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The effect of introducing conformational information to the DASH implemen-

tation of crystal structure determination from powder diffraction data is

investigated using 51 crystal structures, with the aim of allowing increasingly

complex crystal structures to be solved more easily. The findings confirm that

conformational information derived from the Cambridge Structural Database is

indeed of value, considerably increasing the chances of obtaining a successful

structure determination. Its routine use is therefore encouraged.

1. Introduction

Global optimization (GO)-based methods of crystal structure

determination from powder diffraction data (SDPD) make

explicit use of a significant amount of chemical knowledge;

well characterized bond lengths and bond angles are typically

held as fixed values throughout the optimization. Further-

more, certain torsion angles (such as those spanning a double

bond) and certain components of molecules (for example,

cyclic groups) are often treated as fixed entities. Any

remaining torsion angles around which atoms are free to

rotate are treated as variables to be determined by the GO

procedure and are allowed to vary freely in the range of 0–

360�. Thus the conformational space of a molecule under

study is treated as a continuum, rather than as a sequence of

isolated conformations. This work sets out to improve the

performance of SDPD by implementing conformational

restraints or conformational bias, derived from observed

crystal structures stored in the Cambridge Structural Database

(CSD; Allen, 2002; Groom et al., 2016), to these freely varying

torsion angles.

The utility of conformational information as constraints

during crystal structure solution has long been recognized and

has found particular application in macromolecular crystal-

lography. For example, a protein molecule from a known

crystal structure is often used as a start point for the crystal

structure refinement of a distinct but closely related structure;

see for example Scapin (2013) and DiMaio et al. (2011) and

references therein. However, in the area of small-molecule

crystallography, and in particular SDPD, conformational

information has not been routinely employed, despite the fact

that some work has demonstrated that it can be beneficial

(CCDC, 2015; Florence et al., 2005; Middleton et al., 2002; Cole

et al., 2014). Generally though, this evidence base is not strong,

consisting of a few ‘one-off’ demonstrations and lacking
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detailed quantitative assessment of any performance gains

achieved.

Of particular interest is the easily accessible1 conforma-

tional information obtainable from the nearly 900 000 crystal

structures deposited in the CSD. All the tools necessary to

search for, retrieve and analyse the structures from which

relevant molecular geometry information can be derived are

provided with the Cambridge Structural Database System

(CSDS). With increasingly complex crystal structures being

attempted by SDPD, it is therefore timely to re-visit the

potential of exploiting conformational information in a more

systematic and wide-ranging study, to provide a definitive

report of its benefits.

2. Materials and methods

2.1. Selection and composition of powder X-ray diffraction
data sets

A recent publication (Kabova et al., 2017) described the

optimization of the key simulated annealing (SA) parameters

in DASH (David et al., 2006) using 101 crystal structures. All

those structures for which a success rate of less than 60% was
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Table 1
The 51 crystal structures used in this work.

Code Compound name CSD refcode Reference

A7 Zopiclone CUHNEY10 Borea et al. (1987)
A16 Tolbutamide ZZZPUS02 Donaldson et al. (1981)
A18 Pigment orange 36 (PO 36) HOYVOH van de Streek et al. (2009)
A19 {40-[2-(p-Tosylamino)benzylideneamino]-2,3-benzo-15-crown-5}-isothiocyanato-lithium RIFVEI Dorokhov et al. (2007)
A20 Famotidine FOGVIG03 Florence et al. (2003)
A21 Sotalol hydrochloride SOTALC Gadret et al. (1976)
A22 Glipizide SAXFED Burley (2005)
A23 Diltiazem hydrochloride CEYHUJ01 Kojicprodic et al. (1984)
A24 Zopiclone dihydrate UCUVET Shankland et al. (2001)
A25 Capsaicin FABVAF01 David et al. (1998)
A26 Pigment yellow (PY 181 polymorph �) GITWUC van de Streek et al. (2009)
A28 Sodium 4-[(E)-(4-hydroxyphenyl)diazenyl] benzene sulfonate dihydrate YAYWUQ Kennedy et al. (2001)
A30 Carbamazepine:indomethacin 1:1 LEZKEI Majumder et al. (2013)
A31 2-[3-(2-Phenylethoxy)propyl sulfonyl] ethyl benzoate BIFREO Florence et al. (2005)
A32 S-Ibuprofen JEKNOC10 Freer et al. (1993)
A33 Ampicillin trihydrate AMPCIH01 Burley et al. (2006)
A34 Verapamil hydrochloride CURHOM Carpy et al. (1985)
A35 Amodiaquinium dichloride dihydrate SENJIF Llinàs et al., 2006)
A36 Nifedipine (polymorph C) BICCIZ01 Bortolotti et al. (2011)
A37 N-[2-(4-Hydroxy-2-oxo-2,3-dihydro-1,3-benzothiazol-7-yl)ethyl]-3-[2-(2-naphthalen-1-

ylethoxy)ethylsulfonyl]propylaminium benzoate
PAHFIO Johnston et al. (2004)

