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Abstract 20 

Although non-parametric methods in genome-wide association studies (GWAS) are robust in 21 

quantitative trait nucleotide (QTN) detection, the absence of polygenic background control in 22 

single-marker association in genome-wide scans results in a high false positive rate. To overcome 23 

this issue, we proposed an integrated non-parametric method for multi-locus GWAS. First, a new 24 

model transformation was used to whiten the covariance matrix of polygenic matrix K and 25 

environmental noise. Using the transferred model, Kruskal-Wallis test along with least angle 26 

regression was then used to select all the markers that were potentially associated with the trait. 27 

Finally, all the selected markers were placed into multi-locus model, these effects were estimated 28 

by empirical Bayes, and all the nonzero effects were further identified by a likelihood ratio test for 29 

true QTN detection. This method, named pKWmEB, was validated by a series of Monte Carlo 30 

simulation studies. As a result, pKWmEB effectively controlled false positive rate, although a less 31 

stringent significance criterion was adopted. More importantly, pKWmEB retained the high power 32 

of Kruskal-Wallis test, and provided QTN effect estimates. To further validate pKWmEB, we 33 

re-analyzed four flowering time related traits in Arabidopsis thaliana, and detected some 34 

previously reported genes that weren’t identified by the other methods. 35 

Keywords: genome-wide association study, Kruskal-Wallis test, multi-locus model, empirical 36 

Bayes, polygenic background control 37 

38 
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Introduction 39 

The genome-wide association study (GWAS) has become a very effective approach to identifying 40 

the genetic loci associated with complex traits (Sladek et al., 2007; WTCCC, 2007; Li et al., 2013). 41 

Since the establishment of mixed linear model (MLM) based GWAS methods (Zhang et al., 2005; 42 

Yu et al., 2006), then there has been an increasing interest in using MLM in GWAS, because of 43 

their demonstrated effectiveness in accounting for relatedness between individuals and in 44 

controlling population stratification. This has stimulated the development of the MLM-based 45 

GWAS methods (Kang et al., 2008; Zhang et al., 2010; Lippert et al., 2011; Zhou and Stephens, 46 

2012; Segura et al., 2012; Wang et al., 2016). Furthermore, these methods have been widely used 47 

in GWAS; the loci identified in GWAS explain only a fraction of heritability of complex trait, 48 

indicating that additional loci influencing those traits exist. 49 

 50 
To increase the robustness of quantitative trait nucleotide (QTN) detection in GWAS, 51 

non-parametric approaches have been recommended. Up to now several existing non-parametric 52 

methods have been used to conduct GWAS. For example, Atwell et al. (2010) adopted Wilcoxon 53 

rank-sum test (Wilcoxon, 1945; Mann and Whitney, 1947) to carry out GWAS for 107 phenotypes 54 

in a common set of Arabidopsis thaliana inbred lines; the 107 phenotypes were re-analyzed by 55 

Kruskal-Wallis test (Kruskal and Wallis, 1952) and more significantly associated SNPs were 56 

identified as compared with those using efficient mixed model association (EMMA) (Filiault and 57 

Maloof, 2012); the Kruskal-Wallis test was also generalized to group uncertainty when comparing 58 

k samples, and one application to a GWAS of type 1 diabetic complications demonstrated the 59 

utility of the generalized Kruskal-Wallis test for study with group uncertainty (Acar and Sun, 60 

2013). Similarly, Beló et al.(2008) used Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 61 

1948) to detect an allelic variant of fad2 associated with increased oleic acid levels in maize, and 62 

Terao et al. (2014) and Tan et al. (2014) adopted Jonckheere-Terpstra test (Terpstra, 1952; 63 

Jonckheere, 1954) to detect a T allele of rs2395185 in human leukocyte antigen (HLA) locus and a 64 

T allele of rs1260326 and rs780094 in glucokinase regulatory (GCKR) loci, respectively. None of 65 

the above approaches have included population structure in their genetic model. Thus, Yang et al. 66 

(2014) integrated Anderson-Darling test with a population structure correction. This method was 67 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Stephens%20M%5Bauth%5D
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used to analyze 17 agronomic traits in maize, and some important loci were identified. In practice, 68 

the true model for a quantitative trait is rarely known, and model misspecification can lead to a 69 

loss of power. To address this issue, Kozlitina and Schucany (2015) proposed a rank-based 70 

maximum test (MAX3), which has favorable properties relative to other tests, especially in the 71 

case of symmetric distributions with heavy tails. We found that all the above methods have high 72 

false positive rates in our simulation experiments. To overcome this problem, multi-locus model 73 

methodologies should be recommended. For example, Li et al. (2014) proposed a two-stage 74 

non-parametric approach, in which all the markers potentially associated with quantitative trait are 75 

identified and their effects in one multi-locus model are estimated by shrinkage estimation for true 76 

