/yr. 

 

Energy use in transport shows the advances in the separate decarbonisation agendas in both 

pathways by 2050.   The Friends of the Earth Pathway demonstrates the stronger advance 

towards hydrogen use in transport but electricity demand for transport represents just 8.7% of 

total electricity demand.  Overall, total final energy for transport is 315 TWh/yr.  On the other 
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hand, the Fusion Pathway does not consider widespread moves towards hydrogen vehicles but 

moves faster towards transport electrification at 10.4% of total electricity demand.  The total 

final energy use for transport in this pathway has a higher level of GHG emissions than in the 

Friends of the Earth Pathway at 439 TWh/yr. 

 

4.5.3 GHG Emissions  

 

The GHG results for each of the three pathways underlines the difficulties in meeting the 2
nd

 

carbon budget (29% below 1990), 3
rd

 carbon budget (35% below 1990) and 4
th

 carbon budget 

(50% below 1990) that was highlighted in HM Government (2011) for 2015, 2020 and 2025 

respectively.  The National Grid Pathway is 25% below the 1990 GHG emissions level in 

2015 and nearly matches the 2020 target at 34%, then slips below the 2025 target at 47%.  The 

Fusion Pathway has a similar trajectory at 25% in 2015, 34% in 2020 and 48% in 2025.  On 

the other hand, the Friends of the Earth Pathway has a stronger performance at 27% in 2015, 

37% in 2020 and 49% 2025.  All three pathways experienced an improvement in GHG 

emissions abatement in 2020 due to a sharp slowdown and subsequent cessation of coal 

imports.  Figure 4.10 illustrates the GHG emissions reduction levels from 1990 to 2050.   

 

Figure 4.10: Reduction in carbon emissions from 1990 levels (%) 

 

 

There is a noticeable acceleration in the percentage reduction in GHG emissions in the Friends 

of the Earth Pathway and this trajectory becomes stronger towards 2050.  This could be 

explained by the huge investment in renewables and steady increases in CCS installed 

capacity.  The introduction of decarbonised fusion power in 2045 also allows for a greater 

reduction in gas consumption in the Fusion Pathway than in the other two pathways.  
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Nevertheless, each pathway reaches the 2050 target an 80% reduction in GHG emissions from 

1990 levels with the National Grid Pathway at 83%, the Fusion Pathway at 81% and the 

Friends of the Earth Pathway at a substantially higher level at 96%. 

 

4.5.4 Energy security 

 

Energy security is another key consideration in the move towards electrification and the 

Fusion Pathway performs strongly in this area as the electricity supply-demand ratio in 1.26:1.  

This contrasts with the lower National Grid Pathway ratio of 1.10:1, which may increase the 

long-term reliance on imports and destabilise confidence in an era of political instability in 

resource-rich regions.   Energy security is seemingly higher in the Friends of the Earth 

Pathway, with an electricity supply-demand ratio of 1.39:1 in 2050.  The high ratio for the 

Friends of the Earth Pathway may call into question the wisdom of high capital expenditure in 

energy infrastructure, which may lead to financial constraints in power production.  However, 

a closer look at this ratio provides an indicator of the trajectory of import dependence as the 

percentage share of electricity imports from total energy supply has steadily increased during 

the course of the projection time period.  By 2050, electricity imports in this pathway would 

reach 186 TWh/yr, a full 11.2% of the UK's total primary energy supply.  On the other hand, 

electricity imports in 2050 are much lower in the Fusion Pathway and National Grid Pathway 

at 100 TWh/yr and 14 TWh/yr respectively.     

 

4.5.5 Economic outcomes   

 

Perhaps the most important consideration in the energy scenarios over the long-term is the 

delivery of cost effective solutions that would meet the needs of all sections of society as well 

as meeting the GHG emissions targets as set out by the Climate Change Act 2008.  The 

government describes the scale of this challenge in 2013 by declaring the UK's pipeline of 

energy investment is in excess of £200bn - significantly more than the UK's combined pipeline 

investment in communications, transport and water infrastructure (DECC, 2013b).   

 

Figure 4.11, 4.12 and 4.13 shows the model's point projections of the annual undiscounted 

capital costs, operating costs and fuels costs for the three pathways in billions of British 

pounds.  Annual capital costs between the three pathways in 2010 and 2015 are relatively 

close but the Friends of the Earth Pathway accelerates faster from 2020 to the point where 
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annual capital costs are at a very high £211bn p/a, £51bn p/a greater than in the National Grid 

Pathway and £58bn p/a greater than the Fusion Pathway.  The main driver of the high cost in 

the Friends of the Earth Pathway is the high renewables investment for electricity production, 

which is more than triple the cost of the other two pathways at £48bn p/a in 2050.  Investments 

in GHG emission abatement in transport are also costly in this pathway and amount to over 

£10bn p/a more than the other two pathways by 2050.  The introduction of fusion power in 

2045 allows the Fusion Pathway to switch its capital investment strategy away from wave, 

tidal and solar PV, providing annual savings over the National Grid Pathway of £6.4bn by 

2050.  
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The accumulated operating costs of installed energy capacity are roughly similar between the 

Fusion Pathway and National Grid Pathways throughout the projected time period but are 

more than £16bn p/a higher by 2050 in the Friends of the Earth Pathway at £117bn p/a.  

Operations connected with electricity generation are more than £16bn p/a higher in the Friends 

of the Earth Pathway than in the other two pathways by 2050 and industrial operations driven 

by the storage of captured CO2 emissions are nearly £10bn higher than in the other two 

pathways at £11.2bn.  High renewables in the Friends of the Earth Pathway have rendered the 

fuel costs negligible at £11bn p/a by 2050 but are more than three times as high in the National 

Grid Pathway at £39bn p/a due to the high use of bioenergy.  Fuel costs in the Fusion Pathway 

in 2050 are £30bn p/a but are mitigated by exports of surplus electricity.  In summary, the total 

costs of the UK’s energy system (capital, operations and fuel) in 2050 are £299.6bn p/a for the 

National Grid Pathway, £337.8bn p/a for the Friends of the Earth Pathway and £284.8bn p/a 

for the Fusion Pathway.   

 

Figure 4.14 shows the UK's per capita cost of total energy throughout the projection time 

period.  There is a peak per capita cost of energy in 2030 for the National Grid and Fusion 

Pathways before the trajectory gently declines towards 2050 to £3,902 p/a and £3,709 

respectively.  At the same time, the total per capita energy cost peaks in 2030 for the Friends 

of the Earth pathway but stays relatively stable with a per capita cost in 2050 of £4,399. 

 

The levelised cost of electricity (LCOE) in Figure 4.15 is calculated for fusion power and 

compared with the LCOE calculations of competing electricity generation sources in the 

Fusion Pathway.  The LCOE for fusion power is dependent on its stage of maturity and the 

technological learning factor for fusion power plants.  Nevertheless, fusion power is expected 

to compete successfully with other decarbonised electricity sources as the LCOE starts of at 

£0.08/kWh in 2045 and declines to £0.04/kWh in 2050.  This is consistent with the Ward et al 

(2005) estimates for fusion, with the LCOE ranging from €0.05/kWh to €0.10/kWh 

(£0.04/kWh to £0.07/kWh at €12015 to £0.73).   
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For comparison purposes, the unabated conventional thermal generation from fossil fuels has 

an average LCOE that is the lowest among the competing energy sources.  Despite the early 

decommissioning of electricity from oil, conventional thermal generation from fossil fuels 

remains cheap at an average LCOE of £0.01/kWh between 2010 and 2035 but this does not 

consider carbon prices and environmental factors.  There is also a spike in the LCOE in 2040 

at £0.29/kWh as unabated coal and gas are decommissioned in favour of CCS.  The LCOE for 

CCS is competitive and reaches £0.02/kWh in 2050 but there are uncertainties in relation to 

the implementation period as CCS is not yet proven to be commercially viable.  Onshore wind 

has an LCOE of £0.10/kWh in 2010 and declines to £0.03/kWh in 2025 but new build turbines 

are discontinued after 2025.  Offshore wind is at a higher LCOE of £0.20/kWh in 2010 and 

gradually declines to £0.04 in 2050, making it a key high-volume source of electricity in the 

UK's energy mix.  Lower volume electricity generation such as hydroelectric power and 

geothermal remain competitive in 2050 at £0.03/kWh and £0.05/kWh respectively. 
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4.6 Conclusions and policy recommendations 

 

This chapter considered the expert pathways for the UK's future energy system that were 

developed by multinational organisations that used the 2050 Energy Calculator, a techno-

economic energy model used for the generation of long term energy-related projections.  A 

significant contribution to the empirical literature of scenario energy modelling was derived 

through the recalibration of the 2050 Energy Calculator in order to permit the inclusion of 

fusion power into the UK’s future energy mix.  This chapter’s new “Fusion Pathway” 

consisted of energy, economic and GHG emissions estimates that were compared to two 

existing expert pathways in order to determine the most competitive future energy pathway.  

There were similarities in the demand assumptions between the Fusion Pathway and the expert 

pathway from National Grid plc but strong differences in the supply assumptions.   The expert 

pathway from Friends of the Earth was based on completely different assumptions to the other 

two, which impacted the results and lessons learnt.  Nevertheless, each of the three pathways 

requires a complete restructuring of the energy system in order to successfully meet the 

challenges that emerge with energy efficiency improvements, increased electrification, 

environmental protection, energy security and cost control. 

 

The National Grid Pathway ensures a steady path towards electrification of homes, businesses 

and transport while maintaining sufficient supply capabilities to meet the needs of energy 

consumers.  The results of the analysis show a good sense of cost control in their expenditure 

on capital, operating and fuel costs while reducing the 1990 GHG emission levels to 83% by 

2050.  The Friends of the Earth Pathway has exceeded all the expectations of the Climate 

Change Act (2008) with a 96% reduction on 1990 GHG emissions by 2050.  This pathway 

greatly increases installed energy capacity of a wide range of renewable energy sources and 

CCS throughout the course of the projection time period but sacrifices cost containment as an 

objective, which may subsequently lead to public discontent through significance increases in 

household energy bills and environmental taxes.  There is also a question mark in relation to 

the financial viability of the Friends of the Earth Pathway as such a large energy investment 

programme would seemingly be undeliverable without excessive amounts of investment and 

debt with potentially high gearing ratios. 

 

On the other hand, the new Fusion Pathway delivers a strong performance in energy supply 

due to the impact of the potential introduction of fusion power towards the end of the 
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projection period.  This potential new input of high-volume, decarbonised fusion electricity 

enables the percentage share of the energy mix to be reconfigured in favour of high offshore 

wind, nuclear and CCS at the expense of electricity sources with uncertain high-volume 

capacities such as wave, tidal and solar PV.  The energy needs of domestic, commercial and 

industrial consumers are met and the decarbonisation target is reached in 2050 with an 81% 

reduction on 1990 levels.  Crucially, the Fusion Pathway is shown to have the strongest 

economic performance by far amongst the three pathways with a £16bn a year saving over the 

National Grid and a £54bn a year saving over the Friends of the Earth Pathway by 2050.  

Fusion power’s LCOE of £0.04/kWh in 2050 is not only competitive within the UK’s energy 

mix but also against the LCOE values of high-volume electricity sources across the EU, as 

highlighted in the IEA (2010a) projections.   

 

Despite the many strengths of the 2050 Energy Calculator, there are important limitations to 

its modelling approach.  The model has a strong UK focus, which implies that the model 

neither considers the emissions from the overseas generation of UK energy imports nor does it 

take into account the emissions generated from the manufacture of imported products.  HM 

Government (2010) highlighted the model’s omission of important feedback effects between 

different energy trajectories and the wider economy as there are cost implications and knock-

on effects that result from changes within the energy mix.  The 2050 Energy Calculator (as in 

all models) might also produce output that diverges to varying degrees from the actual data.  

For example, the Digest of the United Kingdom Energy Statistics from the Department of 

Business, Energy and Industrial Strategy (BEIS, 2015) shows that the total electricity supplied 

from “all generating companies” reached 322.4 TWh in 2015 and total electricity consumption 

from all sectors of the economy was 310.6 TWh in the same year.  This is roughly comparable 

to the 2015 projections from the Fusion Pathway at 366.3 TWh (+43.9) and 341.3 TWh 

(+30.7) respectively.  On the other hand, the total actual primary energy consumption from all 

users in 2015 was 137.43 Mtoe (1,598.3 TWh) whereas the 2015 projection in the Fusion 

Pathway shows a greater degree of divergence at 1,774 TWh (+175.7). 

 

Other cost considerations omitted from the model include the mathematical impacts on energy 

bills, the climate change costs avoided through CO2 emissions abatement, the cost interplay 

between energy demand and supply, the effects of environmental tax policy and the level of 

sustainable government funding for R&D in nascent energy technologies, especially for fusion 

power.  There is also an ignorance of the volatile nature of some economic assumptions such 
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as oil prices, so newer projections based on fresher data may provide results that are skewed 

from the previous projections that were carried out.  Furthermore, the long-term commercial 

viability of the Fusion Pathway principally depends on the medium-term technological 

developments in plasma physics and power plant engineering.  For example, the plasma 

energy breakeven point occurs where the output energy from the plasma at least matches the 

input energy that is used to produce the plasma in the first place.  This breakeven point is yet 

to be achieved as the JET fusion reactor at the UKAEA site in Oxfordshire only produced 

16MW of energy from 24MW of input power. The ITER fusion reactor in France is designed 

to produce 500MW of energy from 50MW of input power so the technical viability of ITER’s 

energy conversion efficiency would needed to be demonstrated in future. 

 

The UK’s vote to leave the European Union during the 2016 Referendum is currently in the 

process of being enshrined in law through the European Union (Notification of Withdrawal) 

Bill 2017.  This bill also provides for the UK’s withdrawal from EURATOM as it is governed 

by EU institutions, including the European Court of Justice (Lang et al, 2017).  Apart from 

third-party nuclear cooperation and fissile materials agreements that the EU possesses, the 

potential impact of the UK’s withdrawal from EURATOM on the 2050 Energy Calculator are 

unquantifiable at this stage.   

 

The European Parliament (2016) describes how the realisation of a fully integrated EU 

“Energy Union” (especially in the gas and electricity markets) is expected to lead to “more 

competitive energy prices for both households and industries”, with the aim of boosting 

economic competitiveness within the EU.  Non-British participation in the Energy Union may 

cause a divergence in the cross-border energy regulatory regimes and a skewing of the long-

run total energy supply curve in the 2050 Energy Calculator.  EU state aid rules on energy 

infrastructural investment may also cease to apply to the UK if it refrains from membership of 

the European Economic Area (Cyndecka, 2017), although the UK would still be subject to 

WTO state subsidy rules on energy infrastructural investment.  The UK’s withdrawal from the 

EU/EEA may therefore lessen the future emphasis on a highly decarbonised future energy mix 

within the 2050 Energy Calculator as the UK may decide to abolish the renewable energy 

targets that were highlighted in the EU’s Renewable Energy Directive (Eur-Lex, 2009). 

  

Nevertheless, the recalibrated 2050 Energy Calculator clearly demonstrates the strong role that 

fusion power could potentially play towards the end of the projection period and it is expected 
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that the potential deployment of fusion power plants beyond 2050 would gain much stronger 

public support than the future installation of new-build nuclear fission power plants.  This is 

especially considering the extra cost savings that may result from the technological 

refinements in plasma physics and engineering from mature fusion power plants.  Future areas 

of research with the 2050 Energy Calculator could focus on further integration of the UK 

government’s fusion R&D investment strategy with other nations in order to manifest the fast-

track route to fusion power commercialisation.  Future research should further involve the 

development and testing of new criteria that would enhance the understanding and impact of 

each of the energy mix pathways on energy prices and other criteria that are not currently part 

of the 2050 Energy Calculator’s procedures.  From an EU withdrawal perspective, UKAEA 

could consider the Switzerland model as a EURATOM-affiliated fusion R&D laboratory.  

However, further investigations on the general impact of the UK’s withdrawal from 

EURATOM are required in order to provide the 2050 Energy Calculator with continuous 

updates on the fusion R&D trajectory towards 2050.   
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CHAPTER 5 

 

MULTIEQUATION MODELLING: THE IMPACT OF FUSION 

POWER ON THE UK’S ECONOMIC PROJECTIONS FOR 2050 

  

5.1 Introduction 

 

The previous chapter focused on the long-term projections of the UK’s energy mix towards 

2050, based on three competing scenarios: the National Grid Pathway, the Friends of the Earth 

Pathway and the Fusion Pathway.  Each of the three scenarios produced estimates of the 

energy system’s supply and demand projections that would enable the UK to meet its 

decarbonisation target of an 80% reduction in GHG emissions by 2050 relative to 1990 levels.  

Estimates were also generated of the future projected costs of capital expenditure, operations 

and primary fuel inputs in accordance with the optimal energy mix strategy that was deemed 

appropriate.  The implication was that appropriate levels of investment were required for the 

energy system in order to not compromise the competitiveness of the industrial sectors as they 

are crucial to the long-term sustenance of economic growth and employment.  The Fusion 

Pathway provided a configuration of the energy system with the lowest cost outlay between 

the three pathways so it would be necessary to understand whether this minimum cost route 

had beneficial synergies with the performance of other critical elements of the economy.   

 

The UK Government’s role was also fundamental to the successful implementation of the 

long-term decarbonisation agendas of the three pathways.  The role of industry and 

government towards the realisation of each pathway would inevitably require economic 

adjustments to areas such as government expenditure, environmental taxes and trade 

competitiveness.  These adjustments would need to be considered within the wider context of 

the economic environment in 2050, which not only represents the UK’s decarbonisation target 

year but also the period of commercialised fusion power.  This leads us to two principal 

questions: (1) What estimates could be generated towards 2050 that would enable reasonable 

inferences of the British economy to be made? (2) How can we estimate the wider impact of 

the energy mix pathways on these long-term estimates of the future economic environment?   
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This chapter addresses the first question through the estimation of time series econometric 

models, with its structure describing the relationship between the current value of an 

endogenous variable and the lagged value(s) of itself.  However, estimating the long run 

direction and dynamics of economic phenomena is an intricate process as there are many 

interrelated and unobservable forces that could underpin the stochastic elements between 

variables.  Shocks to economic variables through policy changes and external market forces 

could also induce effects that have indeterminate time lags, thereby obscuring the long run 

expectation of forecasted variables.  Therefore, multivariate econometric methods that are 

grounded in economic theory could not only quantify viable relationships between variables 

but could also produce forecasts that enable more realistic inferences to be made than forecasts 

estimated by univariate models.   

 

Multivariate econometric analysis in the context of this chapter should determine the 

predictive quality of the models under consideration prior to the estimation of long run 

projections of the future economic environment.  Based on this feature, this chapter provides 

an empirical contribution to the literature by extending the use of Johansen’s (1988, 1991) 

maximum likelihood (ML) estimator of cointegration analysis and the vector error correction 

model (VECM) towards the estimation of five theoretical relationships that encapsulates the 

UK’s economic activity, with projections made towards 2050.  The literature in this field is 

noticeably scarce and this analysis goes further than previous studies of univariate 

econometric projections toward 2050 such as Moore (2011) and Fouré et al (2010) as the 

VECM projections are intended to provide more plausible results based on the perceived 

interdependencies between the variables. 

 

The second question is addressed through the use of a computable general equilibrium (CGE) 

model as it could reveal the feedback effects from specific shocks and energy policy changes 

across sectors.  One sub-section of the CGE analysis considers the effect of indirect taxes and 

its constituent, environmental taxes.  There is a significant body of literature in the CGE space 

that assesses the economic impact of environmental taxes on CO2 emissions abatement.  These 

studies used CGE models that were underpinned by theoretical frameworks at varying degrees 

of disaggregation such as the Input/Output cost-push framework in Hamilton and Cameron 

(1994) and Beauséjour et al (1992), the static ORANI framework in McDougall (1993) and the 

MSG-EE framework in Alfsen et al (1996).  The general theme from these studies was that 

environmental tax shocks had a distortionary effect on economic variables such as real GDP, 
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output prices and industrial production.  However, the CGE models in these studies applied 

environmental taxes as the primary economic shock, which is inappropriate as Bowen and 

Stern (2010) suggest that in principle, environmental taxes would generally act as adjustments 

in response to an economic and/or environmental shock. 

 

This chapter focuses on the use of a CGE model that follows the Salter-Swan framework in 

order to assess the economic implications of the cost projections from the Friends of the Earth 

and Fusion pathways in 2050, with the National Grid Pathway acting as the reference 

pathway.  The Salter-Swan framework consists of a basic structure that not only captures the 

relationship between shocks and policy responses but also highlights an abundant array of 

issues.  The cost projections from each energy mix pathway act as shocks to certain economic 

variables.  The policy responses are the adjustments to equilibrium that are triggered and are 

specifically focused on international trade via the current account variable on the balance of 

payments and environmental taxes via the indirect tax variable.  This section follows the use 

of the CGE model with the Salter-Swan framework in Thierfelder and Robinson (2002) for 

their assessment of the economic effects of international trade.   

 

The CGE model would also permit the assessment of the “double dividend” hypothesis, which 

suggests that increases in environmental taxes that are designed to reduce industrial pollution 

provide two kinds of benefits: The first dividend being the actual reduction in greenhouse gas 

emissions and improved environmental preservation, the second dividend being a reduction in 

other disproportionate taxes that could distort the labour supply such as income tax.  The 

assessment of the double dividend in this context follows Bovenberg and de Mooij (1994), 

who used a simple general equilibrium model in a representative two-good economy to assess 

the existence of the double dividend from environmental taxes.  

 

The contribution from the CGE model section is therefore an empirical analysis that extends 

the CGE modelling framework towards a scenario where differing energy mixes can compete 

for influence over the economic policies that are set and implemented by the UK Government 

and its agencies.  The focus on shocks and the policy response adjustments from the current 

account and indirect taxes (including its environmental tax constituent) are important as they 

would provide insights into the potential future direction of industrial productivity, trade 

policy and international competitiveness.  The literature in this field tends to focus on 

environmental taxes as a primary shock so this chapter aims to address the gap in the literature 
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that does not account for environmental taxes acting as an adjustment to the primary economic 

shock.   

 

The combination of univariate econometric projections of environmental-economic variables 

towards 2050 and the Salter-Swan framework for CGE modelling can be found in Moore 

(2011).  This chapter extends this process with the econometric projection of five multivariate 

relationships towards 2050 and a broader economic shock and adjustment assessment in the 

CGE model.  The next section aims to determine the theoretical relationship between the 

variables in each of the five economic relationships prior to the estimation and analysis of the 

multivariate econometric models.  Real gross domestic product at market price is the 

ubiquitous endogenous variable and is modelled with its constituents as well as with direct and 

indirect tax variables, general fiscal variables and current account variables from the balance 

of payments.   

 

5.2 Theoretical relationships between the variables  

 

5.2.1 GDP: Export-led growth and import-led growth hypotheses 

 

There are a plethora of studies that seek to determine the relationship between economic 

growth and exports.  The export-led growth hypothesis (ELG) suggests that a country’s 

economic growth is not solely boosted by increases in the level of investment, capita flows 

and labour productivity but also by increases in exports.  This engine of economic growth 

could be accredited to factors such as the greater cooperation in world markets through free 

trade, investment in technology and expansions of a company’s production through economies 

of scale.  However, Rodriguez and Rordik (2000) conducted an analysis of existing empirical 

studies between trade openness and economic growth.  They found that although an open trade 

policy can be beneficial to growth, caution should be exercised in this assumption as there are 

apparent differences between large and small countries and between countries with a 

competitive advantage in primary production and secondary production of manufactured 

goods. 

 

There are also different directions of causality that are apparent in this relationship.  The main 

outcomes that are estimated from this relationship are the export-led growth hypothesis (ELG), 

which is derived from the original findings from the works of Balassa (1978) and Thirwall 
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(1979)
13

, and the growth-led export (GLE) hypothesis.  Krugman (1989) argued that the GLE 

hypothesis was more appropriate than the ELG hypothesis based on the assumption that as 

countries specialise by enhancing their economies of scale, they achieve economic growth and 

expand their exports, thereby increasing their world market share in specific products and 

services.  Studies such as Wong (2008) and Jarra (2013) also model the GLE relationship by 

including household consumption and government consumption as proxies for domestic 

demand. 

 

Another associated relationship that features less prominently in the literature is the import-led 

growth (ILG) hypothesis.  This stems from the assumption that limited factors of production in 

developing countries are the main driver of increased imports in intermediate goods and 

foreign technology, which subsequently spurs economic growth.  However, Ogbonna (2015) 

implied that the ILG hypothesis does not hold for certain developing countries due to their 

inability to take full advantage of advanced imported technologies, corrupt procurement 

practices and poor maintenance culture.  Conversely, the growth-led import (GLI) hypothesis 

could emerge if internal growth in resource-rich countries stimulates demand for luxury 

imports.  Developed countries that are resource-poor such as Japan and South Korea also 

display the “extreme importer” behaviour that is necessary to maintain adequate levels of 

economic growth (Davis, 2009).  

 

5.2.2 Tax Revenue: The effect of tax shocks on GDP and investment 

 

There is a broad consensus in the empirical literature concerning the effect of tax shocks to 

GDP.  The general assumption is that shocks to direct taxes such as income and corporation 

tax and indirect taxes such as environmental tax have a negative effect on macroeconomic 

variables.  Studies such as Mountford and Uhlig (2005) found that spending increases financed 

by tax increases from a balanced-budget government would correspond to a decrease in GDP.  

On the other hand, they found that a tax cut in an unchanged spending scenario financed by a 

budget deficit only corresponds to a moderate short-term increase in GDP, albeit with a higher 

debt burden and long-term negative risks that could outweigh the short-term stimulus effect.   

 

                                                           
13

 Thirwall’s law (Thirwall, 1979) stipulated that if equilibrium of a country’s balance of payments is to be 

achieved, then “a country's long run growth rate can be approximated by the ratio of the growth of exports to the 

income elasticity of demand for imports”. 
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Concerning the individual components of GDP, Mountford and Uhlig (2005) concluded that 

spending increases financed by higher taxes would negatively affect investment.  This was 

similar to the conclusion reached in Blanchard and Perotti (2002), who found that increases in 

taxes and government spending corresponded to a decrease in investment spending.  However, 

higher taxes that finance higher government spending would correspond to an increase in 

household consumption, which leads to a fall in exports.  Blanchard and Perotti (2002) 

highlighted the slow reaction of some macroeconomic variables to fiscal policy shocks.  This 

assumption was also determined in Kaliontzakis (2015), who noted that while fiscal shocks 

had a long-term effect on most macroeconomic variables, the opposite could be said 

concerning increases in government spending, which have a short-term effect. 

