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Applications of the hyperbolic Ax-Schanuel conjecture

Christopher Daw Jinbo Ren

Abstract
In 2014, Pila and Tsimerman gave a proof of the Ax-Schanuel conjecture for the j-

function and, with Mok, have recently announced a proof of its generalization to any (pure)
Shimura variety. We refer to this generalization as the hyperbolic Ax-Schanuel conjecture.
In this article, we show that the hyperbolic Ax-Schanuel conjecture can be used to reduce
the Zilber-Pink conjecture for Shimura varieties to a problem of point counting. We further
show that this point counting problem can be tackled in a number of cases using the Pila-
Wilkie counting theorem and several arithmetic conjectures. Our methods are inspired by
previous applications of the Pila-Zannier method and, in particular, the recent proof by
Habegger and Pila of the Zilber-Pink conjecture for curves in abelian varieties.

MSC classification (2010): 11G18, 14G35.
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1 Introduction
The Ax-Schanuel theorem [2] is a result regarding the transcendence degrees of fields generated
over the complex numbers by power series and their exponentials. Formulated geometrically
for the uniformization maps of algebraic tori, it has inspired analogous statements for the
uniformization maps of abelian varieties and Shimura varieties. The former, following from
another theorem of Ax [3], has recently been used by Habegger and Pila in their proof of the
Zilber-Pink conjecture for curves in abelian varieties [18].

Habegger and Pila also extended the Pila-Zannier strategy to the Zilber-Pink conjecture
for products of modular curves. Their method relies on an Ax-Schanuel conjecture for the j-
function and is conditional on their so-called large Galois orbits conjecture. The purpose of this
paper is to show that the Pila-Zannier strategy can be extended to the Zilber-Pink conjecture
for general Shimura varieties.

This conjecture can just as easily be stated in the generality of mixed Shimura varieties
but, in this article, we will restrict our attention to pure Shimura varieties, though we have no
explicit reason to believe that the methods presented here will not extend to the mixed setting.
We begin by stating a conjecture of Pink.

Conjecture 1.1 (cf. [28], Conjecture 1.3). Let ShK(G,X) be a Shimura variety and, for any
integer d, let ShK(G,X)[d] denote the union of the special subvarieties of ShK(G,X) having
codimension at least d. Let V be a Hodge generic subvariety of ShK(G,X). Then

V ∩ ShK(G,X)[1+dimV ]

is not Zariski dense in V .

The heuristics of this conjecture are as follows. For two subvarieties V andW of ShK(G,X),
such that the codimension of W is at least 1 + dimV , we expect V ∩W = ∅. Even if we fix
V and take the union of V ∩W for countably many W of codimension at least 1 + dimV , the
resulting set should still be rather small in V unless, of course, V was not sufficiently generic
in ShK(G,X). Pink’s conjecture turns this expectation into an explicit statement about the
intersection of Hodge generic subvarieties with the special subvarieties of small dimension.

Conjecture 1.1 can also be formulated for algebraic tori, abelian varieties, or even semi-
abelian varieties, though Conjecture 1.1 for mixed Shimura varieties implies all of these formu-
lations (see [28]). When V is a curve, defined over a number field, and contained in an algebraic
torus, we obtain a theorem of Maurin [21]. When V is a curve, defined over a number field,
and contained in an abelian variety, we obtain the recent theorem of Habegger and Pila [18],
and it is the ideas presented there that form the basis for this article. Habegger and Pila had
given some partial results when V is a curve, defined over a number field, and contained in the
Shimura variety Cn [17], and Orr has recently generalized their results to a curve contained in
A2
g (see [25] for more details).
We should point out that Conjecture 1.1 implies the André-Oort conjecture.

Conjecture 1.2 (André-Oort). Let ShK(G,X) be a Shimura variety and let V be a subvariety
of ShK(G,X) such that the special points of ShK(G,X) in V are Zariski dense in V . Then V
is a special subvariety of ShK(G,X).

To see this, we may assume that V is Hodge generic in ShK(G,X). Then, since special points
have codimension dim ShK(G,X), Conjecture 1.1 implies that, either dimV = dim ShK(G,X),
in which case V is a connected component of ShK(G,X) and, in particular, a special subvariety
of ShK(G,X), or the set of special points of ShK(G,X) in V are not Zariski dense in V .
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In precisely the same fashion, the Zilber-Pink conjecture for abelian varieties implies the
Manin-Mumford conjecture.

The André-Oort conjecture has a rich history of its own. Here, we simply recall that it was
recently settled for Ag by Pila and Tsimerman [26, 30], thanks to recent progress on the Colmez
conjecture due to Andreatta, Goren, Howard, Madapusi Pera, Yuan, and Zhang [1, 40], and it
is known to hold for all Shimura varieties under conjectural lower bounds for Galois orbits of
special points due to the work of Orr, Klingler, Ulmo, Yafaev, and the first author [8, 20, 37].
Furthermore, Gao has generalized these proofs to all mixed Shimura varieties [13, 14].

In his work on Schanuel’s conjecture, Zilber made his own conjecture on unlikely intersections
[41], which was closely related to the independent work of Bombieri, Masser, and Zannier [5].
To describe their formulations, we require the following definition.