QTN detection. However, none of the above methods have controlled polygenic background in 77 

single-marker association in genome scans. 78 

 79 
In this study, we proposed a two-stage method for multi-locus GWAS. First, the model 80 

transformation of Wen et al. (2017) was used to control polygenic background in single-marker 81 

association in genome scans. Using the transformed model, Kruskal-Wallis test along with least 82 

angle regression of Efron et al. (2004) was then used to select all the markers that were potentially 83 

associated with the trait. Finally, all the selected markers were placed into multi-locus model, 84 

these effects were estimated by empirical Bayes, and all the nonzero effects were further identified 85 

by a likelihood ratio test. Clearly, this method integrates the Kruskal-Wallis test with empirical 86 

Bayes under polygenic background control. This method, named pKWmEB, was validated by a 87 

series of Monte Carlo simulation studies and real data analyses for four flowering time related 88 

traits in Arabidopsis. 89 

Materials and Methods 90 

The Arabidopsis thaliana dataset 91 

The Arabidopsis thaliana dataset was downloaded from http://www.arabidopsis.usc.edu/ (Atwell 92 

et al., 2010) and used to conduct simulation experiments and real data analysis. This dataset 93 

contained 199 accessions each with 216130 genotyped SNPs. 94 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kozlitina%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26426896
https://www.ncbi.nlm.nih.gov/pubmed/?term=Kozlitina%20J%5BAuthor%5D&cauthor=true&cauthor_uid=26426896
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Genetic model and model transformation 95 

The standard mixed linear model (MLM) for an 1n  phenotypic vector y  of quantitative trait is 96 

    y 1 G εv ZuQ                                (1) 97 

where n  is the number of individuals;   is a 1n  vector of 1;   is overall average; Q  is an 98 

n c  matrix of fixed effects, including population structure (Yu et al., 2006) or principle 99 

component (Price et al., 2010), and v  is a 1c  vector of fixed effects excluding the intercept  ; 100 

G  is an 1n  vector of putative QTN genotypes, and   is fixed effect of putative QTN; 101 

2~ MVN ( , )m gu 0 K  is an 1m  vector of polygenic effects, K is an m m  kinship matrix, 2

g  is 102 

polygenic variance, and MVN denotes multivariate normal distribution;  ij n m
z


Z  is the 103 

corresponding designed matrix for u , 1ijz   if individual i comes from family j ( 1, ,j m ) and 104 

0ijz   otherwise; and 2~ MVN ( , )n e nε 0 I  is an 1n  vector of residual errors, 2

e  is residual error 105 

variance, 
nI  is an n n  identity matrix. To simplify population structure, let m n  and 

nZ I  106 

in this study (Atwell et al., 2010). Note that the observed data is (y, G), matrices Q and K can be 107 

calculated from G, and the parameters to be estimated are μ, v, β, 2

g  and 2

e . 108 

 109 
Based on model (1), phenotypic values y  were affected by population structure, QTN and 110 

polygenes. In other words, a nonparametric test for k samples cannot be directly applied. Thus, we 111 

must remove the effects for population structure and polygenes before using a nonparametric test. 112 

 113 
Population structure correction 114 

If we delete G  and Zu  in model (1), its reduced model is 115 

 y 1 εQv
                                  

(2) 116 

Using least squares method, the effect of v , denoted by v̂ , can be estimated from y , Q  and 1 . 117 

Thus, we can correct the effect of population structure from 118 

-
ˆ

Q      y y 1 G εv ZuQ                            (3) 119 

 120 
Polygenic background correction 121 

Based on model (3), the variance of 
-Qy  is 122 
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2 2

-

2

Var( )

( )

T

Q g e n

T

e g n

 

 

 

 

y ZKZ I

ZKZ I
                           (4) 123 

where 2 2

g g e   . Using the EMMA algorithm of Kang et al. (2008), the estimate of 
g , denoted 124 

by ˆ
g , can be easily obtained. Replacing g  in (4) by ˆ

g , so 125 

2 2

-
ˆVar( ) ( )T

Q e g n e    y ZKZ I B                       (5) 126 

where ˆ T

g n B ZKZ I . An eigen decomposition of positive semi-definite matrix B  is 127 
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
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Λ 0 Q
Q Q

