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Abstract: The enhanced permeability and retention (EPR) effect constitutes the 
rationale by which nanotechnologies selectively target drugs to tumors. Despite 
promising pre-clinical and clinical results, these technologies have, in our view, 
underachieved compared to their potential, possibly due to a suboptimal 
exploitation of the EPR effect. Here, we have systematically analyzed clinical data 
to identify key parameters affecting the extent of the EPR effect. An analysis of 17 
clinical studies showed that the magnitude of the EPR effect was varied and was 
influenced by tumor type and size. Pancreatic, colon, breast, and stomach cancers 
showed the highest levels of accumulation of nanomedicines. Tumor size also had 
an effect on the accumulation of nanomedicines, with large size tumors having 
higher accumulation than both medium- and very large- sized tumors. However, 
medium tumors had the highest percentage of cases (100% of patients) with 
evidence of the EPR effect. Moreover, tumor perfusion, angiogenesis, 
inflammation in tumor tissues, and other factors also emerged as additional 
parameters that might affect the accumulation of nanomedicines into tumors. At 
the end of the commentary, we propose two strategies for identification of suitable 
patient sub-populations, with respect to the EPR effect, in order to maximize 
therapeutic outcome. 

Keywords: cancer; targeted drug delivery; prodrugs; nanotechnology; 
pharmacokinetics;  

 
INTRODUCTION 
 
In the 1980s, Maeda and his group reported for the first time that a polymer-protein 
conjugate (a conjugate of styrene maleic anhydride and neocarzinostatin, 
SMANCS) accumulated preferentially in tumors1. They attributed this 
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phenomenon to the combination of increased extravasation (enhanced 
permeability) and decreased drainage by the lymphatic system (enhanced 
retention), and defined it ‘the enhanced permeability and retention’ (EPR) effect. 
At the time, a number of nanotechnologies (Fig. 1) had already been proposed 
and/or had been developed. Liposomes had been discovered in the mid 1960s, 
while polymer-drug conjugates had been proposed in the 1970s.2,3 The discovery 
of the EPR effect gave a much stronger rationale to the use of these 
nanotechnologies for cancer.  

Thirty years since the discovery of the EPR effect, nanotechnologies applied 
to medicines are expanding, with the number of publications including 
nanomedicines and cancer (Web of Science, topic) increasing over the last 10 years 
(Fig. 2), with a number of these being on the market for this therapeutic application 
(examples among polymer-protein conjugates include SMANCS and Oncaspar®; 
and for liposomes, see Doxil®, Marqibo®, and Onivyde®).4 However, it could also 
be argued that nanotechnologies have under-delivered on their original promise 
and the only polymer-drug conjugate on the market (Movantik®, Naloxegol, 
PEGylated naloxol) is marketed for non-cancer applications.5 

The study of Maeda et al, and subsequent studies, described the specific 
physiological characteristics of tumor blood vessels. Research in this field 
documented that the angiogenic blood vessels in many solid tumors are 
pathologically disorganized and have impaired lymphatic drainage, which leads to 
defects in tumor blood vessel architecture. This defect significantly enhances the 
release of large amounts of vascular permeability factors that, in turn, increase the 
permeability of tumor blood vessels to secure sufficient nutrition and oxygen 
supply required for cancer growth.6,7 The hyper-permeability of tumor vasculature, 
and the lack of lymphatic drainage, allow the passive and relatively selective 
accumulation of extravasated large molecules including proteins, liposomes, 
polymer-drug conjugates, micelles, and other nanoparticles in tumor tissues and 
reduces their clearance from the targeted tissues.8,9  

These pathophysiological features of tumor blood vessels have made the 
EPR effect a valuable targeting mechanism for cancer, where the aim is to allow 
nanocarriers to selectively enter tumor cells with no, or less, systemic side effects 
than those that are normally associated with conventional chemotherapeutic agents. 
10-12 Thirty years of research on the EPR effect are highlighting that this is a 
complex phenomenon. Indeed, recent studies showed that this effect is much more 
heterogeneous than previously considered.13-15  