Definition 1.3. Let ShK(G,X) be a Shimura variety and let V be a subvariety of ShK(G,X).
A subvariety W of V is called atypical with respect to V if there is a special subvariety T of
ShK(G,X) such that W is an irreducible component of V ∩ T and

dimW > dimV + dimT − dim ShK(G,X).

We denote by Atyp(V ) the union of the subvarieties of V that are atypical with respect to V .

Zilber’s conjecture, formulated for Shimura varieties, is then as follows.

Conjecture 1.4 (cf. [18], Conjecture 2.2). Let ShK(G,X) be a Shimura variety and let V be a
subvariety of ShK(G,X). Then Atyp(V ) is equal to a finite union of subvarieties of V .

We will see that Conjecture 1.4 strengthens Conjecture 1.1 and, therefore, it is Conjecture
1.4 that we refer to as the Zilber-Pink conjecture. Habegger and Pila obtained a proof of the
Zilber-Pink conjecture for products of modular curves assuming the weak complex Ax conjecture
and the large Galois orbits conjecture. Subsequently, Pila and Tsimerman obtained the weak
complex Ax conjecture as a corollary to their proof of the Ax-Schanuel conjecture for the j-
function [27]. Habegger and Pila had previously verified the large Galois orbits conjecture for
so-called asymmetric curves [17].

This article seeks to generalize the ideas of [18] to general Shimura varieties. Hence, we
will have to make generalizations of the previously mentioned hypotheses. The foremost of
which will be the statement from functional transcendence, namely, the hyperbolic Ax-Schanuel
conjecture that generalizes the Ax-Schanuel conjecture for the j-function to general Shimura
varieties. It is with this ingredient that we prove our main result (Theorem 8.3), that, under
the hyperbolic Ax-Schanuel conjecture, the Zilber-Pink conjecture can be reduced to a problem
of point counting. However, given that Mok, Pila, and Tsimerman have recently announced a
proof of the hyperbolic Ax-Schanuel conjecture, this result is now unconditional. Besides than
the hyperbolic Ax-Schanuel conjecture, our main input will be the theory of o-minimality and,
in particular, the fact that the uniformization map of a Shimura variety is definable in Ran,exp
when restricted to an appropriate fundamental domain.

After establishing the main result, we attempt to tackle the point counting problem using the
now famous Pila-Wilkie counting theorem. To do so, we formulate several arithmetic conjectures
that are inspired by previous applications of the Pila-Zannier strategy. In this vein, our paper
is very much in the spirit of [33], which, at the time, reduced the André-Oort conjecture to a
point counting problem and then explained how various conjectural ingredients, namely, the
hyperbolic Ax-Lindemann conjecture, lower bounds for Galois orbits of special points, upper
bounds for the heights of pre-special points, and the definability of the uniformization map,
could be combined to deliver a proof of the André-Oort conjecture.
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Our arithmetic hypotheses are (1) lower bounds for Galois orbits of so-called optimal points,
which we also refer to as the large Galois orbits conjecture, and (2) upper bounds for the heights
of pre-special subvarieties. Hypothesis (1) generalizes the (in some cases still conjectural) lower
bounds for Galois orbits of special points (when such special points are also maximal special
subvarieties), and also generalizes the large Galois orbits conjecture of Habegger and Pila.
Hypothesis (2) generalizes the upper bounds for heights of pre-special points, which were proved
by Orr and the first author [8]. However, we also show that it is possible to replace hypothesis
(2) with two other arithmetic hypotheses, namely, (3) upper bounds for the degrees of fields
associated with special subvarieties, and (4) upper bounds for the heights of lattice elements.
Hypothesis (3) is a replacement for the fact that, for an abelian variety, its abelian subvarieties
can be defined over a fixed finite extension of the base field. Hypothesis (4) is an analogue of
a known result for abelian varieties. We verify hypotheses (2), (3), and (4) for a product of
modular curves.

Acknowledgements The first author would like to thank the EPSRC, as well as Jonathan
Pila, for the opportunity to be part of the project Model Theory, Functional Transcendence,
and Diophantine Geometry as a postdoctoral research assistant. He would like to thank Linacre
College, Oxford, the Mathematical Insitute at the University of Oxford, and the Department
of Mathematics and Statistics at the University of Reading, all for providing excellent working
conditions. Finally, he would like to thank Martin Orr, Jonathan Pila, Harry Schmidt, Em-
manuel Ullmo, and Andrei Yafaev for several valuable discussions. The second author is grateful
to the Institut des Hautes Études Scientifiques and the Université Paris Saclay for providing
great environments in which to work. He would like to thank his supervisor Emmanuel Ullmo
for regular discussions and constant support during the preparation of this article and he would
like to thank Mikhail Borovoi, Philipp Habegger, Ziyang Gao, Martin Orr, and Jonathan Pila
for several useful discussions. His work was supported by grants from Région l’Île de France.
Both authors would like to thank Martin Orr for sharing drafts of his preprint [25].

Conventions

? Throughout this paper, definable means definable in the o-minimal structure Ran,exp.

? Unless preceeded by the word Shimura, a variety we will mean a geometrically irre-
ducible variety.

Index of notations We collect here the main symbols appearing in this article.

? 〈W 〉 is the smallest special subvariety containing W .

? 〈W 〉ws is the smallest weakly-special subvariety containing W .

? 〈A〉Zar is the smallest algebraic subvariety containing A.

? 〈A〉geo is the smallest totally geodesic subvariety containing A.