 

5.2.3 Fiscal account: The effect of fiscal consolidation on economic growth  

 

Fiscal consolidation involves a government’s management of their current and capital 

expenditure in order to reduce a deficit or grow a surplus balance on their fiscal account.  

Current expenditure consists of government spending on wages, goods and services, interest 

payments on government debt, transfers and subsidies while capital expenditure consists of 

investment, development and upgrading of long-term assets and infrastructure.   

 

A large body of the empirical literature supports the idea that spending-based fiscal 

consolidation has a beneficial effect of on economic growth (Princen and Mourre, 2013; 

Alesina et al, 2015; Yang et al, 2015).  For example, Von Hagen and Strauch (2001) finds that 

successful fiscal adjustments that benefit economic growth can only occur where a 

government is committed to spending reductions on politically sensitive sections of current 

expenditure such as government wages, transfers and subsidies
14

.  Mody and Rebucci (2006) 

also show that reductions in current expenditure have a stronger effect on economic growth 

than adjustments that increase government revenues.   

 

There are also costs and impacts to investment that are incurred by countries with poor fiscal 

consolidation programmes.  Cournède et al (2014) demonstrated that among a basket of 

OECD countries, fiscal consolidation was required in order to curb the large costs associated 

with debt expansion.  They implied that failure to balance an increase in taxes with appropriate 

                                                           
14

 Von Hagen and Strauch (2001) emphasise the importance of timing in any fiscal consolidation programme 

with the suggestion that a greater probability of success occurs during bleak domestic and international economic 

conditions. 



142 

 

spending cuts in a budget deficit environment would hinder short-term demand and undermine 

long-term economic growth.   Easterly et al (1994) also indicate that the taxation of financial 

assets to finance budget deficits through the issuance of domestic debt can negatively affect 

investment.  They imply that the expansion of large fiscal deficits and their associated costs 

only serves as a policy instrument rather than as a response to the domestic economic 

situation.  Furthermore, the IMF (2016) indicated that the post-financial crisis output gaps in 

many advanced economies were created by “debt overhangs” and low productivity growth, 

which hindered investment.   

 

5.2.4 Balance of payments: The effect of GDP on the current account balance 

 

The UK’s large current account deficit on the balance of payments has been the topic of 

intense public debate for a number of years.  The persistent nature of the UK’s current account 

deficit has confounded the intertemporal models of a nation’s current account, which assume 

that large current account imbalances should not persist over the long run once the short run 

shocks that triggered the large imbalances have evaporated (Obstfeld and Rogoff, 1996; Kraay 

and Ventura, 2000).  Adjustments to the current account are implemented by domestic agents 

who focus on smoothing consumption to a stable path, which enables the current account to 

thereafter return to its long run sustainable level. 

 

The UK’s current account balance stood at -5.7% of GDP as off 2015 and has consistently 

stuck below the 0% level in every year since 1987.  There are a number of factors that could 

explain the trend in this deficit such as the large trade deficit in goods, which stems from the 

steady decline in manufacturing activity.  The decline in manufacturing coincided with the 

decline in manufacturing jobs from a peak of 9 million in the 1960s to less than 3 million jobs 

as of 2013 (Fothergill and Gore, 2013).  The growth in EU and non-EU migration into the UK 

has also had an impact on the negative current account balance through the gradual increase in 

the net private transfer deficit.  Furthermore, the current account is impacted by the decline in 

private savings as post-financial crisis governments in the developed world had tried to revive 

growth through low interest rates (Belke, 2013). 

 

There are a limited number of studies that assess the theoretical relationship and direction of 

causality between economic growth, the current account balance and the net trade position of a 

country.  There are also a range of EU countries whose current account positions are in long 
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term surplus such as Germany, Sweden and Denmark and long term deficit countries such as 

the UK, France and Italy (Europa, 2016), which makes it difficult to determine a general 

consensus of the relationships between the variables.  Thomas (2015) sought to explore the 

effect on India, which has a similar long-term current account deficit to the UK and found that 

economic growth corresponded to a decrease in the current account balance in the long run.  

However, he also found that an increase in net trade in services and economic growth 

corresponded to an increase in the current account balance in the short run.  Similarly to 

Thomas (2015) but in reverse, Edwards (2007) found that a decline in economic growth 

corresponded to an increase in the long run current account balance in the US, Europe and 

Japan.  Those results indicated that reductions were needed in the current account surpluses of 

countries such as China and Germany in order to contribute towards the current account 

imbalances in the US, UK and other countries within the EU. 

 

5.3 Methodology 1: Cointegration and vector error correction model (VECM) 

 

In Chapter 3, the properties of economic time series were explored based on the concept of 

stationarity.  Standard regression techniques require that variables exhibit a level stationary 

process i.e. integrated of order zero or I(0).  However, a vast number of economic time series 

show the presence of a unit root, which causes a violation of stationarity, thereby potentially 

rendering the variable as integrated of order one i.e. the variable is stationary at its first 

difference.  As highlighted in Chapter 3, ignoring the presence of I(1) variables in a standard 

regression model such as ordinary least squares (OLS) could lead to the generation of spurious 

regressions.   

 

Granger and Newbold (1974) demonstrated through Monte Carlo analysis that the outputs 

produced by these regressions were deemed to be statistically invalid, with spurious 

correlations that were unviable for economic analysis.  This has a knock-on effect on any 

forecasts that are produced from these models as they would be deemed to be suboptimal.  

They argued that although one could alleviate model misspecification by using the first 

difference of a non-stationary variable, it may not completely remove the problem.  The 

asymptotic theory that supported the Granger-Newbold experiments was proposed by Phillips 

(1986), who showed that I(1) variables in a regression do not have the typical asymptotic 

properties.  Furthermore, first differencing of variables in a multivariate regression model may 
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remove important information that could add value to the understanding of relationships 

between non-stationary variables.   

 

The concept of cointegration, which was proposed in Granger (1981) and formalised in Engle 

and Granger (1987), was designed to overcome this problem as it promotes the estimation of 

viable relationships between non-stationary variables.  Essentially, two or more non-

stationary, I(1) variables in a multivariate group are said to be cointegrated if a linear 

combination of these variables are stationary in the long run.  This means that the 

cointegrating variables do not drift too far apart as underlying economic forces would draw 

these variables into a long run equilibrium relationship.  An error correction model (ECM) acts 

as an adjustment mechanism in the short run to converge the cointegrating variables towards 

their long run equilibrium relationship.  Therefore, cointegration modelling is a particularly 

powerful tool to analyse the dynamic behaviour of I(1) cointegrating variables in the short run 

and the correction towards an equilibrium relationship in the long run.   

 

In Chapter 3, the variables were tested for the presence of a unit root using the augmented 

Dickey-Fuller (ADF) and Dickey-Fuller Generalised Least Squares (DF-GLS) tests.  

Cointegration analysis was performed using the autoregressive distributed lag model (ARDL) 

with evidence shown of the existence of cointegration within this single equation method.  The 

long run equilibrium relationship was established and short run dynamics were estimated 

through a restricted ECM.  The estimates provided by the single cointegrating equation were 

subsequently derived and the economic relationships between the variables in the short and 

long run were evaluated. 

 

The single equation approach of the ARDL model used in Chapter 3 is generally suitable 

where there is only one cointegrating relationship in a model.  However, a multivariate model 

may contain different interplays between variables and this could result in the discovery of 

more than one cointegrating relationship.  This results in a dual problem as the critical values 

in Pesaran, Shin and Smith (2001) would be incompatible with the cointegration testing 

procedure and valuable information from additional cointegrating vectors would be 

unavailable for analysis.  Another limitation of the single equation approach is that the results 

are more reliable if the independent variables are weakly exogenous as endogenous variables 

may render the model inefficient due to the loss off information from the conditioning of the 

model.  Therefore, a system of equations that would allow I(1) endogenous variables to act as 
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a dependent variable would be appropriate as it would mitigate the loss of information that 

could manifest in the single equation approach. 

 

One such system of equations is found in the form of a vector autoregression (VAR), which 

offers a strong alternative to the single equation approach.  Sims (1980) is viewed as one of 

the early leading advocates of the VAR model as an alternative representation to the 

traditional multivariate simultaneous equation models that were used at the time.  A 

development of the VAR model is the vector error correction model (VECM), which is a 

restricted VAR that is used for I(1) variables that are identified as cointegrated.  A desirable 

aspect of the VECM is that it restricts the long run path of the endogenous I(1) variables 

towards their cointegrated relationship through the implementation of dynamic adjustments in 

the short run.   

 

This section discusses the features of the maximum likelihood estimator method of 

cointegration analysis developed by Johansen (1988, 1991) and the VECM methodology as 

they are both used to analyse the economic variables in each of theoretical relationships 

highlighted in section 5.2.  Alongside the cointegration and VECM analyses, a brief summary 

of Granger causality results are given for each of the models in order to assess the direction of 

causality between the variables.  Granger causality was covered extensively in Chapter 3 and 

the results from the Wald test are based on the specification in section 3.4.4.  Finally, long-

term econometric projections are produced from the VECMs and the projected estimates for 

2050 are inputted into a CGE model for further analysis. 

 

5.3.1 Johansen’s maximum likelihood (ML) estimator for cointegration analysis 

 

The Johansen (1988, 1991) test for cointegration is based on the maximum likelihood (ML) 

estimator, which enables a model to be tested for all cointegrating vectors where more than 

two variables are present.  For example, if a model had three I(1) variables, the maximum 

cointegrating vectors that could be present are two and if there are   I(1) variables, then there 

could be a maximum of     cointegrating vectors.  The starting point for cointegration 

analysis involves the consideration of a VAR(p) model: 

 

                         
 

(5.1) 
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where    is a     vector of I(1) variables,   is a     vector of intercepts,       are 

    matrices of parameters and    is a     vector of i.i.d error terms with a mean of 0 and 

a covariance matrix  .  The VAR can be rewritten into a VECM: 

 

                    

   

   

    

where: 

        

 

   

            

 

     

 

 

where    constitutes an identity matrix of order    .  If the   vector of variables    are I(1), 

then the long run cointegrating vector in coefficient matrix   must be I(0) in order for    to be 

a white noise.  Engle and Granger (1987) demonstrated that if the    vector in equation (5.2) 

are I(1) variables, the coefficient matrix   experiences a rank of      , where   is the 

number of cointegrating vectors within the model.  If cointegration exists within the    vector, 

then model misspecification occurs if a VAR(p) is fitted in first differences as the       term 

is omitted from equation (5.2).    can be defined as      , where   is the speed of 

adjustment matrix and   are the parameters of the cointegrating vectors.  For example, if    

consists of three variables and    , then vector   and vector   are    .  This means that 

there are 3 adjustment parameters for each of the three equations, which are multiplied by the 

single cointegrating vector        in order to respond to deviations from the long run 

equilibrium relationship.   

 

It can be demonstrated that for any given  , the ML estimator of   is based on the combination 

of      that yields the largest cointegrating canonical correlations of Δ   with      after 

correcting for the presence of any deterministic variables and lagged differences.  On the other 

hand, if the vector    is I(1) but not cointegrated, then   is a matrix of zeros with a rank of 0 

and the result of the relationship is a VAR in first differences i.e. the       term is omitted 

from equation (5.2).  One way of viewing this test is to assess the null hypothesis    of 

rank      against the alternative being rank         with     being the maximum 

rank if I(1) variables are present and   being the maximum rank if all variables are I(0).        

 

(5.2) 

(5.3) 



147 

 

Johansen’s ML estimator is widely considered to be the preferred method of cointegration 

analysis with many econometricians as it is capable of estimating multiple cointegrating 

equations.  This contrasts with other cointegration methods such as the Engle-Granger two-

step and Pesaran-Shin-Smith ARDL-bounds testing approaches, which can only estimate one 

cointegrating equation per model.  Estimates of the cointegrating vectors and speed of 

adjustment coefficients are asymptotically efficient in Johansen’s test and there are no real 

concerns over whether the independent variables are exogenous or endogenous.  Johansen and 

Juselius (1994) also demonstrate the possibility of imposing linear restrictions on the 

cointegration vector and speed of adjustment coefficients in Johansen’s test in order to assess 

different economic hypotheses
15

.    

 

However, there are a number of limitations that are related to this procedure.  For example, 

Johansen’s test is static in nature and is unable to predict future cointegrating relationships 

among variables.  Cheung and Lai (1993) showed that finite-sample bias could manifest where 

estimates are biased towards a cointegration result in more situations than the asymptotic 

theory suggests and the problem is especially amplified when the lag length increases.  The 

spurious cointegration problem could also arise where test estimates could result in size 

distortions i.e. the false rejections of a true null hypothesis of no cointegration.   Huang and 

Yang (1996) carried out Monte Carlo analysis to test the long-run purchasing power parity 

(PPP) hypothesis between developed countries and found that the results might be biased 

towards a spurious cointegrated vector if the residuals veer away from the independent and 

identically distributed assumption (i.i.d).  The spurious cointegration problem was also found 

by Gonzalo and Lee (1998), who argued that the problem could be more serious as the sample 

size tends towards infinity.   

 

5.3.2 Trace test and maximum eigenvalue test for cointegration analysis 

 

Johansen’s tests for cointegration are based on eigenvalues that are non-negative and non-zero.  

Eigenvalues are special scalars that are based on transformations of the data and they represent 

linear combinations of data that consist of the maximum canonical correlations.  Let us first 

                                                           
15

 Estimates of the adjustment parameter and cointegrating relation involve a series of iterations.  When linear 

restrictions are indicated, the switching algorithm specified in Boswijk (1995) is used to increase the log 

likelihood function towards its maximum level in order to produce an analytical solution for the estimates of the 

parameters. 
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consider the companion matrix   from equation (5.3), which can be written using matrix 

algebra: 

 

  

 

 
 

           

      
        
     
       

 
 

 

 

Each element in   is of the order     so the matrix consists of    rows and    columns i.e. 

     .  Lütkepohl (2005) shows that under appropriate assumptions, the underlying VAR 

process satisfies the stability condition if all the eigenvalues in   have moduli (absolute 

values) that are strictly less than one.  The set of eigenvalues for matrix   are given by the 

number of roots in the characteristic polynomial equation: det         , where   is an 

eigenvalue of   and det(.) represents the determinant of matrix      .   

 

The rank of   matrix is based on the number of important eigenvalues found in    with each 

important eigenvalue representing a cointegrating vector.  For example, let the   eigenvalues 

be ordered according to size with the largest first so that          .  If         , then 

there are no cointegrating vectors i.e. rank      but if        , then there is at least one 

cointegrating vector in the model i.e. rank     .  The assessment then goes to           , 

with          denoting the settled rank      and         denoting that rank     .  

The ML estimators for the parameters in equation (5.2) were derived by Johansen (1995), who 

proposed two likelihood ratio tests: the trace test and the maximum eigenvalue test 

 

The trace test assesses whether the rank of the coefficient matrix is  .  The beginning of the 

test assesses the null hypothesis     rank      against the alternative       rank     .  

Rejection of the null hypothesis would require one or more subsequent tests to determine the 

total number of cointegrating vectors, starting with     rank      against      

 rank     .  The statistic from the likelihood ratio test is derived from the following 

equation: 

 

                         

 

     

 

 

(5.5) 

(5.4) 
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where         is the likelihood ratio test statistic for testing     rank      against 

    rank     ,   is the number of observations and     is the i-th largest eigenvalue from 

the   matrix in equation (5.2).  For example, testing the null hypothesis for rank      

against the alternative rank      is given by the equation                       
   

    .  The trace statistic does not follow an asymptotic chi-squared      distribution but is 

based on the function of the Brownian motion
16

.  Furthermore, the critical values are based on 

a Dickey-Fuller pure unit root inference.  The issue with this is that the critical values used in 

the test would no longer be appropriate for near unit root processes, so there could be a 

question mark concerning the sensitivity of the trace test results with variables with near unit 

root processes
17

. 

 

The maximum eigenvalue test assesses the null hypothesis of whether the largest eigenvalue is 

equal to zero against the alternative hypothesis, which is that the next largest eigenvalue in 

sequence is equal to zero.  This means that the first test assesses     rank      against 

    rank     .  Rejection of the null means that the largest eigenvalue    is not zero and 

there could be one or more cointegrating vectors and so the new null is proposed for    

i.e.     rank      against     rank     .  This continues until the null hypothesis that 

     eigenvalue is zero can no longer be rejected.  The statistic from the maximum eigenvalue 

test can be derived from the following equation: 

 

                           
 

where       is the likelihood ratio test statistic for testing     rank      against 

    rank       .  Similarly to the trace test, the test statistic does not follow an 

asymptotic    distribution as it is technically a multivariate version of the unit root 

distribution from the Dickey-Fuller test.  However, differences between the trace and 

maximum eigenvalue tests were demonstrated by Cheung and Lai (1993), who found the trace 

statistic results to be more robust than the maximum eigenvalue statistic where the residuals 

are non-normal with an excessive kurtosis (fat tail).  Lütkepohl et al (2000) also used Monte 

Carlo analysis to assess the performance of the trace and maximum eigenvalue statistics with 

small sample sizes.  The authors found that in some cases, the trace test performed better than 

                                                           
16

 A Brownian motion is a continuous stochastic process.  See Johansen (1991) for more information on the 

asymptotic distribution of the trace statistic, which can be expressed in terms of a Brownian motion. 
17

 Elliot (1998) provides more information on the inferences that could be drawn from long run relationships 

between variables with near unit root processes. 

(5.6) 
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the maximum eigenvalue test in terms of power, especially where the true rank of   exceeds 

the null hypothesis rank   by more than one.  The implication is that if the results between the 

trace and maximum eigenvalue tests are ambiguous, then the trace test result should be 

preferred.   

 

5.3.3 Trend specification for Johansen’s cointegration test and VECM 

 

An important consideration in Johansen’s cointegration test and subsequent VECM concerns 

the nature of any deterministic terms to include in the estimation process.  Deterministic trends 

could be present in both the cointegrating vector and in the mean of the first differenced 

variables.    Where the variables are at level, the intercept term   from equation (5.2) indicates 

the presence of a linear trend and the inclusion of a time trend term    indicates the presence 

of a quadratic trend.  The inclusion of a trend follows the inherent data pattern, for example, 

two variables may share a linear trend but a combination of both variables do not trend as they 

offset against each other.  The cointegrated vector would therefore have no trend even though 

they are both trending individually.  Similarly, if a combination of two variables offsets a 

quadratic trend, then there is the flexibility to adjust the model in order to include an intercept 

and trend.   

 

Based on the speed of adjustment matrix   in the VECM, the linear trend can be rewritten as 

       and the time trend can be rewritten as          .  The properties of    are 

orthogonal to   and the properties of    are orthogonal to   such that the inner product of 

these two elements of the linear and time trends are equal to zero i.e.        and       .  

The VECM specification in equation (5.2) can now be rewritten with the inclusion of a time 

trend in the following equation:  

 

                           

   

   

         

 

where   and   are     and     vectors of intercept parameters respectively, and   and   

are     and     vectors of time trend parameters respectively.  Restrictions can be 

imposed on the deterministic elements of the cointegrating equation and underlying VAR 

model based on the following five cases from Johansen (1995): 

 

(5.7) 
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Case 1 (no trend):    ,    ,    ,    .  This option means that there is no intercept or 

trend in the cointegrating vector or VAR i.e. there is no growth and there is a zero mean in the 

cointegrating vector.  Selection of this option would be very difficult to justify as it would 

imply that all measurements would start from a zero base.   

 

Case 2 (restricted intercept):    ,    ,    ,    .  This option has an intercept in the 

cointegrating vector but is restricted in the VAR.  This implies that the only deterministic 

element in the model is a cointegrating vector that is stationary around a non-zero mean. 

 

Case 3 (unrestricted intercept):    ,    ,    ,    .  This option has an unrestricted 

intercept in the cointegrating vector and VAR but no time trend.  This implies that the 

cointegrating variables are stationary around a non-zero mean and the levels of data consist of 

a linear time trend. 

 

Case 4 (restricted trend)::    ,    ,    ,    .  This option has an unrestricted 

intercept but a restricted trend in that the levels of the data are not quadratic.  However, the 

cointegrating vector exhibits a trend stationary process. 

 

Case 5 (unrestricted trend)::    ,    ,    ,    .  This option means that the levels of 

data consist of an unrestricted, quadratic trend and the cointegrating vector is trend stationary.  

The main issue with this option is that out-of-sample forecasts produced with an unrestricted 

trend can be quite poor and the inferences drawn from the results based on the inclusion of an 

unrestricted trend could be problematic
18

 

 

The inclusion of specific trends in the cointegrated and data spaces could be determined by 

economic theory.  For example, if household incomes and expenditure are considered to be 

related, then a deterministic trend could be included in the cointegrating region of Johansen’s 

test.  In general, cases 1 and 5 would not typically be appropriate for estimation purposes as 

the underlying assumptions behind these options could be disproportionate to the data patterns 

found in most economic variables.  A summary of the remaining three cases would be as 

follows: case 2 would be chosen for non-trending variables with an intercept restricted to the 

                                                           
18

 This is based on the Monte Carlo experiments performed by Doornik et al (1998).   
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cointegrating region, case 3 would be chosen for variables with stochastic trends and case 4 

would be chosen if some of the variables exhibit a trend stationary process
19

.   

 

5.3.4 Johansen’s identification and parameter restrictions in the VECM 

 

Eigenvectors are a set of vectors that are connected to a linear system of equations such as a 

VAR and each coefficient matrix can be defined in terms of its eigenvalues             

and associated eigenvectors (          .)  As previously mentioned, a cointegrating 

vector   would produce a non-negative, non-zero eigenvalue and the estimates of   are based 

on the corresponding eigenvector.  The presence of a cointegrating vector would also render at 

least some of the adjustment parameters   to be non-zero.  Conversely, an eigenvector and by 

extension, a cointegrating vector is insignificant if the corresponding eigenvalue is 

insignificantly different to zero.  Therefore, Johansen’s ML estimator for   is calculated as the 

matrix of significant eigenvectors that correspond to the largest eignevalues within the scope 

of the cointegrating space. 

 

The presence of a cointegrating vector within a vector of variables poses an identification 

problem because not all of the parameters in   and   can be determined
20

.  One could choose 

a non-singular     matrix   such that                   .  However, the new 

estimates      and         are observationally equivalent and would not alter the 

value of the log likelihood function but the economic interpretations could be different.  

Another way of looking at this is that if a cointegrating vector exists, its identity is not unique 

as any scalar on   would still render the cointegrating vector to be integrated of order zero.  In 

a bivariate model, the identification problem is solved by choosing which coefficient to 

normalise to unity.  This subsequently provides the necessary restrictions on   for 

identification purposes.  However, in a multivariate model with    , each   would need a 

restriction in order for the identification process to occur.   

 

The Johansen identification procedure (Johansen, 1995) is a widely used identification method 

which places    number of independent restrictions on the parameters in  , with one of the   

                                                           
19

 It is important to use economic theory and graphical analysis to identify and select the trend specification from 

the onset.  This is because the likelihood ratio test statistic for hypotheses about the cointegrating vector changes 

in accordance with the trend specification that is selected. 
20

 A significant amount of interest has gone into the identification of cointegrated vectors from I(1) variables; see 

Phillips (1991), Pesaran and Shin (1994), Johansen (1995) and Boswijk (1995).   
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restrictions provided by normalisation in each cointegrating vector.  The    number of 

restrictions is the same as providing          number of restrictions where   are the 

number of parameters used for normalisation
21

 and        are the number of parameters 

used for identification in  .  The normalised parameters are set to unity and the identification 

parameters in an     scenario are restricted to zero, which effectively excludes them from 

 .  The number of free parameters to estimate in   is thus given by                 

where        is the total number of parameters in  .  Johansen’s procedure produces the 

restrictions by assuming the cointegrating vectors and eigenvectors are proportional to each 

other in the   matrix.  This is mathematically ideal as this procedure causes the cointegrating 

vectors to be orthogonal to one another.  However, the orthogonality restrictions in Johansen’s 

procedure generates standard output that is theoretically arbitrary as the economic 

interpretations are unclear.    

 

The    restrictions are generally assumed to satisfy the conditions that produce the just-

identified cointegrating vectors with                   free parameters, which have 

vague economic interpretations.  One could also seek more meaningful economic relationships 

between variables by either testing different just-identifying restrictions or over-identifying 

restrictions on the parameters of the cointegrating vector.  An example could be an over-

identifying restriction in a multivariate model that provides the freedom to focus on the 

proportionality between income and the demand for interest-bearing liquid assets.  However, 

the number of free parameters in the over-identified cointegrating vectors falls below 

                and Johansen and Juselius (1994) observed that an increased 

restriction in the variation of the parameters’ in   may result in a non-identification of the 

model.  The validity of the over-identified restrictions can be tested using the Johansen and 

Juselius (1994) likelihood ratio statistic, which follows an asymptotic    distribution.  This 

contrasts with a just-identified   as the orthogonality restrictions are not subject to any 

validation tests.  

 

Variables within a cointegrated system are generally assumed to react to deviations from the 

long run equilibrium relationship.  However, we may have certain doubts about the specific 

effect of an endogenous variable on a cointegrated system.  We may want to test whether 

changes in the i-th endogenous variable respond to deviations from long run equilibrium by 

                                                           
21

 The   number of parameters used for normalisation in Johansen’s identification procedure is equal to the   

number of cointegrating vectors in  . 
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restricting the speed of adjustment parameter in the i-th row of the   matrix to zero.  For 

example, if we are unable to reject the null hypothesis of         at the 5% significance 

level, then the i-th endogenous variable does not respond to deviations from long run 

equilibrium.  The i-th endogenous variable is therefore confirmed as being ‘weakly exogenous’ 

as the adjustments to long run equilibrium are performed by the other variables
22

.  Similarly to 

an over-identified model, the null hypothesis of weak exogeneity could be tested through the 

likelihood ratio statistic.  It is thereafter possible to produce estimates of the constrained 

VECM without reference to the   parameter of an endogenous variable that is confirmed as 

weakly exogenous. 

