
Forecasting the properties of the solar 
wind using simple pattern recognition 
Article 

Published Version 

Riley, P., Ben-Nun, M., Linker, J. A., Owens, M. J. ORCID: 
https://orcid.org/0000-0003-2061-2453 and Horbury, T. S. 
(2017) Forecasting the properties of the solar wind using 
simple pattern recognition. Space Weather, 15 (3). pp. 526-
540. ISSN 1542-7390 doi: 
https://doi.org/10.1002/2016SW001589 Available at 
https://centaur.reading.ac.uk/72500/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1002/2016SW001589 
To link to this article DOI: http://dx.doi.org/10.1002/2016SW001589 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Space Weather

Forecasting the properties of the solar wind
using simple pattern recognition
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1Predictive Science Inc., San Diego, California, USA, 2Space and Atmospheric Electricity Group, Department of
Meteorology, University of Reading, Reading, UK, 3Blackett Laboratory, Imperial College London, London, UK

Abstract An accurate forecast of the solar wind plasma and magnetic field properties is a crucial
capability for space weather prediction. However, thus far, it has been limited to the large-scale properties of
the solar wind plasma or the arrival time of a coronal mass ejection from the Sun. As yet there are no reliable
forecasts for the north-south interplanetary magnetic field component, Bn (or, equivalently, Bz). In this study,
we develop a technique for predicting the magnetic and plasma state of the solar wind Δt hours into the
future (where Δt can range from 6 h to several weeks) based on a simple pattern recognition algorithm. At
some time, t, the algorithm takes the previous Δt hours and compares it with a sliding window of Δt hours
running back all the way through the data. For each window, a Euclidean distance is computed. These are
ranked, and the top 50 are used as starting point realizations from which to make ensemble forecasts of the
next Δt hours. We find that this approach works remarkably well for most solar wind parameters such as v,
np, Tp, and even Br and Bt , but only modestly better than our baseline model for Bn. We discuss why this is so
and suggest how more sophisticated techniques might be applied to improve the prediction scheme.

1. Introduction

Since its prediction in 1958 [Parker, 1958] and observational confirmation in 1959 [Harvey, 2007], forecasting
the future conditions of the solar wind has become ever more important as our society relies increasingly
on technology [e.g., Board et al., 2012]. The value and variability of the z component of the interplanetary
magnetic field has, arguably, a more significant impact than any other parameter for geoeffective phenomena.
More strictly, it is the dawn-dusk component of the solar wind electric field (Ey = −vx × Bz), as well as the
plasma-𝛽 , Mach number, and density that modulate the transmission of energy from the heliosphere into the
magnetosphere and, potentially, drive magnetic storms [Dungey, 1961; Cassak and Shay, 2007; Borovsky et al.,
2008]. Given its key role in space weather, it may seem surprising that it is noticeably absent from any of the
parameters that the National Space Weather Centers forecast. The reason, of course, is that predicting Bz is
extremely difficult.

Over the years, a variety of techniques have been proposed to predict the state of the solar wind. These vary
from purely statistical approaches to physics-based models and all manner of hybrids in between. For exam-
ple, Chen et al. [1996] proposed a technique based on identifying sinusoidally varying large-scale features in
the z component (meridional) of the interplanetary magnetic field (IMF Bz). However, the work remained a
“proof of concept” and has, thus far, not been further developed in any rigorous way.

The WSA-Enlil solar wind prediction model, which is the first operational space weather model at NOAA,
provides 1–4 day advance warning of large-scale solar wind structure as well as Earth-directed coronal mass
ejections (CMEs) [Farrell, 2011]. Two models are combined to produce predictions of the ambient solar wind:
WSA [Wang and Sheeley, 1990; Arge and Pizzo, 2000], which is a modified Potential Field Source Surface (PFSS)
model, and Enlil, which is a heliospheric MHD model [Odstrcil, 1993]. The former computes estimates of the
solar wind speed at 30 solar radii (RS), as well as the radial component of the coronal magnetic field (Br), which
are used to drive Enlil. Together, the ambient solar wind solutions can produce estimates of speed, density, and
temperature, as well as IMF field strength and sector boundaries information. However, no meaningful esti-
mates for Bz can be made. A simple CME generator can also produce ICMEs traveling through these solutions
for specific time periods [Pizzo et al., 2015]. Primarily, these are used to estimate the dynamic properties of the
ejecta at 1 AU as well as the time of transit from the Sun to Earth. While there are no magnetic fields embedded
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within the simulated ejecta, estimates of Bz within the sheath can be made for events sufficiently fast to drive
a fast-forward shock [e.g., Mays, et al., 2015].