? δ(W ) := dim〈W 〉 − dimW

? δws(W ) := dim〈W 〉ws − dimW

? δZar(A) := dim〈A〉Zar − dimA

? δgeo(A) := dim〈A〉geo − dimA
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? Opt(V ) is the set of subvarieties of V that are optimal in V .

? Opt0(V ) is the set of points of V that are optimal in V .

? Gad is the adjoint group of G i.e. the quotient of G by its centre.

? Gder is derived group of G.

? G◦ is the connected component of G containing the identity.

? GH := H · ZG(H)◦ whenever H is a subgroup of G.

2 Special and weakly special subvarieties
Let (G,X) be a Shimura datum and let K be a compact open subgroup of G(Af ), where
Af will henceforth denote the finite rational adèles. Let ShK(G,X) denote the corresponding
Shimura variety. By this, we mean the complex quasi-projective algebraic variety such that
ShK(G,X)(C) is equal to the image of

G(Q)\[X× (G(Af )/K)](2.0.1)

under the canonical embedding into complex projective space given by Baily and Borel [4]. We
will identify (2.0.1) with ShK(G,X)(C). We recall that, on X× (G(Af )/K), the action of G(Q)
is the diagonal one.

Let X be a connected component of X and let G(Q)+ be the subgroup of G(Q) acting on
it. For any g ∈ G(Af ), we obtain a congruence subgroup Γg of G(Q)+ by intersecting it with
gKg−1. Furthermore, the locally symmetric variety Γg\X is contained in (2.0.1) via the map
that sends the class of x to the class of (x, g). If we take the disjoint union of the Γg\X over a
(finite) set of representatives for

G(Q)+\G(Af )/K,

the corresponding inclusion map is a bijection.

Definition 2.1. For any compact open subgroup K ′ of G(Af ) contained in K, we obtain a
finite morphism

ShK′(G,X)→ ShK(G,X),

given by the natural projection. Furthermore, for any a ∈ G(Af ), we obtain an isomorphism

ShK(G,X)→ Sha−1Ka(G,X)

sending the class of (x, g) to the class of (x, ga). We let TK,a denote the map on algebraic cycles
of ShK(G,X) given by the algebraic correspondence

ShK(G,X)← ShK∩aKa−1(G,X)→ Sha−1Ka∩K(G,X)→ ShK(G,X),

where the outer arrows are the natural projections and the middle arrow is the isomorphism
given by a. We refer to a map of this sort as a Hecke correspondence.
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Definition 2.2. Let (H,XH) be a Shimura subdatum of (G,X) and let KH denote a compact
open subgroup of H(Af ) contained in K. The natural map

H(Q)\[XH × (H(Af )/KH)]→ G(Q)\[X× (G(Af )/K)]

yields a closed morphism of Shimura varieties

ShKH (H,XH)→ ShK(G,X)

and we refer to the image of any such morphism as a Shimura subvariety of ShK(G,X).
For any Shimura subvariety Z of ShK(G,X) and any a ∈ G(Af ), we refer to any irreducible

component of TK,a(Z) as a special subvariety of ShK(G,X).

Recall that, by definition, X is a G(R) conjugacy class of morphisms from S to GR and the
Mumford-Tate group MT(x) of x ∈ X is defined as the smallest Q-subgroup H of G such
that x factors through HR. If we let XM denote the M(R) conjugacy class of x ∈ X, where
M := MT(x), then (M,XM ) is a Shimura subdatum of (G,X). In particular, if we let XM

denote a connected component of XM contained in X, then the image of XM in Γg\X, for
any g ∈ G(Af ), is a special subvariety of ShK(G,X), and it is easy to see that every special
subvariety of ShK(G,X) arises this way.

Of course, if x ∈ XM , then XM is equal to the M(R)+ conjugacy class of x. Furthermore,
the action of M(R) on XM factors through Mad(R) and the group Mad is equal to the direct
product of its Q-simple factors. Therefore, we can write Mad as a product

Mad = M1 ×M2

of two normal Q-subgroups, either of which may (by choice or necessity) be trivial, and we thus
obtain a corresponding splitting

XM = X1 ×X2.

For any such splitting, and any x1 ∈ X1 or x2 ∈ X2, we refer to the image of {x1} × X2 or
X1 × {x2} in Γg\X, for any g ∈ G(Af ), as a weakly special subvariety of ShK(G,X). In
particular, every special subvariety of ShK(G,X) is a weakly special subvariety of ShK(G,X).
By [23], Section 4, the weakly special subvarieties of ShK(G,X) are precisely those subvarieties
of ShK(G,X) that are totally geodesic in ShK(G,X). Furthermore, a weakly special subvariety
of ShK(G,X) is a special subvariety of ShK(G,X) if and only if it contains a special subvariety
of dimension zero, henceforth known as a special point.
Remark 2.3. The following observations will facilitate various reductions.

? Let K ′ be a compact open subgroup of G(Af ) contained in K. By definition, a subvariety
Z of ShK(G,X) is a (weakly) special subvariety of ShK(G,X) if and only if any irreducible
component of the inverse image of Z in ShK′(G,X) is a (weakly) special subvariety of
ShK′(G,X).

? For any a ∈ G(Af ), a subvariety Z of ShK(G,X) is a (weakly) special subvariety of
ShK(G,X) if and only if any irreducible component of TK,a(Z) is a (weakly) special sub-
variety of ShK′(G,X).