In particular, the influences of the size and tumor type on the magnitude of 
the EPR effect have been reported in different in vivo studies.8,16  Many studies 
have suggested that the most important factors that may influence the EPR and its 
magnitude are: (i) the vasculature characteristics of the tumor tissue, (ii) the tumor 
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type, size, and location (iii) the patient’s characteristics including gender, age, and 
body composition.17,18 

In this commentary, clinical data relating to the EPR effect are analyzed, and 
the key parameters that control this phenomenon are highlighted.  Particular focus 
is given to determining factors that might guide patient selection for better 
utilization of the EPR strategy in cancer care.  
 
EPR MAGNITUDE AND TUMOR TYPE 

The first aspect considered in this study was to investigate the relationship between 
tumor type and the magnitude of the EPR effect. A systematic search was carried 
out using established search engines (Pubmed, Web of Science, and Science 
Direct) and the procedure is summarized in (Fig. 3). From the search, 24 studies19-

42 were identified which met the inclusion criteria, namely: (a) related to 
nanomedicine, (b) contained clinical data (c) related to solid tumors (d) contained 
data related to the magnitude of the EPR effect (either quantitative or qualitative). 
Data from these studies were assembled and analyzed as presented in (Fig. 4).  As 
the various studies used different techniques to quantify tumor accumulation (e.g. 
radio-labeling, detection by electron microscopy (EM), and chemical analysis), to 
allow a comparison, when possible (i.e data available), data were expressed as 
ratios (tumor/normal tissue content, T/N ratio), and normalized to account for the 
different sample size. A high ratio of tumor to normal tissue content of 
nanomedicines was considered indicative of their accumulation in tumor tissues, as 
a consequence of the EPR effect.  

From (Fig. 4), six tumor types displayed the highest levels of normalized 
T/N ratios of nanomedicine accumulation in comparison with other tumors. They 
were: i) pancreatic adenocarcinoma, ii) colon, colorectal, and rectal cancers, iii) 
breast cancers, iv) stomach cancer, v) brain cancer and brain metastases, vi) 
ovarian cancer. Similar results were found in our previous study,13 which, 
however, was largely qualitative and combined clinical with preclinical studies and 
contained data from a smaller sample of clinical studies (9 studies), where the 
accumulation of the nanomedicines and the EPR effect was observed in breast, 
ovarian, and lung cancers. Interestingly, another recent study analyzed 
retrospectively the accumulation of nanoparticles in animal models. This identified 
skin, pancreas, brain, and liver tumors as the types of tumors which had the highest 
% injected dose reaching the tumor (1.3, 0.8, 0.8, 0.7, respectively), with breast, 
cervix, prostate and colon, following at 0.6%.43 While comparing different studies 
and different methodologies can be challenging and lead to incorrect conclusions, 
these works raise the issue of the validity of animal models to represent the EPR in 
clinical scenarios. Indeed, one may think of many reasons why animal models do 
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not fully represent the clinical scenarios. The location, in which the xenograft is 
implanted, is driven more by the practical feasibility of scientists than their 
intention to mimic the actual site of the tumor. Therefore, the implanted xenografts 
usually lack tumor-stroma interaction, and consequently, they exhibit somewhat 
‘artificial interaction’ between the surrounding environment and the implanted 
tumor. This could greatly influence the accumulation of nanomedicines within 
these tissues and may not reflect their real behavior. Moreover, some anticancer 
agents are effective only against specific tumors, which does not allow the correct 
extrapolation of data from animal models.44,45 These and other factors are 
extensively discussed in another commentary.46 