Several other ambient solar wind models have been proposed over the years, only a handful of which have
been taken into the “operational” arena. One such model is the Empirical Solar Wind Forecast [Reiss et al., 2016],
which is based on the observed correlation between areas of coronal holes and the solar wind speed at 1 AU.
The published root-mean-square errors for the forecasts are on the order of 100 km s−1, with uncertainties in
the arrival times and sizes of high-speed streams of ∼1 day and 100 km s−1, respectively. Importantly, these
more recent models are accompanied by quantitative estimates of their accuracy.

Jackson et al. [2015] recently proposed an appealing but as yet tentative model for estimating nonzero Bz con-
tributions to the field at 1 AU based on estimates from the low corona. They used a PFSS model to estimate
nonzero Bz in the low corona and propagated it out to 1 AU where they compared with in situ measurements.
They provided several Carrington rotations that appeared to show a modest correlation between model
results and observations. However, no mechanism was provided for how these fields could be transported
out, a process that contradicts all current global models of the extended corona.

In another study, Savani et al. [2015, 2017] combined several empirically based models to create a “pipeline”
for predicting the magnetic field properties of magnetic clouds (MCs) in the solar wind. Strictly speaking, this
approach must be viewed as a proof of concept and not a prediction; however, it sets out an appealing frame-
work for considering how to best approach event-based prediction and which models should or should not
be included. The use of interchangeable components allows the user to test different, potentially superior
approaches to address a specific piece in the chain. Their specific framework relied on estimating the initial ori-
entation and location of the flux rope (only flux rope CMEs are amenable to this approach) based on statistical
estimates and the “solar hemispheric rule” in particular [Bothmer and Schwenn, 1998]. Then, using the gradu-
ated cylindrical shell model [Thernisien et al., 2009], they estimated the physical extent of the ejecta and thus
the likely trajectory along which the Earth would pass through. Finally, using a force-free model for the mag-
netic structure of the flux rope, they extracted the time series traces that would be measured by Earth-based
spacecraft. They were able to demonstrate a basic agreement for a handpicked set of eight events. However,
it would be fairer to say that they were able to “reproduce” the observations, not “predict” them.

Our ability to forecast the value of solar wind parameters is extremely sensitive to the specific parameter con-
sidered. For example, the sign of the radial component of the interplanetary magnetic field (IMF) is relatively
straightforward to predict reasonably accurately. Similarly, the bulk solar wind speed can, in the absence of
transient phenomena, be predicted with a basic degree of fidelity [e.g., Riley et al., 2001]. The z component of
the IMF, Bz , however, has, thus far, remained difficult, if not impossible to predict. At least in part, these differ-
ences can be attributed to the fundamental processes that drive the large-scale variations in them. The sign of
Br , for example, is a reflection the Sun’s large-scale field. In contrast, Bz , under quiescent conditions, fluctuates
about a mean value of zero.

The origins of nonzero values of Bz are quite complicated. In fact, as we will discuss below, as a first approxima-
tion, and in Parker’s original derivation, we could assume that Bz = 0. However, for any practical purposes, and
certainly for space weather applications, this approximation is not useful. There are a multitude of processes,
some related to one another and some overlapping, that can be branded as “Bz-producing” phenomena.
Generalizing slightly from Parker’s original simple picture, if we allow the solar wind flow speed to vary, even in
an idealized manner, fast flow over the poles, say, and slow flow around the neutral line, this would introduce
velocity shear, as fast solar wind caught up to, and overtook slower wind, and this would produce large-scale
and recurrent Bz variations, albeit modest. These might be responsible for the apparent ambient solar wind
Bz that Jackson et al. [2015] and Ulrich and Tran [2016] may have detected.