A39 Cyheptamide TEVSOD01 Florence et al. (2008)
A40 Ornidazole NETRUZ Shin et al. (1995)
B21 Bis{40-[2-(p-tosylamino)benzylideneamino]-2,3-benzo-15-crown-5-N,N0,O}copper(II) RIFVAE Dorokhov et al. (2007)
B27 4-(Phenyldiazenyl)naphthalen-1-amine hydrochloride QIJCAN Yatsenko et al. (2001)
B31 Telmisartan (polymorph A) XUYHOO01 Dinnebier et al. (2000)
B34 Clarithromycin (polymorph I) NAVSUY02 Noguchi et al. (2012)
B35 Pigment orange 62(PO 62) HOYVUN van de Streek et al. (2009)
B36 Pigment yellow (PY 151) HOYWAU van de Streek et al. (2009)
B37 Pigment yellow (PY 154 polymorph �) HOYWEY van de Streek et al. (2009)
B38 Pigment yellow 194 (PY 194) HOYWIC van de Streek et al. (2009)
B39 2,4-Dinitro-N-phenyl-6-(phenylazo)benzamide IHESUJ Chernyshev et al. (2002)
B40 N-Methyl-2,4-dinitro-N-phenyl-6-(phenylazo)benzamide IHETEU Chernyshev et al. (2002)
B42 Trihexyphenidyl hydrochloride KUZDIT Maccaroni et al. (2010)
B43 N-(2-Methoxyphenyl)-2-(2-methoxyphenylazo)-4,6-dinitrobenzamide IHETAQ Chernyshev et al. (2002)
B44 Nimustine hydrochloride WAWZAX Bekö et al. (2012)
B45 (R)-1-Phenylethylammonium (R)-2-phenylbutyrate (polymorph II) PBUPEA01 Fernandes et al. (2007a)
B46 (R)-1-Phenylethylammonium (R)-2-phenylbutyrate (polymorph III) PBUPEA02 Fernandes et al. (2007b)
B47 Tetracaine hydrochloride XISVOK Nowell et al. (2002)
B48 �/�-Lactose LAKKEO Lefebvre et al. (2005)
B49 N-(6-Phenylhexanoyl)glycyltryptophanamide FEFNOV Bushmarinov et al. (2012)
B50 Pigment yellow 183 (PY183 polymorph �) HOMMEC01 Ivashevskaya et al. (2009)
B51 Pigment yellow 191 (PY191 polymorph �) HOMMIG01 Ivashevskaya et al. (2009)
B52 Pigment yellow 191 (PY191 polymorph �) HOMMOM01 Ivashevskaya et al. (2009)
B53 Lisinopril dihydrate GERWUX01 Sorrenti et al. (2013)
B54 Prednisolone succinate KIXDEB01 Nishibori et al. (2008)
B55 Cytenamide (polymorph II) SODNOP Florence et al. (2008)
B56 Carvedilol dihydrogen phosphate propan-2-ol solvate PUJTOE Chernyshev et al. (2010)
B57 Ritonavir YIGPIO01 Bauer et al. (2001)
B59 d-Sorbitol GLUCIT03 Rukiah et al. (2004)
B60 Chlorothiazide N,N-dimethylformamide solvate NILSEH Fernandes et al. (2007)
B61 1,2,3,-Tris(nonadecanoyl)glycerol (polymorph �) MEZNAG Helmholdt et al. (2002)

1 In the sense that there is no need to perform additional practical
experiments, e.g. solid-state NMR.
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obtained in that work [using the default DASH SA parameters

of cooling rate (CR) = 0.02, N1 = 20 and N2 = 25] were selected

for subsequent evaluation in this current work. Details of

these 51 structures are given in Table 1.