It should also be noted that when looking at individual studies, a level of 
variability is found within a single tumor type, which can be very significant.13 
Doxil®/Caelyx® (PEGylated doxorubicin liposomes) has been used clinically to 
treat different tumors (e.g. metastatic breast cancer, ovarian cancer). In a study on 
patients diagnosed with primary glioblastoma and treated with radiolabeled 
Caelyx®, T/N count ratio range was 13-19, while in metastatic brain tumor, 
patients showed T/N count ratio range of 7-13, and 40% of the patients with 
metastatic brain tumor showed a complete response. A partial response was also 
detected in 40% of those patients, which would suggest that enough amount of the 
liposomes had reached the tumor.19 In another clinical study using a nanoemulsion 
containing paclitaxel to treat breast cancer, the EPR effect was observed but the 
extent varied (T/N ratio ranged from 2.3- 4.7).27 Similarly, the EPR effect was 
documented for an HPMA conjugate of doxorubicin (PK1) in breast cancer but 
with some variability, with 1.8% and 5.9% of the injected dose accumulating in the 
tumors of two patients.26 There were also instances in which a very high tumor 
accumulation was observed in single patients. For example, in a study with 
LipoPlatin® (liposomal Cisplatin), elevated levels of Pt have been detected in colon 
cancer tissues, where the average T/N ratio of Pt in a patient with 2 cancerous 
lesions was 172.2.34 

Interestingly, of all the tumor types for which data were available, only two 
(cholangio and oesophageal carcinoma) displayed no evidence of the EPR effect 
(i.e. normalized T/N ratio £1) and in both cases, data were only available from one 
study, on one patient31 (Fig. 4).  

 

EPR MAGNITUDE AND TUMOR SIZE  

Another factor that others have reported to affect the extent of the EPR effect is 
tumor size.8,47,48 However, studies reporting these correlations have mainly been 
based on animal models used to mimic the EPR effect, while limited studies have 
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systematically examined the influence of tumor size on the magnitude of the EPR 
effect. Therefore, in an attempt to establish quantitative relationships between the 
EPR effect and tumor size, here we looked at clinical data for normalized T/N 
ratios for tumors of different sizes (Fig. 5). It should be pointed out at the outset 
that most clinical studies on nanomedicines are carried out in patients with 
advanced (or fairly advanced) disease states. Indeed, we were unable to find any 
clinical studies on patients with small localized cancers (stage 1). Therefore, 
tumors were arbitrarily categorized depending on their stages or sizes into medium, 
large, and very large size tumors. Tumors were defined as follows: ‘medium’ if of 
stage ≤IIB and/or if area ≤25 cm2; ‘very large’ if they were on advanced stages (i.e. 
IIB/V stage, recurrent, unresectable, metastatic, etc) and/or if area ≥140 cm2. Large 
size tumors were in between the previous sizes.  

Tumors with large size showed the highest normalized T/N accumulation 
ratios of nanomedicines of 27.6, while medium and very large size tumors had 
normalized T/N accumulation ratios of 4 and 5.4, respectively. The magnitude of 
the EPR effect seemed to increase when the tumor size increased, then seemed to 
decrease above a certain size threshold (from large to very large).  However, it is 
important to note that when the same data were analyzed with respect to the 
percentage of patients that have at least a normalized T/N ratio of ≥2, the data 
appeared quite different with the smaller type of tumors having the highest 
proportion of patients with tumors displaying the EPR effect (virtually 100%). The 
normalized T/N ratio of ≥2 was arbitrarily chosen to highlight patients with a 
significant accumulation of nanomedicine within tumor tissue i.e. 2 folds greater 
accumulation comparison to the surrounding tissues. The proportions of large and 
very large tumors showing a normalized T/N ratio of ≥2 were 53% and 67%, 
respectively. This revealed that large tumors had a lot of accumulation of 
nanomedicines in comparison with other tumors, but only 53% of patients with 
these tumors displayed this effect. This indicates that large tumors may have high 
levels of accumulation of nanomedicines but with more heterogeneity of the EPR 
effect.   