A significantly more important phenomena for producing nonzero Bz are CMEs and, in particular, mag-
netic clouds (MCs). In addition to the large, smooth, and rotating fields within them, fast MCs drive shocks,
which compress the plasma ahead of them and amplify any transverse fields within [Owens et al., 2005]. This
creates a distinctive sheath region that is responsible for a significant fraction of all geomagnetic activity
[Lugaz et al., 2016]. Field lines also drape over fast-moving ICMEs resulting in non-Parker field lines, slip-
page, and the creation of meridional components to the magnetic field. Corotating interaction regions (CIRs)
too produce intervals of nonzero Bz since they tend to be organized in tilted patterns [Riley et al., 1996].
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Within, and surrounding CIRs, we can further distinguish nonzero-producing Bz phenomena: stream inter-
faces, the heliospheric current sheet, and CIR-associated forward and reverse shocks.

In addition to these large-scale effects, there are many small-scale features that produce substantial
power in the fluctuations of Bz , including Alfvén waves and turbulence. The properties of these types of
fluctuations—at least statistically—are well described [Horbury et al., 1995, 2005; Owens et al., 2011]. In fact,
given a power law relationship for the magnitude of the fluctuations as a function of frequency, we can recon-
struct these fluctuations precisely for a variety of types of solar wind. Unfortunately, we cannot reconstruct
the phase information for the fluctuations. Thus, we are limited to a statistical forecast of their properties.
While not ideal, it is likely still useful for geomagnetic forecasts, where the actual phase information about the
fluctuations only becomes critical below some characteristic frequency [Owens et al., 2014].

Finally, we remark that there are a “potpourri” of other phenomena that may produce nonzero Bz to varying
but modest degrees. For example, reconnection jets [Shimojo and Shibata, 2000], magnetic holes [Fränz et al.,
2000], reconnection exhausts [Gosling, 2011] as well as “blobs” which may be a source of some of the slow
solar wind [Wang, 1994]. In principle, these could all produce limited nonzero intervals in Bz .

In this report, we describe a simple technique for predicting the state of the solar wind over the next Δt
hours based on recognizing the pattern of the solar wind during the previous Δt hour period and assuming
that previous intervals with similar variations might provide some insight into the state during the following
interval. We provide a detailed statistical analysis of this technique by applying it to the entire NASA OMNI_M
data set [King and Papitashvili, 2005] and conclude that it can—under certain conditions—be a powerful tool
for forecasters. We focus on demonstrating the potential of pattern recognition (PR) for solar wind forecasting.
The sensitivity of forecast skill to the details of the pattern recognition and the subsequent implications for
geomagnetic forecasting will be examined in a future study.

In the following section, we describe the data set we analyze as well as the forecasting model we have devel-
oped. We then show several case studies emphasizing where the model works and where it does not. Finally,
we discuss the implications of this model and suggest several refinements that can be made that we believe
will improve the accuracy and robustness of the basic model proposed here.

2. Methods
2.1. Data
For this study, we use data from NASA’s OMNI_M data set (obtained through the COHOWeb data server).
We chose 1 h resolution data since these were sufficiently resolved to capture large-scale variations in
the solar wind (e.g., MCs, CIRs, and long-period Alfvén waves) but coarse enough that the contribution
from high-frequency turbulence was reduced. Additionally, these data span a much longer epoch than the
higher-resolution 1 and 5 min data sets. Using 1 h averaged data suggested a minimum reasonable pre-
diction window of 6 h, but allowed for much longer prediction windows to be considered (12 h, 24 h, … ,
27 × 24 h, etc.).

Although we have, thus far, avoided a precise definition of what we mean by the z component of the mag-
netic field (Bz), for the remainder of the study, we will instead use the heliospheric-centered RTN coordinate
system. The RTN coordinate system is a “spacecraft-centered” system where R is a unit vector from the Sun to
the spacecraft, T is 𝛀 × R)∕|(𝛀 × R)|, and N completes the right-handed triad. Here 𝛀 is the Sun’s spin axis.
Intuitively, T points in the direction of planetary motion, and N points northward. In part, our choice to use
RTN coordinates is designed to avoid any misunderstanding about whether Bz is in a geomagnetic-centered
system (GSM) or ecliptic (GSE). However, more importantly, we believe that it is better to base our forecasts on
the fundamental measurements that are made by the spacecraft and published by the forecasting centers,
such as NOAA.