? If we let Gad denote the adjoint group of G i.e. the quotient of G by its centre, we obtain
another Shimura datum (Gad,Xad), known as the adjoint Shimura datum associated
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with (G,X). For any compact open subgroup Kad of Gad(Af ) containing the image of K,
we obtain a finite morphism

ShK(G,X)→ ShKad(Gad,Xad).

As in [11], Proposition 2.2, a subvariety Z of ShK(G,X) is a (weakly) special subvari-
ety of ShK(G,X) if and only if any irreducible component of the inverse image of Z in
ShKad(Gad,Xad) is a (weakly) special subvariety of ShKad(Gad,Xad).

Lemma 2.4. Let S, T be two totally geodesic submanifolds of a Riemannian manifold M . If
S ∩ T is non-empty then it is totally geodesic.

Proof. Assume S ∩ T is non-empty and let p be a point on S ∩ T . Let

v ∈ Tp(S ∩ T ) ⊆ Tp(S) ∩ Tp(T )

and let γ : (−1, 1) → M denote the geodesic on M such that γ′(0) = v. Since S and T are
totally geodesic, there exist 0 < εS , εT < 1 such that γ(−εS , εS) ⊆ S and γ(−εT , εT ) ⊆ T .
Hence, if ε := min{εS , εT } > 0, then

γ(−ε, ε) ⊆ S ∩ T,

proving the claim.

Corollary 2.5. The intersection of two weakly special subvarieties of ShK(G,X) is either empty
or equal to a finite union of weakly special subvarieties of ShK(G,X).

Proof. Without loss of generality, we may assume that K is neat and, hence, torsion free.
In particular, ShK(G,X) is naturally endowed with the structure of a Riemannian manifold.
The intersection of two subvarieties of ShK(G,X) is either empty or equal to a finite union of
subvarieties of ShK(G,X), which, by Lemma 2.4, are totally geodesic in ShK(G,X).

Therefore, for any subvariety W of ShK(G,X), there exists a smallest weakly special sub-
variety 〈W 〉ws of ShK(G,X) containing W . We note that here, and throughout, our notations
and terminology regarding subvarieties often differ from those found in [18].

Corollary 2.6. The intersection of two special subvarieties Z1 and Z2 of ShK(G,X) is either
empty or equal to a finite union of special subvarieties of ShK(G,X).

Proof. By Corollary 2.5, the intersection of two special subvarieties of ShK(G,X) is either empty
or equal to a finite union of weakly special subvarieties of ShK(G,X).

Assume the intersection is not empty. There exist Shimura subdata (H1,X1) and (H2,X2),
connected components X1 and X2 of X1 and X2, respectively, contained in X, and a g ∈ G(Af )
such that Z1 and Z2 are equal to the images of X1 and X2 in Γg\X, respectively. Let Z denote
an irreducible component of the intersection and let x ∈ X be a point whose image in Γg\X
belongs to Z. There exist γ1, γ2 ∈ Γg such that M := MT(x) is contained in

γ1H1γ
−1
1 ∩ γ2H2γ

−1
2 .

Hence, the image of the M(R)+ conjugacy class of x is contained in Z and this is a special
subvariety of ShK(G,X). Therefore, Z contains a special point of ShK(G,X) and we conclude
that Z is a special subvariety of ShK(G,X).

Therefore, for any subvariety W of ShK(G,X), there exists a smallest special subvariety
〈W 〉 of ShK(G,X) containing W .
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3 The Zilber-Pink conjecture
For the remainder of this article, we fix a Shimura datum (G,X) and we let X be a connected
component of X. We fix a compact open subgroup K of G(Af ) and we let

Γ := G(Q)+ ∩K,

where G(Q)+ is the subgroup of G(Q) acting on X. We denote by S the variety Γ\X.
As in [18], we will consider an equivalent formulation of Conjecture 1.4 using the language

of optimal subvarieties.

Definition 3.1. Let W be a subvariety of S. We define the defect of W to be

δ(W ) := dim 〈W 〉 − dimW.

Definition 3.2. Let V be a subvariety of S and let W be a subvariety of V . Then W is called
optimal in V if, for any subvariety Y of S,

W ( Y ⊆ V =⇒ δ(Y ) > δ(W ).

We denote by Opt(V ) the set of all subvarieties of V that are optimal in V .

Remark 3.3. Let V be a subvariety of S. First note that V ∈ Opt(V ). Secondly, ifW ∈ Opt(V ),
then W is a component of

〈W 〉 ∩ V.

Conjecture 3.4 (cf. [18], Conjecture 2.6). Let V be a subvariety of S. Then Opt(V ) is finite.

Observe that a maximal special subvariety of V is an optimal subvariety of V . There-
fore, Conjecture 3.4 immediately implies that V contains only finitely many maximal special
subvarieties, which is another formulation of the André-Oort conjecture for V .

Lemma 3.5. The Zilber-Pink conjecture (Conjecture 1.4) is equivalent to Conjecture 3.4.

Proof. Consider the situation described in the statement of Conjecture 1.4. By Remark 8, we
suffer no loss in generality if we assume that V is contained in S. Then the result follows from
[18], Lemma 2.7.

Lemma 3.6. The Zilber-Pink conjecture implies Conjecture 1.1.