 

5.3.5 Forecasting macroeconomic data with a VECM  

 

Time series forecasts provide useful quantitative estimates of future predictions based on 

theoretical and empirical knowledge of economic phenomena.  The principal limitation of an 

econometric forecast is due to the immeasurable degree of uncertainty on what could happen 

in the future.  However, Clements and Hendry (1998) describes the “measurable certainty” 

that is known due to the level of randomness that can be expected around a point forecast.  

This level of randomness is known as a forecast interval, which is similar to a confidence 

interval that contains a range of values that could possibly contain a population parameter at a 

certain probability.  The forecast interval therefore provides a range of values that defines the 

extent of the margin of error, which are the highest and lowest possible values around a point 

forecast. 

 

Previous studies had sought to demonstrate the merits of long-term forecasts from bivariate 

and multivariate VECMs such as Engle and Yoo (1987), Hoffman and Rasche (1996) and 

Anderson et al (1998) while studies such as Stock (1996) demonstrated the limitations of 

forecasts over the longer horizon
23

, even if these forecasts were only 10% to 20% of the 

sample size.  Although the forecasts in this chapter are initially evaluated over a short horizon 

(say 1 – 4 years), the objective lies in the consideration of the appropriate VECM that could 

                                                           
22

 Enders (2010) gives an example of a likely weakly exogenous situation from Johansen and Juselius (1990).  He 

argued that real income could be weakly exogenous because in a full employment scenario, deviations between 

money demand and supply in the long run would not change real income. 
23

 Stock (1996) describes long horizon forecasts as 4 years based on 20 to 40 years of data, longer horizon 

forecasts as 10 to 20 years based on 20 to 40 years of data and very long horizons (e.g. for global warming 

scenarios) based on forecasts of up to 100 years. 
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generate long-term econometric projections that go beyond the sample period.  These 

projections would feed into the CGE model that is discussed in the next section of this chapter.   

 

Estimates from the VECM and constrained VECM (section 5.3.4) have different impacts on 

the forecasts that could be generated.  The forecast performance of the VECM and constrained 

VECM are initially based on estimates from the full sample period. Thereafter, the models are 

re-estimated with a few observations set aside towards the end of the sample period.  The free 

observations are then forecasted in order to provide a visual comparison of the forecast 

performance against the actual data in the graphs.  There are also a number of evaluation 

methods that can be calculated, which are used to compare the forecast performance of the 

VECM and constrained VECM.  Different evaluation methods often produce conflicting 

results when applied to the same data so the empirical process would involve the simultaneous 

use of forecast evaluation methods in order to provide an overall picture of the forecasts’ 

accuracy.     

 

This chapter uses the following forecast evaluation methods that are common in the literature: 

root mean squared error (RMSE equation 5.8), mean absolute error (MAE equation 5.9) and 

mean absolute percentage error (MAPE equation 5.10):   

 

        
        

 

 

   

     

 

 

     
        

 

   

     

 

 

          
      

  
 

   

     

   

 

where               is the forecast sample
24

 (i.e. number of forecasts),    is the 

forecast value in time  ,   is the actual value in time   and        is the forecast error in time 

 .  The forecast error is due to the uncertainty in the residuals for the forecasted period and the 

uncertainty in the coefficients in the VECM as these coefficients are essentially estimates 

                                                           
24

 The forecast sample can be produced using (i) a dynamic forecast: this is a multi-step forecast from models that 

contain lagged dependent variables as regressors and (ii) a static forecast: this forecast uses actual values for the 

one-step ahead forecasts and contain no lagged dependent variables as regressors. 

(5.10) 

(5.8) 

(5.9) 
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rather than true values of the coefficients, which of course are unknown.  The RMSE and 

MAE methods measure the scale of the forecast error for  , with an absolute value given for 

the MAE.  The VECM and constrained VECM are both assessed on the size of the RMSE and 

MAE.  The quality of each forecast error depends on the size of its value, which means that a 

low forecast error demonstrates a strong forecasting ability.  The MAPE is scale invariant as 

the forecast error is given as a percentage, with 0% indicating a perfect forecast.   

  

5.4 Methodology 2: Computable general equilibrium model 

 

The methodology in this section involves the assessment of a computable general equilibrium 

(CGE) model which uses the projected values from the VECM estimations described in the 

previous section.  The CGE model follows the Salter-Swan theoretical framework and is 

suitable for single country analyses such as for the UK.  Salter (1959) and Swan (1960) 

defined a single country economic model as one that consists of two representative categories 

of aggregate goods: tradable products and services (both exports and imports) and non-

tradable products and services.  Goods that are classified as non-tradable due to their nature 

for example, public services and construction, have prices that are governed by demand and 

supply forces within the domestic market.  Tradable goods that are not exported also come 

under the category of non-tradable goods.  On the other hand, prices for tradable goods such as 

the production of electricity are governed by world prices in the international market
25

.  

Equilibrium is achieved by a configuration of the relative prices such that the demand for 

goods equals supply for each market. 

 

The Salter-Swan distinction between tradable and non-tradable goods represented a significant 

development from the neoclassical trade model, which was based on the two core assumptions 

that all tradable goods were perfect substitutes with goods based in the domestic market and 

that all goods were tradable.  The ‘law of one price’ theory that underpins these assumptions 

implies that the price of domestic goods in the neoclassical trade model are governed by world 

market prices.  The implication of these assumptions in the empirical application of the 

neoclassical trade model is the exaggerated and improbable change in the domestic price 

relative to a change in the world market price.  However, the tradable and non-tradable goods 

distinction recognises that world market prices are only partially reflected in the prices of 

                                                           
25

 From an energy supply and demand perspective, one could distinguish tradable and non-tradable goods into 

categories such as imported gas and exported petrol (tradable) and locally consumed electricity (non-tradable). 
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domestic goods.  Therefore, the Salter-Swan model provides a more realistic illustration of the 

macroeconomic relationship between the formation of prices and the reactionary levels of 

production. 

 

The Salter-Swan framework in this chapter is empirically implemented through the one 

country, two activities and three goods (1-2-3) CGE model from the World Bank (De Melo 

and Robinson, 1989; Devarajan, Lewis and Robinson, 1990, 1993).  The CGE model reflects a 

competitive economy in that it has four representative economic agents: a producer that 

maximises revenue subject to any limiting factors that may restrict output, a household that 

receives all income and maximises its utility subject to its budget limits, a government and the 

rest of the world.  Factor markets are ignored as the equilibrium condition assumes that there 

is full employment of all primary factors of production.    

 

5.4.1 The representative industry  

 

The representative industry in the CGE model produces goods (products and services) which 

can either be sold regionally within the domestic market or exported to the international 

market.  On the assumption that the aggregate production variable    is fixed, all primary 

factors of production experience full employment.  The omission of intermediate inputs also 

means that    amounts to real GDP   Since the domestically sold goods and export goods are 

distinguished by market, their relationship can be expressed by a constant elasticity of 

transformation (CET) production function.  The CET production function, which was 

proposed by Powell and Gruen (1968) is a concave form of production-possibility curve that 

represents the production trade-offs between the domestic and export goods based on the 

availability of resources, technical feasibility and other economic factors.  The transformation 

possibilities between domestic and export goods are represented by the following CET 

equation: 

 

        
 
           

 
 
   

 
 

where   is the export good,    is supply of the domestic good,   is the CET scale parameter 

which represents the productive efficiency of output
26

,   is the CET cost share parameter 

                                                           
26

 This could be viewed on the production possibility frontier (PPF) curve where all points along the curve 

represent the points at which a good is produced at the lowest achievable cost. 

(5.11) 
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between the two types of goods and   is the CET exponent parameter based on         

 .  The transformation elasticity   is given by                    , and the value of 

  is dependent on the extent of transformability between the export good and the domestically 

sold good.  This means that if    , there is no transformability between the two markets and 

if    , the two markets have perfect transformability.  The   and   parameters in equation 

(5.11) are further represented by the following equations: 

 

  
  

    
 
           

 
 
   

 

 

      
   

   
  

  

   
 
   

 

  

 

 

where    is the producer price of the domestic good.  The producer price of the export good, 

   is based on the world price of export good     exchange rate ER less any duties that are 

paid on the export good.  Based on the prices and demand for E and DS, the representative 

industry would allocate its total output between the export and domestic markets in order to 

maximise it profits.  Therefore, subject to the transformability between the two markets, the 

optimal ratio of export to domestic goods is given by the following equation:    

 

  

   
   

         

    
 

 

 

 
 

5.4.2 The representative household 

 

The CGE model defines a domestic composite good as one that is made up of imported goods 

and demand for domestically produced goods.  The domestic composite good is wholly 

demanded and consumed by the single representative household.  Theories of demand usually 

imply that demand for domestic goods and import goods have some degree of substitutability.  

However, the CGE model employs the Armington assumption (Armington, 1969), which 

suggests that regardless of any similarities, domestic goods and import goods are imperfect 

substitutes that enter the representative household’s utility function as different commodities.   

 

(5.14) 

(5.12) 

(5.13) 
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The Armington assumption differs from the previously more common assumption in the 

Heckscher–Ohlin general equilibrium model
27

, which suggests that similar products that are 

produced in different countries are substitutable.  However, Shoven and Whalley (1984) 

provided an early empirical demonstration of the Armington assumption’s superior ability to 

avoid “specialisation effects” in a CGE model.  This means that the Armington assumption 

prevents small changes in trade policy from becoming unrealistically large swings towards 

consumption specialisation in either imports or domestically produced goods.  Therefore, the 

CGE model expresses the aggregate demand for the composite good and the Armington 

assumption by a constant elasticity of substitution (CES) utility function of the import good 

and demand for the domestic good.  The substitution possibilities between the import good and 

demand for the domestic good are represented by the following CES equation: 

 

         
  

           
  

 
    

 
 

where    is the demand for the composite good,   is the import good,    is the demand for 

the domestically produced good,   is the CES scale parameter which represents the efficiency 

of the two types of intermediate good into the domestic composite good,   is the CES cost 

share parameter and   is the CES exponent parameter based on             The 

substitution elasticity σ is given by                      .  The   and   parameters 

from CES equation (5.15) are further represented by the following equations: 

 

   
   

    
  

           
  

 
    

 

 

  
 
   

   
  

  

   
 
   

    
   

   
  

  

   
 
   

 

   

 

where    is the supply of the composite good and    is the domestic price of the import 

good, which is based on the world price of the import good       plus any import tariffs.  

The household wishes to maximise its utility, which is the same as maximising    but it also 

wishes to minimise its purchase costs subject to CES equation (5.15).  Based on these 

                                                           
27

 Flam and Flanders (1991) delve more into the methodical history of the Heckscher–Ohlin model   

(5.15) 

(5.16) 

(5.17) 
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conditions, the optimal ratio of import to domestically demanded goods is given by the 

following equation:      

                           

  

   

  
     

         

 
 

 

 

The representative household receives all income, which is the equivalent of GDP plus 

government transfers and any remittances received from abroad: 

 

                                   
 

where    is the price of aggregate output,    are government transfers,    is the price of the 

composite good and    are the foreign remittances to the private sector.  The CGE model 

requires demand to equal expenditure so the quantity demanded is therefore           .  

The price of aggregate output   , which resembles the GDP deflator and the price of the 

composite good    are further represented by the following equations: 

 

    
                    

  
 

 

    
                    

   
 

 

General equilibrium theory requires a numeraire price to which all other prices are 

benchmarked against.  A fixed nominal exchange rate is typically used in this case so the 

numeraire is set to 1.    

 

5.4.3 The Government 

 

The variable Tax denotes the sum of UK Government revenues that are generated from 

domestic economic activity and international trade.  The CGE model splits the main sources of 

tax revenue into two categories: direct taxation such as income tax, corporation tax and NI 

contributions (dirTax) and indirect taxation from the production of goods and services such as 

VAT and environmental tax (indTax).  A third category of tax revenue is considered separately 

in the form of taxes on the international trade of goods.  However, these taxes are currently nil 

(5.18) 

(5.19) 

(5.20) 

(5.21) 
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as the UK Government has seemingly not levied taxes on international trade for a number of 

years (World Bank, 2016).  Therefore, the savings equation for the government after 

deductions from its tax revenue is given by the following: 

 

                                          
 

where   is government consumption,    is the sales price of the composite good represented 

by          (1 + indirect tax rate) and    are net official transfers (foreign grants). 

 

5.4.4 Equilibrium conditions and adjustments to energy-based shocks 

 

The model must show that the equilibrium conditions conform to Walras’ Law, which means 

that any excess market demand must equal excess market supply.  Therefore, the value of 

excess demand over supply in the domestic good is             and the value of excess 

demand over supply in the composite good is           .  Another equilibrium 

consideration lies with the current account balance B, which is equal to the market value of 

imports less the market value of exports, net official transfers and net private remittances
28

 

from abroad: 

 

                             
 

The three energy pathways in Chapter 4 produced cost projections of the energy system 

towards 2050 and the CGE model would use these projections for the implementation of user-

defined economic shocks such as those applied to investment.  These shocks would 

subsequently require adjustments in order for the model to return to an equilibrium state.  

There are a number of policy response adjustments that could be applied in this scenario such 

as tax adjustments, trade policy and government savings.  The impact of the three energy mix 

pathways, the financial shocks they induce and the economic adjustments towards equilibrium 

are the subject of further testing and analysis later in this chapter. 

 

 

 

                                                           
28

 Net private remittances for the CGE model is the sum of net factor income and net private transfers of primary 

and secondary income. 

(5.22) 

(5.23) 
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5.5 Econometric models and data used for estimation  

  

The vector error correction model (VECM) is used to estimate the long run equilibrium and 

short run dynamics from the economic relationships discussed in section 5.2.  The variables in 

each VECM are treated as endogenous and each of the endogenous variables in the VECM is 

defined by the value of its own lag as well as the current and lagged values of the remaining 

endogenous variables within a multivariate, multiequation framework.  The variables in four 

of the five VECMs relationships (equations 5.24 to 5.27) are converted to their natural 

logarithms in order for the estimated coefficients to be interpreted as elasticities.  The five 

economic relationships that need to be estimated in the following VECM groups: 

 

i. Export-led growth (ELG) / Growth-led export (GLE) hypotheses 

ii. Import-led growth (ILG) / Growth-led import (GLI) hypotheses 

iii. The effect of tax shocks on economic growth 

iv. The effect of fiscal consolidation on economic growth 

v. The effect of GDP on the current account balance 

 

The testing of the ELG/GLE and ILG/GLI hypotheses are based on the specification from 

Wong (2008) and Jarra (2013):  

 

 

          
       

         
        

   

  

  

  

  

   
   

           

        

          

         

    

                

                

                

                

   

            

         

           

          

 

 

   

  

  
  
  
  

   

  
  
  
  

  

 

 

          
       

         
        

   

  

  

  

  

   
   

           

        

          

         

    

                

                

                

                

   

            

         

           

          

 

 

   

  

  
  
  
  

   

  
  
  
  

  

 

where        is exports,        is imports,     is gross domestic product at market prices, 

      is household consumption and      is government consumption.  The term    is a 

    matrix of speed of adjustment parameters,   
                is a matrix of long run 

cointegration parameters,     is a     matrix of short run parameters with a   lag order,    is 

a     vector of intercept parameters and    is a     vector of error terms.  For example, if 

equation (5.24) had two cointegrating vectors, then       .  Equations (5.24) and (5.25) 

are hereafter referred to as VECM 1a and 1b respectively. 

(5.24) 

(5.25) 
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The effect of the UK Government’s tax hikes and cuts on GDP is tested in VECM 2 and is 

based on the following model specifications used in Mamatzakis (2005) and Birhanu (2016): 

 

 

       

          

          

   

  

  

  

   
   

        

           

           

    

                

                

                

   

         

            

            

 

 

   

  

  
  
  

   

  
  
  

  

 

where        is government revenue from direct taxes and        is government revenue 

from indirect taxes on domestic goods and services.     

 

The next VECM assesses the effect of the UK Government’s revenue and current expenditure 

position on GDP and is based on the variables used in the model specification in Mody and 

Rebucci (2006): 

 

 
 
 
 
 
 
       

          

          

       

            
          

 
 
 
 
 

 

 
 
 
 
 
 
  

  

  

  

  

   
 
 
 
 
 

  
  

 
 
 
 
 
 
         

            

          

         

              

            
 
 
 
 
 

            

 

  

 
 
 
 
 
 
                            

                            

                            

                            

                            

                             
 
 
 
 
 

 

 
 
 
 
 
 
         

            

          

         

              

            
 
 
 
 
 

 

   

 

 
 
 
 
 
 
  
  
  
  
  
   

 
 
 
 
 

 

 
 
 
 
 
 
  
  
  
  
  
   

 
 
 
 
 

 

 

where        is total tax revenue,        is non-tax revenue,     is the current 

government expenditure on wages, goods and services,          is the current government 

expenditure on public debt interest and       is the current government expenditure on 

subsidies and transfers.  Equation (5.27) is hereafter referred to as VECM 3. 

 

The variables in the VECM that estimates the effect of GDP on the current account follows the 

variables used in Arghyrou and Chortareas (2016) and Thomas (2015).  The variables in this 

model are not converted to their natural logarithms as there are a number of negative values 

within the current account and net trade time series.  The model is defined by the following 

specification: 

(5.26) 

(5.27) 
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where        is the current account balance,        is net trade in goods and non-factor 

services and        is the real effective exchange rate.
29

    

 

This chapter uses UK annual time series data, which consists of 43 observations spanning 

from 1972 to 2014.  The length of the sample period was chosen subject to the availability of 

data.  All variables (except for the exchange rate) are expressed in billions of constant 2010 

British pounds.  Data for 14 out of the 15 variables from the 5 models are obtained from the 

World Development Indicators of the World Bank’s 2016 database (World Bank, 2016).  Data 

for the UK’s real effective exchange rate is obtained from the statistics division of the Bank 

for International Settlements (BIS, 2016).  Table 5.1 shows the data prior to the conversion of 

most of the times series to natural logarithms: 

 

Table 5.1: Summary statistics of the data 
                

Variable  Description Model Obs     Mean   Std.Dev    Min      Max  

    

    (£bn)   (£bn)  (£bn)      (£bn)  
                

        GDP Gross domestic product (nominal) 1a, 1b, 2, 3 & 4 43 1,127.5 336.9 673.2 1,687.8 

Export Total exports 1a 43 305.8 96.6 186.6 493.8 

Import Total imports 1b 43 328.3 105.9 203.4 525.4 

Govt Government consumption 1a and 1b 43 228.4 66.7 143.9 341.5 

House Household consumption 1a and 1b 43 716.9 222.9 432.1 1,092.5 

. 

       dirTax Direct taxes 2 43 163.8 50.8 98.1 271.5 

indTax Taxes on goods and services 2 43 124.9 41.3 73.1 200.2 

. 

       totTax Total tax revenues 3 43 228.7 91.4 171.2 443.2 

nonTax Non-tax revenues 3 43 104.0 32.1 63.3 170.0 

WGS Wages, goods & services expense 3 43 137.1 42.8 87.9 216.0 

Interest Interest payments on govt debt 3 43 31.0 7.7 19.2 50.3 

SubTr Subsidies and transfers expense 3 43 230.9 76.9 143.5 362.8 

. 

       CurrAc Current account balance 4 43 -26.6 17.0 -81.8 -6.7 

nTrade Net trade: goods & non-factor services 4 43 -23.7 12.2 -49.8 -6.2 

exRate Real effective exchange rate 4 43 120.8 12.5 97.7 150.3 
        

    
                                                           
29

 The real effective exchange rate (REER) is a measure of the nominal effective exchange rate of the local 

currency against the weighted average of a basket of several foreign currencies and is deflated by the consumer 

price index in order to obtain the REER (Darvas, 2012).  The REER for the UK is expressed in an index form 

with the base year 2010 = 100.  An increase in the REER represents an appreciation in the value of the British 

pound against a basket of foreign currencies. 

 

(5.28) 
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5.6 Empirical analysis 1: Cointegration and VECM 

 

This section contributes to the empirical literature on long-term econometric projections 

through the analysis of the UK’s economy from the viewpoint of five economic relationships.  

Johansen’s ML estimator of cointegration analysis and the VECM methodology are 

implemented in order to assess the long run equilibrium relationships and short run adjustment 

coefficients in each of the economic relationships discussed in section 5.3.  The Granger 

causality tests are based on the methodology in section 3.4.4 and provides indicators of the 

directions of causality between the variables.  The structurally parsimonious models from the 

VECM analyses are used to generate projections of economic data up to 2050.  These 

projections are subsequently fed into a CGE model, which is subject to different shocks from 

the energy mix scenarios that were estimated in Chapter 4. 

 

5.6.1 Unit root tests for the VECM variables  

 

In Chapter 3, we considered the properties of standard economic time series in terms of their 

order of integration.  We also considered the methods for testing the presence of a unit root 

and order of integration via the augmented Dickey-Fuller “ADF” test (Dickey and Fuller, 

1981) and the Dickey-Fuller Generalised Least Squares “DF-GLS” test (Elliott, Rothenberg, 

and Stock, 1996).   

 

Testing a variable for its order of integration is a standard procedure in applied time series 

analysis and the motive behind this test lies in the necessity of knowing whether a variable 

exhibits a stationary process or a non-stationary process with a unit root i.e. integrated of order 

one or I(1).  If one is estimating an ordinary least squares regression with I(1) variables, the 

least squares estimates and t-statistics would have atypical distributions, which could lead to 

spurious regression results.  Phillips (1987) also demonstrated that any regression that models 

the level of variables that are I(1) but are not cointegrated is a spurious relationship.  

Therefore, it is important to understand the time series properties of the variables in this 

chapter by running the ADF and DF-GLS unit root test equations from Chapter 3. 

 

The selection of either an intercept or an intercept and trend in the unit root test is determined 

by the pattern of the data and its graphical representation.  The lag length for the unit root test 

is based on the optimal lag order chosen by the Akaike Information Criteria (AIC).  The ADF 
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and DF-GLS tests are carried out using equations (3.4) and (3.6) from Chapter 3.  Table 5.2 

shows the unit root test results for all of the variables that are used in the 5 models:  

 

Table 5.2: ADF and DF-GLS unit root tests for the VECM variables 

Model  Variable  Included in test  ADF t-statistic DF-GLS t-statistic 

 1a, 1b, 2, 3 & 4 ln GDP  Intercept only -0.006 (0.953) 
 

1.032 
 

  

 1a, 1b, 2, 3 & 4 Δln GDP Intercept only -4.912 (0.000) *** -3.262 ***   

1a ln Export Intercept only -0.146 (0.937)   1.162     

1a Δln Export Intercept only -6.477 (0.000) *** -5.751 ***   

1b ln Import Intercept only -0.127 (0.940)   1.033     

1b Δln Import Intercept only -6.173 (0.000) *** -5.316 ***   

1a and 1b ln Govt Intercept only -0.051 (0.948) 
 

0.735 
 

  

1a and 1b Δln Govt Intercept only -4.146 (0.002) *** -2.869 ***   

1a and 1b ln House Intercept only 0.216 (0.970) 
 

1.020 
  1a and 1b Δln House Intercept only -4.416 (0.001) *** -3.243 *** 

 2 ln dirTax Intercept and trend -1.570 (0.788)   -1.788     

2 Δln dirTax Intercept and trend -6.511 (0.000) *** -6.540 ***   

2 ln indTax Intercept and trend -2.988 (0.148) 
 

-2.629 
 

  

2 Δln indTax Intercept and trend -5.525 (0.000) *** -5.534 ***   

3 ln totTax Intercept and trend -1.765 (0.704) 
 

-1.826 
  3 Δln totTax Intercept and trend -6.409 (0.000) *** -6.339 *** 

 3 ln nonTax Intercept only -0.132 (0.939) 
 

0.809 
  3 Δln nonTax Intercept only -5.536 (0.000) *** -5.005 *** 

 3 ln WGS Intercept and trend -2.561 (0.299) 
 

-6.339 
 

  

3 Δln WGS Intercept and trend -4.578 (0.004) *** -6.339 ***   

3 ln Interest Intercept only -1.409 (0.569)   -6.339     

3 Δln Interest Intercept only -6.376 (0.000) *** -6.339 ***   

3 ln SubTr Intercept only -0.086 (0.944) 
 

-6.339 
 

  

3 Δln SubTr Intercept only -5.530 (0.000) *** -6.339 ***   

4 CurrAc Intercept only -0.073 (0.946)   -6.339     

4 ΔCurrAc Intercept only -6.079 (0.000) *** -6.339 ***   

4 nTrade Intercept only -1.555 (0.496) 
 

-6.339 
 

  

4 ΔnTrade Intercept only -7.454 (0.000) *** -6.339 ***   

4 exRate Intercept  -2.501 (0.123) 
 

-1.851 * 
 4 ΔexRate Intercept  -4.869 (0.000) *** -3.889 *** 
 3. ***, ** and * denotes I(1) at the 1%, 5% and 10% significance levels respectively 

4. The numbers in parentheses are the probability values of the t-statistics  

 

The ADF and DF-GLS results clearly show that all of the variables exhibit a nonstationary 

process at level.  The slight difference is the exRate variable as the DF-GLS result shows that 

it is stationary at the 10% level of significance.  However, this is not very indicative as the 

standard significance threshold to denote a true level stationary process is 5%.  The variables 

further indicate that they are all stationary at first difference i.e. they are all I(1) variables at 

the 1% significance level. 
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The unit root test results were largely expected, given the nature of the major economic events 

that took place throughout the duration of the sample period.  The global sovereign debt and 

financial crisis of 2007-08 is especially prominent across the variables as they show a 

significant structural break during this period.  Similarly to Chapter 3, further estimations of 

the variables in this chapter accounts for the 2007-08 structural break with the inclusion of a 

break dummy variable.  The next step involves the determination of the lag order for the 5 

models and testing of the variables in each model for the presence of a long run cointegrated 

relationship. 

 

5.6.2 Determination of the lag order and lag selection criteria  

 

The initial preestimation test for a VECM involves the estimation of an unrestricted VAR in 

order to determine the appropriate p lag order, denoted as VAR(p).  The selection of the true p 

lag order for a VAR is important as it ensures the parsimonious quality of the model’s 

estimates.  Furthermore, Lütkepohl (2005) indicated that the selection of an overfitted 

VAR      would cause the mean square error forecasts to be inferior to forecasts from a 

correct VAR(p) while an underfitted VAR      could result in autocorrelated residuals.    