2.2. Software and hardware

The software and hardware employed in this work are

summarized in Tables 2 and 3.

2.2.1. Mogul. Mogul (Bruno et al., 2004) is a knowledge-

based library of molecular geometries derived from the CSD.

It acts as a source of information on preferred molecular

geometries and as such can be used to validate the geometry of

a solved structure. In the case of SDPD, our main interest is in

obtaining information on preferred conformations of a

molecule under study, based on the torsion angle distribution

information contained in Mogul.2 Taking the C6—C5—O2—

C20 torsion angle of verapamil hydrochloride (structure A34)

as an example, the distribution of structurally closely related

torsion angles (based on circa 11 100 CSD-deposited crystal

structures) is shown in Fig. 1. The distribution clearly shows

that this torsion angle is likely to adopt a value in the range

�20� to +20�, as approximately 95% of deposited crystal

structures with this structural feature fall into this range.

2.2.2. Use ofMogul distributions as hard constraints within
DASH. During the GO process, any torsion angle that is free

to rotate in the molecule under study can be subjected to a

Mogul query by pressing the ‘Modal’ button on the ‘parameter

bounds’ window of DASH (Fig. 2). From the results of the

Mogul query, a set of discrete constraints is derived. For

example, in the case of the C6—C5—O2—C20 torsion angle of

verapamil hydrochloride, only values in the ranges of 0� to

+20� and �20� to 0� are permitted (Fig. 3). The reduction in

search space from 360� to only 40� for one torsion angle is not

expected to have a notable impact on the overall success rate
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Figure 1
The Mogul-derived distribution (top) for the C6—C5—O2—C20 torsion
angle of verapamil hydrochloride (A34, bottom).

Table 2
Summary of software used in this work.

Software Version Application Reference

DASH 3.3.2 Indexing† David et al. (2006)
Space-group

determination‡
Pawley refinement
Structure solution

MDASH 3.1 Structure solution Griffin et al. (2009)

TOPAS 4.2 Indexing Coelho (2003)
Pawley refinement
Rietveld refinement

CSD 5.36 Model building Allen (2002)

MarvinSketch 6.0.5 Model building ChemAxon (2011)

ConQuest 1.17 Structure mining of CSD Bruno et al. (2002)

Mercury 3.3 Structure visualization Macrae et al. (2008)

Mogul 1.6 Structure verification Bruno et al. (2004)

Minitab 17.1.0.0 Statistical analysis Minitab (2010)

† Via interface to DICVOL91 (Boultif & Louër, 1991). ‡ With ExtSym as
implemented in DASH.

Table 3
Summary of hardware used in this work.

PC CPU RAM Operating system

1 Intel Core 2 Quad Q9400
(2.66 GHz)

4 GB Windows 7 Enterprise (64 bit)

2 2 � Intel Xeon E5520
(2.270 GHz)

32 GB Windows Server 2008 R2
Datacenter (64 bit)

3 2 � Intel Xeon E5-2630 v2
(2.60 GHz)

16 GB Windows 7 Professional
(64 bit)

4 2 � Intel Xeon E5-2630
(2.30 GHz)

16 GB Windows 7 Enterprise (64 bit),
Ubuntu 13.04 (32 bit)

Figure 2
The ‘parameter bounds’ window of DASH. Mogul constraints are applied
individually to each torsion angle in the form of modal distributions (see
Fig. 3) using the ‘Modal’ option adjacent to each torsion angle
description. In contrast, the MDB distributions are calculated auto-
matically for all torsion angles when the ‘Set MDB’ button is pressed.

2 A full Mogul geometry check of any input molecular model constructed for
GO-based SDPD is also highly recommended.
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in solving verapamil hydrochloride, but if similar Mogul-

derived restrictions are applied to all of the 14 variable torsion

angles in the molecule, then the total search space reduction

becomes more significant.