Proof. By Lemma 3.5, it suffices to show that Conjecture 3.4 implies Conjecture 1.1.
Consider the situation described in Conjecture 1.1. By Remark 8, we suffer no loss in

generality if we assume that V is contained in S. Let P be a point belonging to

V ∩ ShK(G,X)[1+dimV ].

Let W be a subvariety of V that is optimal in V and contains P such that

δ(W ) ≤ δ(P ) = dim〈P 〉.

Since P belongs to a special subvariety of codimension at least dimV +1 and V is Hodge generic
in ShK(G,X), we have

dim〈P 〉 ≤ dimS − dimV − 1 = dim〈V 〉 − dimV − 1 < δ(V ).

Therefore, δ(W ) < δ(V ) and we conclude that W is not V .
According to Conjecture 3.4, the union of the subvarieties belonging to Opt(V ) \ V is not

Zariski dense in V .
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4 The defect condition
In this section, we prove Habegger and Pila’s defect condition for Shimura varieties and thus
show that a subvariety that is optimal is weakly optimal.

Definition 4.1. Let W be a subvariety of S. We define the weakly special defect of W to
be

δws(W ) := dim〈W 〉ws − dimW.

We note that, in [18], this notion was referred to as geodesic defect.

Definition 4.2. If V is a subvariety of S and W a subvariety of V , then W is called weakly
optimal in V if, for any subvariety Y of S,

W ( Y ⊆ V =⇒ δws(Y ) > δws(W ).

Remark 4.3. Let V be a subvariety of S and W a subvariety of V . If W is weakly optimal in
V , then W is a component of

〈W 〉ws ∩ V.

Proposition 4.4 (cf. [18], Proposition 4.3). The following defect condition holds.
Let W ⊆ Y be two subvarieties of S. Then

δ(Y )− δws(Y ) ≤ δ(W )− δws(W ).

Proof. We need to show that

dim〈Y 〉 − dim〈Y 〉ws ≤ dim〈W 〉 − dim〈W 〉ws.

By Remark 8, we can and do assume that G is the generic Mumford-Tate group on X, that it
is equal to Gad, and that Y is Hodge generic in S. By definition, there exists a decomposition

G = G1 ×G2,

which induces a splitting

X = X1 ×X2,

such that 〈Y 〉ws is equal to the image of X1 × {x2} in S, for some x2 ∈ X2.
Let Γ1 := p1(Γ) and Γ2 := p2(Γ), where p1 and p2 are the projections from G to G1 and

G2, respectively. Then Γ′ := Γ1 × Γ2 is a congruence subgroup of G(Q)+ containing Γ as a
finite index subgroup. Let φ : Γ\X → Γ′\X denote the natural (finite) morphism. Then
φ(W ) ⊆ φ(Y ) ⊆ S′ := Γ′\X, and we have

dim〈Y 〉 = dim〈φ(Y )〉,
dim〈W 〉 = dim〈φ(W )〉,

dim〈Y 〉ws = dim〈φ(Y )〉ws,

dim〈W 〉ws = dim〈φ(W )〉ws.

Therefore, after replacing Y , W , and S by φ(Y ), φ(W ), and S′, respectively, we may assume
that Γ is of the form Γ1 × Γ2, and S = Γ1\X1 × Γ2\X2 = S1 × S2.
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Thus, 〈Y 〉ws = S1 × {s2}, where s2 is the image of x2 in S2, Y = Y1 × {s2}, where Y1 is
the projection of Y to S1, and W = W1 × {s2}, where W1 is the projection of W to S1. In
particular, we can take

x := (x1, x2) ∈ X1 ×X2

such that 〈W 〉 is equal to the image in S of the M(R)+ conjugacy class XM of x, where
M := MT(x).

Again, there exists a decomposition

Mad = M1 ×M2,

which induces a splitting

XM = XM1 ×XM2 ⊆ X = X1 ×X2

such that 〈W 〉ws is equal to the image in S of XM1 × {y2}, for some y2 ∈ XM2 .
Since MT(x2) is equal to G2, it follows that M is a subgroup of G1×G2 that surjects on to

the second factor. In particular,

XM = Mder(R)+x

surjects on to X2. Therefore, let M ′1 and M ′2 be two normal semisimple subgroups of Mder

corresponding to M1 and M2, respectively, so that

Mder(R)+x = M ′1(R)+M ′2(R)+x.

Since W is contained in S1×{s2}, the projection of M ′1 to G2 must be trivial. Hence, M ′1(R)+x
is contained in X1 × {x2} and we conclude that M ′2(R)+x surjects on to X2. Since

M ′2(R)+x = {y1} ×XM2 ,

for some y1 ∈ XM1 , we have

dim〈W 〉 − dim〈W 〉ws = dimXM2 ≥ dimX2 = dim〈Y 〉 − dim〈Y 〉ws,

as required.

Corollary 4.5 (cf. [18], Proposition 4.5). Let V be a subvariety of S. A subvariety of V that
is optimal in V is weakly optimal in V .

5 The hyperbolic Ax-Schanuel conjecture
In this section, we formulate various conjectures about Shimura varieties that are analogous to
the original Ax-Schanuel theorem from functional transcendence theory.

Theorem 5.1 (cf. [2], Theorem 1). Let f1, ..., fn ∈ C[[t1, ..., tm]] be power series that are
Q-linearly independent modulo C. Then we have the following inequality

tr.degCC(f1, ..., fn, e(f1), ..., e(fn)) ≥ n+ rank(∂fi
∂tj

)i=1,...,n
j=1,...,m

where e(f) = e2πif .
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The following theorem is then an immediate corollary.