 

The sample period of 43 observations does not allow for the consideration of a large lag order 

so the appropriate lag order is tested on a maximum of three lags for models 1a, 1b, 2 and 4.  

For model 3, a maximum of two lags is chosen due to the larger number of variables in the 

model.  The lag selection criteria are based on the likelihood ratio (LR) test, the Final 

Prediction Error (FPE) and the following information criteria: Akaike (AIC), Schwarz (SIC) 

and Hannan-Quinn (HQIC).  The AIC is considered first in this chapter due to its consistency 

in selecting the appropriate lag order in small sample sizes (Lütkepohl, 2005).  However, the 

AIC is considered alongside the remaining lag selection criteria in order to obtain an overall 

picture of the suitability of each lag length.  The appropriate lag order is therefore based on the 

lag length that produces the lowest value statistic in each of the five lag selection criteria.   
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Table 5.3 provides a summary of the lag selection criteria and statistics for each of the five 

models:  

 

Table 5.3: Lag selection criteria for the underlying VAR  

Model  Lag LogL LR   FPE   AIC   SC   HQ   

     1a 0 264.54 NA  

 

3.16E-11 

 

-12.83 

 

-12.49 

 

-12.70   

 

1 466.68 343.63 

 

2.89E-15 

 

-22.13 

 

-21.12 * -21.77   

 

2 484.47 26.70 * 2.74E-15 

 

-22.22 

 

-20.53 

 

-21.61   

 

3 508.56 31.31 

 

1.98E-15 * -22.63 * -20.26 

 

-21.77 * 

     1b 0 271.02 NA    2.28E-11   -13.15   -12.81   -13.03   

 

1 471.83 341.37 

 

2.24E-15 

 

-22.39 

 

-21.38 * -22.02   

 

2 494.09 33.40 

 

1.69E-15 

 

-22.70 

 

-21.02 

 

-22.09   

 

3 516.23 28.78 * 1.35E-15 * -23.01 * -20.65 

 

-22.16 * 

     2 0 143.88 NA    2.04E-07   -6.89   -6.64   -6.80   

 

1 281.25 240.39 * 3.33E-10 

 

-13.31 

 

-12.68 * -13.08 * 

 

2 290.18 14.29 

 

3.39E-10 

 

-13.31 

 

-12.30 

 

-12.94   

 

3 301.49 16.40   3.10E-10 * -13.42 * -12.03   -12.92   

     3 0 356.09 NA  

 

2.07E-15 

 

-16.78 

 

-16.28 

 

-16.60   

 

1 600.28 393.08 

 

8.29E-20 

 

-26.94 

 

-24.93 * -26.21 * 

 

2 643.26 56.61 * 6.79E-20 * -27.28 * -23.77 

 

-26.00   

     4 0 -421.73 NA    25222.74   21.49   21.82   21.61   

 

1 -264.76 266.86 

 

22.10 

 

14.44 

 

15.45 * 14.80 * 

 

2 -249.84 22.37 

 

24.14 

 

14.49 

 

16.18 

 

15.10   

  3 -223.86 33.77 * 15.88 * 13.99 * 16.36   14.85   

The * and bold font denotes the appropriate lag length in each category 

 

Based on the AIC statistics from the underlying VAR, models 1a, 1b and 4 have opted for a 

lag order of three and model 3 has opted for a lag order of two.  This can be viewed as the 

settled lag order for those models as it is supported by the majority of the other lag selection 

criteria in each model.  For model 2, AIC and FPE supports three lags while SIC, HQIC and 

the log likelihood ratio (LR) statistic supports one lag.  Since AIC is the principal information 

criteria for consideration, a lag order of 3 is chosen but it is worth noting that SIC and HQIC 

tends to restrict the lag order as they have a stricter penalty term than AIC when additional 

parameters are added to the model. 

 

5.6.3 Johansen’s ML estimator for cointegration analysis  

 

Since the p lag order for the underlying VAR is specified, the lag order for Johansen’s ML 

estimator and VECM are also specified as a     lag order.  This directly corresponds to a 
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VAR(p) order since a VECM is a VAR in differences.  The trend specification for each 

cointegration test is determined by economic theory and graphical analysis.  Based on this 

criteria, the trend specification for models 1a, 1b and 3 is based on case 3 of section 5.3.3 

(unrestricted intercept), model 2 is based on case 4 (restricted trend) and model 4 is based on 

case 2 (restricted intercept).   

 

As discussed in section 5.3.2, the rank of the coefficient matrix   is based on the number of 

important eigenvalues within   .  The eigenvalues are ordered in descending order starting 

with the largest eigenvalue.  The null hypothesis      of no cointegrating vectors is tested on 

this eigenvalue against the alternative      of at least one cointegrating vector.  If the null 

hypothesis is rejected, then the test moves onto the next largest eigenvalue and so on until the 

null hypothesis can longer be rejected.  Two LR test statistics are produced in order to reject or 

not reject   : the trace statistic and maximum eigenvalue statistic.  If the trace and/or max 

statistics are greater than their corresponding 5% critical values, then    is rejected.  This 

process will continue to the next eigenvalue and so on until we can no longer reject   .  Table 

5.4 shows the results for the 5 models from Johansen’s cointegration test for both the trace 

statistic and the maximum eigenvalue statistic: 

 

Table 5.4: Number of cointegrating vectors in each model 

Model 

(lags) 

 H0: Coint. Eigen     Trace  5% Crit.     Prob. H0: Coint. Eigen     Max  5% Crit.     Prob. 

 equations value   Statistic   Value   equations value  Statistic   Value   

1a (2)  None* 0.502 64.488 47.856 0.001  None* 0.502 27.913 27.584 0.045 

   At most 1*    0.447 36.575 29.797 0.007  At most 1* 0.447 23.674 21.132 0.022 

   At most 2 0.255 12.901 15.495 0.119  At most 2 0.255 11.793 14.265 0.119 

1b (2)  None* 0.620 74.665 47.856 0.000  None* 0.620 38.722 27.584 0.001 

   At most 1* 0.440 35.944 29.797 0.009  At most 1* 0.440 23.167 21.132 0.026 

   At most 2 0.244 12.777 15.495 0.123  At most 2 0.244 11.215 14.265 0.144 

  2 (2)  None* 0.528 53.275 42.915 0.003  None* 0.528 30.002 25.823 0.013 

   At most 1 0.328 23.273 25.872 0.102  At most 1 0.328 15.872 19.387 0.151 

   At most 2 0.169 7.401 12.518 0.305  At most 2 0.169 7.401 12.518 0.305 

  3 (1)  None* 0.720 140.523 95.754 0.000  None* 0.720 52.181 40.078 0.001 

   At most 1* 0.605 88.342 69.819 0.001  At most 1* 0.605 38.050 33.877 0.015 

   At most 2* 0.460 50.292 47.856 0.029  At most 2 0.460 25.235 27.584 0.097 

   At most 3 0.372 25.057 29.797 0.159  At most 3 0.372 19.081 21.132 0.095 

  4 (2)  None* 0.757 88.024 54.079 0.000  None* 0.757 56.558 28.588 0.000 

   At most 1 0.370 31.466 35.193 0.120  At most 1 0.370 18.475 22.300 0.157 

   At most 2 0.215 12.991 20.262 0.365  At most 2 0.215 9.662 15.892 0.366 

 * denotes a rejection of the null hypothesis of the corresponding cointegration rank 

 



170 

 

The ‘  : coint. equations’ column indicates the null hypothesis of r cointegrating vectors 

among the variables.  For models 1a and 1b,   :     is rejected at the 5% significance level 

but we do not reject     for both the trace statistic and the maximum eigenvalue statistics as 

they are both lower than their corresponding 5% critical values.  This is also evidenced by the 

probability values of the trace and max statistics as they are both higher than 5%.  This means 

that models 1a and 1b conclusively indicate the presence of two cointegrating vectors.   

 

The trace and maximum eigenvalue results for models 2 and 4 also agree that there is one 

cointegrating vector within each model.  However, the results for model 3 differ as the trace 

statistic shows the presence of 3 cointegrating vectors and the maximum eigenvalue statistic 

shows the presence of 2 cointegrating vectors.  Based on the extensive experiments conducted 

in Lütkepohl et al (2000), it was found that in small sample sizes, the trace test wields a 

superior performance to the maximum eigenvalue test in terms of power.  Furthermore, the 

trace test performs better with models that consist of at least 2 cointegrating vectors.  Based on 

these findings, the trace statistic result of 3 cointegrating vectors is accepted rather than the 

maximum eigenvalue statistic of 2 cointegrating vectors.  

 

5.6.4 Long run parameter estimates from the cointegrating vectors 

 

The next stage involves the estimation of the five VECMs with the aim of initially assessing 

the long run coefficients of the cointegrating vectors within each VECM.  The standard output 

from Johansen’s ML estimator produces economically arbitrary restrictions on the parameter 

estimates.  Therefore, manual restrictions are applied to the cointegration parameters in each 

VECM, based on economic theory.  For example, model 1a consists of 4 variables (ln GDP, ln 

Govt, ln Export and ln House) and 2 cointegrating vectors so the   
  matrix for model 1a would 

consist of the following parameters: 

 

  
   

            

            
  

 

In order to test the ELG/GLE hypothesis in VECM 1a, the “0” identification restriction cannot 

be applied to ln GDP and ln Export in either of the two cointegrating vectors.  The just-

identified cointegrating vectors are now represented by the following modified restrictions: 

 

(5.29) 
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The results from the just-identified cointegrating vectors for the 5 VECMs are given in Tables 

5.5, 5.6 and 5.7 with their associated standard errors given in brackets:  

 

Table 5.5: Estimates of the coefficients from the cointegrating vectors: VECMs 1a and 1b  

 VECM 1a Cointegrating   Cointegrating   VECM 1b Cointegrating  Cointegrating  

  vector (β1)  vector (β2)   vector (β1) vector (β2) 

 ln GDP 1.000   -2.606  (0.418)  ln GDP 1.000   -2.840 (0.382) 

 ln Govt 0.000   1.970  (0.498)  ln Govt 0.000 
 

2.154 (0.446) 

 ln Export 0.603 (0.103) 1.000    ln Import 0.826 (0.069) 1.000   

 ln House -1.495 (0.093) 0.000 
 

 ln House -1.725 (0.065) 0.000   

 C -0.651   1.905    C -0.472   2.475   
      The numbers in parentheses are the standard errors. 
 

Table 5.5 highlights the long run estimates between GDP and its constituents in VECMs 1a 

and 1b.  The estimates from the first cointegrating vectors in VECMs 1a and 1b show that the 

signs agree with the theoretical expectations concerning the ELG/GLE and IMG/GLI 

hypotheses.  The UK’s long run trade deficit is clearly explained in the first cointegrating 

equations in both models as a 1% increase in GDP corresponds to a 0.83% increase in imports 

but only a 0.6% increase in exports.   

 

Table 5.6: Estimates of the coefficients from the cointegrating vectors: VECMs 2 and 3  

 VECM 2  Cointegrating   VECM 3  Cointegrating   Cointegrating   Cointegrating  

   vector (β1)    vector (β1)  vector (β2)  vector (β3) 

 ln GDP 1.000    ln GDP 1.000   0.001  (0.061) 0.000   

 ln dirTax -0.134 (0.094)  ln totTax -3.783  (0.237) 1.000   -5.849 (0.265) 

 ln indTax -0.128 (0.097)  ln nonTax -1.897  (0.152) -0.598  (0.055) 0.000   

 Trend -0.019 (0.002)  ln WGS 4.132  (0.316) 0.000   3.934 (0.330) 

 C -5.271    ln Interest 0.000   0.000   0.347 (0.046) 

   
 ln SubTr 0.000   -0.301 (0.025) 1.000   

  
   C 2.848   -1.246   7.108   

                                                          The numbers in parentheses are the standard errors. 
 

Table 5.6 highlights the long run relationship between the fiscal variables and GDP.  The signs 

of the tax and non-tax estimates of the cointegrating vectors support expectations from 

theoretical models such as the Laffer curve, which suggests that real tax cuts from a certain 

high level corresponds to economic growth in the long run but there are marked differences in 

magnitudes in VECM 2 and VECM 3.  There is also support of the notion that long run growth 

corresponds to the growth in public sector expenditure on wages, goods and services.   

 

(5.30) 
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Table 5.7: Parameter estimates of the  

cointegrating vectors: VECM 4 

  VECM 4     Cointegrating    

  

  
  vector (β1)   

  ln GDP     1.000     

  CurrAc 
 
  0.003 (0.017)   

  nTrade     0.022 (0.012)   

  exRate 
 
  -0.014 (0.010)   

  C     -3.467 (1.489)   

The numbers in parentheses are the standard errors 
 

Table 5.7 highlights the long run relationship between GDP, the current account balance and 

one its constituents, net trade in goods and non-factor services.  The signs correspond to the 

intertemporal models of a nation’s current account balance but the minuscule coefficient on 

the current account reflects the UK’s long term current account deficit. 

 

5.6.5 Speed of adjustment coefficients, weak exogeneity and Granger causality 

 

The five VECMs that were previously estimated are assessed for the significance of their 

speed of adjustment coefficients.  The endogeneity status of the variables in each VECM is 

considered in order to determine whether they’re actually weakly exogenous.  We can 

distinguish the difference between endogenous variables that are affected by other variables in 

a model and exogenous variables, which can affect other variables in a model but are not 

themselves affected.  If all of the speed of adjustment coefficients relating to an endogenous 

variables are equal to 0, then in the context of the VECM, the variable is deemed to be 

exogenous as it does not adjust to deviations from the long run equilibrium relationships that 

are identified in   
 .  Tables 5.8, 5.9 and 5.10 show the estimates of the speed of adjustment 

coefficients, goodness of fit and the weak exogeneity results from the likelihood ratio (LR) 

statistics for VECMs 1a and 1b: 

 

Table 5.8: Estimates of the speed of adjustment coefficients: VECM 1a and VECM 1b 

VECM 1a  Speed of adjustment coefficients  VECM 1b  Speed of adjustment coefficients  

               

 Δln GDP 0.053 (0.137)   0.089 (0.035)**  Δln GDP 0.000 (0.177)   0.085 (0.040) ** 

 Δln Govt -0.105 (0.178)   -0.019 (0.046)    Δln Govt -0.084 (0.216)   -0.013 (0.049)   

 Δln Export -0.871 (0.356)** 0.055 (0.092) 

 
 Δln Import -1.552 (0.349) *** 0.257 (0.079) *** 

 Δln House 0.218 (0.142)   0.029 (0.036)    Δln House 0.109 (0.187)   0.025 (0.042)   

1. The numbers in parentheses are the standard errors. 

2. The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 
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Table 5.9: Measures of Goodness of Fit for VECMs 1a and 1b  

 VECM 1a Adj. R
2
 S.E. AIC SIC  VECM 1b Adj. R

2
 S.E. AIC SIC 

 Δln GDP 0.626 0.013 -5.672 -5.166  Δln GDP 0.584 0.013 -5.565 -5.058 

 Δln Govt 0.297 0.016 -5.144 -4.638  Δln Govt 0.311 0.016 -5.164 -4.658 

 Δln Export 0.370 0.033 -3.755 -3.249  Δln Import 0.636 0.026 -4.205 -3.698 

 Δln House 0.592 0.013 -5.599 -5.093  Δln House 0.528 0.014 -5.455 -4.949 

 

Table 5.10: Weakly exogenous results for   : VECM 1a and VECM 1b 

VECM 1a       VECM 1b                

         
 

       
  

        
 

         

 Δln GDP 0.175  ● 6.311     Δln GDP 0.000  ● 4.355    

 Δln Govt 0.360  ● 0.189  ●  Δln Govt 0.187  ● 0.073  ● 

 Δln Export 4.599    0.273  ●  Δln Import 17.143    8.623    

 Δln House 2.858    0.721  ●  Δln House 0.432  ● 0.414  ● 

The ● symbol denotes a weakly exogenous variable at the 1%, 5% and 10% significance levels 

 

The results in Table 5.8 show that the adjustment coefficients have a significant role to play in 

at least one of the four short-run equations for each VECM.  Furthermore, GDP, Export and 

Import seem to have the main significant statistics over the Govt and House variables.  

However, there is concern about the unlikely overadjustment of Import in the first 

cointegrating equation of VECM 1b as it would suggest that the adjustment from 

disequilibrium is extremely rapid and would take place in less than a year.  There is also an 

absence of a negative sign on at least one of the adjustment coefficients on the second 

cointegrating vector of VECM 1b.  The weakly exogenous variables from the LR test in Table 

5.10 roughly indicate the insignificant adjustment coefficients from Table 5.8.  The weak 

exogeneity test confirms that GDP and Import statistically plays the most significant part in 

the long run equilibrium relationship.   

 

Based on the lag order of the underlying VAR(p), further evidence to prove the ELG/GLE and 

IMG/GLI hypotheses are obtained from the Granger causality Wald test statistics in Table 

5.11: 

 

Table 5.11: Granger causality tests on the ELG/GLE and IMG/GLI hypotheses 

  : X does not Granger cause Y Wald test 

Models 1a and 1b    Prob. Result 

 ln Export does not Granger cause ln GDP 16.363 0.001 Reject *** 

 ln GDP does not Granger cause ln Export 14.687 0.002 Reject *** 

 ln Import does not Granger cause ln GDP 16.363 0.001 Reject *** 

 ln GDP does not Granger cause ln Import 14.687 0.002 Reject *** 

The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 
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The results show that we can reject the null hypothesis of no Granger causality in the GDP-

Export and GDP-Import relationship.  Despite the ambiguity of the long run relationship 

between the variables, bidirectional causality is clearly evident throughout this test and so the 

widely acknowledged hypotheses ELG/GLE              and IMG/GLI         

     are strongly proven at the 1% level of significance in this instance.   

 

For VECM 2, the estimates of the speed of adjustment coefficients, goodness of fit and weakly 

exogenous results are highlighted in Tables 5.12, 5.13 and 5.14: 

  

Table 5.12: Estimates of the speed of adjustment coefficients: VECM 2 

VECM 2 Speed of adjustment 

  coefficients 

     

 Δln GDP -0.409 (0.124) *** 

 Δln dirTax 0.397 (0.410)   

 Δln indTax -0.851 (0.243) *** 

  1. The numbers in parentheses are the standard errors 

2. The asterisks ***, ** and * are based on the 1%, 5% 

and 10% significance levels 

 

Table 5.13: Measures of Goodness of Fit for VECM 2  

VECM 2 Adj. R
2
 S.E. AIC SIC 

 Δln GDP 0.608 0.013 -5.675 -5.295 

 Δln dirTax 0.177 0.042 -3.287 -2.907 

 Δln indTax 0.496 0.025 -4.335 -3.955 

 

Table 5.14: Weakly exogenous LR test on    

 
 
 
 
 
 
 

 

 

The results from Table 5.12 clearly show that GDP and indirect taxes on goods and services 

such as VAT and environmental taxes (indTax) have a very strong role to play in a relatively 

fast adjustment of the model towards long run equilibrium.  The weakly exogenous results in 

Table 5.14 confirms the absence of direct taxes from the long run adjustment process.  The 

direction of causality in the principal long run relationship is also assessed through the 

Granger causality results in Table 5.15: 

 

VECM 2     
          

 
 Δln GDP 6.670   

 Δln dirTax 0.686 ● 

 Δln indTax1  9.134   

The ● symbol denotes a weakly exogenous variable 

at the 1%, 5% and 10% significance levels 
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Table 5.15: Granger causality tests on the indTax – GDP relationship 

  : X does not Granger cause Y Wald test 

Model 2    Prob. Result 

 ln indTax does not Granger cause ln GDP 8.925 0.030 Reject ** 

 ln GDP does not Granger cause ln indTax 6.002 0.112  Do not reject  

The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 
 

The results show that we can reject the null hypothesis of no Granger causality from indTax to 

GDP but not the other way round.  This means that unidirectional causality runs from 

           at the 5% significance level.  This unidirectional relationship finds support in 

studies such as Scarlett (2011) and Ray et al (2012). 

 

The speed of adjustment, goodness of fit and weakly exogenous estimates for VECMs 3 and 4 

are highlighted in Tables 5.16, 5.17 and 5.18: 

 

  Table 5.16: Estimates of the speed of adjustment coefficients: VECM 3 and VECM 4 

VECM 3  Speed of adjustment coefficients  VECM 4  Speed of adjust. 

                

 Δln GDP -0.305 (0.104) *** 0.825 (0.452) * 0.315 (0.112) ***  Δln GDP 0.025 (0.004) *** 

 Δln totTax -0.167 (0.158) 

 

1.510 (0.686) ** 0.276 (0.171)    CurrAc 4.526 (2.387) * 

 Δln nonTax -0.152 (0.159)   3.514 (0.695) *** 0.546 (0.173) ***  nTrade 0.593 (1.842)   

 Δln WGS 0.137 (0.105) 

 

0.068 (0.457)   -0.122 (0.114)    exRate -2.625 (1.962)   

 Δln Interest -0.560 (0.383)   0.940 (1.668)   0.538 (0.415)   

     Δln SubTr 0.494 (0.209) ** -1.359 (0.913)   -0.567 (0.227) ** 

    1. The numbers in parentheses are the standard errors. 

2. The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 

 
Table 5.17: Measures of Goodness of Fit for VECMs 3 and 4  

VECM 3 Adj. R
2
 S.E. AIC SIC VECM 4 Adj. R

2
 S.E. AIC SIC 

 Δln GDP 0.342 0.018 -5.026 -4.566  Δln GDP 0.476 0.015 -5.365 -4.943 

 Δln totTax 0.457 0.027 -4.188 -3.728  CurrAc 0.180 8.118 7.238 7.661 

 Δln nonTax 0.411 0.027 -4.164 -3.704  nTrade -0.053 6.267 6.721 7.143 

 Δln WGS 0.293 0.018 -5.003 -4.544  exRate 0.048 6.673 6.846 7.269 

 Δln Interest 0.519 0.065 -2.413 -1.953 

      Δln SubTr 0.222 0.035 -3.619 -3.159 

      
Table 5.18: Weakly exogenous LR test on the speed of adjustment coefficients (αi) 

VECM 3      
       

        VECM 4       
 

       
 

     
 

     
  

       

 Δln GDP 4.931   1.550 ● 9.417    Δln GDP 26.590   

 Δln totTax 0.581 ● 5.317   3.079    CurrAc 4.151   

 Δln nonTax 0.046 ● 10.927   9.198    nTrade 0.117 ● 

 Δln WGS 1.960 ● 0.022 ● 1.352 ●  exRate 1.988 ● 

 Δln Interest 2.555 ● 0.287 ● 1.981 ● 

    Δln SubTr 2.644   1.099 ● 4.993   
   The ● symbol denotes a weakly exogenous variable at the 1%, 5% and 10% significance levels 



176 

 

The Table 5.16 output from the first cointegrated vector in VECM 3 has a reasonable fit.  The 

adjustment coefficients are statistically significant for GDP and government expenditure on 

subsidies and transfers (SubTr).  The coefficient of -0.305 means that when GDP moves above 

equilibrium, it moves towards a relatively quick adjustment down towards the level of SubTr.  

Conversely, the coefficient of 0.494 means that when GDP moves above equilibrium, SubTr 

would quickly adjust upwards towards GDP at the same time as the downward adjustment of 

GDP.  The second and third adjustment coefficients in VECM 3 and the adjustment 

coefficients in VECM 4 also show statistical significance but there is a lack of negative sign in 

either VECM 3      or VECM 4     .  Tables 5.19 and 5.20 show the Granger causality 

results for the two main long run relationships with GDP in VECM 3 and the principal 

relationship with GDP in VECM 4: 

 

Table 5.19: Granger causality tests on the nonTax–GDP and SubTr–GDP relationship 

 
 
 
 
 
 
 
 

 

Table 5.20: Granger causality tests on the CurrAc – GDP relationship 

 
 
 
 

 

 
 

The results show that we do not reject the null hypothesis of no Granger causality in all but 

one relationship in models 3 and 4.  The sole direction of causality in model 3 runs strongly 

from           at the 1% significance level.  This unidirectional relationship has a strong 

theoretical basis for the UK, even in times of a large fiscal deficit, which suggests that there 

could be a political rather than an economic dynamic to this relationship.    

 

 

 

  : X does not Granger cause Y Wald test 

Model 3    Prob. Result 

 ln nonTax does not Granger cause ln GDP   0.899 0.638  Do not Reject 

 ln GDP does not Granger cause ln nonTax   2.780 0.249  Do not Reject 

 ln SubTr does not Granger cause ln GDP   0.545 0.762  Do not Reject 

 ln GDP does not Granger cause ln SubTr 11.267 0.004  Reject *** 

  : X does not Granger cause Y Wald test 

Model 4    Prob. Result 

 ln CurrAc does not Granger cause ln GDP 2.651 0.449  Do not Reject 

 ln GDP does not Granger cause ln CurrAc 2.781 0.427  Do not Reject 

The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 

 

The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 
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5.6.6 Forecast evaluation of the five VECMs 

 

In order to assess the forecasting ability of the five VECM relationships, the in-sample period 

is estimated from 1972 to 2010.  This leaves four observations from the sample period 

between 2011 and 2014.   These remaining observations are compared to dynamic forecasts 

that are generated during the same period in order to derive the forecast error, with a low 

forecast error for each variable and observation denoting a good forecast.  A further 

comparative analysis is carried out by comparing the forecast errors from the unconstrained 

VECM with the forecast errors produced by a constrained VECM.  The weak exogeneity tests 

in the previous section provided information on variables that do not adjust towards the long 

run cointegrated relationship so the speed of adjustment coefficient on the weakest variable in 

each constrained VECM is set to zero.  The constrained VECM is useful for comparison 

purposes because if the weak exogeneity condition holds, there would be no losses of 

information on the remaining parameters that go through the forecast evaluation process. 