In light of the previous information and other information from in vivo and 
clinical studies, it is difficult to identify the correlation between tumor size and 
EPR effect. In an in vivo study using nude mice bearing human head and neck 
cancer xenografts, small tumors showed the highest level of accumulation in 
comparison with other tumor sizes, and tumor uptake levels of the radiolabeled 
liposomes were inversely proportional to the tumor weight.49 These findings are in 
line with another in vivo study, where the accumulation of HPMA-Dox conjugate 
(PK1, FCE28068) was size-dependent in half of tested tumors; small tumors 
showed greatest uptake levels.8 Clinically, in HNC patients with average tumor 
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size of 36.2 ± 18 cm3, the uptake of radiolabeled liposomes was approximately 2 
and 7 fold more than the uptake in patients with NSCLC and breast cancers, 
respectively (their tumor sizes were 114.5 ± 42 cm3 and 234.7 ± 101.4 cm3 
respectively).23 However, in another in vivo study, the influence of tumor size on 
the uptake of  radiotracer uptake was limited.50 This was explained by the ability of 
small tumors to secrete proangiogenic factors and to have necrotic regions and 
networks of well-developed microvessels.51-53 This was in line with another clinical 
study, where the size of the sarcoma did not clearly affect the accumulation of 
radiolabeled Caelyx® in tumor tissues.41 It is noteworthy to highlight that the 
influence of the previous treatments/therapeutic cycles (such as chemotherapy, 
radiotherapy, and other treatments) on tumor size or condition was not considered 
in the analysis of clinical studies, as data were not available. However, most of the 
studies mentioned avoiding of temporal overlap with previous therapeutic cycles 
(typically at least a 3-4-week gap from the previous treatment).  

The lack of clinical data about the exact location of tumors has not allowed 
us to systematically assess the impact of this parameter on the accumulation of 
nanomedicines within the tumor tissues. However, in the pool of analyzed data, we 
observed that the accumulation of LipoPlatin® varied according to the site of the 
tumor, where the T/N ratio of Pt in two specimens taken from different locations of 
the stomach of the same patient ranged from 10 to 40.34 Potentially, it is important 
to consider the influence of this factor on the magnitude of the EPR effect.  

 Although documentation of the effect of tumor size and location on the 
tumor accumulation of nanomedicines is limited, their impact on the magnitude of 
the EPR effect could be another factor that may explain why some tumors are more 
clinically responsive to the treatment with nanomedicines than other tumors.  

  

IMPACT OF TUMOR PERFUSION ON THE EPR EFFECT 

Tumor angiogenesis and tumor perfusion 

As nanomedicines are carried to tumor tissues by the blood, it is intuitive that the 
magnitude of the EPR effect can potentially depend on tumor perfusion. Therefore, 
in this section, the influence of tumor perfusion on the magnitude of the EPR effect 
is analyzed. Angiogenesis is the process that tumors use to form new blood vessels 
and it is controlled by the secretion of the potent cytokine VEGF.54 However, the 
presence of new blood vessels in tumors does not necessarily correlate with an 
increased perfusion. For example, it has been reported that the secretion of VEGF 
in renal tumor tissues was 3-37 fold that in found normal renal parenchyma55. 
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However, the mean tumor perfusion was 0.97 ± 0.49 mL/mL/min, which was 
significantly lower than that in normal tissues (1.81 ± 0.48 mL/mL/min).56 This 
lack of direct correlation between angiogenesis in tumors and perfusion is most 
likely due to the heterogeneity of the tumor vasculatures (Fig. 6). Similar findings 
were found in other types of tumors such as lung carcinoma and transplanted 
hepatoma (in vivo)57 and pancreatic tumors (a clinical study).58 Interestingly, the 
use of antiangiogenic therapy was reported to enhance the sensitivity of tumor 
tissues towards chemotherapy as it enhanced tumor perfusion by shrinking tumor 
vasculature which resulted in improved tumor perfusion and drug uptake.59  

Therefore, understanding how the EPR effect varies according to human 
tumor blood flow (BF), and how this reflects on the localization of nanomedicines 
within tumor tissues, would allow a more appropriate use of nanomedicines and 
enhance their clinical outcomes. 