We used in situ measurements of the magnetic field vectors and magnitude (Br , Bt , Bn, and B) as well as stan-
dard plasma parameters: speed (v), number density (np), and proton temperature (Tp). For this report, we
emphasize results for Bn, v, np, and Tp, which, together, can be used to construct the parameters most neces-
sary to forecast geoeffective phenomena and, in particular, the dawn-dusk electric field (Ey = −vx × Bz) and
momentum flux (np × v2).

Although the full data set stretches back to the early 1970s, resulting in almost 400,000 one hour data
points, we restricted the statistical component of our analysis to all data from 2000 to 2010 (∼96,000 points).
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Setting the start date to 2000 ensured that there would be sufficient historical data prior to these data points
on which to construct the forecast ensembles, and setting the end date to 2010 provided a data set that was
proportionately representative of all phases of a solar cycle.

2.2. Models
In this study, we develop a simple pattern recognition technique for identifying previous intervals in the entire
solar wind data set that are most likely the interval recently observed and use the data that follow those inter-
vals as a set of forecasts (realizations) for what is likely to occur in the near future. It relies on the assumption
that past variability is an indicator of future variability. In a purely stochastic time series, the approach would
fail. Thus, we anticipate that the value to this scheme lies in identifying large-scale coherent structure, the
leading portions of which are forbearers of what will come later.

The procedure we adopt is as follows. First, the algorithm takes the last Δt hours (say, 24) of observations
of some solar wind parameter (say, Bn) at 1 h resolution and slides it backward in time, hour by hour, with
a window of Δt hours. For each interval, the Euclidean distance between those earlier observations and the
current (last) Δt hour window is calculated. The Euclidean distance is

d
(

d1,d2

)
=

√√√√ n∑
i=1

(
di

1 − di
2

)2
(1)

which can be thought of as an estimate of the difference between the two time series (d1 and d2). (The more
familiar “chi-square” distance is a weighted Euclidean distance.)

For each window under consideration within the 2000–2010 period, we compute the Euclidean distance d
over the entire data set prior to that window. Since the data set stretches back to the early 1970s, this results
in between 300,000 and 400,000 estimates. Each window is then ranked in terms of its Euclidean distance. It
is important to stress that only past data points are used by the pattern recognition algorithm in assembling
the forecast. We retain the “top” N = 50, that is, those N intervals with the lowest values of d. For each of these
intervals, the following Δt hour period is then used to form the basis of the forecast. Here we focus on 6, 24 h,
and a few multiday (up to 40 days) intervals.

We also introduce a baseline, or reference model. Based on the discussion in section 1, on average, the z
component of the magnetic field is zero. Thus, an obvious model against which to compare is a so-called “zero”
model, which predicts that our best forecast in the future is that Bn will be and remain exactly zero. It turns
out, somewhat disconcertingly, that this is a surprisingly accurate, though not particularly useful, forecast. For
other parameters, we use the average value of the parameter during the previous Δt hours as the baseline
prediction for the next Δt hours. These are typically referred to as “persistence” (or “baseline”) models.

2.3. Results
To introduce the simple pattern recognition model, we apply it to a well-studied magnetic cloud observed
in mid-September 2000 [e.g., Nieves-Chinchilla et al., 2002]. Figure 1 shows a 2 day interval of Bn from 17
September 2000 04:00 UT to 19 September 2000 04:00. The data (black line) show a sharp rise to 20 nT, fol-
lowed by a subsequent swing down to −20 nT and a rise once more. For the purpose of making a forecast,
we take the current or “now” time to be 04:00 on 18 September 2000, marked by the thick red vertical line.
We assume that only data to the left of this line are available for analysis. These are significant values of the z
component of the magnetic field, and they produce notable geomagnetic activity (Dst ∼ −200 nT). Using the
algorithm described in the previous section, we located the 50 intervals in the entire (prior to 17 September
2000 04:00 UT) OMNI_M data set that most closely matched these variations (as estimated using equation (1)).
These are shown by the gray traces to the left of the red vertical line. We note that these traces match the vari-
ations that occurred during the last 24 h well. We then take the 24 h intervals that followed each of these best
matches and plot them to the right of the red vertical line. They show considerably more scatter. However,
as suggested by the average ensemble curve (purple), the overall evolution of the forecasted curve matches
the actual magnetic field that was subsequently observed (black curve). It is worth noting that in this partic-
ular case, the high correlation might be driven by the phenomenon of “regression toward the mean”; that is,
whenever you have a significant deviation from some average, say, zero for Bn, there will be a tendency for it
to return to that value.