 

Tables 5.21 to 5.25 show the forecast errors from each of the five VECMs for both the 

unconstrained and constrained VECMs.  The tables also report the summary statistics from the 

RMSE, MAE and MAPE evaluation methods: 

 

Table 5.21: Forecast results and evaluation for VECM 1a 

VECM 1a   Variable 
VECM (unconstrained) VECM (ln Govt constrained) 

2011 2012 2013 2014 2011 2012 2013 2014 

Forecast error  

Δln GDP -0.0054 -0.0077 0.0005 0.0184 -0.0055 -0.0087 -0.0020 0.0141 

Δln Govt -0.0141 -0.0114 -0.0264 -0.0203 -0.0147 -0.0150 -0.0350 -0.0340 

Δln Export 0.0162 -0.0080 0.0220 0.0043 0.0166 -0.0076 0.0232 0.0058 

Δln House -0.0078 -0.0018 0.0047 0.0154 -0.0079 -0.0030 0.0019 0.0111 

Evaluation of 

Forecasts:  

2011 to 2014 

Variable 
VECM (unconstrained) VECM (ln Govt constrained) 

RMSE MAE MAPE RMSE MAE MAPE 

Δln GDP 0.0032 0.0007 0.0101   0.0027     0.0007     0.0095   

Δln Govt   0.0058     0.0017     0.0289   0.0081 0.0023 0.0394 

Δln Export   0.0044     0.0012     0.0190   0.0046 0.0012 0.0200 

Δln House 0.0027  0.0007 0.0151   0.0021     0.0006     0.0080   

The   and bold font denotes the lower (more desirable) forecast evaluation statistic between the unconstrained 

and constrained VECM 
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Table 5.22: Forecast results and evaluation for VECM 1b 

 

Table 5.23: Forecast results and evaluation for VECM 2 

Table 5.24: Forecast results and evaluation for VECM 3 

VECM 1b    Variable 
VECM (unconstrained) VECM (ln House constrained) 

2011 2012 2013 2014 2011 2012 2013 2014 

 Forecast error  

Δln GDP -0.0019 -0.0098 0.0070 0.0291 -0.0004 -0.0041 0.0205 0.0496 

Δln Govt -0.0103 -0.0096 -0.0224 -0.0167 -0.0098 -0.0077 -0.0178 -0.0094 

Δln Import 0.0148 -0.0224 0.0242 0.0065 0.0168 -0.0149 0.0424 0.0331 

Δln House -0.0041 -0.0037 0.0112 0.0254 -0.0024 0.0027 0.0260 0.0476 

 Evaluation of   

 Forecasts:  

 2011 to 2014 

   Variable 
VECM (unconstrained) VECM (ln House constrained) 

RMSE MAE MAPE RMSE MAE MAPE 

Δln GDP   0.0048     0.0011     0.0151   0.0082 0.0017 0.0235 

Δln Govt 0.0048 0.0014 0.0236   0.0036     0.0010     0.0179   

Δln Import   0.0056     0.0016     0.0253   0.0089 0.0025 0.0401 

Δln House   0.0043     0.0010     0.0148   0.0083 0.0018 0.0263 

The   and bold font denotes the lower (more desirable) forecast evaluation statistic between the unconstrained and 

constrained VECM 

VECM 2    Variable 
VECM (unconstrained) VECM (ln dirTax constrained) 

2011 2012 2013 2014 2011 2012 2013 2014 

 Forecast error  

Δln GDP 0.0012 0.0002 0.0034 0.0023 0.0004 -0.0005 0.0001 -0.0061 

Δln dirTax  0.0074 -0.0282 0.0068 0.0149 -0.0038 -0.0485 -0.0292 -0.0388 

Δln indTax 0.0168 0.0236 0.0252 0.0015 0.0155 0.0233 0.0220 -0.0081 

 Evaluation of   

 Forecasts:  

 2011 to 2014 

   Variable 
VECM (unconstrained) VECM (ln dirTax constrained) 

RMSE MAE MAPE RMSE MAE MAPE 

Δln dirTax   0.0007     0.0002     0.0022   0.0009 0.0002 0.0022 

Δln GDP   0.0051     0.0013     0.0246   0.0105 0.0028 0.0514 

Δln indTax 0.0059   0.0016     0.0299     0.0056   0.0016 0.0306 

The   and bold font denotes the lower (more desirable) forecast evaluation statistic between the unconstrained 

and constrained VECM 

 

VECM 3 Variable 
VECM (unconstrained) VECM (ln WGS constrained) 

2011 2012 2013 2014 2011 2012 2013 2014 

 Forecast error  

Δln GDP 0.0050 -0.0014 -0.0056 0.0034 -0.0055 -0.0247 -0.0454 -0.0486 

Δln totTax 0.0109 -0.0171 -0.0192 0.0220 0.0101 -0.0141 -0.0225 0.0202 

Δln nonTax -0.0009 -0.0473 0.0276 0.0088 -0.0129 -0.0769 -0.0236 -0.0597 

Δln WGS -0.0025 0.0124 -0.0037 0.0209 -0.0185 -0.0205 -0.0558 -0.0466 

Δln Interest 0.0073 -0.0549 -0.0453 -0.0653 0.0138 -0.0576 -0.0808 -0.1227 

Δln SubTr 0.0022 0.0366 0.0194 0.0200 0.0003 0.0410 0.0342 0.0464 

 Evaluation of   

 Forecasts:  

 2011 to 2014 

Variable 
VECM (unconstrained) VECM (ln WGS constrained) 

RMSE MAE MAPE RMSE MAE MAPE 

Δln GDP   0.0013     0.0004     0.0048   0.0109 0.0029 0.0388 

Δln totTax 0.0054 0.0016 0.0267    0.0053     0.0016     0.0258   

Δln nonTax   0.0085     0.0020     0.0387   0.0154 0.0040 0.0786 

Δln WGS   0.0038     0.0009     0.0171   0.0119 0.0033 0.0610 

Δln Interest   0.0148     0.0040     0.1036   0.0242 0.0064 0.1634 

Δln SubTr   0.0070     0.0018     0.0311   0.0108 0.0028 0.0487 

The   and bold font denotes the lower (more desirable) forecast evaluation statistic between the unconstrained 

and constrained VECM 
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Table 5.25: Forecast results and evaluation for VECM 4 

Concerning the forecast errors, a negative statistic indicates an overpredicted forecast and a 

positive statistic indicates an underpredicted forecast, with zero indicating a perfect forecast.  

The results show that the unconstrained VECMs have a stronger forecast performance than the 

constrained VECMs as the unconstrained VECMs have lower forecast errors and evaluation 

statistics in models 1a, 1b, 2 and model 3.  The constrained VECM 4 performs only slightly 

better than the unconstrained VECM 4 but unlike the other VECMs, the comparatively large 

forecast errors in VECM 4 are due to the non-conversion of the variables to their natural 

logarithms.  In most cases, the differences between the unconstrained and constrained forecast 

errors for VECMs 1a, 1b, 2 and model 3 are usually  0.015, which implies that they are close 

to each other in terms of their forecast accuracy.    

 

 

 

 

 

 

 

 

 

 

 

 

VECM 4 Variable 
VECM (unconstrained) VECM (ln nTrade constrained) 

2011 2012 2013 2014 2011 2012 2013 2014 

 Forecast error  

Δln GDP -0.0147 -0.0127 0.0038 0.0221 -0.0154 -0.0144 0.0010 0.0188 

ΔCurrAc  14.1636 0.3981 -9.8519 -12.1799 14.9460 1.7240 -7.9870 -9.7231 

ΔnTrade 11.7784 5.5970 1.4773 5.4600 12.5451 6.9398 3.4994 8.1579 

ΔexRate 8.0879 12.6795 10.6659 18.2036 8.2941 13.3354 11.6408 19.4349 

 Evaluation of   

 Forecasts:  

 2011 to 2014 

Variable 
VECM (unconstrained) VECM (ln ntrade constrained) 

RMSE MAE MAPE RMSE MAE MAPE 

Δln GDP 0.0045 0.0012 0.0168   0.0043     0.0012     0.0156   

ΔCurrAc  3.2212 0.8510 1.5543   2.9910     0.7995     1.4634   

ΔnTrade   2.1677     0.5654     1.4609   2.5715 0.7242 1.7998 

ΔexRate   3.9512   1.1543   1.2396   4.2037   1.2257   1.3285 

The   and bold font denotes the lower (more desirable) forecast evaluation statistic between the unconstrained and 

constrained VECM 
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5.6.7 The British economy in 2050 

 

The next stage involves the estimation of long run econometric projections towards 2050, 

using the parsimonious VECMs that were previously estimated.  The forecast evaluation 

results in section 5.6.6 show that the unconstrained VECM produces the stronger of the two 

forecasts, so it will be used in this section to estimate the long run projections of the economic 

and fiscal data.  The projected data for 2050 forms a critical part of the next section in this 

chapter as the projected values are fed into a CGE model.  An assessment is then carried out 

on the economic impact of the three energy pathways in 2050, based on the projected energy-

related data from Chapter 4, namely the Fusion Pathway, the National Grid pathway and the 

Friends of the Earth pathway.   

 

A major consideration in the estimation of long run economic and fiscal projections that have 

an energy focus is the inclusion of past and projected oil prices as an exogenous series (Fouré 

et al; 2010).  This section uses real crude oil price data from BP’s Statistical Review of World 

Energy from 1972 to 2015 based on 2015 USD (BP, 2016) and projected real crude oil price 

data from the UK’s Department of Business, Energy and Industrial Strategy (BEIS) from 2016 

to 2040 based on 2016 USD (BEIS, 2016).  The models assume that crude oil prices would 

continue to grow at an average rate from 2041 to 2050.     

 

However, there is still the problem of the global financial crisis of 2008-09 as the long run 

projections do not permit the inclusion of a break dummy variable within the model.  There is 

a possibility of using a pre-financial crisis year such as 2006 but the financial crisis involved 

the collapse in production through liquidity constraints on debt and investment as well as an 

overall drop in income.  These factors are likely to have induced a long-term effect on 

economic output and may skew the projections to an unrealistic path.  Therefore, the 

projections follow Fouré et al (2010) by using the IMF forecast for GDP between the autumn 

of 2011 to 2012, with adjustments made accordingly for the constituents of GDP (IMF, 2011).  

This is a relatively mild feature as the assumption is that the gap in economic output would 

have narrowed by then.  As a result, the long run projections now span from 2013 to 2050
30

.   

 

                                                           
30

 The projections do not consider the numerous publications of various economic scenarios that could arise from 

the UK’s decision to withdraw from the European Union in the 2016 referendum.  This is due to the uncertainty 

surrounding the future UK-EU trade relationship and the relatively strong economic growth forecasts for 2017 

from several financial services institutions, highlighted in HM Treasury (2017).  
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Figure 5.1 and 5.2 shows the existing and projected data from VECMs 1a and 1b.  Figure 5.3, 

5.4 and 5.5 also shows the existing and projected data from VECMs 2, 3 and 4 but the 

projected GDP variable is omitted from these graphs as the focus is on the other projections.  

All variables are projected in constant 2010 GBP: 

 

 

Figure 5.1: Past and projected GDP and its constituents (VECM 1a): 1972 - 2050 

 
 

Source: Data from 1972 - 2011 (World Bank, 2016) and 2011 - 2012 (IMF, 2011) 

Projections from 2013 - 2050 (Author’s calculations) 

 

 

Figure 5.2: Past and projected GDP and its constituents (VECM 1b): 1972 - 2050 

 
 

Source: Data from 1972 - 2011 (World Bank, 2016) and 2011 - 2012 (IMF, 2011) 

Projections from 2013 - 2050 (Author’s calculations) 

 

0 

500 

1000 

1500 

2000 

2500 

3000 

1
9
7
2

 

1
9
7
5

 

1
9
7
8

 

1
9
8
1

 

1
9
8
4

 

1
9
8
7

 

1
9
9
0

 

1
9
9
3
 

1
9
9
6

 

1
9
9
9

 

2
0
0
2

 

2
0
0
5

 

2
0
0
8

 

2
0
1
1

 

2
0
1
4

 

2
0
1
7

 

2
0
2
0

 

2
0
2
3

 

2
0
2
6

 

2
0
2
9

 

2
0
3
2

 

2
0
3
5

 

2
0
3
8

 

2
0
4
1

 

2
0
4
4
 

2
0
4
7

 

2
0
5
0

 

B
ill

io
n
s
 o

f 
G

B
P

 (
£
) 

GDP Govt Export House 

0 

500 

1000 

1500 

2000 

2500 

1
9
7
2
 

1
9
7
5
 

1
9
7
8
 

1
9
8
1
 

1
9
8
4
 

1
9
8
7
 

1
9
9
0
 

1
9
9
3
 

1
9
9
6
 

1
9
9
9
 

2
0
0
2
 

2
0
0
5
 

2
0
0
8
 

2
0
1
1
 

2
0
1
4
 

2
0
1
7
 

2
0
2
0
 

2
0
2
3
 

2
0
2
6
 

2
0
2
9
 

2
0
3
2
 

2
0
3
5
 

2
0
3
8
 

2
0
4
1
 

2
0
4
4
 

2
0
4
7
 

2
0
5
0
 

B
ill

io
n
s
 o

f 
G

B
P

 (
£
) 

GDP Govt Import House 

Projection Data 

Projection Data 



182 

 

Figure 5.1 and 5.2 shows the steady expansion of economic growth during the life of the 

projection.  There’s an initial slight lift in the GDP projection during the first 5 years prior to 

stabilisation.  The long run curve shows signs of a dynamic economy, with a 72% increase in 

GDP between 2010 and 2050.  The success of the economy filters through to the constituents 

of GDP as the net trade balance (export less imports) improves from a deficit of 2.8% of GDP 

in 2010 to a deficit of 0.2% of GDP in 2050.  Household and government consumption enjoy 

consistent growth and but their curves slightly diverge from each other during the latter part of 

the projection.  

 

Figure 5.3: Past and projected direct and indirect taxes (VECM 2): 1972 - 2050 

 
 

Source: Data from 1972 - 2011 (World Bank, 2016) and 2011 - 2012 (IMF, 2011) 

Projections from 2013 - 2050 (Author’s calculations) 

 

Direct taxes in Figure 5.3 shows a cyclical pattern of three significant dips between 1990 and 

2010 and these are reflected in the first 15 years of the projection, with a stable rise of the 

curve towards 2050.  However, both direct and indirect taxes have fallen as a percentage of 

GDP in real terms as the drop in direct taxes between 2010 and 2050 is 1.8% and the drop in 

indirect taxes is 0.9%.  The long run connection in Figure 5.3 between GDP growth and tax 

decreases correspond to the cointegration results in Table 5.6. 
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Figure 5.4: Past and projected fiscal variables (VECM 3): 1972 - 2050 

 
 

Source: Data from 1972 - 2011 (World Bank, 2016) and 2011 - 2012 (IMF, 2011) 

Projections from 2013 - 2050 (Author’s calculations) 

 

Figure 5.4 shows that total taxes roughly reflects the pattern of its individual components in 

Figure 5.3, with a steady inclining curve and a slight bow shape.  Fiscal policy during the 

projected period does not adequately tackle the burden of increasing subsidies and transfers, 

which are projected to exceed total tax revenues by approximately 2035.  Non-tax revenues 

are not expected to grow at all over the course of the projection period.  The lack of adequate 

revenue growth to cover the government’s current expenditure means that increased 

borrowings are required to cover the budget deficit, which is reflected in the interest payments 

as they are 47% higher in 2050 than they were in 2010.   

 

  Figure 5.5: Past and projected trade variables (VECM 4): 1972 – 2050 
 

    
Source: Data from 1972 - 2011 (World Bank, 2016) and 2011 - 2012 (IMF, 2011) 

Projections from 2013 - 2050 (Author’s calculations) 
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Figure 5.5 shows two significant components of the UK’s balance of payments: the current 

account balance and its constituent, net trade in goods and non-factor services.  The current 

account experiences a slight dip for a few years after 2020, and stabilises at a balance below 

the £30 billion mark throughout the remainder of the projected period.  On the other hand, the 

net trade balance experiencing an upturn after 2023 that takes it to levels not seen since the 

year prior to the change in the political regime in 1997.  The widening gap between the net 

trade and current account balance is a reflection of the large gap that first appeared at 

approximately 2002 and is primarily made up of the growth in net private transfers to non-UK 

residents and from UK residents to people and entities abroad.
31

 

 

5.7  Empirical analysis 2: Computable general equilibrium model 

 

5.7.1 Trade elasticities 

 

The first stage of the analysis consists of an estimation of the parameters that are related to 

international trade, namely the transformation elasticity   from the CET equation and the 

substitution elasticity   from the CES equation.  Estimates of these parameters are required as 

they help to determine the optimal ratio between the exported good and the domestically sold 

good as well as between the imported good and the demanded domestic good respectively.  

There is no consensus in the literature in relation to the value to set for the transformation 

elasticities for exports and substitution elasticities for imports as even single countries have 

wide-ranging elasticities that are estimated for different sample periods at different points in 

time.  For example, Devarajan, Go and Li (1991) from the World Bank published the export 

and import elasticities for 87 countries, with each country showing a broad range of trade 

elasticities that are based on the different econometric methods that were used. 

 

The approach in this section recognises that the CET export elasticity might be affected by 

long or short run lags in supply behaviour as well as transient changes in trade policies, which 

can be complicated to assess without additional microeconomic data.  Nevertheless, the long 

run trade elasticities are estimated using the autoregressive distributed lag (ARDL) method of 

                                                           
31

 Net private transfers consist of net primary income and net secondary income.  Net primary income on the 

balance of payments comprises the receipts and payments of employee wages to non-UK residents as well as the 

receipts and payments of investment income of direct, portfolio and other types of investment (World Bank, 

2016).  Net secondary income on the other hand comprises the current transfers that are unilaterally made without 

anything received in return such as money transfers, UK foreign aid and donations. 
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cointegration analysis as it can adequately estimate the simultaneity between economic 

growth, prices and trade.  Alongside the assumption of imperfect substitutability between 

domestic and foreign products, the model assumes that price uniformity holds, and that trade 

and price elasticities related to economic growth are constant over time.   

 

The model that is used to explain the relationship between foreign economic activity (USgdp), 

UK exports (export) and relative export prices (rexpp) follows Hooper et al (2000) and is 

based on the following unrestricted error correction form of the ARDL model specification 

that was previously described in Chapter 3: 

 

                    

 

   

                

 

   

                         

 

   

 

                                                                  
                       

 

where   is the error term.  All variables are converted to their natural logarithms and the rexpp 

variable is measured as the ratio between the export price index and the GDP deflator for 

country X, both expressed in USD (index year 2010 = 100).  The United States represents 

country X in this section due to the size of its economy and the extent of its trade relationship 

with the UK so rexpp =    
             

    
 , where UKepx is the UK export price index in GBP, 

USdxy is the currency index for the US dollar, commonly known as the US dollar index and 

USde is the US GDP deflator in USD. 

 

The model that is used to explain the relationship between the UK’s domestic economic 

activity (UKgdp), UK imports (import) and relative import prices (rimpp) is based on the 

following unrestricted error correction form of the ARDL model: 

 

                    

 

   

                

 

   

                         

 

   

 

                                                                  

.              
All variables are converted to their natural logarithms and the rimpp variable is measured as 

the natural logarithm of the ratio between the UK’s import price index (UKipx) and the GDP 

deflator (UKde):    
     

    
 , with both variables expressed in GBP (index year 2010 = 100).   

(5.31) 

(5.32) 
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The two ARDL models use annual time series data, which consists of 32 observations 

spanning from 1983 to 2014.  The length of the sample period was chosen subject to the 

availability of data.  Price indices for the UK’s exports and imports are obtained from the UK 

Balance of Payments: the Pink Book (ONS, 2016a).  Data for the US dollar index is obtained 

from Macrotrends (2016).  Data for the UK’s GDP deflator is obtained from the UK National 

Accounts, the Blue Book (ONS, 2016b).  Finally, data for UK GDP, imports and exports as 

well as US GDP and the US GDP deflator are obtained from the World Development 

Indicators (World Bank, 2016) 

 

Due to the duration of sample period, a lag length of 1 is chosen.  Following Hooper et al 

(2000), the estimates of trade elasticities are deemed viable if they produce non-negative 

coefficients, are as close to unity as possible and are not subject to autocorrelated residuals.  

Similarly to the previous section in this chapter, the global financial crisis of 2007-08 is 

deemed to have led to a structural break in the data, which is accounted for by the inclusion of 

a break dummy variable   .   

 

The unit root test results in Appendix 5.1 shows that we cannot reject the null hypothesis of a 

unit root for the variables i.e. all variables are I(1).  Table 5.26 provides a summary of the 

ARDL lag selection criteria based on AIC and Table 5.27 shows the results of the ARDL-

bounds test for cointegration: 

 

Table 5.26: AIC selection criteria for trade models 

Model Model with ln export Model with ln import 

rank AIC Specification AIC Specification 

1 -5.961 ARDL(1, 0, 0) -5.920 ARDL(1, 1, 1) 

2 -5.907 ARDL(1, 1, 0) -5.869 ARDL(1, 1, 0) 

3 -5.897 ARDL(1, 0, 1) -5.868 ARDL(1, 0, 0) 

 
 
Table 5.27: Bounds test of ARDL trade models 

Model Significance level 10% 5% 1% F-Stat Result   

 ARDL(1, 0, 0) I(0) Bound   2.63 3.10 4.13 31.044 Cointegration *** 

 ln export I(1) Bound   3.35 3.87 5.00 

 

    

 ARDL(1, 1, 1) I(0) Bound   2.63 3.10 4.13 11.923 Cointegration *** 

 ln import I(1) Bound   3.35 3.87 5.00       

 ***, ** and * are based on the 1%, 5% and 10% significance levels respectively 
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The AIC lag selection criteria shows that the optimum models for further testing and analysis 

are the ARDL(1, 0, 0) for the export elasticity and ARDL(1, 1, 1) for the import elasticity.  

The calculated F-statistics in Table 5.27 are higher than the upper bounds at the 10%, 5% and 

1% significance levels.  This means that we reject the null hypothesis of no cointegration at all 

levels of significance.  The results therefore show that there is a long run cointegrated 

relationship among the variables for both models.  Table 5.28 shows the extent of the export 

and price elasticities in the long run:  

 

Table 5.28: Long run coefficients from the unrestricted error correction representation 

 Dep. variable:         ARDL(1, 0, 0)  Dep. variable:         ARDL(1, 1, 1)    

 ln USgdp    with ln export  ln UKgdp    with ln import 

 ln export 0.812 (0.085) ***  ln import 1.025 (0.249) *** 

 ln rexpp -0.214 (0.079) ***  ln rimpp 0.073 (0.187)   

 dv  -0.105 (0.033) ***  dv  -0.167 (0.091) * 

 C 9.648 (2.566) ***  C 0.680 (6.621)   
1. The numbers in parentheses are the standard errors. 

2. The asterisks ***, ** and * are based on the 1%, 5% and 10% significance levels 

 

The coefficients for the export and import elasticities are economically significant as they have 

the right signs and are close to unity.  They are also statistically significant at the 1% level.  

The results show that a 1% increase in US GDP corresponds to a 0.8% increase in UK exports 

and a 1% increase in UK GDP corresponds to slightly more than a proportional increase in 

imports.  The relative export price coefficient is also economically and statistically significant, 

with a wrong sign estimated for the statistically insignificant relative import price coefficient 

but both coefficients are not subject to further use as they do not enter into the CGE model.   

 

The estimated trade elasticities are comparable to the previous Hooper et al (2000) estimates 

for Canada, France, Germany and Japan.  Similarly to the previous France and Germany 

results, the relative price elasticities do not collectively meet the Marshall-Lerner condition
32

, 

which stipulates that an exchange rate devaluation or depreciation of the local currency could 

only improve the balance of trade position if                     (in absolute terms).  

Table 5.29 shows the models’ diagnostic tests for autocorrelation, normality, 

heteroskedasticity and functional form: 

 

                                                           
32

 Boyd et al (2001) provides a comprehensive test of the Marshall-Lerner condition by producing estimates from 

a VECM, a cointegrated vector ARDL (VARDL) and a single equation cointegrated ARDL.  The final model is 

chosen for our analysis of the import and export models due to the presence of a single cointegrating vector 

among the variables in both models. 
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Table 5.29: Diagnostic tests for ARDL trade models 
 Model Autocorrelation  Functional form Normality Heteroskedasticity 

  (p-value)  F-stat (p-value) (p-value) (p-value) 

 ARDL(1, 0, 0): ln export  0.447  (0.504) 0.249 ( 0.622) 2.331 (0.312) 3.569  (0.468) 

 ARDL(1, 1, 1): ln import 1.065  (0.302) 1.011 ( 0.325) 1.571 (0.456) 2.725  (0.842) 

The numbers in parentheses are the probability values (p-values) 
 

The results show that both models pass all of the residual diagnostic and functional form tests.  

The results are statistically and economically robust and the export and import elasticities can 

now enter the CGE model. 

 

5.7.2 Economic impact of the Friends of the Earth and Fusion power pathways in 2050  

 

The 2050 projections from the five VECMs are entered into the CGE model.  Each VECM 

assessed the relationship between several variables and GDP but the projections produced 

final GDP figures for 2050 that were moderately different to each other.  The GDP value to be 

used in the CGE model for 2050 is based on the VECM 1b projection (model with GDP, Govt, 

Import and House).  The projected variables from VECMs 2, 3 and 4 are taken as a percentage 

of their respective GDP projection and multiplied by the GDP projection from VECM 1b in 

order to standardise the values for the CGE model.  The values of three additional variables in 

2050 are also included: GDP at factor cost (GDP at market value + subsidies on products – 

indirect taxes), investment and government capital expenditure.  Due to the stable average 

values of subsidies on products and capital expenditure between 1972 and 2014, the model 

assumes in 2050 that subsidies on products are 1% of GDP and capital expenditure is 4.74% of 

GDP.  The investment data is derived from GDP and is simply calculated from the following 

projected values for 2050: Investment = GDP – Govt – House – Export + Import. 

 

The CGE model now considers the economic impact of two estimated energy mix pathways in 

2050: The Friends of the Earth and the Fusion Pathways.  The approach is similar to Moore 

(2011), who used the Salter-Swan CGE framework to model the economic impact of two 

climate change scenarios on projected economic data for 2050.  The National Grid Pathway is 

taken as the reference to which the other two pathways are measured against as it is deemed to 

be an expert pathway from a multinational energy company and FTSE 100 constituent
33

.   