Theorem 5.2. Let f1, ..., fn ∈ C[[t1, ..., tm]] as above. Then

tr.degCC(f1, ..., fn) + tr.degCC(e(f1), ..., e(fn)) ≥ n+ rank(∂fi
∂tj

)i=1,...,n
j=1,...,m

.

Let π denote the uniformization map

Cn → (C×)n : (x1, ..., xn) 7→ (e(x1), ..., e(xn))

and let Dn denote its graph in Cn × (C×)n. We can rephrase Theorem 5.1 as follows.

Theorem 5.3 (cf. [31], Theorem 1.2). Let V be a subvariety of Cn × (C×)n and let U be an
irreducible analytic component of V ∩ Dn. Assume that the projection of U to (C×)n is not
contained in a coset of a proper subtorus of (C×)n. Then

dimV ≥ dimU + n.

Similarly, we can rephrase Theorem 5.2 as follows.

Theorem 5.4. LetW be a subvariety of Cn and V a subvariety of (C×)n. Let A be an irreducible
analytic component of W ∩ π−1(V ). If A is not contained in b + L, for any proper Q-linear
subspace L of Cn and any b ∈ Cn, then

dimV + dimW ≥ dimA+ n.

Recall that X is naturally endowed with the structure of a hermitian symmetric domain.
In particular, it is a complex manifold. We define a (irreducible algebraic) subvariety of X
as in Appendix B of [20]. In particular, we consider the Harish-Chandra realization of X as a
bounded domain in CN , for some N ∈ N, and we define an (irreducible algebraic) subvariety of
X to be an irreducible analytic component of the intersection of X with an algebraic subvariety
of CN . We define a (irreducible algebraic) subvariety of X × S to be an irreducible analytic
component of the intersection of X × S with an algebraic subvariety of CN × S.

We are, therefore, able to formulate conjectures for Shimura varieties that are analogous to
those above. Let π henceforth denote the uniformization map

X → S

and let DS denote the graph of π in X × S. The following conjecture generalizes Conjecture
1.1 of [27].

Conjecture 5.5 (hyperbolic Ax-Schanuel). Let V be a subvariety of X × S and let U be an
irreducible analytic component of V ∩DS. Assume that the projection of U to S is not contained
in a weakly special subvariety of ShK(G,X) strictly contained in S. Then

dimV ≥ dimU + dimS

For S = Cn, Conjecture 5.5 and its generalization involving derivatives were obtained in
[27]. Mok, Pila, and Tsimerman have very recently announced a proof of Conjecture 5.5 in full.

For applications to the Zilber-Pink conjecture, only the following weaker version will be
needed.
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Conjecture 5.6 (cf. [18], Conjecture 5.10). Let W be a subvariety of X and let V be a
subvariety of S. Let A be an irreducible analytic component of W ∩ π−1(V ) and assume that
π(A) is not contained in a weakly special subvariety of ShK(G,X) strictly contained in S. Then

dimV + dimW ≥ dimA+ dimS.

Proof that Conjecture 5.5 implies Conjecture 5.6. Consider the situation described in the state-
ment of Conjecture 5.6. Then Y := W × V is an algebraic subvariety of X × S and

U := {(a, π(a)); a ∈ A}

is an irreducible analytic component of Y ∩DS . Clearly, the projection of U to S is not contained
in a weakly special subvariety of ShK(G,X) strictly contained in S. Therefore, by Conjecture
5.5,

dimY ≥ dimU + dimS

and the result follows since dimU = dimA and dimY = dimW + dimV .

In our applications, we will use a reformulation of Conjecture 5.6. For this reformulation,
we will need the following definitions.

Fix a subvariety V of S.

Definition 5.7. An intersection component of π−1(V ) is an irreducible analytic component
of the intersection of π−1(V ) with a subvariety of X.

Clearly, for any intersection component A of π−1(V ), there exists a smallest subvariety
〈A〉Zar of X containing A.

Definition 5.8. Let A be an intersection component of π−1(V ). We define the Zariski defect
of A to be

δZar(A) := dim〈A〉Zar − dimA.

Definition 5.9. We say that an intersection component A of π−1(V ) is Zariski optimal in
π−1(V ) if, for any intersection component B of π−1(V ),

A ( B ⊆ π−1(V ) =⇒ δZar(B) > δZar(A).

Remark 5.10. Let A be an intersection component of π−1(V ). If A is Zariski optimal in π−1(V ),
then A is an irreducible analytic component of

〈A〉Zar ∩ π−1(V ).

Definition 5.11. Let x ∈ X and let XM denote the M(R)+ conjugacy class of x in X, where
M := MT(x). Write Mad as a product

Mad = M1 ×M2

of two normal Q-subgroups, either of which may be trivial, thus inducing a splitting

XM = X1 ×X2.

For any x1 ∈ X1 or x2 ∈ X2, we obtain a subvariety {x1} ×X2 or X1 × {x2} of X. We refer
to any subvariety of X taking this form as a pre-weakly special subvariety of X. That is,
a weakly special subvariety of ShK(G,X) contained in S is, by definition, the image in S of a
pre-weakly special subvariety of X.
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Remark 5.12. A pre-weakly special subvariety of X is totally geodesic in X and an irreducible
analytic subset of X.