RILEY ET AL. SOLAR WIND PREDICTION 529



Space Weather 10.1002/2016SW001589

Figure 1. Time series of solar wind Bn for 17–19 September 2000. The now time is marked by the thick red vertical line
(and indicated on the top right corner). Only data prior to 17 September 2000 are used in the analysis. The solid black
curve shows the 24 h of data preceding now and the data following it that were actually observed. Each of the gray
curves represents realizations obtained from the PR analysis. The data that were observed after each matched interval
are shown to the right of the red line, providing an ensemble of forecasts. The average of these predictions is shown by
the purple curve, and the 25% and 75% quantiles are marked by the green area. Our baseline model, the zero model, is
shown by the horizontal red line (at Bn = 0). A variety of metrics are given in the boxes across the lower half of the plot:
the Pearson correlation coefficient, the mean square error (MSE), the associated skill score, and a probabilistic forecast
based on a heuristic forecaster’s rule. See text for more information.

We can calculate several metrics to assess the quality of the forecast. First, the correlation coefficient between
the observed and PR-forecasted profiles was 0.87. Unfortunately, we cannot compare this to a correlation
coefficient calculated from the zero model, which, since its value remains unchanged, cannot be defined.
Second, we can compute the mean square error (MSE) between the observed and forecasted measurements.
In this case, for the PR model, this was estimated to be 10.0 nT2, which is significantly less than for the baseline
(zero) model (35.4 nT2), showing that the PR model substantially outperformed the baseline model. We can
also define and estimate a skill score. For simplicity, we use the associated skill score, which is defined as

SS = 1 −
MSEforecast

MSEbaseline
(2)

where MSEbaseline is the reference model’s mean square error and MSEforecast is the PR model’s mean square
error. A positive number demonstrates a capable model, while a negative number suggests that the model is
worse than the reference or baseline model. Since the zero model is our baseline model, that fraction is one
for the zero model, and the skill score reduces to zero. A value of 0.73 for the PR model is promising. Finally, the
last box in the bottom right of Figure 1 is a probability forecast. This is an idealized metric based on talks with
NOAA/SWPC staff. In particular, they would find it useful to know if the z component of the magnetic field is
going to drop below −5 nT for a period of an hour or more. This is, of course, analogous to terrestrial weather
forecasts, which might report that there is a 60% chance of rain over the next 3 h say, within a certain region.
Here we are predicting whether Bn will remain southward for 1 h or more during the next 24 h. The −5 nT
threshold is shown by the dotted red line in the prediction window. For this interval, using the ensemble of
realizations, we can estimate that there is a 54% probability that Bn will drop below−5 nT during the following
24 h period.

The quantiles produced by the ensembles serve to bracket the forecast, and it is interesting to note that they
encompass the fluctuations in the actual observed measurements. This is a desirable feature of any model
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Figure 2. As Figure 1 but for a 1 day forecasting window in (a) March 2011 and (b) June 2012.

prediction that provides confidence bounds. As the quality of the forecast improves (worsens), the confidence
intervals should decrease (increase) commensurately.

We also investigated the sensitivity of the results on the number of members in the ensemble. Specifically,
we repeated selected intervals using 10, 20, 50, and 100 members. In all cases, the measures of accuracy of
the forecast (correlation coefficient, MSE, skill score, and probability that Bn < −5 nT) were virtually the same.
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Figure 3. A scatterplot matrix of parameters computed from Bn comparing (a) the prior correlation coefficient
(corrPrior), that is, the average of the best pattern-matched intervals with the interval being predicted; (b) the predicted
correlation coefficient (corrPred), i.e., the correlation between the predicted and observed future intervals; (c) LSV, a
measure of large-scale variations during the observed window; (d) the mean square error between the observed and
predicted interval; and (e) the mean square error of the baseline (zero) model.

However, when N = 10 or 20, the 25th/75th percentile green band became either very (N = 10) or moderately
(N = 20) jagged. Only for N ≥ 50 did the envelopes become smooth. Thus, factoring in computational time,
we arrived at the value: N = 50.