0 0 Q

QΛ 0 Λ 0
Q Q

Q0 0 0 0

Q QΛ 0 Λ 0
Q Q Q Q

Q Q0 0 0 0

Q Λ Q Q Λ Q

             (6) 128 

where 
BQ  is orthogonal, 

rΛ  is a diagonal matrix with positive eigen values, ( )r Rank B , 
1Q  129 

and 
2Q  are the n r  and ( )n n r   block matrices of 

BQ , and 0  is the corresponding block 130 

zero matrix (Wen et al., 2017). 131 

 132 

Let 
1
2

1 1

T

r


C Q Λ Q , a new model with polygenic background control is 133 

c c c c   y 1 G ε                                 (7) 134 

where -c Qy Cy , 
c 1 C1 , 

c G CG  and  c  ε C Zu ε . Clearly, the observed data is (
cy ,

cG ), 135 

and the parameter to be estimated is β. Using ˆ
g g  , equation (6) and 

1 1

T

rQ Q I , so 136 

   
1 1 1 1
2 2 2 2

2

2

2

1 1 1 1 1 1 1 1

2

ˆVar( ) ( )T T

c e g n

T

e

T
T T T T

e r r r r

e n

 







 

 



 
   



ε C ZKZ I C

CBC

Q Λ Q Q Λ Q Q Λ Q Q Λ Q

I

 137 

It should be noted that model (7) includes QTN variation and normal residual error (Wen et al., 138 

2017). Although the polygenic background has been corrected, non-parametric test cannot be 139 

implemented owing to continual cG  values. 140 

Kruskal-Wallis test 141 
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Based on model (7), we used Kruskal-Wallis test to detect whether one SNP was associated with 142 

the trait. However, the values of 
cG  were not binary variable. Thus, we must transfer 

cG  into 143 

binary variable. Let  =c ij n p
g


G ,  * *=c ij n p

g


G , p  is the number of QTNs under study and 144 

1

1 n

j ij

i

g g
n





  , so 145 

*
1

=
1,

ij j

ij

ij j

g g
g

g g







 

，
                                            (8) 146 

Therefore,  *,c cy G  is the dataset for Kruskal-Wallis test. All the transferred phenotypes cy  147 

were grouped by the values of *

cG . In this situation, there are two groups for the transferred 148 

phenotypes cy . In the two groups, let their sizes be in , and their cumulative distribution 149 

functions be ( | )i iF y   (i=1, 2). The null hypothesis for Kruskal-Wallis test was 150 

0 1 2 1 1 2H : ;  H :                                        (9) 151 

When precise category assignment of *

cG  is available, Kruskal-Wallis test for (9) is conducted by 152 

ranking all the transferred phenotypes cy  together and comparing the rank sum for each group. If 153 

0 1 2H :  , so the estimate for β in equation (7) equals to zero. The statistic H 154 

22

1

12
H 3( 1)

( 1)

i

i i

R
n

n n n

  

                                     

(10) 155 

follows an asymptotic 2  distribution with one degree of freedom (Kruskal, 1952), where jr  is 156 

the rank of the jth phenotype of cy  in the overall sample; and 
1

R I
n

i ij j

j

r


  ( i =1, 2), Iij  is an 157 

indicator variable, I 1ij   if the jth phenotype of cy  belongs to the ith group and I 0ij   158 

otherwise; and 
1

I
n

i ij

j

n


 . 159 

Empirical Bayes estimation for QTN effects 160 

In GWAS, the number of SNPs is frequently 1000 times larger than sample size. In this situation, 161 

fitting all the genome markers in one model is not feasible. As we know, most SNPs are not 162 

associated with the trait. Once we delete these SNPs with zero effects, the reduced model is 163 

estimable. The purpose of the above Kruskal-Wallis test is to select all the potentially associated 164 
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SNPs. If the number of markers passing the 0.05 level of significance test is more than io  165 

( 50,  100io   and 150), we invoke least angle regression (LARS) of Efron et al. (2004) to select 166 

io  variables that are most likely associated with the trait of interest. LARS is a flexible method 167 

for variable selection, which is implemented by lars package in R language 168 

(http://cran.r-project.org/web/packages/lars/). The io  markers are then included in a multi-locus 169 

model. If the number of markers passing the initial test is less than io , we skip the LARS step and 170 

proceed to include all the selected markers in a multi-locus model 171 

1

q

i i

i

 


  y 1 G ε
 
                                  (11) 172 

where y , 1 ,   and ε  are the same as those in model (1); q  is the number of markers 173 

selected in Krusal-Wallis test; i  is the effect for marker i, and 
iG  is the corresponding 174 

designed matrix for i . Clearly, the observed data is (y, 1, , qG G ), the parameters to be 175 

estimated are 1, , q  . In model (11), the polygenic background is not considered. In theory, this 176 

is because all the potentially associated loci have been included in this model. However, we 177 

should determine whether population structure is considered. To solve this issue, the linkage 178 

disequilibrium score regression test of Bulik-Sullivan et al. (2015) is used (see Discussion). In the 179 

selection of markers, a less stringent criterion is adopted. 180 

 181 
Empirical Bayes of Xu (2010) was used to estimate the SNP effects in model (11). In this method, 182 

each SNP effect i  is viewed as random. We adopt normal prior for i ,  2 2P( | )=N 0,i i i   , and 183 

the scaled inverse 2  prior for 2

i ,  
 1

2
- 2

2 2

2
P( | , ) exp

2
i i

i

 
   