2.2.3. Use of Mogul distributions to bias parameter space
sampling within DASH. Mogul distribution bias (MDB) is an

alternative method of exploiting the Mogul-derived confor-

mational information. In contrast to the Mogul-derived

constraint approach, the MDB approach still samples the full

0–360� range for a torsion angle according to a Maxwellian

distribution. However, here the Maxwellian is binned and

multiplied by the value of the corresponding bin in the Mogul

distribution, to generate a new distribution which favours

moves to torsion angles in regions of space that are heavily

populated in the Mogul distribution. MDB is invoked within

DASH by pressing the ‘Set MDB’ button in the ‘parameter

bounds’ window (Fig. 2). This automatically performs the

necessary Mogul searches on all torsion angles that are free to

rotate in the molecule under study. Considering again the

C6—C5—O2—C20 torsion angle of verapamil hydrochloride,

the Mogul search returns a string [hidden to the interactive

user, but visible in the DASH batch file (DBF) that is gener-

ated for a batch run]: 4.6355 MDB -180 180 18 8072 2245

446 113 34 18 9 10 10 9 15 18 28 15 14 16 14 14, where

the initial torsion angle value3 is listed first, followed by the

instruction to use the MDB approach, the minimum and

maximum angular values, the number of bins in the prob-

ability histogram, and finally the number of observations in

each bin.

The MDB and Mogul hard constraints approaches intro-

duce the same underlying information in different ways,

resulting in a different exploration of �2 search space during

the SA.

2.3. Performance analysis

An empirical log-of-the-odds (ELO) analysis was

performed in order to evaluate any increase in the success rate

(SR) as a result of the conformational information introduced

by the use of Mogul.

The ELO, described by Cox & Snell (1989), can be written

as

ELO ¼ ln
SRi þ 0:5

100 � SRi þ 0:5

� �
: ð1Þ

Logistic regression was performed using Minitab. Full details

are given by Kabova et al. (2017).

3. Experimental

Following the protocol established previously, 50 SA runs

were initially executed on all structures, using optimized SA

control parameters of CR = 0.27, N1 = 73 and N2 = 56 (Kabova

et al., 2017). Each run was set to perform 1 � 107 SA moves

followed by a short simplex calculation. A �2 multiplier of 1

ensured the full number of SA steps was always carried out

and the SA was not prematurely terminated. Five hundred SA

runs of 5 � 107 moves were performed for compounds for

which no successful solution was observed in the initial 100 SA

runs. The MDASH utility (Griffin et al., 2009) was used to

distribute these longer runs over ten CPU cores. The option to

manually alter any of the torsion angle ranges suggested by

Mogul was not used. For consistency and to facilitate

comparison of success rates, the same values of the random

seeds in DASH were used throughout.
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Figure 3
The modal ranges suggested for the C6—C5—O2—C20 torsion angle of
verapamil hydrochloride (A34) based on the distribution shown in Fig. 1.
Note that the user has the option to change the values of the ranges if
desired. Note also that, for this particular torsion angle, the two ranges
are adjacent and so effectively form a unimodal range spanning �20� to
+20�, restricting the methyl group to be either 20� above or 20� below the
plane of the benzene ring.

Figure 4
A comparison of the performance models based on the ELO regressions.
The performance of the default DASH parameterization (CR = 0.02, N1 =
20, N2 = 25) with no conformational information is shown in purple, whilst
the green line shows the performance of the best performing DASH
parameterization (CR = 0.27, N1 = 73, N2 = 56) with the use of MDB. The
red line shows the best performing parameterization with Mogul
constraints, whilst the blue is the best performing with no conformational
information. Note that success rates shown here cannot be directly
compared with those reported by Kabova et al. (2017), as the data sets
used in the current work are those that exhibited low success rates in the
parameter tuning work reported by Kabova et al. (2017).3 This is the value of the torsion angle in the input model used by DASH.
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4. Results

The results are summarized in Table 4, which demonstrates

that considerable improvements in SR were observed when

the Mogul and MDB approaches outlined above were utilized.

The best fit lines from the ELO analysis performed on all the

results obtained in this work are shown in Fig. 4.

Table 4 also includes information on how well the Mogul-

derived distributions described the torsion angles present in

the molecules of the crystal structures being solved in this

work. Of the 453 variable torsion angles present:

(a) 309 were constrained to ranges that spanned the values

observed in the reference crystal structures.

(b) 49 were constrained to ranges which did not span the

values observed in the reference crystal structures.

(c) 95 could not be constrained on the basis of their Mogul

distributions, but were still available for use by MDB (with the

exception of the Mogul-filtered torsions).