Effect of tumor type on tumor perfusion 

Tumors have different BF patterns, and their BF also differs from that in the 
surrounding normal tissues. This variation has affected the delivery of 
chemotherapeutic agents (including nanomedicines) to these tissues, and thus their 
efficacy.60 We identified 10 studies58,61-69 reporting data on blood perfusion in 
tumor tissues and in adjacent normal tissues, which allows calculation of T/N BF 
ratios. Table 1 summarizes the data per tumor type, stage, size, and location, when 
available. For breast cancer, 2 studies were available which both reported similar 
levels of T/N BF ratio (~5). This could be a possible explanation for the fact that 
breast cancer is one of the tumor types associated with high normalized T/N 
accumulation ratio. Similar considerations can be applied to colorectal cancer (T/N 
BF ratio ≥2). For other tumors (e.g. pancreatic tumors), drawing a conclusion is 
more complex as there was a level of variability in tumor perfusion among 
different studies (e.g. T/N BF ratio ranged from 0.27 to 2.24 in pancreatic 
tumors58,67) and the perfusion might be influenced by tumor size, stage, and 
location.  

Effect of inflammation and tumor perfusion  

There are pathological and physiological states that affect BF, and one such state is 
inflammation. Interestingly, increased BF is, indeed, a cardinal feature of inflamed 
tissues.70 Therefore the presence of inflammation in some tumors may be 
responsible for their enhanced perfusion.71,72 In addition, the co-presence of other 
disease states (co-morbidity) also can affect inflammation levels and subsequent 
BF in tumors. For example, it has been reported that the BF in HNC tumors with 
human papillomavirus infection (HPV) was higher than that in HPV-negative 
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tumors, which assumes that the inflammation accompanying the infection was 
responsible for their elevated BF.73 These data were in line with other animal 
studies which reported high localization of liposomes in inflamed tissues when 
compared with normal tissues.74-76 Another clinical study has shown that inflamed 
HNC and NSCLC had increased uptake levels of liposomes in comparison with a 
non-inflamed breast cancer which could be potentially linked to an increased BF in 
tumor tissues due to inflammation.23 However, it should also be noticed that tumor 
types and sizes in this study were also different. 

 

CONSIDERATION OF OTHER FACTORS AFFECTING THE CLINICAL 
APPLICATION OF NANOMEDICINES: 

The EPR effect is the key rationale for applying nanomedicines to tumor tissues. 
This commentary has focused entirely on it. However, the EPR effect is one of 
several additional factors that have a key impact on the therapeutic activity of 
nanomedicines.77-82 The whole process is summarized in (Fig. 7).  

 

PROPOSED STRATEGIES 

In this paper, we have highlighted how the EPR effect is affected by a number of 
factors which result in a high patient to patient variability in its magnitude. 
Appropriate patient selection is a key factor for the efficacy of therapy, and indeed, 
is carried out routinely in clinical settings (e.g. HER-2 screening prior to Herceptin 
use). As nanosized drug delivery systems rely on the EPR effect for activity, 
patient selection based on the magnitude of the EPR effect would be a logical step. 
However, this has, to date, been largely overlooked. Here, we indicate two possible 
strategies that could be used in the future to achieve rational administration of 
nanomedicines, both of which rely on identification of a patient sub-population in 
which the EPR effect is well expressed. These two strategies are summarized in 
(Fig. 8).  