  
  

 
, where  ,    0,0 , 184 

which represents the Jeffreys’ prior (Figueiredo, 2003), 2 2P( | , )=1i i    . The procedure for 185 

parameter estimation in empirical Bayes is as follows. 186 

1) Initial-step: To initialize parameters with 187 

   

     

2

2
-1 -1

2 2

1

T

T

e

T T T

i i i i i i e

n

n



  

  



  

   
  

1 y

y 1 y 1

G G G y 1 G G

 188 
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2) E-step: marker effect can be predicted by 189 

   2 1E T

i i i   G V y 1                                (12) 190 

where 2 2

1

q
T

i i i e

i

 


 V G G I . 191 

3) M-step: To update parameters 2

i ,   and 2

e  192 

 

 

   

2

1 1

2

1

E
=

+3

1
E

T

i i

i

T T

q
T

e i i

in

  






   


 







 
    

 


1 V 1 1 V y

y 1 y 1 G

                       (13) 193 

where        E E E tr varT T

i i i i i         ,   2 2 1 2var T

i i i i i i    I G V G  and  , (0,0)   . 194 

Repeat E-step and M-step until convergence is satisfied. 195 

 196 

Owing to 50,  100 and 150io  , so three models would be established by the above procedures. 197 

Their AIC values were calculated in order to pick up an optimal model. 198 

Likelihood ratio test 199 

Based on the estimate of marker effect 
i  in the optimal model, all the markers with 4ˆ 10ib -£  200 

are deemed not to be associated with the trait. The other markers with the effects  (1) ( ), , O    201 

are potentially associated with the trait. To test the null hypothesis 0 ( )H : 0i  , which is no QTN 202 

linked to the ith marker, LR test was conducted by 203 

 LR 2 L( ) L( )i i            (14) 204 

where  (1) ( 1) ( 1) ( ), , , ,
T

i i i O       ， , 2

1 1

L( ) ln ( ; , )
n O

i o o e

i o

y    
 

  1 G  is log- likelihood function, 205 

2

1

( ; , )
O

i o o e

o

y   


1 G  is a normal density with mean 
1

O

o o

o

 


1 G  and variance 2

e , and 206 

LOD LR 4.605 . Although the general 0.05 critical value may be used for significance test, we 207 

decided to set up a slightly more stringent criterion of LOD=3.0. The criterion is frequently 208 
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adopted in linkage analysis and is the equivalent of 2

1P Pr( 3.0 4.605) 0.0002    , in which 2

1  209 

under 0H , follows a 2  distribution with one degree of freedom. 210 

 211 
The flow diagram of pKWmEB is shown in Fig 1. pKWmEB has been implemented in R and its 212 

software can be downloaded from https://cran.rproject.org/web/packages/mrMLM/index.html. 213 

Genome-wide efficient mixed model association (GEMMA) 214 

This is an existing GWAS method (Zhou and Stephens, 2012) and used as a gold standard for 215 

comparison. This method is the fixed model version of the original MLM, in which 
i  was 216 

treated as fixed effect with no distribution assigned. The method was implemented in the C 217 

software GEMMA (Zhou and Stephens, 2012) (http://www.xzlab.org/software.html). The 218 

threshold of P-value was set as 0.05/p after Bonferroni correction for multiple tests, where p is the 219 

number of markers. 220 

Monte Carlo simulation experiments 221 

Five Monte Carlo simulation experiments were used to validate pKWmEB. In the first experiment, 222 

all the SNP genotypes were derived from 216,130 SNPs in Atwell et al. (2010) and 2000 SNPs 223 

were randomly sampled from each chromosome. The positions for the sampled SNPs were 224 

described by Wang et al. (2016). The sample size was the number of accessions (199) in Atwell et 225 

al. (2016). Six quantitative trait nucleotides (QTNs) were simulated and placed on the SNPs with 226 

allelic frequencies of 0.30; their heritabilities were set as 0.10, 0.05, 0.05, 0.15, 0.05 and 0.05, 227 

respectively; and their positions and effects were listed on Table S1. Using 228 

2 2 2 2( )T G G eh     0.05 4 0.10 0.15 0.45      and residual variance 2 10.0e  , total genetic 229 