In Figure 2 we provide two additional examples where a clear large-scale signal was observed in the mag-
netic field during the “previous” 24 h. In Figure 2a, the correlation of the forecasted profile was 0.85, and the
MSE was substantially less than that of the zero model. In Figure 2b, the correlation of the predicted time series
was lower (0.67), but still significant. For both cases, the correlation of observed and best matched intervals
was exceedingly good (>0.96), suggesting that the algorithm can identify a sufficiently large number of prior
intervals that closely match the recently observed data. Note also that in each of the three cases (Figures 1
and 2), several consecutive intervals were found to be the best match (that is, a window shifted by one or two
more hours) suggesting that the realizations are not completely independent.

Moving away from case studies, we can generalize this analysis by looking at every data point in the data set
during the 11 year period from 2000 to 2010 and assuming that this is now. For each now (and there are 97,00
of them) we look at the previous 24 h stretching back through the entire data set (to the early 1970s) then
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Figure 4. A comparison between the mean square error (MSE) of the pattern PR and the baseline (zero) model for Bn
forecasts. The number of data points within each hexagon is shown via the color coding.

compute the Euclidean distance for this interval with every other overlapping interval in the data set, rank
each of them, compute the MSEs for the best model forecast, and compare this with the baseline model.

Figure 3 summarizes this analysis using a scatterplot matrix, which visually shows whether any linear cor-
relations exist amongst multiple variables. In it, we plot (1) the correlation coefficient of the observed data
(that is during the 24 window prior to now) with the ensemble average of the most closely matching inter-
vals (corrPrior); (2) the correlation coefficient of the PR model forecast with the data that was then observed
(corrPred); (3) LSV, defined here as the mean of the absolute value of the parameter (see below for more
details); (4) the MSE of the PR model forecast with the observations (mse); and (5) the MSE of the zero model
(mseBaseline). Several points are worth noting. First, corrPrior is consistently high, typically around >0.9.
Second, corrPred shows more spread and can be negative as well as positive. It is important to note, however,
that these data, as displayed, are somewhat misleading: with 97,000 points, many data are superimposed
upon one another. Third, as evidenced from either of the two panels in the bottom right, there is an asym-
metry in the mse versus mse-Baseline values, with a small tendency for mse to be lower than mseBaseline,
typically when both parameters are small. These are the intervals we would like to be able to forecast well.
Again, because many points are superimposed upon one another, this asymmetry may be overemphasizing
a very modest or infrequent effect.

To mitigate this effect, in Figure 4 we show MSE versus mseBaseline values using a hexagonal binning tech-
nique. Now instead of points being overplotted, they are grouped into a density map. Thus, the color of each
hexagonal point represents the number of data points falling into that area. From this, we infer that, in general,
the PR model and zero model result in very similar forecast accuracy, at least based on MSE as an estimate of
performance. The “spur” of points in the rightmost panel of the fourth row in Figure 3 is visible as the asymme-
try in the purple points, with more of them tending to be in the upper left, than lower right, again suggesting
a small tendency for the PR model to outperform the baseline (zero) model, at least under limited conditions.

We can look for potential asymmetries in another way, by plotting the ratio of MSE for the PR model to
MSE-Baseline, that is, the reference model. This is shown in Figure 5 for a 24 h window (Figure 5a) and a 6 h
window (Figure 5b). We conclude that, in general, there is no significant, systematic difference between the
PR and zero models for 24 h windows. On the other hand, Figure 5b illustrates how this changes modestly
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Figure 5. (a) The ratio of the mean square error (MSE) for the pattern recognition model to the baseline (zero) model for
Bn forecasts with a window of 24 h. (b) As Figure 5a but for a 6 h window.
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Figure 6. A comparison between the predicted correlation and LSV for Bn for a (a) 24 h and (b) 6 h window. The number of data points within each hexagon is
shown via the gray scale coding.

when the prediction window is reduced to 6 h. While statistically significant, it is not yet clear whether
this asymmetry, favoring the PR model, is sufficiently large to produce actionable information for the
operational community.