The first possible strategy (Fig. 8A) consists of systematically producing 
radiolabeled analogs of each nanomedicine reaching the market place for cancer 
applications. Within this strategy, a radiolabeled analog of the nanomedicine could 
be given to a cohort of cancer patients individually, and its accumulation quantified 
in every patient. Patients showing evidence of accumulation (EPR +ve group) 
could then be treated with the nanomedicine, following standard protocols, while 
the patients with no evidence/or suboptimal level of nanomedicine accumulation 
could be moved to a different type of treatment. A similar approach has been used 
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in very early studies on polymer-drug conjugates, when researchers were still 
looking for evidence of the EPR effect (see the studies of radiolabeled HPMA 
copolymer-doxorubicin analogues24). Here we are proposing to systematically 
carry out these studies with the purpose of patient selection for suitability of the 
treatment.  

The second strategy we propose (Fig. 8B) consists of carrying out an 
extensive research program to identify possible biomarkers as predictors for the 
EPR effect. If such biomarkers were identified, prospective patients could be pre-
screened individually and only the sub-population showing the presence (or 
appropriate levels) of the suitable biomarkers for the EPR effect (EPR +ve 
patients) could then be treated with nanomedicines, while the others could follow 
alternative therapeutic approaches. 

 

CONCLUSIONS  

In conclusion, this commentary has highlighted the complexity of the EPR 
phenomenon and the key factors that influence its magnitude. Different factors 
have been shown to be important, and these include tumor features such as 
vasculature, type, and size, as well as patient characteristics. Tumor BF was also 
identified as an important factor. Moreover, other factors have been shown to play 
a critical role in the accumulation of nanomedicines within the tumor tissues. 
However, it is hard to provide a definite conclusion on the type of nanomedicine as 
a promising drug delivery system at least in the current period. This is due to the 
involvement of several factors that influence the characterization of nanomedicines 
and their activity, coupled with patient to patient variations, which eventually 
affect the extent of the EPR effect.  In our view, it is crucial to establish a pre-
screening mechanism that allows appropriate patient selection for macromolecular 
systems relying on the EPR effect, in order to maximize their accumulation within 
tumor tissues. However, one should be aware of the fact that even if the proposed 
strategy was successful in achieving this objective for a particular nanomedicine, 
there are other factors (mentioned above and in (Fig. 7)) that might affect the 
overall clinical outcomes.   
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Figure 1. Schematic representation of examples of nanomedicines used to treat cancer. 
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Figure 2. The number of clinical trials and publications of different nanomedicines (L: liposomes; M: micelles; 
PDCs: polymer-drug conjugates; NPs: nanoparticles; ADCs: antibody-drug conjugates; PPs: PEGylated proteins) in 
the last 10 years. A) Number of clinical trials of different nanomedicines investigated as anticancer agents 
(clinicaltrails.gov). B) Number of publications (Web of Science

®) in the area of nanomedicines for cancer 
(September 2016). Data indicate number of publications retrieved searching: “liposomes and cancer” (pink); 
“micelles and cancer” (teal); “polymer-drug conjugates and cancer” (dark red); “nanoparticles and cancer” (light 
blue); “antibody-drug conjugates and cancer” (orange); “PEGylated proteins and cancer” (violet). 
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Titles screened 

(n= 13968)

NoYes

Articles identified through database search
Search engines: Web of Science, Science Direct, Pubmed.

Search performed: 1 keyword form A and 1 keyword B (all 
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Figure 3. Flowchart summarizing the method employed for article selection in this study. 
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Figure 4. Normalized average T/N ratios of different nanomedicines accumulated in different tumors. The number 
between parentheses indicates the total number of evaluated patients, and the number above parentheses indicates 
the number of clinical studies of an individual tumor. *: In one study

29
, detection of nanoparticles (NPs) was lower 

than the limit of detection. In those cases, the presence of NPs in normal tissues was arbitrarily set at the limit of 
detection (i.e. the lowest number of NPs that could be detected). The red line indicates T/N ratio of 1 (i.e. columns 
above the red lines had a degree of preferential accumulation in the tumor).
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Figure 5. The effect of tumor size on the EPR effect19-23,26-29,31,33,34,36-38,40,41. A) Normalized average T/N ratios of 
different nanomedicines accumulated in tumors according to tumors size.  B) % of patients in each tumor size 
category who have T/N ratio ≥2. 
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Adequate blood supply