variance for six simulated QTNs ( 2

G ) and individual genetic variance for each simulated QTN 230 

( 2

r , 1, ,6r  ) could be obtained. 2

r  was a function of QTN effect and frequency of common 231 

allele. Thus, QTN effect could be obtained. The average was set at 10.0. The new phenotypes 232 

were simulated by the model: 
6

1

i i

i

y x b 


   , where ~ MVN (0,10 I )n n  . The simulation 233 

was replicated 1000 times. In the Kruskal-Wallis test, the io  most associated SNPs were selected 234 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Stephens%20M%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Stephens%20M%5Bauth%5D
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and placed into multi-locus model. A detected QTN within 1 kb of the simulated QTN was 235 

considered to be a true QTN. For each simulated QTN, we counted the samples in which the LOD 236 

statistic exceeded 3.0. The ratio of the number of such samples to the total number of replicates 237 

(1000) represented the empirical power of this QTN. False positive rate (FPR) was calculated as 238 

the ratio of the number of false positive effects to the total number of zero effects considered in 239 

the full model. To measure the variance and bias of gene effect estimate, mean squared error 240 

(MSE) 241 

1000
2

( )

1

1 ˆMSE ( )
1000

k k i k

i

 


                             (15)

 

242 

was calculated, where ( )
ˆ

k i  is the estimate of k  in the ith sample. 243 

 244 
To investigate the effect of polygenic background on pKWmEB, polygenic effects were simulated 245 

in the second experiment by multivariate normal distribution 2MVN (0, )n pg K , where 2

pg  is 246 

polygenic variance and K  is kinship matrix between a pair of individuals. Here 2 2pg  , so 247 

2 0.092pgh  . The QTN size (h2), average, residual variance, and other parameter values were the 248 

same as those in the first experiment, and all the parameters were listed on Table S2. The new 249 

phenotypes were simulated by the model: 
6

1

i i

i

y x b u 


    , where ~ MVN (0,2 )nu K  250 

and ~ MVN (0,10 I )n n  . 251 

 252 
To investigate the effect of epistatic background on pKWmEB, three epistatic QTNs were 253 

simulated in the third simulation experiment. The related parameters for the three epistatic QTNs 254 

were described in Wang et al. (2016). The QTN sizes (h2), average, residual variance, and other 255 

parameter values were also the same as those in the first experiment, and all the parameters were 256 

listed on Table S3. The new phenotypes were simulated by 
6 3

1 1

( # )i i j j jj

i j

y x b A B b 
 

     , 257 

where ~ MVN (0,10 I )n n  , jjb  is the epistatic effect and #j jA B  is its incidence coefficient. 258 

 259 
All simulated data sets are available from http://dx.doi.org/10.5061/dryad.sk652 (the Dryad 260 

Digital Repository). 261 
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 262 
To investigate the effect of skewed phenotypic distribution on pKWmEB, normal distribution for 263 

residual error in the first simulation experiment was replaced by log-normal distribution in the 264 

fourth simulation experiment and logistic distribution in the fifth simulation experiment, and other 265 

parameter values were the same as those in the first simulation experiment. To let residual error 266 

variance be 10, the standard deviation was set at 1.144 in log-normal distribution and 1.743 in 267 

logistic distribution. The means for the two skewed distributions were also zero. The two 268 

simulation datasets were included in Dataset S2. 269 

Results 270 

Monte Carlo simulation studies 271 

Statistical power for QTN detection    To validate pKWmEB, five simulation experiments were 272 

conducted. In the first simulation experiment, each sample was analyzed by five methods: 273 

pKWmEB, the new method without polygenic background control (KWmEB), Kruskal-Wallis test 274 

with Bonferroni correction (KWsBC), genome-wide efficient mixed model association (GEMMA), 275 

and multi-locus random-SNP-effect mixed linear model (mrMLM). All the power results are 276 

shown in Table S1 and Fig 2a. Clearly, the average powers for the above five methods were 69.8, 277 

67.3, 60.7, 46.0 and 68.6 (%), respectively, indicating the highest average power of pKWmEB 278 

(Fig 2a). More importantly, the power using pKWmEB was significantly higher than those using 279 

KWmEB and GEMMA (Table 1). Note that there were four QTNs with the same 5% heritability. 280 

The standard deviation of powers across the four QTNs might be used to measure the robustness 281 

of each method. As a result, the standard deviation was 13.01 for pKWmEB, 11.98 for KWmEB 282 

and 10.57 for mrMLM, which were much less than 35.17 for KWsBC, indicating the better 283 

stability of pKWmEB. On one occasion, the power for the fifth QTN using pKWmEB was 47.7% 284 

less than that using KWsBC. To further confirm the effectiveness of pKWmEB, polygenic effect 285 

simulated by multivariate normal distribution (r2=9.2%) was added to each phenotypic observation 286 

in the second simulation experiment and the polygenic background was replaced by three epistatic 287 