In an effort to identify which intervals might be the most amenable to accurate forecasting we created sev-
eral measures of a parameter, aimed at capturing large-scale variations (LSV) in the magnetic field, during the
observed Δt hour window. In essence, it seeks to measure the “predictability” of the currently observed win-
dow. One method was to simply compute LSV =< |Bn|> for the interval. A large value of this would suggest
the presence of a sustained interval of nonzero Bn. However, intervals of large-amplitude Alfvén waves would
also produce somewhat large values of this. Figure 6 compares LSV with the correlation of the forecast for
24 h (Figure 6a) and 6 h (Figure 6b) windows. Generally, and unsurprisingly, for the 24 h window (Figure 6a),
most of the solar wind is in a state of low-LSV and there is no obvious trend with how well the predictions
correlate with observations. Such cases could be identified in recently observed data by their high LSV value
and predicted to have a good forecasting accuracy. Instead, only a few events are seen and it is not clear
that they represent a unique set of cases. At 6 h (Figure 6b), the predicted correlation generally increases
with a substantial number of cases having a predicted correlation in excess of 0.5. What we had hoped to
find was a cluster of intervals in the upper right, which have a high LSV value and high correlation, and thus
amenable to prediction, since we would know a priori that the recently observed window had a high LSV value.

Figure 7. As Figures 4 and 5 but for solar wind speed (v). The inset in Figure 7b shows the histogram for a 6 h window.
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Figure 8. A selection of progressively longer forecasting windows. (a) A 1 day window, (b) a 6 day window, (c) a 12 day window, and (d) a 40 day window. In each
panel the black curve leading up to the red vertical line are the data that were observed prior to the forecast. The gray curves are realizations based on pattern
recognition of the top 50 intervals most closely matching the observed data. The data following these intervals are used to create the future realizations. The
ensemble average of these forecasts is shown in purple, and the actual data observed is shown in black. The red horizontal line is the baseline (persistence)
model prediction based on the average observed speed during the previous time window. The green areas mark the 25% and 75% quantiles of the predictions.

Several measures of LSV were investigated, but none were found to be useful. In spite of this, the main mes-
sage from Figure 6b is that the PR technique, when applied to 6 h windows, usually provides predictions that
result in positive correlations (strictly, however, only those correlations above 0.81 are statistically significant
for six points, at a significance level of 0.05).

Turning our attention now to the speed of the solar wind, the results and implications are substantially dif-
ferent. Figure 7 summarizes the same parameters as in Figures 4 and 5 but for solar wind velocity, v. The PR
model consistently outperforms the baseline (persistence) model as suggested by the fact that MSE values
are consistently less than MSE-Baseline values (Figure 7a). The majority of points are found to be less than
1000 km2 s−2, whereas the persistence model MSE values range up to >4000 km2 s−2. Similarly, looking at the
ratio of the two errors (Figure 7b), the vast majority lie in the region: MSE/MSE-Baseline <0.3. The asymmetry
is even more pronounced when the window is limited to 6 h (inset in Figure 7b).

The differences between the results of Bn and v translate into measurable improvements in forecast ability.
Figure 8 summarizes four intervals of increasing window size, each of which was chosen primarily so as to
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Figure 9. (a and b) As in Figures 4 and 5 but for proton density, np . (c and d) As in Figures 8a and 8b but for a 6 h forecasting window.

avoid any transient (CME)-related activity as well as to avoid any intervals with data gaps. Thus, these attempt
to forecast primarily ambient solar wind conditions. In Figure 8a, a 1 day window of roughly constant but low
speed is forecast to continue for the next day. Note how the 25/75% ranges for the realizations, indicated
by the green shading, bracket the actual observations. In Figure 8b, a 6 day window containing two mod-
est streams is correctly predicted to decay during the following 6 days. In Figure 8c a 12 day window with
another single stream is predicted to show two modest streams over the next 12 days. And finally, in Figure 8d
an apparently more complex stream structure over 40 days is predicted to have three distinct, but modestly
high-speed streams during the next 40 days. Overall, each window’s prediction is relatively good and, with the
exception of Figure 8d, better than the baseline model (persistence), as indicated by the significantly lower
values of MSE and positive values for the associated skill scores for Figures 8a–8c. Interval (Figure 8d) is inter-
esting in that while the associated skill score for the PR model is worse than the baseline model, its prediction
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Figure 10. As in Figure 9 but for proton temperature, Tp .

is undoubtedly useful: It correctly predicts a sequence of three high-speed streams, although the exact phas-
ing does not match with observations. It is worth noting that the algorithm does not require that the best
realizations are distinct or unique. Thus, one interval, shifted by one or more hours, could serve as the source
for several of the realizations. This can be seen in some of the gray traces where the same profile has been slid
left or right of another.