5. Discussion

The overall benefit of using MDB or Mogul constraints during

the SA process is most clearly shown by the ELO analysis

(Fig. 4) performed on all the results obtained in this work. The

shift to the right of the fitted curves, relative to the conven-

tional DASH approach using optimized SA parameters, shows

the increased probability of solving a crystal structure owing

to the inclusion of Mogul-derived information. These gains,

which were obtained in combination with DASH’s optimized

SA parameters (Kabova et al., 2017), were also realized when

DASH’s default SA parameters were used [results not shown

here; see Kabova (2016) for full details].

Interestingly, the use of torsion angle constraints which did

not span the torsion angle values seen in the final crystal

structure did not necessarily preclude obtaining a good solu-

tion; the simplex minimization employed at the end of the SA

ignores the Mogul constraints and gives the possibility that the

correct torsion angle values can be recovered. For example,

with structure A36, five of the 12 torsion angle constraints did

not span the crystal structure values, but the mean absolute

angle difference was only 12.5�, and an increase in the SR with

both constraints and MDB was still seen. Unsurprisingly, the

MDB approach deals better with such cases than the

constraint-based approach; an MDB distribution does not

explicitly preclude a parameter taking an unlikely value

during the SA itself, it merely makes it less likely that it is

sampled.

Because of the chemical diversity of structures in the CSD,

and the numerous factors that influence their packing into a

crystal structure, it is inevitable that novel crystal structures

will possess torsion angles that are not well represented in the

CSD. Even though there are nearly 900 000 crystal structures

in the CSD,4 some torsion angles are only found in a very small

number of structures and so either their MDB influence on the

SA is minimal or no valid Mogul-derived constraints can be

derived. Table 4 shows, for each structure studied, the number

of torsion angles flagged as ‘no recommendation’ by Mogul,

when either the torsion angle of interest is poorly represented

in the CSD or the torsion angle distribution is nearly uniform.
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Table 4
Results obtained from all DASH runs, expressed as percentage success
rate.

DoFtot = total number of degrees of freedom; DoFtor = number of torsional
degrees of freedom; Ncorr = number of torsions in crystal structure lying within
the constrained range; Nincorr = number of torsions in crystal structure lying
outside the constrained range; NNR = number of torsions for which no Mogul
recommendation was made; Nfilter = number of torsion angles filtered by
Mogul.

Success rate (%)

No. DoFtot DoFtor Ncorr Nincorr NNR Nfilter

0.02/
20/25

0.27/
73/56 Mogul MDB

A7 10 4 3 0 1 0 48 78 98 100
A16 13 7 2 2 0 3 42 74 92 94
A18 14 8 7 0 0 1 4 6 24 32
A19 14 8 4 0 2 2 14 12 18 44
A20 15 9 6 0 3 0 34 88 92 88
A21 15 6 5 1 0 0 56 78 96 86
A22 16 10 8 2 0 0 28 74 94 98
A23 16 7 6 0 1 0 54 92 98 94
A24 16 4 2 1 1 0 50 84 44 48
A25 17 11 7 1 2 1 2† 24 4 6
A26 17 11 8 2 0 1 1† 10 30 2
A28 18 3 2 0 1 0 8 40 54 48
A30 18 6 4 0 1 1 34 56 56 20
A31 18 12 6 0 3 3 16 20 16 12
A32 20 8 8 0 0 0 18 54 74 70
A33 20 5 3 1 1 0 14 40 62 84
A34 22 14 12 1 1 0 4 36 60 28
A35 24 6 0 1 1 4 14 48 16 70
A36 24 12 5 5 2 0 46 72 80 98
A37 25 13 7 0 3 3 0 1† 0‡ 0.4‡
A39 28 4 1 3 0 0 1† 4 2† 4
A40 30 12 12 0 0 0 0.2‡ 4 0.2‡ 0.4‡
B21 10 4 0 0 2 2 44 60 96 96
B27 12 3 3 0 0 0 44 78 100 100
B31 13 7 3 1 3 0 58 50 98 96
B34 14 8 6 0 2 0 50 100 100 100
B35 14 8 8 0 0 0 14 48 100 100
B36 14 8 7 0 0 1 4 12 84 44
B37 14 8 7 0 0 1 12 30 100 100
B38 14 8 7 0 0 1 36 76 100 100
B39 14 8 7 0 1 0 4 14 98 96
B40 14 8 7 0 1 0 8 26 100 96
B42 14 5 1 2 2 0 20 44 42 6
B43 16 7 4 2 1 0 12 32 92 86
B44 16 7 1 0 2 4 8 48 56 66
B45 16 4 3 1 0 0 14 54 56 46
B46 16 4 3 1 0 0 4 70 80 60
B47 18 9 5 1 3 0 14 54 94 98
B48 20 8 5 3 0 0 4† 12 4 10
B49 20 14 11 1 2 0 0‡ 1† 1† 14
B50 21 6 3 1 1 1 0.2‡ 0† 10 8
B51 21 6 3 1 1 1 1† 6 86 78
B52 24 6 4 0 1 1 9.4‡ 18 68 56
B53 25 13 7 2 0 4 2 22 0† 46
B54 26 14 7 1 0 6 2‡ 1† 4 8
B55 28 4 0 4 0 0 4 90 78 90
B56 28 10 2 3 0 5 0‡ 0‡ 0.8‡ 0.4‡
B57 28 22 19 2 1 0 0‡ 0.4‡ 0‡ 1†
B59 33 15 15 0 0 0 0 0.4‡ 1.2‡ 2‡
B60 42 6 6 0 0 0 0.4‡ 1† 4.6‡ 5‡
B61 49 43 37 3 3 0 0‡ 0‡ 0‡ 0‡