QTN (r2=15%) in the third simulation experiment. These results are listed in Tables S2 and S3, 288 

which show that the average powers for the above five methods were 69.1, 67.7, 58.9, 42.5 and 289 
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67.6 (%) in the second simulation experiment (Table S2, Fig 2b), and 61.9, 59.9, 54.9, 39.1 and 290 

58.9 (%), respectively, in the third simulation experiment (Table S3, Fig 2c). The standard 291 

deviation of statistical powers among all the 5% QTNs was 21.31 for pKWmEB and 31.39 for 292 

KWsBC in the second simulation experiment, and 15.05 for pKWmEB and 40.77 for KWsBC in 293 

the third simulation experiment. Similarly, the power for the fifth QTN using pKWmEB was 47.2 294 

and 68.3 (%) less than those using KWsBC in the second and third simulation experiments, 295 

respectively. In addition, residual error distributions in the above three experiments were replaced 296 

by log-normal (the fourth simulation experiment) and logistic (the fifth simulation experiment) 297 

distributions. The average powers for the above five methods were 76.2, 74.4, 80.1, 53.9 and 78.3 298 

(%) in the fourth simulation experiment (Table S4, Fig 2d), and 68.7, 66.9, 60.9, 44.1 and 68.0 299 

(%), respectively, in the fifth simulation experiment (Table S5, Fig 2e). Similar phenomena were 300 

observed for the fifth QTN and the standard deviation of statistical powers across all the 5% QTNs 301 

in the last two experiments. In summary, pKWmEB with polygenic background control is better 302 

than KWmEB without polygenic background control; pKWmEB retains the high power of 303 

KWsBC, and it is better in the stability of statistical power than KWsBC. 304 

 305 
Accuracies of estimated QTN effects    The accuracy of QTN effect estimation was measured 306 

by mean squared error (MSE) and smaller MSE indicates higher accuracy of parameter estimation. 307 

All the MSE results from four approaches in the five simulation experiments are shown in Fig 3 308 

and Tables S6 to S10, because KWsBC doesn’t provide the estimates for QTN effects. Results 309 

showed that the average MSEs using pKWmEB, KWmEB, GEMMA and mrMLM were 0.0797, 310 

0.0825, 0.5467 and 0.0940 in the first simulation experiment, respectively, indicating the 311 

minimum average MSE of pKWmEB (Fig 3a and Table S6). More importantly, the MSE using 312 

pKWmEB was almost significantly less than that using GEMMA (Table 1). Almost similar trends 313 

were found in the other simulation experiments (Tables S16 to S19, Fig 3a to 3e). Average value 314 

of each QTN effect across 1000 replicates was listed in Tables S11 to S15. These results were also 315 

confirmed the above trends. 316 

 317 
False positive rate (FPR)    The FPR is similar to the empirical Type 1 error rate. The FPRs in 318 

all the five simulation experiments were 0.0356 ± 0.0085 (%) for pKWmEB, 0.0385 ± 0.0073 (%) 319 
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for KWmEB, 0.6130 ± 0.1644 (%) for KWsBC, 0.0290 ± 0.0094 (%) for GEMMA and 0.0214 ± 320 

0.0043 (%) for mrMLM (Fig 4 and Tables S1 to S5). In summary, the FPRs are less than 0.05 % 321 

for pKWmEB, KWmEB, mrMLM and GEMMA, and more than 0.6 % for KWsBC, indicating the 322 

best FPR control of pKWmEB even if a less stringent significant criterion was adopted. 323 

 324 
Computational efficiency    Each sample in the first simulation experiment was analyzed by 325 

pKWmEB, KWmEB, KWsBC, mrMLM and GEMMA. These analyses were implemented on the 326 

computer (Intel(R) Xeon(R) CPU E5-2637 v2 @ 3.50GHz CPU). As a result, the computing times 327 

using the above five methods were 35.30, 35.20, 32.63, 13.08 and 1.63 (hours), respectively (Fig 328 

S1). Although pKWmEB runs slightly longer than KWsBC, pKWmEB has significantly lower 329 

FPR than KWsBC. 330 

Real data analysis in Arabidopsis thaliana 331 

Four flowering time related traits in Arabidopsis thaliana derived from Atwell et al. (2010) were 332 

re-analyzed by pKWmEB, KWmEB, mrMLM and GEMMA. The four flowering time related 333 

traits were FLC gene expression (FLC), FRI gene expression (FRI), days to flowering of plants 334 

grown in the field (FT Field) and days to flowering growth in greenhouse (FT GH). We also 335 

downloaded the results of EMMA from Atwell et al. (2010), with the significance criterion of 336 