Definition 5.13. An intersection component A of π−1(V ) is called pre-weakly special if it
is an irreducible analytic component of

〈A〉Zar ∩ π−1(V )

and 〈A〉Zar is a pre-weakly special subvariety of X.

Conjecture 5.14 (weak hyperbolic Ax-Schanuel). Let A be an intersection component of
π−1(V ) that is Zariski optimal in π−1(V ). Then A is pre-weakly special.

Note that, since A is assumed to be Zariski optimal in π−1(V ), it is automatically an
irreducible analytic component of

〈A〉Zar ∩ π−1(V ).

The content of Conjecture 5.14, therefore, is the claim that 〈A〉Zar is a pre-weakly special
subvariety of X. Note also that Conjecture 5.14 is a direct generalization of the hyperbolic
Ax-Lindemann theorem.

Theorem 5.15 (hyperbolic Ax-Lindemann). The maximal subvarieties contained in π−1(V )
are pre-weakly special.

Proof that Conjecture 5.14 implies Theorem 5.15. The maximal subvarieties contained in π−1(V )
are precisely the intersection components of π−1(V ) that are Zariski optimal in π−1(V ) and
whose Zariski defect is zero.

Lemma 5.16. Conjecture 5.6 and Conjecture 5.14 are equivalent.

Proof. See [18], Section 5.

6 A finiteness result for weakly optimal subvarieties
In this section, we deduce from the weak hyperbolic Ax-Schanuel conjecture a finiteness state-
ment for the weakly optimal subvarieties of a given subvariety V .

Definition 6.1. Let x ∈ X and let XM denote the M(R)+ conjugacy class of x in X, where
M := MT(x). Then XM is a subvariety of X and we refer to any subvariety of X taking
this form as a pre-special subvariety of X. In particular, a pre-special subvariety of X is a
pre-weakly special subvariety of X. If XM is a point, that is, if M is a torus, we refer to XM as
a pre-special point of X. A special subvariety of ShK(G,X) contained in S is, by definition,
the image in S of a pre-special subvariety of X.

Definition 6.2. Let x ∈ X and let XM denote the M(R)+ conjugacy class of x in X, where
M := MT(x). Write Mad as a product

Mad = M1 ×M2

of two normal Q-subgroups, either of which may be trivial, thus inducing a splitting

XM = X1 ×X2.

For any x1 ∈ X1 or x2 ∈ X2, we refer to the pre-weakly special subvariety {x1}×X2 or X1×{x2}
of X as a fiber of the pre-special subvariety XM of X.

In particular, if we let M2 be the trivial group, then the points of X1 are simply the points
of XM , and they are all fibers of XM .
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The main result of this section is the following.

Proposition 6.3 (cf. [18], Proposition 6.6). Let V be a subvariety of S and assume that
the weak hyperbolic Ax-Schanuel conjecture is true for V . Then there exists a finite set Σ of
pre-special subvarieties of X such that the following holds.

Let W be a subvariety of V that is weakly optimal in V . Then there exists Y ∈ Σ such that
〈W 〉ws is equal to the image in S of a fiber of Y .

Note that similar theorems also hold for abelian varieties (see [18], Proposition 6.1 and [29],
Proposition 3.2).

In order to prove Proposition 6.3, we will need to introduce some new terminology.
Fix a subvariety V of S.

Lemma 6.4. Let A be an intersection component of π−1(V ). There is a smallest subvariety
〈A〉geo of X that is totally geodesic in X and contains A.

Proof. Suppose that A is contained in two subvarieties T1 and T2 of X that are both totally
geodesic in X. By Lemma 2.4, T1∩T2 is totally geodesic. It is also a finite union of subvarieties
of X, one of which must contain A. The result follows.

Definition 6.5. Let A be an intersection component of π−1(V ). We define the geodesic
defect of A to be

δgeo(A) := dim〈A〉geo − dimA.

We note that, in [18], this notion was referred to as the Möbius defect of A.

Definition 6.6. We say that an intersection component A of π−1(V ) is geodesically optimal
in π−1(V ) if, for any intersection component B of π−1(V ),

A ( B ⊆ π−1(V ) =⇒ δgeo(B) > δgeo(A).

We note that the terminology geodesically optimal has a different meaning in [18].

Remark 6.7. Let A be an intersection component of π−1(V ). If A is geodesically optimal in
π−1(V ), then A is an irreducible analytic component of

〈A〉geo ∩ π−1(V ).

Lemma 6.8. Assume that the weak hyperbolic Ax-Schanuel conjecture is true for V and let
A be an intersection component of π−1(V ). If A is geodesically optimal in π−1(V ), then A is
Zariski optimal in π−1(V ).

Proof. Suppose that B is an intersection component of π−1(V ) containing A such that

δZar(B) ≤ δZar(A).

We can and do assume that B is Zariski optimal and so, by the weak hyperbolic Ax-Schanuel
conjecture, B is pre-weakly special. Therefore, 〈B〉Zar is a pre-weakly special subvariety of X
and, therefore, equal to 〈B〉geo. Then

δgeo(B) = δZar(B) ≤ δZar(A) ≤ δgeo(A),

and, since A is geodesically optimal in π−1(V ), we conclude that B = A.
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Remark 6.9. Let W be a subvariety of S and let A denote an irreducible analytic component of
π−1(W ) in X. Then every irreducible analytic component of π−1(W ) is equal to a Γ translate
of A. In particular, π(A) is equal to W .