We complete our investigation of the PR model by considering proton density and temperature. Figure 9
summarizes the MSE and MSE-Baseline values for proton density for 24 h intervals (Figures 9a and 9b) and
6 h intervals (Figures 9c and 9d). In comparison with the results for Bn and v, we note that the PR model
is substantially better than the reference model for both window durations, although there is not as much
improvement as was the case for v. Similarly, the distribution of error ratios for Tp (Figure 10) lies between
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those of Bn and np. In summary then, the order of improvement that the PR model provides over the reference
(zero/persistence) mode is v, np, Tp, and Bn. This mimics what we have found using MHD models to predict
stream structure [Riley et al., 2001, 2012a].

3. Summary and Discussion

In this study, we have outlined a simple pattern recognition technique that may prove useful as a tool for
forecasting the properties of the solar wind on the time scale of hours to days. Our results suggest that this
approach is a potentially powerful predictor for the bulk solar wind flow velocity, density, and perhaps temper-
ature. However, its use in predicting Bn may be limited to intervals with large-scale variations in the magnetic
field, which preferentially occur during the passage of magnetic clouds over the spacecraft. It is not yet clear
whether the limited improvement over the baseline (zero) model will yield useful or actionable predictions
for Bn.

Our analysis has relied on several assumptions and approximations that deserve consideration. First, we have
assumed that past variations are indicative of future variations. To demonstrate that this is the case, we com-
pared the model forecasts with a persistence model, essentially asking whether the predicted forecast was
better than assuming some constant value based on historical data. For most of the data sets, this was true.
However, for the key Bn data, this was only marginally demonstrated and only for forecast windows of 6 h.
Second, we implicitly assumed time stationarity of the data. That is, that the variations in the data 30 or 40 years
ago were comparable to variations that we observe today. The unusually quiescent conditions over the last
decade or so suggest that this may not be the case [e.g., Riley et al., 2012b]. Moreover, some studies suggest
that we may be entering into a grand minimum interval, lasting 40 years [Lockwood et al., 2009]. Third, we
did not distinguish between temporal and stationary structures in these data. While most scientific studies
would endeavor to make such a classification, here it is benefit of the PR technique that it does not require
knowledge of what processes are driving the variations used to make the forecasts.

One potentially significant improvement to the technique outlined here is to employ dynamic time warping
(DTW) to the data. Essentially, for each interval that is being compared to the observed interval, a nonlinear
stretch is applied to the time axis. This may make sense for solar wind measurements, at least during periods of
CMEs, where we envisage a simple flux rope structure becoming increasingly deformed through interactions
with the ambient solar wind, as it propagates away from the Sun. Thus, a symmetric CME that is coasting
along with the background solar wind could, in principle, be matched with a highly deformed fast CME that is
also driving a shock and creating a sheath region. It may be possible for DTW to unravel this deformation by
stretching the compressed region or shortening the rarefaction region within such events. We have begun a
study that seeks to investigate this.

Although the examples we have presented show considerable promise, it is not yet clear how robust they are,
nor how actionable the information they provide might be. We are currently developing a real-time version
of the algorithm that will run at PSI’s website. From this, we will be able to assess its possible value as an
operational tool. We are planning a more extensive study that will, hopefully, find independent criteria for
identifying those intervals that are likely to produce predictable future intervals.

Thus far, our limited attempts to identify a parameter capable of capturing the predictability of the interval
just observed have not been obviously successful. In this study, we focused on attempts to capture a measure
of large-scale variations (LSVs) during the window preceding the prediction. This was intended as a way to
identify current conditions (say in the last 24 h) that would be amenable to forecasting. Without it, the best
metric for estimating the accuracy of the current forecast lies in the breadth of the confidence intervals. If
large, the prediction is highly uncertain, but, if well constrained, the prediction is likely to be more accurate.
However, the degree to which this holds remains to be tested.

In closing, we have outlined here a simple technique for providing forecasts that, at least for some parame-
ters, are measurably better than our baseline model. It is unlikely that even sophisticated refinements to this
approach will take us beyond incremental improvements, given the underlying complexity in the solar wind
data. On the other hand, this model, even as currently implemented, may provide limited forecasts of value.
And, even if not, it serves as a new, higher baseline against which future models should be compared.
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