A)

Blood perfusion in normal tissues

Angiogenesis in 
tumor tissues 

Blood perfusion in 
tumor tissues

B)

Blood perfusion in tumor tissues  
Figure 6. Blood perfusion patterns in normal and tumor tissues.  A) In normal tissues, the normal vasculature 
maintains their adequate blood perfusion. B) The heterogeneity of blood vasculature in tumor tissues results in areas 
with poor blood perfusion and areas with newly formed blood vessels (angiogenesis).  
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Administration of a nanomedicine

Associated considerations/challenges

Design of a nanomedicine and the final formulation: 
stability (shelf life?), solubility (need co-solvent?)

Absorption If i.v: no absorption step
If other routes (biological barriers?)

Bio-distribution 
(EPR effect) Discussed in this commentary

Internalization into tumor cells

Location of targeted tissues
Stability in blood and prolonged circulation 

(bypassing uptake by RES)
Intracellular trafficking

Drug release Kinetic release profile of the drug
Dosing pattern of a nanomedicine

Steps of a nanomedicine to have a therapeutic effect 

Excretion 

Metabolism Toxic metabolites (nanotoxicological studies?)
Degradation kinetics 

Renal excretion (renal threshold?)

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 	
 

 
Figure 7. Factors influencing the clinical outcomes of a nanomedicine.77-82 RES: reticuloendothelial system 
(kidneys, spleen, and liver).  
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RADIOLABELED ANALOGUE
Companies prepare a radiolabeled analogue of each 

nanomedicine on the market

ADDITIONAL STUDIES 
Studies for identifying biomarkers for the EPR effect

PRE-SCREENING
Patient (with solid tumors potentially eligible for treatment with 

nanomedicines) pre-screened for the accumulation in the tumor 
tissues using  the radiolabeled analogue 

THERAPEUTIC DECISION 
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Patient pre-screening for biomarkers indicative of EPR effect 
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Figure 8. Proposed future strategy for a proper pre-selection of patients for effective treatment with nanomedicines. 
A) Screening of the accumulation of labeled nanomedicines administered in groups of patients (individually) to 
identify patients to be treated with nanomedicines. B) Identification and screening of specific biomarkers among 
patients to determine patients (individually) to be treated with nanomedicines. 
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Table 1. A summary of available clinical data about the variations in tumor perfusion according 
to tumor types, size, stage, and location. 

Tumor 
Type 

Tumor stage, size, or 
location 

Blood flow in 
tumor tissue 

Blood flow in 
normal tissue 

T/N 
blood 
flow 
ratio 

Ref 

Brain 
cancers 
and brain 
metastasis 

Untreated glioma stage I 44.3 ± 9 
mL/100g/min* 

95.3 ± 41 
mL/100g/min* 

0.53 61 

Untreated glioma stage II 48 ± 10.6 
mL/100g/min* 

68 ± 12.2 
mL/100g/min*  

0.7  61 

Untreated glioma stage III, 
IV, and metastases 

107.9 ± 57.39 
mL/100g/min* 

70.3 ± 20.6 
mL/100g/min* 

1.56  61 

Breast 
cancers 

NA 0.32 mL/g/min 0.06 mL/g/min 5.33 62 
1/III, 2/III, 3 /III 5.1 ± 2.8*a 1.28 ± 0.5*a 4.46 63 

Esophageal 
cancer 

Different stages with T2, 
T3, T4, N0, N1, N2, N3, 

M0, M1. 
Tumor length range (3–15 
cm) and median= 6.75 cm. 
Tumor volume range (10–
182 ml) and median= 31 

ml. 