                                                           
33

 The reference pathway could also be construed as the established scenario where there is no current 

consideration for a change in the capital and primary energy inputs to an alternative strategy.  Investors and 

energy generators in Friends of the Earth and Fusion Pathway are subsequently able to adjust the composition of 

the energy mix over the course of the projection period due to price signals, greater energy efficiencies and 

improved technologies.   



189 

 

The capital, operating and fuel costs of the Friends of the Earth and Fusion Pathways act as a 

shock to the reference pathway due to their diverging values.  The capital cost shocks are 

applied as a percentage increase or decrease to aggregate investment, which consists of capital 

investment from the representative industry and government as well as the relevant level of 

capital investment from the representative household.  The operating and fuel cost shocks are 

only applied to government expenditures on wages, goods and services (WGS).  Two types of 

adjustment are applied to the shocks in both pathways in order to maintain the same levels of a 

critical element of the economy.  Table 5.30 shows a summary of the shocks, adjustments and 

rationale for the adjustment: 

 

Table 5.30: Shocks, adjustments and rationale for the CGE model 

Shock  Adjustment  Rationale for adjustment in CGE model 

Aggregate 

investment 

 Current account balance   Maintains the indirect tax rate 

 No change in government expense on WGS 

 Indirect taxes  Prevents a deterioration of the current account deficit 

 No change in government expense on WGS 

Govt expense: 

WGS 

 Current account balance   Maintains the indirect tax rate 

 Maintains existing levels of aggregate investment 

 Indirect taxes  Prevent a deterioration of the current account deficit 

 Maintains existing levels of aggregate investment 

 

The undiscounted annual capital cost of the Friends of the Earth Pathway by 2050 is £210.5bn, 

whereas the discounted value uses the HM Treasury (2011) Green Book rate of 3% for project 

and programme costs in 2050.  The discounted annual capital cost (2010 prices) of £64.5bn is 

£17.5bn higher than the discounted reference pathway and represents a +6.3% shock on the 

aggregate investment value in 2050.  This large capital cost outlay is based on the high overall 

outlay on electrification through increased renewable energy generation and decarbonised 

transport.  This pathway reaches a decarbonisation target of 96% in 2050 in comparison to 

1990 levels, which is significantly higher than the minimum decarbonisation target set by the 

UK Government’s 2008 climate commitment of 80% compared to 1990 levels.   

 

For comparison purposes, the Fusion pathway meets the 2050 decarbonisation target with an 

81% reduction in GHG emissions compared to 1990 levels.  The undiscounted annual capital 

cost of this pathway by 2050 is £153.5bn, whereas the discounted annual capital cost (2010 

prices) of £47.1bn is £2bn lower than the discounted reference pathway and represents a -0.8% 

shock on the aggregate investment value in 2050.  Table 5.31 shows the economic impact of 

the capital cost shocks and adjustments in the Friends of the Earth and Fusion Pathways: 
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Table 5.31: Shocks, adjustments and economic impacts - Energy capital costs 

2050 energy mix pathways: 

Capital costs 

Friends of the Earth 

Pathway 

Fusion  

Pathway 

Shock: Aggregate Investment (%) 6.3 -0.8 

Financial adjustment to shock (%) Current 

account 

Indirect 

taxes 

Current 

account 

Indirect 

taxes 

  -77.19 16.27 9.71 -2.03 

Economic impacts (% change)     

Volume of exports -0.85  0.00  0.11  0.00 

Volume of import   2.27  0.00 -0.29  0.00 

Supply & demand: Domestic good  0.52  0.00 -0.07  0.00 

Supply & demand: Composite good  1.19  0.00 -0.15  0.00 

Export to dom. sold good ratio (X :1)       0.61  0.62      0.62        0.62 

Import to dom. demand good ratio (X :1)       0.64  0.62 0.62        0.62 

       

Sales price of composite good   1.04  1.69 -0.13 -0.21 

Price of domestic good   1.70  0.00 -0.21  0.00 

Subsidies on products  1.04  0.00 -0.13  0.00 

      

GDP at factor cost  1.05  0.00 -0.13  0.00 

GDP at market prices   1.18  1.71 -0.15 -0.69 

Total Income - Household  1.06  0.00 -0.13  0.00 

Aggregate consumption   0.02 -1.66  0.00  0.21 

      

Total tax revenue  1.56  6.87 -0.20 -0.86 

Non-tax revenue  1.04  0.00 -0.13  0.00 

Other govt current expenditure  0.47  0.00 -0.06  0.00 

Aggregate savings   7.41  8.10 -0.93 -1.01 

Government savings  -0.41    -17.26  0.05  6.96 

Change in indirect tax (£)  40,378m  -5,032m 

 
 

5.7.2.1 Impact of the current account adjustment on the investment shock 

 

The economic impact results are expressed as a percentage change of the National Grid 

reference case for comparison purposes.  The 6.3% shock on aggregate investment for the 

Friends of the Earth Pathway demonstrates that in order to maintain the same indirect tax rate 

and government expenditure on WGS, demand and supply of the composite good would need 

to increase by 1.19%.  The optimal ratio of the export/import good to the domestic good is 

61% to 39% and 64% to 36%, which means that the volume of imports would need to increase 

by 2.27% and exports would need to decrease by 0.85%.  This has a substantial effect on the 

already large current account deficit as it would increase further by 77.19%.   
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The strength of demand for imported goods means that the economy is subject to inflationary 

pressures, which overheats the economy and translate into higher prices.  Higher demand also 

increases the profitability for the representative industry through its transition from a 

predominantly producer focus towards a retail focus, which leads to higher earnings and 

savings for the household.  The burden of increased capital expenditure would mean that 

government revenues from direct taxes and non-tax sources would need to rise substantially.  

Total tax revenues would therefore need to increase by 1.56% and non-tax revenues by 1.04%.  

Although the aggregate savings in the economy has increased significantly by 7.41%, the 

government’s increased capital expenditure on the energy system has led to a slight increase in 

the budget deficit, which is reflected in a 0.41% decrease in government savings. 

 

The -0.8% shock on aggregate investment in the Fusion Pathway means that GDP at factor 

cost, which represents the price of aggregate output, declines slightly by 0.13%.  GDP at 

market prices in this pathway is less than in the Friends of the Earth Pathway due to 

substantially lower investment in the energy system.  However, the 0.29% decrease in import 

demand, the 0.11% increase in exports and lower overall prices imply that economic growth in 

the Fusion Pathway is on a sustainable path.  Total tax and non-tax revenues experience a 

slight decrease so the government is not able to substantially improve its fiscal position 

beyond the 0.05% increase in its savings. 

 

5.7.2.2 Impact of the indirect tax adjustment on the investment shock 

 

The results for the indirect tax adjustment show that the optimal ratio of the export/import 

good to the domestic good is 62% to 38% in favour of the export/import good.  In order to 

prevent an increasing current account deficit and government expenditure on WGS, the 

Friends of the Earth Pathway demonstrates that the 6.3% shock on aggregate investment 

would require a corresponding rise in total indirect taxes of 16.27%, which amounts to 

approximately £40.4bn.  The increased capital expenditure on energy also means that the 

government has a substantial reduction in savings of 17.26%, thereby providing a significant 

increase in the budget deficit.  Inevitably, the high indirect tax increase is reflected in the 

percentage increase in the sales price of the composite good, which experiences and even 

higher increase than in the previous current account adjustment at 1.69%.   
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Environmental taxes form a significant part of the indirect tax rise and consist of an aggregate 

composition of predominantly ad varolem taxes on energy, transportation, pollution and 

miscellaneous resources.  Environmental taxes in 2010 were 23% of the total indirect tax 

figure and if this share is proportionally applied to 2050, then the extra environmental tax 

outlay in addition to the reference case figure would be £9.29bn.  This equates to an extra 

£619m environmental tax to industry for every 1% of CO2 emissions over and above the 81% 

emission reduction target that was safely met by the Fusion Pathway.  The Friends of the Earth 

Pathway results are also consistent with Bovenberg and de Mooij (1994) in that they challenge 

the notion of the second dividend from the double dividend hypothesis.  This is because the 

£9.29bn increase in environmental taxes does not lead to the alleviation of direct taxes in the 

CGE model. 

 

The adjustment to indirect taxes in the Fusion Pathway is -2.03%, which equates to a total 

indirect tax reduction of £5.03bn and an increase in government savings of 6.96%.  In addition 

to the boost in government resources, this adjustment provides a relief to industry through the 

levying of cheaper environmental taxes as they are reduced by £467m.  The savings to 

industry is passed onto the sales price of the composite good, which is marginally lower at 

0.21%.  However, stable demand, lower prices and reduced energy capital investment have led 

to a slight decline to GDP at market price at -0.69%.  

 

5.7.2.3 Impact of shocks on the government’s WGS expenditure 

 

The government’s share of total operating and fuel costs of 16.5% is based on the ratio of 

WGS to household consumption.  Therefore the shocks on the government’s WGS 

expenditure are -0.25% and -0.17% for the Friends of the Earth and Fusion Pathways 

respectively.  Table 5.32 shows the economic impact of the operating and fuel cost shocks and 

adjustments in the Friends of the Earth and Fusion Pathways: 
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Table 5.32: Shocks, adjustments and economic impacts - Operating and fuel costs 

2050 energy mix pathways: 

Operating and fuel costs 

Friends of the Earth 

Pathway 

Fusion 

Pathway 

Shock: Govt expense – WGS (%) -0.25 -0.17 

Financial adjustment to shock (%) Current 

account 

Indirect 

taxes 

Current 

account 

Indirect 

taxes 

   5.60 -1.17  1.16 -0.78 

Economic impacts (% change)     

Volume of exports  0.02  0.00  0.01  0.00 

Volume of import  -0.05  0.00 -0.03  0.00 

Supply & demand: Domestic good -0.01  0.00 -0.01  0.00 

Supply & demand: Composite good -0.03  0.00 -0.02  0.00 

Export to dom. sold good ratio (X :1)  0.62  0.62  0.62  0.62 

Import to dom. demand good ratio (X :1)  0.62  0.62  0.62  0.62 

      

Sales price of composite good  -0.02 -0.04 -0.02 -0.03 

Price of domestic good  -0.04  0.00 -0.03  0.00 

Subsidies on products -0.02  0.00 -0.05  0.00 

      

GDP at factor cost -0.02  0.00 -0.05  0.00 

GDP at market prices  -0.03 -0.12 -0.06 -0.03 

Total Income - Household -0.02  0.00 -0.02  0.00 

Aggregate consumption   0.00  0.04  0.00  0.03 

      

Total tax revenue -0.03 -0.15 -0.02 -0.10 

Nontax revenue -0.02  0.00 -0.05  0.00 

Other govt current expenditure -0.01  0.00 -0.02  0.00 

Aggregate savings  -0.02 -0.04 -0.02 -0.03 

Government savings  -0.95 -0.95 -0.95 -0.95 

Change in indirect tax (£)  -885.7m  -602.4m 

 

Both economic shocks indicate that the optimal ratio of the export/import good to the domestic 

good is approximately 62% to 38% in favour of export and import goods.  The economic 

impacts for both pathways show a degree of similarity due to the low magnitude of the current 

account shocks on government expenditure on WGS.  The difference between the growth in 

imports and growth in exports is higher in The Friends of the Earth Pathway than in the Fusion 

Pathway but the actual volumes of trade and prices are similar.  Tax revenues are lower in the 

Friend of the Earth Pathway but government savings decrease by 0.95%, which is the same as 

the Fusion Pathway due to the similar costs of primary energy inputs.   

 



194 

 

The higher negative adjustment on indirect taxes in the Friends of the Earth Pathway tells a 

similar story in that there is a £283.4m reduction in indirect tax revenues over the Fusion 

Pathway and overall tax revenues are lower.  Government savings for the Fusion Pathway 

decreases by 0.95%, which is the same as the Friends of the Earth Pathway.  In general, the 

impact of both shocks would result in a slightly weaker economic growth in the Friends of the 

Earth Pathway but household consumption remains similar to the Fusion Pathway. 

 

5.8 Conclusion 

 

This chapter assessed the potential economic impact of fusion power within the context of an 

future energy mix pathway that provided a more favourable cost outlay than the Friends of the 

Earth Pathway, with the National Grid Pathway acting as the reference scenario.  Five 

economic relationships that encapsulated the UK’s economic activity were based on the 

theoretical relationships that were established in the economic literature.  A multivariate 

econometric analysis of these relationships was carried out, using Johansen’s ML estimator 

method of cointegration and VECM for short and long run analyses.  Forecast evaluations 

preceded the econometric projections from the VECM relationships towards 2050, which 

subsequently formed the basis of the future economic climate during the commercialisation 

period of fusion power.  Finally, the competing energy mix pathways were applied as shocks 

to aggregate investment and government current expenditure, with the policy response 

adjustments resulting in wider economic implications.   

 

The estimations resulted in a number of significant contributions to the empirical literature in 

the cointegration/VECM and CGE modelling field.  However, the main contributions to the 

cointegration/VECM literature comes in the form of the five multivariate projections for the 

UK’s economic activity towards 2050, which moved away from the previous 2050 studies that 

focused on univariate methods as they did not capture the long run synergistic 

interdependencies between the variables under consideration.  From the CGE modelling 

perspective, the main empirical contribution can be found in the unique application of shocks 

to the CGE model from the two innovative energy mix pathways, which invoked competing 

policy response adjustments to the current account balance and environmental taxes via the 

indirect tax variable.  This filled a gap in the literature as most CGE studies in this field apply 

environmental taxes as the principal shock rather than as an adjustment to a shock as 

highlighted by Bowen and Stern (2010). 
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The findings from Johansen’s ML estimator of cointegration, Granger causality and VECM 

estimates shows that the export-led-growth/growth-led export and import-led-growth/growth-

led-import hypotheses are proven, with bidirectional causality shown in all relationships and a 

strong long run equilibrium relationship especially shown where exports and imports are the 

dependent variables.  Long run equilibrium and short run causal relationships were also 

proven for the other economic relationships in VECMs 2, 3 and 4.  The constrained VECMs 

with the restricted weakly exogenous adjustment coefficients showed weaker statistics from 

the forecast evaluation exercise.  This prompted the sole use of the unconstrained VECMs in 

the formation of econometric projections to 2050.  These projections provided new insights, 

which were especially apparent in the fiscal variables from VECM 3 as they showed the 

precarious path of the UK’s budget deficit and potential burden of a sovereign debt crisis for 

future generations.  The 2050 projections subsequently acted as the economic backdrop in the 

CGE model for the shocks and adjustments that manifested from the competing energy mix 

pathways. 

 

The findings from the projected CGE model show that the 6.3% shock on aggregate 

investment from the Friends of the Earth energy pathway in 2050 triggered a large adjustment 

in indirect taxes and its environmental tax constituent.  This prompted a moderate increase in 

economic growth as the environmental tax was recycled back into the economy.  However, 

this caused both inflationary pressures due to higher prices and an immediate risk to industrial 

productivity due the extra £619m environment tax burden for every 1% of CO2 emissions 

above the 81% emissions abatement target that was already met by the Fusion Pathway.   

 

The results from the Friends of the Earth Pathway shock also follow Bovenberg and de Mooij 

(1994) by challenging the notion of a double dividend from environmental taxes through its 

lack of alleviation of the direct tax burden.  The shock on aggregate investment from the 

Fusion Pathway induces near static growth due to the lower investment in energy capital costs 

but prices are marginally lower and environmental taxes are reduced by £467m over the 

National Grid reference pathway.  The lower environmental taxes burden provides a boost to 

industry through higher retention of profits and increased confidence in production.  The 

policy response adjustment to the current account balance also results in a higher level of 

industrial confidence in the Fusion Pathway through a 0.11% increase in exports as opposed to 

the 0.85% decrease in exports from the Friends of the Earth Pathway. 
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In his tribute to the late Sir Clive Granger, Taylor (2012) pondered the future of academic 

publishing within the field of econometrics by stating that “to look forward, it is initially 

helpful to look backwards”.  The same applies to the estimation of forecasts and long run 

econometric projections because reasonable expectations of future economic phenomena could 

only be expected when the estimates are based on accurate past and present data of a sufficient 

sample size.  Forecasts form an essential ingredient in the holistic approach to time series 

analysis so it is crucial that forecasts are robustly based on the linkage between established 

theoretical relationships and appropriate data.  However, Phillips (2004) indicated that forty 

years of extensive improvements in econometric modelling have done little to improve the 

predictive quality of forecasts, even in the short run. Indeed, the predictive quality of forecasts 

decreases further as the projected time period increases.  Nevertheless, econometric forecasts 

and projections that are estimated with theoretically robust modelling frameworks would 

provide a hypothetical and tolerable direction of travel and would provide policy makers with 

useful information to assist in their decision making processes. 

 

The most obvious future area of research regarding the CGE modelling of the competing 

energy mixes would involve the disaggregation of various sectors of industry.  The Salter-

Swan framework consists of a transparent structure that systematically demonstrates how 

shocks and policy adjustments affect the wider economy.  Its structure operates in a similar 

fashion to multisector models but lacks detail as to whether environmental tax adjustments 

have a distortionary effect on the most polluting industries.  Although not necessary for the 

scope of this chapter, future research could focus on the effect of further shocks to the CGE 

model from variables such as aggregate output and government transfers.  The future energy 

system may also benefit from sensitivity tests on shocks to the real effective exchange rate and 

export price adjustments in order to determine any additional benefits that would filter into the 

industrial sector.   
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CHAPTER 6 

 

CONCLUSION 

 

This thesis investigates the role that fusion power might potentially play during the estimated 

period of initial commercialisation of 2045 – 2050, based on the “Case 1” schedule estimated 

by Ward et al (2004).  This potential commercialisation period also receives support from a 

group of scientists from the EURATOM/UKAEA Fusion Association, on the basis that the 

inclusion of buttresses would reduce the overall risk of the first commercial power plant (Cook 

et al, 2005).  The extensive estimates in this thesis are justified given the high import 

dependency from foreign sources of energy, the gradual depletion of finite fossil fuels, the 

migration of the UK’s energy system towards full electrification and the need for future 

energy sources that significantly contribute towards the 2050 target of an 80% reduction in 

GHG emissions relative to 1990 levels.   

 

The importance of the above factors must be weighed against the configuration of a future 

energy system that must not be viewed as “cost prohibitive” due the limited budgets that are 

held by investors, energy companies, the UK Government and other energy stakeholders.  The 

key to maintaining the high goodwill towards the realisation of fusion power lies with the 

government’s commitment to manage an acceptable level of R&D spending, a prime example 

being the resources committed to the ITER power plant programme, whose budget of €4.6bn 

in 2004 nearly tripled to a budget of €13bn as of today (ITER, 2014a).  Nevertheless, the main 

objective of this thesis is to produce an overall framework that addresses the need to 

understand the potential role of fusion power within a future economic context while 

providing the technical rigour behind various estimates through the use of established 

econometric and techno-economic energy models.   

 

In Chapter 1, we considered the key role that energy plays in the global economy. The 

downsides of the current global energy production and consumption path were highlighted and 

the option of a future role for fusion power within the future energy mix was considered.  The 

technical, historical and economic aspects of fusion power were discussed in the literature 

review (Chapter 2), with the aim of placing fusion power within the context of the current 
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energy mix.  However, the estimated commercialisation phase of fusion power is close to three 

decades away so it is currently impossible to apply econometric modelling techniques that 

would assess its performance against other variables within the energy-economy-environment 

nexus.  Chapter 3 addressed this gap in the empirical body of knowledge by providing a 

guideline of the potential future effect of fusion power on CO2 emissions abatement, using 

nuclear fission as an example.  Nuclear fission was chosen as a guideline as there were 

similarities between the two electricity generation technologies.  These similarities are 

apparent in the nuclear reactions that occur for energy generation, complex power plant 

technology, the capital-intensive nature of the power plants and the long construction periods 

towards electricity generation.   

 

A single equation, multivariate econometric method was used to estimate the nuclear-GDP-

CO2 nexus, which was also estimated in limited sources of the energy-economic-environment 

literature.  The model also included environmental taxes as a comparative analysis was sought 

between nuclear electricity generation and punitive government action in relation to their 

effect on CO2 emissions abatement while taking other economic variables into account such as 

industrial electricity consumption.  The ARDL-bounds test method of cointegration analysis 

was therefore used to estimate the long and short run elasticities between the independent 

variables and the dependent variable, CO2 emissions with a sample size of 40 years chosen 

based on the availability of data. 

  

Other models that were estimated include the environmental Kuznets curve (EKC), which 

assesses the turning point during the sample period when the ratio of CO2 emissions decreases 

as a percentage of GDP, and two Granger causality tests.  It was found that CO2 emissions 

corresponds more strongly in the long and short run to punitive increases in environmental 

taxes than to electricity generated from nuclear fission.  However, this would have the knock-

on effect on reducing overall industrial electricity consumption, with its implication of higher 

energy bills for households and businesses.   

 

The Granger causality tests also show a stronger, bidirectional causal relationship between 

CO2 emissions and environmental taxes with an EKC turning point of 1995 to 1999, both of 

which are either side of the 1997 Kyoto Protocol.  The estimates from nuclear fission 

inevitably lack a stronger correspondence to CO2 emissions due to safety issues and a lack of 

commitment from energy companies in the last 30 years (apart from Sizewell B in Somerset) 
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as well as the looming retirement of ageing power plants.  Therefore, the implication for 

fusion power in these estimates is that a safe and consistent supply of electricity from 

commercialised fusion power plants is required in order for it to correspond more strongly to 

CO2 emissions abatement in the future.   

 

A number of contributions to the empirical literature on the CO2-GDP-nuclear nexus study 

were made in Chapter 3 such as the inclusion of trade and industrial electricity consumption 

within a multivariate group.  Furthermore, Chapter 3 provides a first of a kind comparative 

analysis between electricity generated from nuclear fission against the UK Government’s 

punitive action against GHG emissions through the inclusion of aggregate environmental 

taxes.  Unique insights were gained from the comparable Granger causality tests (Wald and 

MWald) and the impact of environmental taxes on the EKC hypothesis, using CO2 emissions 

as the measure of environmental degradation.  The research questions in Chapter 1 were 

addressed and the estimated results demonstrated the technical robustness of the econometric 

modelling techniques. 

 

Chapter 4 assessed the potential role of fusion power within the future energy mix through the 

estimates that were generated from the Department of Energy and Climate Change (DECC) 

2050 Energy Calculator.  The 2050 Energy Calculator is a bottom-up, techno-economic 

energy model that is used for the generation of future energy scenarios.  The estimated future 

scenarios are based on the underlying energy demand, energy supply, economic and emissions 

assumptions, which addresses one of the research questions in Chapter 1 as they are 

hypothetically plausible.  The Fusion Pathway consisted of a configuration of the future 

energy mix that integrated the projections from commercialised fusion power.  The Fusion 

Pathway was compared to two expert pathways from Friends of the Earth and National Grid 

plc as it would provide comparatively different views from an environmental preservation and 

corporate perspective.  

  

All scenarios were able to generate projections of the energy mix that met the 80% reduction 

in GHG emissions target based on 1990 levels, with the Friends of the Earth Pathway going 

much further with a 96% reduction in GHG emissions.  It was found that the Friends of the 

Earth Pathway provided the most surplus electricity over and above the demand level in 2050, 

which could be stored and/or exported.  However, despite the low fuel costs due the higher 

percentage of renewables, this pathway sacrifices cost containment as it is by far the most 
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capital-intensive pathway.  The implication is that much higher levels of investment and debt 

are required to finance this pathway and it seemingly would not offer an adequate return on 

investment.  The National Grid Pathway provided an intermediate cost route but the Fusion 

Pathway offered the strongest overall savings between the three pathways.  The Fusion 

Pathway addressed another research question in Chapter 1 by providing a more favourable 

annual capital cost of the entire energy system by 2050 at £153.5bn.  This competitive energy 

pathway is £6.4bn cheaper than the National Grid Pathway and £57bn cheaper than the 

Friends of the Earth Pathway
34

. 

  

This chapter provides a unique contribution to the empirical literature through the extensive 

recalibration of the 2050 Energy Calculator in order to consider the impact of fusion power 

within the future energy mix, with a commercialisation year of 2045.  Indeed, the recalibration 

of the 2050 Energy Calculator pre-empted the government’s likely integration of fusion power 

in a future update of the model.  This is based on the following statement by HM Government 

(2011a) in their 2050 Pathways Analysis: “the Government is committed to supporting 

ongoing research both at the Joint European Torus at the Culham Science Centre and also the 

ITER fusion reactor, currently under construction in France. The most ambitious vision for 

fusion predicts that, if developed successfully to commercial scale, it could be capable of 

supplying high levels of low carbon electricity, providing a major contribution to energy 

needs. We will keep this sector under review for future updates of the 2050 Calculator”. 

 

Chapter 5 assessed the impact of commercialised fusion power on the future projected 

variables of the British economy.  The multiequation, multivariate assessment involved the use 

of Johansen’s ML estimator for cointegration analysis and VECM in order to estimate five 

theoretical relationships that provide a representative picture of the UK’s economic and fiscal 

activity.  Forecast evaluations were conducted and projections of the economic variables were 

made until 2050, which provided a backdrop for the estimation of the CGE model with the 

Salter-Swan theoretical framework.  The capital expenditure projections from the Fusion 

Pathway and Friends of the Earth Pathway were subsequently applied as shocks to aggregate 

investment in the CGE model, with policy response adjustments from the current account 

balance and environmental taxes via the indirect tax variable.  The wider economic impacts of 

                                                           
34

 The capital costs of the energy system consists of (1) energy infrastructure and plant costs (2) costs incurred on 

agricultural land for bioenergy (3) costs incurred for energy efficiencies and appliances in domestic and 

commercial buildings (4) costs incurred for industrial processes and (5) capital costs related to transportation 

vehicles. 
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these two energy mix pathways were subsequently assessed in areas such as consumption, 

prices, trade and government savings. 

 

The findings from the econometric part demonstrate that all of the theoretical relationships 

between GDP and the fiscal and economic variables were largely proven and the forecast 

evaluations from the unconstrained VECMs where stronger than those from the constrained 

VECMs that contained the restriction on the weakly exogenous adjustment coefficients.  The 

Friends of the Earth Pathway shows that the 6.3% shock to aggregate investment and the 

policy response to the current account has a negative effect on the trade balance.  GDP is 

marginally increased due the increase in investment but there are inflationary pressures in the 

economy that translate into higher prices.  From a supply side perspective in the model, this 

corresponds to an increase in total taxation.  The Fusion Pathway capital expenditure shock of 

-0.8% on investment and policy response to the current account balance improves the current 

account deficit, lowers prices and has a relatively stable effect on GDP.   