Bonferroni correction (0.05/p, p is the number of markers). All the results are listed in Table S23. 337 

Results showed that the numbers of SNPs significantly associated with the four traits were 80 for 338 

pKWmEB, 77 for KWmEB, 56 for mrMLM and 53 for GEMMA. 339 

 340 
These significantly associated SNPs were used to mine candidate genes associated with the traits. 341 

These candidate genes were compared with those in previous studies. All the previously reported 342 

genes detected by the above four methods are listed in Table S24. As a result, 23, 16, 10 and 5 343 

previously reported genes were found to be in the region of the significantly associated SNPs 344 

detected by pKWmEB, KWmEB, mrMLM and GEMMA, respectively (Table S23), indicating 345 

that pKWmEB identified the most previously reported genes. Among these known genes, five 346 

were identified only by pKWmEB and were not included in the list of the previously reported 347 

genes in Atwell et al. (2010) (Table 2). 348 
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Discussion 349 

Recently, our group has developed several multi-locus GWAS methods, i.e., mrMLM (Wang et al., 350 

2016), FASTmrEMMA (Wen et al., 2017), ISIS EM-BLASSO (Tamba et al., 2017) and 351 

pLARmEB (Zhang et al., 2017). Actually, these are parametric methods. As we know, 352 

nonparametric GWAS methods are also very useful in GWAS. However, polygenic background in 353 

the nonparametric methods isn’t controlled, so their FPRs are high. To overcome this issue, we 354 

developed pKWmEB in this study. In addition, pKWmEB can find some previously reported 355 

genes that aren’t detected by parametric methods (Table 2). 356 

 357 
No existing nonparametric methods in GWAS have considered polygenic background control. 358 

This leads to the inflation of false positive rate. To overcome this issue, the model transformation 359 

of Wen et al. (2017) is used to whiten the covariance matrix of the polygenic matrix K and 360 

environmental noise. Meanwhile, genotypic incidence matrix and phenotypes are also transferred. 361 

Owing to continually transferred genotypic values, it is necessary to change the transferred 362 

genotypic values into binary variables (1 and -1) in order to carry out Kruskal-Wallis test. The 363 

question is how to conduct this transfer. If the values are larger than their mean or median, the 364 

values are transferred into 1. If the values are not larger than their mean or median, the values are 365 

transferred into -1. Thus, new incidence values are obtained. These new incidence values along 366 

with new phenotypes are used to conduct the Kruskal-Wallis test. Using this test, all the markers 367 

potentially associated with the trait are identified. These selected markers are placed into a 368 

multi-locus model, and original genotype and phenotype information is used to estimate their 369 

effects using empirical Bayes. Thus, true QTNs can be identified. Our results showed that mean 370 

threshold is better than median threshold in statistical power (Fig. S3 and Table S22). Although 371 

the Kruskal-Wallis test is used in this study, in addition, other nonparametric tests are also 372 

available, for example, the Jonckheere-Terpstra test (Terpstra, 1952; Jonckheere, 1954) and 373 

Anderson–Darling test (Anderson and Darling, 1952, 1954). As compared with the methods 374 

without polygenic background control, the new method demonstrates a significant improvement in 375 

statistical power and robustness for QTL detection and in accuracy for QTN-effect estimation. 376 

 377 
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In real data analysis, we should consider whether it is necessary to include population structure in 378 

the genetic model. Recently, Bulik-Sullivan et al. (2015) proposed a linkage disequilibrium score 379 

regression test to solve this issue. This method is to test the significance of difference between 380 

regression intercept and one. Results showed that population structure should be included in 381 

multi-locus model for all the four traits in this study (Table S25). Principal component analysis is 382 

also available for this purpose. We also need to consider the heterozygotes. In this case, a 383 

heterozygote is coded as zero and the others are the same as those in pKWmEB. If so, there is no 384 

significant power difference between the two homozygote genotypes (AA and aa) and the three 385 

genotypes (AA, Aa and aa). However, the accuracy of QTN effect estimation significantly 386 

decreased as compared with no heterozygotes (Table S20 and S21). 387 

 388 
The current nonparametric GWAS methods are almost a single-locus genome scan analysis, and 389 

such a single marker test often requires a Bonferroni correction. To control the experimental error 390 

at a genome-wide significance level of 0.01, the significance level for each test should be adjusted 391 

as 0.01/p, which is 1e-8 if there are one million markers (p). This criterion is too stringent to detect 392 

many important loci. To avoid this issue, many multi-locus approaches have been suggested 393 