77.5 ml/100 g/min  14.8 ml/100 g/minb 5.23 64 

Different stages with T3, 
T4, N0, N1. Tumor size 
range (30 –190 mm) and 

median= 67.5 mm  

72.4 ± 47.8 ml/100 
g/min* 

NA - 65 

Gastric 
cancers 

Cardia  28.9 ± 11.5mL/100 
g/min* 

24.6 ± 20.9 mL/100 
g/min* 

1.17 66 

Body 31.7± 19.6 mL/100 
g/min* 

41 ± 30.3 mL/100 
g/min* 

0.77 66 

Antrum and pylorus 28 ± 15 mL/100 
g/min* 

30.4 ± 14.4 mL/100 
g/min* 

0.92 66 

Whole stomach 30.3 ± 14.9 mL/100 
g/min* 

32.9 ± 25.7 mL/100 
g/min* 

0.92 66 

Tumor with lymph node 
metastases	

30.7 ± 12.4 mL/100 
g/min* 

32.2 mL/100 g/min 0.95 66 

Tumor without lymph node 
metastases	

31.1 ± 21.4 mL/100 
g/min* 

32.2 mL/100 g/min 0.96 66 

Early stage tumors 30.1 ± 29.2 mL/100 
g/min* 

32.2 mL/100 g/min 0.93 66 

Advanced stage tumors 30.9 ± 13.3 mL/100 
g/min* 

32.2 mL/100 g/min 0.96 66 

Pancreatic 
cancers 

Tumor classification: WHO 
1 

284 mL/100 g/min 130.4 mL/100 g/min 2.18 58 

Tumor classification: WHO 
2 

229.1 mL/100 g/min 130.4 mL/100 g/min 1.75 58 

Tumor classification: WHO 153.5 mL/100 g/min 130.4 mL/100 g/min 1.18 58 
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3 
Tumor diameter <2 cm 292 mL/100 g/min 130.4 mL/100 g/min 2.24 58 
Tumor diameter ≥2 cm 159.8 mL/100 g/min 130.4 mL/100 g/min 1.22 58 

Tumors with lymph node 
metastases 

141.6 mL/100 g/min 130.4 mL/100 g/min 1.08 58 

Tumors without lymph 
node metastases 

264 mL/100 g/min 130.4 mL/100 g/min 1.94 58 

Tumors with liver 
metastases 

122.8 mL/100 g/min 130.4 mL/100 g/min 0.94 58 

Tumors without liver 
metastases 

236.5 mL/100 g/min 130.4 mL/100 g/min 1.81 58 

All tumors (stages ≥IIB) 45.7 ± 18.2 
mL/min/dL* 

113.8 ± 48.2 
mL/min/dL* 

0.40 67 

Medium size tumorsc 51 ± 3.9 
mL/min/dL* 

113.8 ± 48.2 
mL/min/dL* 

0.51 67 

Large size tumorsc 21.1 ± 7.9 
mL/min/dL* 

113.8 ± 48.2 
mL/min/dL* 

0.34 67 

Very large size tumorsc 45.1 ± 7.4 
mL/min/dL* 

113.8 ± 48.2 
mL/min/dL* 

0.27 67 

Colorectal 
cancer 

NA 50 – 200 
mL/100g/min 

10 – 40 
mL/100g/min 

5 68 

Rectal 
cancer 

All tumors were on stages 
≥T3 with limited metastases 

(beyond rectal wall) 

60.3 ± 29.1 
mL/100g/min* 

31 ± 15.6 
mL/100g/min* 

1.94 69 

Abbreviations: BF: blood flow; *: data presented as (mean ± SD); a: relative BF; b: BF in paravertebral 
skeletal muscles; c: data calculated for tumors with identified stage. The size of tumors was considered as 
medium if tumors were on stage IIB or with low grade NET, as large if tumors were on stage III, and as 
very large if tumors were on stage IV or with high grade NET.  
 
 