 

When assessing the second policy response adjustment in the form of environmental taxes (via 

the indirect tax variable), the £9.29bn increase in environmental taxes for the Friends of the 

Earth Pathway amounts to an extra £619m in environmental taxes for every 1% of CO2 

emissions over and above the 81% decarbonisation target that was already met by the Fusion 

Pathway.  The hit that industry takes with the higher environmental tax is transferred to the 

sales price of the composite good, which increases by 1.69%.  On the other hand, the 

environmental tax burden for industry in the Fusion Pathway is reduced by £467m and the 

sales price of the composite good is reduced by 0.21%.  However, it remains open as to 

whether a continuous reduction in environmental taxes beyond 2050 would weaken the 

government’s deterrent against CO2 emissions.  A possible solution would be an 

environmental tax that is sufficient in its deterrent attribute but fair enough to maintain 

confidence in industrial production and supply. 

 

A number of significant contributions to the literature were made but the major contribution to 

the cointegration/VECM empirical literature comes in the form of an estimation of five 

theoretical relationships, which sought to provide a representative picture of the UK’s 

economic activity as well as the econometric projections towards 2050.  The empirical use of 

the CGE model also contributes to the literature on the Salter-Swan framework by providing a 

comparative analysis between the impact of the Friends of the Earth Pathway and the Fusion 
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Pathway towards the decarbonisation target in 2050, with the econometric projections 

providing the economic climate in 2050.  The capital expenditure shocks to investment and the 

comparative policy responses to the current account and environmental taxes (via the indirect 

tax variable) finds a unique placement for itself within the CGE literature on the Salter-Swan 

framework.  The research questions in Chapter 1 were addressed through the detailed output 

that was derived from the cointegration, VECM and CGE model analyses and the rigorous 

modelling processes were justified by the generation of viable estimates with plausible 

inferences. 

 

The integration of the theoretical frameworks and the empirical estimates from the 

econometric and techno-economic energy models affirms the vital role that fusion power 

could play during the potential period of commercialisation in the middle of this century.  The 

use of different modelling tools is indeed a key contributory area of this thesis as it provides a 

holistic approach into the analysis of several different aspects of fusion power generation.  

Care was taken in thesis to ensure that the econometric specifications in the single and 

multiequation approaches were theoretically consistent and empirically credible.  The 

comparative pathways of the UK’s 2050 energy mix also provide an important gauge that 

enables comparisons to be carried out against the well-researched opinions set out by experts.  

This thesis supports the principle of a continued effort towards the fast or semi-fast track 

option in order for the commercialisation period of fusion to coincide with the decarbonisation 

target year of 2050.  Therefore, the empirical research in this thesis would assist policy makers 

in any determination that they may have to strengthen their R&D annual budgets and strategic 

drive towards the eventual realisation of commercialised fusion power.   

 

However, there are important limitations to the research that needs to be taken into 

consideration.  Although the nuclear-GDP-CO2 nexus estimation provided a strong empirical 

basis, it will take many decades before a similar type of analysis could be conducted for 

commercialised fusion power so caution should be taken as to what extent the inferences are 

applicable to fusion power.  For Chapter 4, the levelised costs of electricity (LCOE) 

calculation produced electricity price estimates that were competitive but this does not 

translate into the effect on energy bills as other factors that are not built into the 2050 Energy 

Calculator need to be taken into consideration such as taxes and subsidies.  As previously 

stated in the literature review, the global fusion research and development programme has 

absorbed a significant amount of funds but these are not added to the 2050 Energy Calculator 
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in 2045 or 2050, despite the potential for such future costs to be capitalised on the eventual 

realisation of commercialised fusion power.  As the model is user-driven rather than market-

driven, price interactions between demand levels are not taken into consideration i.e. there is 

no elasticity of demand response to relative changes on the cost of electricity generation.  The 

use of cost optimisation models such as TIMES (The Integrated MARKAL-EFOM System) 

may add value to future research as they are able to estimate the demand responses to different 

prices.   

 

The projections of the UK’s economy in 2050 from Chapter 5 were only intended to provide a 

backdrop for estimation purposes rather than a highly accurate picture of what the economy 

would look like in 2050.  Indeed, the famous Box and Draper (1987) phrase “all models are 

wrong, but some are useful” is even more applicable to econometric projections that are 

estimated into the very long run due to the greater level of uncertainty in the future stochastic 

path of time series variables.  There are a number of similarities between the results that 

emanate from the multisector CGE models and the Salter-Swan three-good framework.  

However, future areas of research could be made on the competing energy mix pathways 

based on highly disaggregated CGE models where the production activities and the energy 

inputs are categorised by sector.  Alongside the disaggregation of sectors, future research 

should also aim at disaggregating environmental taxes into categories such as transports taxes 

or into any of the large individual taxes such as Renewable Energy Obligations.  This is in 

order to obtain a better understanding of the distortionary effect of specific tax adjustments 

levied to industries that emit varying levels of greenhouse gases.    
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APPENDICES 
 

Chapter 3 appendices 

 

3.1 ARDL models for EKC estimation 

 

General ARDL models and models with nuc for EKC estimation 
  ARDL(1, 1, 0, 1, 0) ARDL(1, 1, 0, 1, 0, 1) ARDL(1, 0, 1, 0) ARDL(1, 0, 1, 0, 0) 

Variable  General model General with ln trade      ln nuc only   ln nuc and ln trade 

      (-1) 0.177 (0.187) 0.097 (0.209) 0.569 (0.158) 0.599 (0.168) 

      5.601 (4.262) 6.804 (5.023) 4.571 (4.602) 6.229 (5.503) 

     (-1) -0.596 (0.271) -0.751 (0.297) 

   

  

         -0.252 (0.212) -0.307 (0.254) -0.197 (0.231) -0.286 (0.281) 

        (-1) 

    

-0.039 (0.014) -0.038 (0.015) 

      -0.062 (0.057) -0.049 (0.059) -0.048 (0.045) -0.054 (0.047) 

          0.115 (0.060) 0.109 (0.061) 

   

  

        -0.338 (0.112) -0.382 (0.118) 

   

  

        

  

-0.097 (0.125) 

  

0.062 (0.110) 

          ) 

  

0.158 (0.116) 

   

  

         -0.034 (0.008) -0.038 (0.008) -0.024 (0.007) -0.024 (0.008) 

          -20.912 (20.753) -25.948 (24.876) -21.127 (22.727) -29.645 (27.494) 

Adjusted R-squared 0.954   0.954   0.942   0.941   

S.E. of regression 0.028   0.028   0.032   0.032   

The numbers in parentheses are the standard errors. 

 
 
 

ARDL models with ln entax for EKC estimation 
  ARDL(1, 0, 1, 0)  ARDL(1, 0, 1, 0, 1)      ARDL(1, 0, 1, 0, 1, 0) 

Variable    ln entax only ln entax and ln trade   ln entax, ln trade and ln indelec 

      (-1) 0.268 (0.182)    0.197 (0.198) -0.297 (0.166) 

      6.760 (3.229) 8.855 (3.840) 1.078 (3.058) 

         -0.298 (0.163) -0.400 (0.196) -0.029 (0.154) 

        (-1) -0.040 (0.013) -0.048 (0.014) -0.035 (0.010) 

        -0.285 (0.100) -0.323 (0.103) -0.319 (0.073) 

        

  

-0.082 (0.121) -0.286 (0.093) 

          ) 

  

0.169 (0.116) 0.195 (0.083) 

          

    

0.529 (0.095) 

         -0.033 (0.008) -0.038 (0.008) -0.033 (0.006) 

          -30.314 (15.524) -40.659 (18.830) 1.058 (15.302) 

Adjusted R-squared 0.952   0.952   0.976   

S.E. of regression 0.029   0.029   0.021   

The numbers in parentheses are the standard errors. 

 
 



205 

 

3.2 Output from VAR models for Granger causality analysis 
 

  VAR(p) model for Granger causality analysis  
Variables                                             

     (-1) -0.663 (0.280) -0.201 (0.170) 0.055 (0.899) -0.666 (0.350) -0.473 (0.551) -0.610 (0.352) 

     (-2) -0.735 (0.268) -0.051 (0.163) 0.284 (0.862) 0.169 (0.336) 0.037 (0.528) -0.416 (0.337) 

     (-1) 0.493 (0.392) 1.263 (0.238) -2.420 (1.262) -0.337 (0.491) 0.910 (0.774) 0.891 (0.493) 

     (-2) -1.044 (0.372) -0.410 (0.225) 2.097 (1.195) 0.291 (0.465) -0.489 (0.733) -0.965 (0.467) 

     (-1) 0.029 (0.060) 0.055 (0.036) 0.564 (0.192) 0.017 (0.075) 0.112 (0.118) 0.129 (0.075) 

     (-2) 0.032 (0.065) -0.017 (0.039) 0.133 (0.209) 0.156 (0.081) -0.123 (0.128) -0.005 (0.082) 

       (-1) -0.721 (0.184) -0.017 (0.112) 0.703 (0.593) 0.810 (0.231) 0.247 (0.363) -0.285 (0.232) 

       (-2) 0.224 (0.137) 0.012 (0.083) 0.246 (0.440) -0.211 (0.171) -0.290 (0.270) 0.000 (0.172) 

       (-1) -0.525 (0.145) -0.088 (0.088) 0.437 (0.466) 0.100 (0.181) 0.725 (0.286) -0.503 (0.182) 

       (-2) 0.489 (0.130) 0.132 (0.079) -1.177 (0.417) -0.017 (0.162) -0.038 (0.255) 0.524 (0.163) 

         (-1) 0.714 (0.205) 0.080 (0.124) 0.465 (0.660) -0.164 (0.257) 0.049 (0.405) 1.159 (0.258) 

         (-2) 0.066 (0.205) -0.109 (0.124) -0.001 (0.658) 0.119 (0.256) -0.167 (0.403) -0.257 (0.257) 

intercept 13.922 (2.616) 1.687 (1.586) 3.136 (8.410) 3.360 (3.274) 0.067 (5.156) 4.697 (3.288) 

         -0.062 (0.011) -0.009 (0.007) 0.041 (0.035) -0.013 (0.014) -0.018 (0.022) -0.039 (0.014) 

Adj. R-squared 0.962   0.995 

 
0.922   0.983 

 
0.968   0.924   

S.E. of equation 0.026   0.016 

 
0.084   0.033 

 
0.051   0.033   

AIC -4.182   -5.183 

 
-1.846   -3.733 

 
-2.825   -3.724   

SIC -3.578   -4.580   -1.243   -3.130   -2.221   -3.121   

The numbers in parentheses are the standard errors. 

 

Augmented VAR(p + m) for Granger causality analysis 
Variables                                             

     (-1) -0.866 (0.344) -0.194 (0.215) 0.565 (1.184) -0.536 (0.357) 0.023 (0.536) -0.030 (0.387) 

     (-2) -1.191 (0.418) 0.041 (0.261) 1.198 (1.438) 0.304 (0.433) 1.270 (0.651) 0.370 (0.470) 

     (-1) 0.472 (0.419) 1.327 (0.261) -1.862 (1.442) -0.266 (0.435) 1.657 (0.653) 0.851 (0.471) 

     (-2) -0.551 (0.615) -0.847 (0.383) -0.127 (2.115) 0.039 (0.637) -2.088 (0.957) -0.926 (0.692) 

     (-1) 0.001 (0.068) 0.066 (0.042) 0.480 (0.233) 0.032 (0.070) 0.146 (0.105) 0.114 (0.076) 

     (-2) -0.020 (0.082) 0.003 (0.051) 0.198 (0.283) 0.232 (0.085) -0.059 (0.128) 0.146 (0.092) 

       (-1) -0.834 (0.236) -0.018 (0.147) 0.582 (0.811) 0.738 (0.244) 0.151 (0.367) -0.018 (0.265) 

       (-2) 0.167 (0.255) 0.006 (0.159) 0.992 (0.875) -0.098 (0.264) 0.927 (0.396) 0.514 (0.286) 

       (-1) -0.621 (0.156) -0.079 (0.097) 0.473 (0.536) 0.195 (0.161) 0.487 (0.242) -0.557 (0.175) 

       (-2) 0.503 (0.211) 0.093 (0.132) -0.699 (0.726) -0.223 (0.219) 0.862 (0.328) 0.842 (0.237) 

         (-1) 0.819 (0.241) 0.066 (0.150) 0.123 (0.830) -0.530 (0.250) 0.082 (0.376) 0.978 (0.271) 

         (-2) 0.106 (0.296) -0.039 (0.184) -0.251 (1.018) 0.387 (0.307) -1.174 (0.461) -0.351 (0.333) 

intercept 19.854 (5.010) 1.812 (3.122) -12.08 (17.224) -1.614 (5.191) -12.905 (7.795) -6.354 (5.632) 

         -0.084 (0.021) -0.013 (0.013) 0.112 (0.071) 0.004 (0.021) 0.036 (0.032) -0.001 (0.023) 

     (-3) -0.495 (0.339) -0.155 (0.211) 1.653 (1.164) 0.708 (0.351) 0.656 (0.527) 0.408 (0.381) 

     (-3) -0.472 (0.438) 0.348 (0.273) 1.956 (1.506) 0.164 (0.454) 1.283 (0.682) 0.509 (0.492) 

     (-3) 0.076 (0.076) -0.030 (0.048) 0.153 (0.262) 0.027 (0.079) -0.150 (0.119) -0.214 (0.086) 

       (-3) -0.130 (0.152) -0.012 (0.095) 0.014 (0.523) 0.094 (0.157) -0.610 (0.236) -0.354 (0.171) 

       (-3) -0.098 (0.172) 0.070 (0.107) -0.294 (0.591) 0.371 (0.178) -0.623 (0.267) -0.304 (0.193) 

         (-3) 0.272 (0.232) -0.049 (0.145) -0.700 (0.798) -0.495 (0.241) 0.426 (0.361) -0.297 (0.261) 

Adj. R-squared 0.961   0.995   0.907   0.988   0.980   0.940   

S.E. equation 0.026 

 
0.016 

 
0.089 

 
0.027 

 
0.040 

 
0.029   

AIC -4.168 

 
-5.115 

 
-1.699 

 
-4.097 

 
-3.284 

 
-3.934   

SIC -3.298   -4.244   -0.828   -3.226   -2.413   -3.064   

The numbers in parentheses are the standard errors. 
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Chapter 4 appendices 
 

4.1 Estimates of capital, operating, fuel and total costs: Fusion Pathway 
 

UK's Energy Mix - Fusion pathway 

 
Intermediate estimate of capital costs (£m)       

Category Description 

 
2010 2015 2020 2025 2030 2035 2040 2045 2050 

Electricity Combustion + CCS 

 
-  301  179  383  780  1,026  1,026  1,026  1,026  

Electricity Conventional thermal plant 

 
90  612  828  501  2  -  2,286  -  -  

Electricity Distributed solar PV 

 
14  -  -  -  -  -  -  -  -  

Electricity Electricity Exports 

 
-  -  -  -  -  -  -  -  124  

Electricity Electricity grid distribution 

 
1,036  855  1,393  2,116  2,093  2,109  2,149  2,104  2,383  

Electricity Electricity imports 

 
-  -  -  -  -  -  -  -  -  

Electricity Fusion power 

 
-  -  -  -  -  -  -  1,649  1,649  

Electricity Geothermal 

 
-  14  39  153  593  154  12  45  172  

Electricity Hydroelectric 

 
106  26  26  18  18  8  8  8  8  

Electricity Micro wind 

 
15  86  114  -  -  -  -  -  -  

Electricity Nuclear fission 

 
-  -  1,919  3,522  3,446  3,369  3,293  3,293  3,293  

Electricity Offshore wind 

 
728  2,339  3,352  5,417  5,149  5,057  4,964  4,871  4,723  

Electricity Onshore wind 

 
960  847  833  819  -  -  -  -  -  

Electricity Storage, demand shifting, backup 

 
-  133  282  1,053  986  708  441  -  105  

Electricity Wave and Tidal 

 
2  6  90  140  -  -  6  82  167  

Fossil Fuels Balancing imports - Coal 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Balancing imports - Gas 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Balancing imports - Oil 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Fossil fuel transfers 

 
1,223  705  721  719  702  630  513  383  340  

Fossil Fuels Indigenous production - Coal 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Indigenous production - Gas 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Indigenous production - Oil 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Agriculture and land use 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Agriculture and land use 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Bioenergy imports 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Biomatter to fuel conversion 

 
1,422  1,669  1,090  756  745  759  774  790  708  

Bioenergy Energy from waste 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Marine algae 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Waste arising 

 
2,506  2,724  3,123  3,106  3,265  3,488  3,475  3,582  3,766  

Other Geosequestration 

 
-  -  -  -  -  -  -  -  -  

Other Storage of captured CO2 

 
-  110  243  401  694  1,032  1,322  1,516  1,639  

Buildings Commercial heating and cooling 

 
-  -  -  -  -  -  -  -  -  

Buildings 
Comm. lighting, appliances, and 
catering 

 

93  274  268  263  249  220  210  210  211  

Buildings Distributed solar thermal 

 
-  -  -  -  -  -  -  -  -  

Buildings District heating effective demand 

 
38  23  22  22  22  22  22  22  22  

Buildings Domestic heating 

 
9,273  6,982  11,679  14,474  17,160  20,237  23,153  26,591  30,234  

Buildings Domestic insulation 

 
20,555  21,491  21,051  19,217  17,960  22,047  23,089  23,738  24,889  

Buildings 
Dom. lighting, appliances, and 
cooking 

 

2,724  2,977  3,118  3,233  3,333  3,559  3,741  3,932  4,166  

Industry Industrial processes 

 
4  5  5  32  58  132  249  381  549  

Industry Petroleum refineries 

 
391  368  349  331  317  306  298  291  286  

Transport Bikes 

 
913  960  1,025  1,074  1,123  1,170  1,216  1,262  1,308  

Transport Conventional cars and buses 

 
49,180  45,737  47,576  18,243  4,153  18,141  16,160  7,741  3,443  

Transport Domestic aviation 

 
516  520  604  628  622  632  617  615  609  

Transport Domestic freight 

 
4,225  4,725  4,427  4,266  4,114  3,964  3,817  3,673  3,531  

Transport Electric cars and buses 

 
-  2,590  3,679  13,608  17,708  31,199  37,203  41,796  45,510  

Transport Fuel cell cars and buses 

 
-  -  -  -  -  -  -  -  -  

Transport H2 Production 

 
-  -  -  -  -  -  -  -  -  

Transport Hybrid cars and buses 

 
92  2,345  3,312  44,517  59,364  23,077  16,749  20,454  18,492  

Transport International aviation 

 
-  -  -  -  -  -  -  -  -  

Transport 
International shipping (maritime 
bunkers) 

 

-  -  -  -  -  -  -  -  -  

Transport Rail 

 
128  97  148  128  136  130  125  125  125  

Total Total 

 
96,234  99,519  111,495  139,140  144,790  143,178  146,917  150,182  153,481  

 

Source: Author’s calculations 
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UK's Energy Mix - Fusion pathway 

 
Intermediate estimate of operating costs (£m)       

Category Description 

 
2010 2015 2020 2025 2030 2035 2040 2045 2050 

Electricity Combustion + CCS 

 
-  59  112  204  397  651  905  1,160  1,416  

Electricity Conventional thermal plant 

 
3,252  2,687  2,348  1,814  1,232  887  658  -  -  

Electricity Distributed solar PV 

 
1  0  -  -  -  -  -  -  -  

Electricity Electricity Exports 

 
-  -  -  -  -  -  -  -  0  

Electricity Electricity grid distribution 

 
1,129  1,060  1,143  1,385  1,561  1,697  1,810  1,882  2,007  

Electricity Electricity imports 

 
-  -  -  -  -  -  -  -  -  

Electricity Fusion power 

 
-  -  -  -  -  -  -  330  660  

Electricity Geothermal 

 
-  2  8  30  121  146  146  146  146  

Electricity Hydroelectric 

 
166  179  192  200  209  213  218  222  226  

Electricity Micro wind 

 
1  8  17  17  17  17  17  17  17  

Electricity Nuclear fission 

 
842  641  692  1,058  1,669  2,157  2,767  3,378  3,988  

Electricity Offshore wind 

 
99  478  1,030  1,928  2,721  3,221  3,548  3,519  3,519  

Electricity Onshore wind 

 
54  92  130  152  114  76  38  0  0  

Electricity Storage, demand shifting, backup 

 
79  80  86  273  456  625  736  633  501  

Electricity Wave and Tidal 

 
0  1  23  57  57  -  -  -  -  

Fossil Fuels Balancing imports - Coal 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Balancing imports - Gas 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Balancing imports - Oil 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Fossil fuel transfers 

 
4  4  3  3  2  2  1  1  1  

Fossil Fuels Indigenous production - Coal 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Indigenous production - Gas 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Indigenous production - Oil 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Agriculture and land use 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Agriculture and land use 

 
0  0  0  0  0  0  0  0  0  

Bioenergy Bioenergy imports 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Biomatter to fuel conversion   546  1,127  1,929  2,561  2,822  3,072  3,354  3,661  3,971  

Bioenergy Energy from waste 

 
186  248  317  362  410  447  486  526  567  

Bioenergy Marine algae 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Waste arising 

 
4,782  5,115  5,459  5,682  5,910  6,062  6,215  6,370  6,527  

Other Geosequestration 

 
-  -  -  -  -  -  -  -  -  

Other Storage of captured CO2 

 
-  4  10  18  36  62  92  123  157  

Buildings Commercial heating and cooling 

 
-  -  -  -  -  -  -  -  -  

Buildings 
Comm. lighting, appliances, and 
catering 

 

-  -  -  -  -  -  -  -  -  

Buildings Distributed solar thermal 

 
-  -  -  -  -  -  -  -  -  

Buildings District heating effective demand 

 
7  7  7  7  7  7  7  7  7  

Buildings Domestic heating 

 
5,015  5,262  5,173  5,030  4,833  4,652  4,441  4,196  3,914  

Buildings Domestic insulation 

 
-  -  -  -  -  -  -  -  -  

Buildings 
Dom. lighting, appliances, and 
cooking 

 

-  -  -  -  -  -  -  -  -  

Industry Industrial processes 

 
478  497  516  539  562  589  620  653  689  

Industry Petroleum refineries 

 
805  763  723  693  669  650  636  625  617  

Transport Bikes 

 
747  789  841  884  927  967  1,006  1,045  1,084  

Transport Conventional cars and buses 

 
55,214  54,394  55,070  41,093  25,693  24,270  22,563  17,251  11,910  

Transport Domestic aviation 

 
246  276  318  361  401  443  481  521  563  

Transport Domestic freight 

 
6,500  6,899  6,756  6,613  6,470  6,327  6,183  6,040  5,896  

Transport Electric cars and buses 

 
-  742  1,455  4,556  7,307  12,317  16,428  19,583  21,890  

Transport Fuel cell cars and buses 

 
-  -  -  -  -  -  -  -  -  

Transport H2 Production 

 
-  -  -  -  -  -  -  -  -  

Transport Hybrid cars and buses 

 
25  1,117  2,280  21,627  38,802  31,659  24,872  22,742  20,577  

Transport International aviation 

 
-  26  138  202  236  267  259  271  262  

Transport 
International shipping (maritime 
bunkers) 

 

-  15  168  399  736  927  1,145  1,394  1,677  

Transport Rail 

 
8,421  8,475  8,768  8,995  9,069  9,099  9,016  8,903  8,764  

Total Total 

 
88,598  91,046  95,712  106,744  113,447  111,510  108,648  105,197  101,552  

 

Source: Author’s calculations 
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UK's Energy Mix - Fusion pathway 

 
Intermediate estimate of fuel costs (£m) 

Category Description 

 
2010 2015 2020 2025 2030 2035 2040 2045 2050 

Electricity Combustion + CCS 

 
-  -  -  -  -  -  -  -  -  

Electricity Conventional thermal plant 

 
-  -  -  -  -  -  -  -  -  

Electricity Distributed solar PV 

 
-  -  -  -  -  -  -  -  -  

Electricity Electricity Exports 

 
-  -  -  (0) -  -  -  (3,034) (7,313) 

Electricity Electricity grid distribution 

 
-  -  -  -  -  -  -  -  -  

Electricity Electricity imports 

 
-  -  -  -  -  -  -  -  -  

Electricity Fusion power 

 
-  -  -  -  -  -  -  -  -  

Electricity Geothermal 

 
-  -  -  -  -  -  -  -  -  

Electricity Hydroelectric 

 
-  -  -  -  -  -  -  -  -  

Electricity Micro wind 

 
-  -  -  -  -  -  -  -  -  

Electricity Nuclear fission 

 
65  55  59  91  143  185  237  290  342  

Electricity Offshore wind 

 
-  -  -  -  -  -  -  -  -  

Electricity Onshore wind 

 
-  -  -  -  -  -  -  -  -  

Electricity Storage, demand shifting, backup 

 
-  -  -  -  -  -  -  -  -  

Electricity Wave and Tidal 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Balancing imports - Coal 

 
2,580  1,344  737  (364) (602) (668) (607) (700) (697) 

Fossil Fuels Balancing imports - Gas 

 
4,558  6,323  8,028  9,282  9,137  6,945  4,598  4,074  3,601  

Fossil Fuels Balancing imports - Oil 

 
1,614  3,742  7,910  10,105  11,722  14,284  15,819  16,325  16,074  

Fossil Fuels Fossil fuel transfers 

 
-  -  -  -  -  -  -  -  -  

Fossil Fuels Indigenous production - Coal 

 
1,031  665  765  864  482  482  482  482  482  

Fossil Fuels Indigenous production - Gas 

 
9,413  7,721  6,854  5,991  5,167  3,998  3,094  2,394  1,852  

Fossil Fuels Indigenous production - Oil 

 
25,382  15,967  15,999  15,175  13,905  10,760  8,326  6,442  4,985  

Bioenergy Agriculture and land use 

 
418  1,283  2,702  3,797  4,400  4,973  5,624  6,337  7,054  

Bioenergy Agriculture and land use 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Bioenergy imports 