(Segura et al., 2012; Moser et al., 2015; Wang et al., 2016). In these multi-locus approaches, there 394 

is no need for such a multiple test correction. At this situation, less stringent critical P-value 395 

(approximately 2e-4, which is the equivalent of LOD=3.0) can be adopted. This is because its FPR 396 

is similar to that from single-locus genome scan analysis with a stringent significance criterion. 397 

 398 
In Monte Carlo simulation studies, the estimates of powers for the four QTNs with the same effect 399 

size are highly variable. This is different from the situation in quantitative trait locus mapping. To 400 

dissect this phenomenon, the simulated datasets in this study were also analyzed by ADGWAS of 401 

Yang et al. (2014) and Jonckheere-Terpstra test with Bonferroni correction (Liu, 2016). As a result, 402 

similar phenomenon was observed as well. This may be due to two reasons. One is about the 403 

genotypic datasets, which are derived from the 216130 SNPs in Atwell et al. (2010). Several 404 

significant correlations of genotypes between a pair of QTNs were observed. This is not similar to 405 

ideal segregation populations in linkage analysis. Another is about single-locus genome-wide 406 

scanning of nonparametric tests. When KWsBC is implemented in the first simulation experiment, 407 
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the 85.6, 46.9, 14.2 and 70.9 (%) P-values in the detection of the 2nd, 3rd, 5th and 6th QTNs are 408 

between 5e-6 and 0.01. Owing to the stringent Bonferroni correction criterion, QTN2 and QTN6 409 

were not detected in most situations. 410 

 411 
We compared the results in this study with those in Atwell et al. (2010), and found that individual 412 

previously reported genes are common, for example, FLA, AT4G00690 (similar to ESD4, 413 

268809/276143 bp on chromosome 4) and ATARP4 (6371569 bp on chromosome 1) are detected 414 

by all the four methods. However, most previously reported genes depend on methods (Table S24) 415 

and some previously reported genes are detected only by pKWmEB (Table 2). This indicates that 416 

pKWmEB is a complement to the widely-used GWAS methods (such as GEMMA). The possible 417 

reason is that each method has its own distinct assumptions. 418 
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Figure Legends 523 

Figure 1. A flow chart of pKWmEB method. 524 

 525 
Figure 2. Comparison of statistical powers of six simulated QTNs using five GWAS methods 526 

(pKWmEB, KWmEB, KWsBC, GEMMA and mrMLM). (a) no polygenic background; (b) an 527 

additive polygenic variance (explaining 0.092 of the phenotypic variance); (c) three epistatic 528 

QTNs each explaining 0.05 of the phenotypic variance. Residual error is normal distribution with 529 

mean zero and variance 10 in (a) to (c), log-normal distribution with mean zero and standard 530 

deviation 1.144 (d), and logistic distribution with mean zero and standard deviation 1.743 (e). 531 
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 532 
Figure 3. Comparison of mean squared errors of each simulated QTN effect using four 533 

GWAS methods (pKWmEB, KWmEB, GEMMA and mrMLM). The descriptions in (a) to (e) 534 

are the same as those in Fig 2. 535 

 536 
Figure 4. Comparison of false positive rates using five GWAS methods (pKWmEB, KWmEB, 537 

KWsBC, GEMMA and mrMLM). The descriptions in (a) to (e) are the same as those in Fig 2. 538 
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Table 1. Paired t tests and their P-values for power and mean squared error (MSE) between pKWmEB and each of the other four methods in the first 543 

simulation experiment 544 

Case KWmEB KWsBC GEMMA mrMLM 

Power 

t-value 2.58 0.60 3.65 1.16 

P-value 0.0495* 0.5760 0.0148* 0.2972 

MSE 

t-value -3.76 - -3.94 -0.96 

P-value 0.0132* - 0.0110* 0.3824 

* and **: significances at the 0.05 and 0.01 levels, respectively. 545 
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Table 2. Previously reported genes that were identified only by pKWmEB 546 

 The genes in this table were not detected by Atwell et al. (2010). 547 

Chr Position (bp) LOD Effect r2 (%) Gene Trait Allele with code 1 Reference 

2 2916675 4.90 0.062 0.92 PRK2 FT GH A Zhao et al. (2013) 

2 10574932 3.23 0.098 1.38 ATCOL3 FT Field T Izawa et al. (2003) 

4 17392527 3.05 -0.183 2.03 APETALA2 FLC C Huang et al. (2006) 

5 7372523 3.96 0.122 1.86 ANAC089 FT Field G Li et al. (2010) 

5 7372523 3.96 0.122 1.86 ATTIP49A FT Field G Holt et al. (2002) 