4 February 2017 updated CSD v5.38.
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Such cases (around 10% of the total torsion angles of this

work) are treated as fully flexible by DASH. In the case of B57

[ritonavir form II, 28 degrees of freedom (DoF)], the complex

molecule was reported to have an unexpected conformation in

the crystal structure, as a result of a strong hydrogen-bonding

network (Bauer et al., 2001). Whilst the use of conformational

information did not allow DASH to solve the structure with

the use of its default SA settings, a solution was obtained with

the optimized SA parameters using both MBD and Mogul-

derived constraints, although the latter required the use of 500

SA runs.

When using Mogul-derived torsion angle information, it is

important to consider the way in which torsion angles are

defined in the input model Z-matrices.5 If, for example, the

input Z-matrix contains a torsion angle that is defined using at

least one hydrogen atom, then no Mogul distribution is

generated and potential information is lost.6 Taking B56 (a

structure for which no solution was obtained in the absence of

torsion angle information) as an example, five of the ten

torsion angles in the Z-matrix (as automatically generated by

DASH) are described with the use of a hydrogen atom and as

such are ineligible for inclusion in the Mogul/MDB distribu-

tions. This represents a considerable loss of information, but

despite this, two correct solutions were found using MDB with

500 SA runs. A simple workaround for this hydrogen-related

issue, when using a CIF input model, is to manually re-order

atoms in the CIF, such that all the hydrogen atoms appear at

the end of the atom list. Future releases of DASH may address

this issue by changing its Z-matrix generating code, or by

giving the option to include filtered results in a distribution.

The reduction in the SR observed for a small number of

compounds (e.g. A37, A40 and B60) must be addressed. In the

cases of A40 and B60, the DoF in the problem are largely

positional and orientational (18 out of 30 for A40, 36 out of 42

for B60), and as such they are not so heavily influenced by the

introduction of conformational information. Interestingly,

even when the correct conformations of the three independent

molecules of A40 are used as input, and held fixed throughout

the SA, DASH fails (with the default settings) to solve the

structure within 50 SA runs, indicating the extent of the

positional/orientational challenge for this structure.

6. Conclusions

This work represents a comprehensive study of the effects of

including conformational information, derived from the CSD,

on SDPD using the DASH program. The results provide

strong evidence that such information should be routinely

employed when faced with complex structures; the necessary

tools are already in place (the fully automated MDB option is

particularly convenient) and there is no significant computa-

tional overhead involved in its use. It is likely that other GO-

based approaches to SDPD can benefit from this type of

information and the tools provided in the CSDS are extremely

valuable in this regard.

7. Availability and documentation

Details of DASH’s availability can be found at https://www.

ccdc.cam.ac.uk/solutions/csd-materials/components/dash/.
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Boultif, A. & Louër, D. (1991). J. Appl. Cryst. 24, 987–993.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F.,

McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–
397.

Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S.,
Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. &
Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.

Burley, J. C. (2005). Acta Cryst. B61, 710–716.
Burley, J. C., Streek, J. van de & Stephens, P. W. (2006). Acta Cryst.

E62, o797–o799.
Bushmarinov, I. S., Dmitrienko, A. O., Korlyukov, A. A. & Antipin,

M. Yu. (2012). J. Appl. Cryst. 45, 1187–1197.
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