 
507  1,029  1,570  2,108  1,551  1,896  2,240  2,585  3,393  

Bioenergy Biomatter to fuel conversion 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Energy from waste 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Marine algae 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Waste arising 

 
-  -  -  -  -  -  -  -  -  

Other Geosequestration 

 
-  -  -  -  -  -  -  -  -  

Other Storage of captured CO2 

 
-  -  -  -  -  -  -  -  -  

Buildings Commercial heating and cooling 

 
-  -  -  -  -  -  -  -  -  

Buildings 
Comm. lighting, appliances, and 
catering 

 

-  -  -  -  -  -  -  -  -  

Buildings Distributed solar thermal 

 
-  -  -  -  -  -  -  -  -  

Buildings District heating effective demand 

 
-  -  -  -  -  -  -  -  -  

Buildings Domestic heating 

 
-  -  -  -  -  -  -  -  -  

Buildings Domestic insulation 

 
-  -  -  -  -  -  -  -  -  

Buildings Dom. lighting, appliances, and cooking 

 
-  -  -  -  -  -  -  -  -  

Industry Industrial processes 

 
-  -  -  -  -  -  -  -  -  

Industry Petroleum refineries 

 
-  -  -  -  -  -  -  -  -  

Transport Bikes 

 
-  -  -  -  -  -  -  -  -  

Transport Conventional cars and buses 

 
-  -  -  -  -  -  -  -  -  

Transport Domestic aviation 

 
-  -  -  -  -  -  -  -  -  

Transport Domestic freight 

 
-  -  -  -  -  -  -  -  -  

Transport Electric cars and buses 

 
-  -  -  -  -  -  -  -  -  

Transport Fuel cell cars and buses 

 
-  -  -  -  -  -  -  -  -  

Transport H2 Production 

 
-  -  -  -  -  -  -  -  -  

Transport Hybrid cars and buses 

 
-  -  -  -  -  -  -  -  -  

Transport International aviation 

 
-  -  -  -  -  -  -  -  -  

Transport 
International shipping (maritime 
bunkers) 

 
-  -  -  -  -  -  -  -  -  

Transport Rail 

 
-  -  -  -  -  -  -  -  -  

Total Total 

 
45,568  38,128  44,623  47,049  45,907  42,854  39,813  35,195  29,773  

 

Source: Author’s calculations 
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UK's Energy Mix - Fusion pathway 

 
Intermediate estimate of total costs (£m) 

Category Description 

 
2010 2015 2020 2025 2030 2035 2040 2045 2050 

Electricity Combustion + CCS 

 
-  360  291  586  1,177  1,677  1,932  2,186  2,443  

Electricity Conventional thermal plant 

 
3,343  3,299  3,176  2,315  1,235  887  2,944  -  -  

Electricity Distributed solar PV 

 
15  0  -  -  -  -  -  -  -  

Electricity Electricity Exports 

 
-  -  -  (0) -  -  -  (3,034) (7,188) 

Electricity Electricity grid distribution 

 
2,165  1,915  2,536  3,501  3,655  3,806  3,959  3,987  4,389  

Electricity Electricity imports 

 
-  -  -  -  -  -  -  -  -  

Electricity Fusion power 

 
-  -  -  -  -  -  -  1,979  2,309  

Electricity Geothermal 

 
-  15  47  183  714  300  157  190  318  

Electricity Hydroelectric 

 
272  205  218  218  227  222  226  230  234  

Electricity Micro wind 

 
15  94  132  17  17  17  17  17  17  

Electricity Nuclear fission 

 
908  696  2,670  4,671  5,257  5,711  6,297  6,960  7,623  

Electricity Offshore wind 

 
827  2,817  4,382  7,345  7,870  8,278  8,512  8,390  8,242  

Electricity Onshore wind 

 
1,014  939  963  971  114  76  38  0  0  

Electricity Storage, demand shifting, 
backup 

 
79  213  368  1,327  1,442  1,333  1,177  633  606  

Electricity Wave and Tidal 

 
2  6  113  198  57  -  6  82  167  

Fossil Fuels Balancing imports - Coal 

 
2,580  1,344  737  (364) (602) (668) (607) (700) (697) 

Fossil Fuels Balancing imports - Gas 

 
4,558  6,323  8,028  9,282  9,137  6,945  4,598  4,074  3,601  

Fossil Fuels Balancing imports - Oil 

 
1,614  3,742  7,910  10,105  11,722  14,284  15,819  16,325  16,074  

Fossil Fuels Fossil fuel transfers 

 
1,227  708  724  722  704  632  515  384  341  

Fossil Fuels Indigenous production - Coal 

 
1,031  665  765  864  482  482  482  482  482  

Fossil Fuels Indigenous production - Gas 

 
9,413  7,721  6,854  5,991  5,167  3,998  3,094  2,394  1,852  

Fossil Fuels Indigenous production - Oil 

 
25,382  15,967  15,999  15,175  13,905  10,760  8,326  6,442  4,985  

Bioenergy Agriculture and land use 

 
418  1,283  2,702  3,797  4,400  4,973  5,624  6,337  7,054  

Bioenergy Agriculture and land use 

 
0  0  0  0  0  0  0  0  0  

Bioenergy Bioenergy imports 

 
507  1,029  1,570  2,108  1,551  1,896  2,240  2,585  3,393  

Bioenergy Biomatter to fuel conversion 

 
1,968  2,796  3,020  3,318  3,567  3,831  4,128  4,451  4,679  

Bioenergy Energy from waste 

 
186  248  317  362  410  447  486  526  567  

Bioenergy Marine algae 

 
-  -  -  -  -  -  -  -  -  

Bioenergy Waste arising 

 
7,287  7,839  8,581  8,789  9,175  9,549  9,690  9,952  10,292  

Other Geosequestration 

 
-  -  -  -  -  -  -  -  -  

Other Storage of captured CO2 

 
-  114  252  419  730  1,094  1,414  1,639  1,796  

Buildings Commercial heating and 
cooling 

 
-  -  -  -  -  -  -  -  -  

Buildings Comm. lighting, appliances, 
and catering 

 
93  274  268  263  249  220  210  210  211  

Buildings Distributed solar thermal 

 
-  -  -  -  -  -  -  -  -  

Buildings District heating effective 
demand 

 
45  29  29  29  29  28  28  28  28  

Buildings Domestic heating 

 
14,289  12,244  16,852  19,503  21,993  24,889  27,593  30,787  34,148  

Buildings Domestic insulation 

 
20,555  21,491  21,051  19,217  17,960  22,047  23,089  23,738  24,889  

Buildings Dom. lighting, appliances, and 
cooking 

 
2,724  2,977  3,118  3,233  3,333  3,559  3,741  3,932  4,166  

Industry Industrial processes 

 
483  501  521  571  620  721  869  1,034  1,238  

Industry Petroleum refineries 

 
1,196  1,131  1,072  1,024  986  957  934  916  903  

Transport Bikes 

 
1,659  1,749  1,866  1,958  2,050  2,137  2,222  2,307  2,392  

Transport Conventional cars and buses 

 
104,394  100,132  102,645  59,336  29,846  42,411  38,723  24,992  15,353  

Transport Domestic aviation 

 
762  796  921  988  1,023  1,075  1,098  1,136  1,172  

Transport Domestic freight 

 
10,724  11,624  11,183  10,879  10,584  10,291  10,000  9,713  9,427  

Transport Electric cars and buses 

 
-  3,332  5,135  18,164  25,015  43,516  53,631  61,379  67,400  

Transport Fuel cell cars and buses 

 
-  -  -  -  -  -  -  -  -  

Transport H2 Production 

 
-  -  -  -  -  -  -  -  -  

Transport Hybrid cars and buses 

 
117  3,461  5,592  66,144  98,166  54,737  41,621  43,196  39,069  

Transport International aviation 

 
-  26  138  202  236  267  259  271  262  

Transport International shipping 
(maritime bunkers) 

 
-  15  168  399  736  927  1,145  1,394  1,677  

Transport Rail 

 
8,549  8,572  8,916  9,123  9,204  9,230  9,141  9,028  8,889  

Total Total 

 
230,399  228,693  251,831  292,933  304,144  297,542  295,378  290,574  284,805  

 

Source: Author’s calculations 
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4.2 Estimates of greenhouse gas emissions: Fusion Pathway 
 

Emissions                       

  Emissions as % of base year, adjusted so that 2007 matches actuals             

  IPCC Sector (2007 Actuals, GHG Inv.) 2007 2010 2015 2020 2025 2030 2035 2040 2045 2050 

1A Fuel Combustion                       

1B Fugitive Emissions from Fuels                       

1 Fuel Combustion 68% 68% 66% 61% 54% 44% 34% 31% 28% 27% 26% 

2 Industrial Processes 3% 4% 4% 3% 3% 3% 3% 3% 3% 3% 3% 

3 Solvent and Other Product Use  -  -  -  -  -  -  -  -  -  -  - 

4 Agriculture 5% 6% 5% 5% 5% 5% 5% 5% 4% 4% 4% 

5 LULUCF  (0%)  (0%) 0% 1% 1% 1% 1% 1% 1% 0% 0% 

6 Waste 3% 3% 2% 2% 2% 2% 1% 1% 1% 1% 1% 

7 Other  -  -  -  -  -  -  -  -  -  -  - 

X1 Int'l Aviation & Shipping 5% 7% 6% 6% 7% 7% 7% 8% 8% 8% 8% 

X2 Bioenergy credit    (1%)  (2%)  (3%)  (5%)  (8%)  (8%)  (9%)  (10%)  (11%) 
 

(13%) 

X3 Carbon capture    -  -  (0%)  (1%)  (2%)  (3%)  (5%)  (7%)  (8%) 
 

(10%) 

  Total 85% 85% 81% 75% 66% 52% 41% 35% 28% 24% 19% 

                          

  Excluding international bunkers 82% 81% 78% 71% 61% 47% 35% 28% 21% 16% 11% 

    Adjustment factor: 1.028      
  

% reduction 1990-2050 81% 

                          
  Sector   2007 2010 2015 2020 2025 2030 2035 2040 2045 2050 

  Hydrocarbon fuel power generation 200 192 173 144 100 54 30 12 7 9 
  Nuclear power generation   0 0 0 0 0 0 0 0 0 0 
  National renewable power generation 0 0 0 0 0 0 0 0 0 0 
  Distributed renewable power generation 0 0 0 0 0 0 0 0 0 0 
  Bioenergy   -10 -12 -23 -41 -60 -63 -69 -82 -89 -100 
  Agriculture and waste   66 62 60 59 58 56 53 49 45 42 
  Electricity distribution, storage, and balancing 0 0 0 0 0 1 1 1 1 1 
  H2 Production   0 0 0 0 0 0 0 0 0 0 
  Heating   84 86 83 72 62 52 43 33 24 13 
  Lighting and appliances   3 3 3 2 2 2 2 2 2 1 
  Industry   93 92 90 87 85 82 79 76 72 68 
  Transport   187 176 167 158 135 113 113 110 105 98 
  Food consumption [UNUSED]   0 0 0 0 0 0 0 0 0 0 
  Geosequestration   0 0 0 0 0 0 0 0 0 0 
  Fossil fuel production   34 31 27 24 21 18 17 16 15 14 
  Transfers   4 4 4 4 3 3 2 2 1 1 
  District heating   0 0 0 0 0 0 0 0 0 0 

  Total   662 633 584 510 408 319 271 219 183 148 

  Emissions in the time period (up to and incl. year above) 2561 3018 2698 2243 1773 1451 1200 989 810 

  Cumulative emissions     2561 5579 8278 10521 12294 13745 14945 15933 16744 

                          
  Modelled emissions                       

  IPCC Sector   Actuals, GHG Inv.         
  

Mt CO2e   

1A Fuel Combustion 533  515  500  465  413  335  263  235  215  204  199  

1B Fugitive Emissions from Fuels 13  12  11  10  9  8  6  5  4  3  3  

1 Fuel Combustion 546  527  511  475  422  343  268  240  219  207  202  

2 Industrial Processes 28  28  27  26  25  24  24  23  22  22  21  

3 Solvent and Other Product Use -  -  -  -  -  -  -  -  -  -  -  

4 Agriculture 43  43  42  39  37  36  36  35  35  34  34  

5 LULUCF (2) (2) 3  5  7  9  9  8  5  2  1  

6 Waste 23  23  15  14  14  12  10  9  8  7  6  

7 Other   -  -  -  -  -  -  -  -  -  -  

X1 Int'l Aviation & Shipping 43  53  46  50  53  55  58  61  63  63  62  

X2 Bioenergy credit   (10) (12) (23) (41) (60) (63) (69) (82) (89) (100) 

X3 Carbon capture   -  -  (3) (7) (12) (22) (36) (51) (64) (78) 

  Total 681  662  633  584  510  408  319  271  219  183  148  

                          
  Excluding international bunkers 638  610  587  534  457  352  261  210  157  120  86  

Source: Author’s calculations 
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4.3 Estimates of primary energy sources and use: Fusion Pathway 
 

Energy source / use charts                         

        

  
            

Use TWh / year 2007 (Consistent) 2007 2010 2015 2020 2025 2030 2035 2040 2045 2050 

T.01 Road transport   503  491  462  415  369  282  204  190  176  157  141  

T.02 Rail transport   16  16  18  18  17  17  16  15  15  14  13  

T.03 Domestic aviation   9  9  9  10  11  12  13  13  14  14  14  

T.04 National navigation   19  19  27  26  26  26  27  27  27  28  28  

T.05 International aviation   153  153  125  141  156  165  173  183  187  188  180  

T.06 International shipping   29  54  57  56  51  53  55  57  59  61  63  

  Transport   729  742  699  665  632  555  487  486  478  462  439  

I.01 Industry   443  485  472  459  447  438  430  424  420  417  415  

H.01 Heating & cooling   545  498  505  482  468  459  450  444  441  440  442  

L.01 Lighting & appliances   184  176  170  167  164  161  159  160  162  164  166  

F.01 Food consumption   59  -  -  -  -  -  -  -  -  -  -  

  Total   1,960  1,901  1,846  1,774  1,710  1,613  1,525  1,515  1,500  1,484  1,463  

Source                           

N.01 Nuclear fission   163  164  161  135  146  223  351  454  583  711  840  

R.01 Solar   1  0  0  0  -  -  -  -  -  -  -  

R.02 Wind   7  6  14  38  72  123  163  189  200  191  191  

R.03 Tidal   -  -  0  0  0  0  0  -  -  -  -  

R.04 Wave   -  -  -  0  0  0  0  -  -  -  -  

R.05 Geothermal   -  -  -  0  0  1  6  7  7  7  7  

R.055 Fusion power   -  -  -  -  -  -  -  -  -  80  161  

R.06 Hydro   5  4  5  6  6  6  7  7  7  7  7  

Y.02 Elec. oversupply (imports)   5  0  -  -  0  (0) -  -  0  (41) (100) 

  Elec, solar, marine & net imports 181  174  181  179  224  354  528  657  796  955  1,106  

R.07 Environmental heat   -  -  -  -  30  59  88  119  150  184  220  

W.01 Waste   14  46  45  74  126  160  171  174  179  185  189  

A.01 Agriculture   58  5  6  21  37  54  72  97  123  151  182  

Y.01 Biomass oversupply (imp.)   26  4  9  16  24  32  19  23  27  31  35  

  Agric, waste & biomatter imports 99  55  60  111  187  246  262  294  329  367  406  

Y.04 Coal oversupply (imports)   330  346  320  259  123  (54) (80) (89) (81) (93) (93) 

Q.01 Coal reserves   146  124  128  128  128  128  64  64  64  64  64  

  Coal   475  470  448  387  251  74  (16) (25) (17) (29) (29) 

Q.02 Oil reserves   887  976  803  647  502  388  300  232  180  139  108  

Y.05 Oil & petroleum oversupply (imports) 80  (75) 51  152  248  259  253  309  342  353  347  

Y.03 Petroleum oversupply   (61) -  -  -  -  -  -  -  -  -  -  

  
Oil & petroleum 
products   907  901  854  798  750  647  554  541  522  492  455  

Y.06 Gas oversupply (imports)   215  247  313  406  449  459  406  308  204  181  160  

Q.03 Gas reserves   834  731  646  496  383  296  229  177  137  106  82  

  Natural gas   1,049  978  959  902  832  756  635  486  341  287  242  

  Total Primary Supply   2,711  2,578  2,501  2,377  2,274  2,135  2,050  2,072  2,122  2,256  2,400  

                            

Conversion loss, distribution & own use                                 

X.01 Conversion losses   561  556  540  493  458  415  413  439  498  639  793  

X.02 Distribution losses & own use   187  121  115  110  107  108  112  117  124  134  144  

  Supply net of losses   1,962  1,901  1,846  1,774  1,710  1,613  1,525  1,515  1,500  1,484  1,463  

 

Source: Author’s calculations 
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4.4 Estimates of electricity generation and installed capacity: Fusion Pathway 
 

Electricity Generation                       

                        

TWh   2007 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Biomass/Coal power stations 276.5  314.8  300.8  273.6  245.6  191.7  119.8  60.6  10.3  -  -  
Domest. space heating & hot 
water -  -  -  -  -  -  -  -  -  -  -  

Commercial heating and cooling -  -  -  -  -  -  -  -  -  -  -  

Conventional 276.5  314.8  300.8  273.6  245.6  191.7  119.8  60.6  10.3  -  -  

CCS Power -  -  -  5.1  10.8  19.5  38.0  62.3  86.9  111.6  136.5  

Nuclear fission 57.2  57.5  52.6  44.2  47.7  72.9  115.0  148.7  190.7  232.8  274.9  

Onshore wind 4.5  5.0  10.3  17.5  24.8  29.0  21.8  14.6  7.3  0.1  0.1  

Offshore wind 0.8  1.0  4.1  20.0  45.6  92.2  139.9  173.3  190.9  189.3  189.3  

Hydroelectric power stations 4.1  4.1  5.3  5.7  6.2  6.4  6.7  6.9  7.0  7.1  7.3  

Tidal & Wave -  -  0.0  0.0  0.2  0.5  0.5  -  -  -  -  

Geothermal electricity -  -  -  0.1  0.4  1.5  5.8  7.0  7.0  7.0  7.0  

Fusion power -  -  -  -  -  -  -  -  -  26.3  52.6  

Solar PV -  0.0  0.0  0.0  -  -  -  -  -  -  -  

Non-thermal renewable gen. 9.4  10.1  19.8  43.4  77.1  129.6  174.8  201.8  212.3  229.9  256.3  

Electricity imports 5.2  -  -  -  -  -  -  -  -  -  -  

Total 348.4  382.4  373.2  366.3  381.2  413.8  447.6  473.3  500.2  574.3  667.7  

  

           Electricity exports -  0.0  -  -  0.0  (0.0) -  -  0.0  (41.4) (99.9) 

Electricity used in UK, before 
losses and district  heat demand 

348.4  382.4  373.2  366.3  381.2  413.8  447.6  473.3  500.2  532.8  567.8  

                      

GW installed capacity   2007 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Unabated thermal generation  
 

62.6  58.4  47.7  42.2  32.2  19.5  9.7  1.5  -  -  

Oil / Biofuel 
 

4.1  4.1  -  -  -  -  -  -  -  -  

Coal / Biomass 
 

28.1  28.1  23.4  17.1  8.6  1.8  0.6  0.6  -  -  

Gas / Biogas 
 

30.3  26.2  24.3  25.2  23.6  17.7  9.1  0.9  -  -  

CCS Power 
 

-  -  0.9  1.7  3.1  5.9  9.7  13.4  17.2  20.9  

Nuclear fission 
 

11.0  10.0  7.2  6.8  10.4  16.4  21.2  27.2  33.2  39.2  

Onshore wind 
 

2.1  3.9  6.7  9.4  11.0  8.3  5.5  2.8  0.0  0.0  

Offshore wind 
 

0.4  1.3  6.5  14.1  26.3  37.1  43.9  48.4  48.0  48.0  

Hydroelectric power stations 
 

1.3  1.6  1.7  1.9  1.9  2.0  2.1  2.1  2.1  2.2  

Wave 
 

-  -  0.0  0.1  0.2  0.2  -  -  -  -  

Tidal Stream 
 

-  0.0  0.0  0.0  0.0  0.0  -  -  -  -  

Tidal Range 
 

-  -  -  -  -  -  -  -  -  -  

Geothermal electricity 
 

-  -  0.0  0.1  0.2  0.8  1.0  1.0  1.0  1.0  

Fusion power 
 

-  -  -  -  -  -  -  -  3.6  7.2  

Solar PV 
 

0.0  0.0  0.0  -  -  -  -  -  -  -  

Standby / peaking gas 
 

-  -  -  -  7.0  13.8  20.1  24.2  20.4  15.3  

Total generation 
 

77.4  75.3  70.7  76.2  92.3  104.1  113.2  120.6  125.5  133.8  

 

Source: Author’s calculations 
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4.5 Estimates of bioenergy production and use: Fusion Pathway 
 

Bio-energy - Production and Use                     

                          

Production                       

Domestic     2007 2010 2015 2020 2025 2030 2035 2040 2045 2050 

V.a V.03 Solid hydrocarbons 14.5  20.2  39.8  81.7  133.9  160.7  185.8  214.3  245.4  276.6  

V.a V.04 Liquid hydrocarbons 1.3  0.4  0.4  0.4  0.5  0.5  0.5  0.5  0.6  0.6  

V.a V.05 Gaseous hydrocarbons 22.0  18.2  33.0  48.1  52.8  52.6  52.7  53.0  53.2  53.5  

      
          

Imports     
          

V.b V.03 Solid hydrocarbons 4.4  6.5  10.1  13.6  17.2  -  -  -  -  -  

V.b V.04 Liquid hydrocarbons -  2.1  6.2  10.3  14.4  18.5  22.7  26.8  30.9  35.0  

V.b V.05 Gaseous hydrocarbons -  -  -  -  -  -  -  -  -  -  

      
          

Total     
          

V.b V.03 Solid hydrocarbons 18.9  26.7  49.9  95.4  151.1  160.7  185.8  214.3  245.4  276.6  

V.b V.04 Liquid hydrocarbons 1.3  2.4  6.6  10.7  14.9  19.0  23.2  27.3  31.4  35.6  

V.b V.05 Gaseous hydrocarbons 22.0  18.2  33.0  48.1  52.8  52.6  52.7  53.0  53.2  53.5  

                          

Hydro-carbon use by sector and Bio-energy share                     

                          

Solid Hydrocarbon consumption 496  482  445  357  236  157  174  211  231  263  

Share of  biomass to total solid hydrocarbon 
consump. 

4% 6% 11% 27% 64% 103% 107% 101% 106% 105% 

        I.b   CCS Power   0 0 7 21 35 64 102 140 176 209 

        I.a Biomass/Coal power stations 427 414 374 274 141 33 14 14 0 0 

        XI Industry   55 54 54 54 53 53 53 53 53 53 

         IX Heating   14 13 9 8 7 5 4 3 1 0 

                          

Liquid Hydrocarbon consumption 905  856  805  761  662  573  564  549  523  491  

Share of Bioliquids to total liquid hydrocarbon 
consump. 

0% 0% 1% 1% 2% 3% 4% 5% 6% 7% 

         XII Transport   733 691 657 620 528 445 442 432 412 384 

          XI Industry   82 80 77 75 73 70 68 66 64 62 

      XV.a Petroleum refineries 56 53 50 48 46 44 43 42 41 41 

                          

Gaseous Hydrocarbon consumption 989  966  925  871  798  676  527  383  331  288  

Share of Biogas to total gaseous hydrocarbon 
consump. 

2% 2% 4% 6% 7% 8% 10% 14% 16% 19% 

        IX.a Domestic space heating and hot water 324 340 332 292 256 218 182 146 110 73 

        IX.c Commercial heating and cooling 78 77 76 65 54 44 33 23 12 0 

          XI Industry   150 148 145 142 140 135 131 127 123 119 

          I.a Biomass/Coal power stations 351 328 304 315 295 222 114 11 0 0 

          I.b CCS Power   0 0 6 6 11 23 37 51 65 79 

 

Source: Author’s calculations 
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Chapter 5 appendices 
 

5.1 Unit root tests for CGE trade elasticity variables (ADF and DF-GLS) 
 

Variable  Included in test ADF t-statistic DF-GLS t-statistic 

ln USgdp Intercept only -1.466 (0.537)   0.627   

Δln USgdp Intercept only -3.789 (0.008) *** -2.501 ** 

ln export Intercept only -0.647 (0.846) 

 

0.378   

Δln export Intercept only -5.690 (0.000) *** -5.767 *** 

ln rexpp Intercept only -1.262 (0.634)   -0.583   

Δln rexpp Intercept only -5.085 (0.000) *** -4.215 *** 

ln UKgdp Intercept only -1.413 (0.563) 

 

-0.052   

Δln UKgdp Intercept only -3.350 (0.022) *** -3.413 *** 

ln import Intercept only -0.825 (0.798)   0.292   

Δln import Intercept only -5.519 (0.000) *** -5.495 *** 

ln rimpp Intercept only -1.308 (0.613)   -0.883   

Δln rimpp Intercept only -4.337 (0.002) *** -4.150 *** 

1. ***, ** and * denotes I(1) at the 1%, 5% and 10% significance levels respectively 

2. The numbers in parentheses are the probability values of the t-statistics 

 
 
 
 
5.2 ARDL regression output for CGE trade elasticity variables 
 

 Dep. variable ARDL(1, 0, 0) 

 

 Dep. variable ARDL(1, 1, 1) 

 ln USgdp with ln export 

 

 ln UKgdp with ln import 

 ln USgdp(-1) 0.715 (0.070) 

 

 ln UKgdp(-1) 0.813 (0.082) 

 ln export 0.231 (0.051) 

 

 ln import 0.325 (0.053) 

 ln rexpp -0.061 (0.034) 

 

 ln import(-1) -0.133 (0.068) 

 dv -0.030 (0.007) 

 

 ln rimpp -0.045 (0.036) 

 C 2.751 (1.208) 

 

 ln rimpp(-1) 0.059 (0.034) 

  

 

     dv -0.031 (0.009) 

      

 

 C 0.127 (1.283) 

 Adj. R-squared 0.998   

 

 Adj. R-squared 0.997   

 S.E. of regression 0.011   

 

 S.E. of regression 0.011   

The numbers in parentheses are the standard errors. 
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