Lemma 6.10. Assume that the weak hyperbolic Ax-Schanuel conjecture is true for V and let
W be a subvariety of V that is weakly optimal in V . Let A be an irreducible analytic component
of π−1(W ). Then A is an intersection component of π−1(V ) and is geodesically optimal in
π−1(V ).

Proof. Clearly, A is an intersection component of π−1(V ) since W is an irreducible component
of

〈W 〉ws ∩ V

and π−1〈W 〉ws is equal to the Γ orbit of a pre-weakly special subvariety of X.
Therefore, let B be an intersection component of π−1(V ) containing A such that

δgeo(B) ≤ δgeo(A).

We can and do assume that B is geodesically optimal in π−1(V ) and so, by Lemma 6.8, B is
Zariski optimal in π−1(V ). Therefore, by the weak hyperbolic Ax-Schanuel conjecture, B is
pre-weakly special i.e. 〈B〉Zar is a pre-weakly special subvariety of X.

Let Z denote the Zariski closure of π(B). We claim that 〈Z〉ws = π(〈B〉Zar). To see this,
note that Z is contained in π(〈B〉Zar) and so 〈Z〉ws is contained in π(〈B〉Zar). On the other
hand, 〈B〉Zar is contained in π−1(〈Z〉ws) and so π(〈B〉Zar) is contained in 〈Z〉ws, which proves
the claim. Therefore,

δws(Z) = dim π(〈B〉Zar)− dimZ

= dim〈B〉Zar − dimZ

≤ dim〈B〉Zar − dimB = δgeo(B) ≤ δgeo(A)
≤ dim〈W 〉ws − dimW = δws(W ).

Since W is weakly optimal in V and contained in Z, we conclude that Z is equal to W . In
particular, B is contained in π−1(W ) and, therefore, equal to A.

As explained in [20], we can and do fix, once and for all, an open, semialgebraic fundamental
set F in X for the action of Γ such that the set V := π−1(V ) ∩ F is definable. The key step in
the proof of Proposition 6.3 is the following.

Proposition 6.11. Assume that the weak hyperbolic Ax-Schanuel theorem is true for V . There
exists a finite set Σ of pre-special subvarieties of X such that the following holds.

Let A be an intersection component of π−1(V ) that is pre-weakly special such that, for some
x ∈ 〈A〉Zar,

dimA = dimx(〈A〉Zar ∩ V).

Then there exists Y ∈ Σ such that 〈A〉Zar is equal to a fiber of Y .

In order to prove Proposition 6.11, we require some further preparations.

Definition 6.12. We say that a real semisimple algebraic group F is without compact
factors if it is equal to an almost direct product of almost simple subgroups whose underlying
real Lie groups are not compact. We allow the product to be trivial i.e. we consider the trivial
group as a real semisimple algebraic group without compact factors.
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Lemma 6.13. A subvariety of X that is totally geodesic in X is of the form

F (R)+ · x,

where F is a semisimple algebraic subgroup of GR without compact factors and x ∈ X factors
through

GF := F · ZGR(F )◦.

Conversely, if F is a semisimple algebraic subgroup of GR without compact factors and x ∈ X
factors through GF , then F (R)+x is a subvariety of X that is totally geodesic in X.

Proof. See [34], Proposition 2.3.

We let Ω denote a (finite) set of representatives for the G(R)-conjugacy classes of semisimple
algebraic subgroups of GR that are without compact factors. It is clear that the set

Π0 := {(x, g, F ) ∈ V ×G(R)× Ω : x(S) ⊆ gGF g−1},

parameterising (albeit in a many-to-one fashion) the totally geodesic subvarieties of X passing
through V, is definable.

Recall from [38], 1.17 that the local dimension dimxA of a definable set A at a point x ∈ A
is definable. By [18], Lemma 6.2, if A is also a (complex) analytic set, then this dimension is
exactly twice the local analytic dimension at x. Furthermore, if A is analytically irreducible,
then its local dimension at the points of A is constant. For the remainder of this section,
dimensions will be taken in the sense of definable sets.

Consider the two functions

d(x, g, F ) := dimx(gF (R)+g−1x) = dim(gF (R)+g−1x)
dV(x, g, F ) := dimx(V ∩ gF (R)+g−1x),

and let Π1 denote the definable set

{(x, g, F ) ∈ Π0 : (x, g1, F1) ∈ Π0, gF (R)+g−1 · x ( g1F1(R)+g−1
1 · x

=⇒ d(x, g, F )− dV(x, g, F ) < d(x, g1, F1)− dV(x, g1, F1)}.

Finally, let Π2 denote the definable set

{(x, g, F ) ∈ Π1 : (x, g1, F1) ∈ Π0, g1F
′(R)+g−1

1 · x ( gF (R)+g−1 · x
=⇒ dV(x, g1, F1) < dV(x, g, F )}.

The proof of Proposition 6.11 will require the following three lemmas.

Lemma 6.14. Let A be an intersection component of π−1(V ) that is pre-weakly special such
that, for some x ∈ 〈A〉Zar,

dimA = dimx(〈A〉Zar ∩ V).

Then we can write

〈A〉Zar = gF (R)+g−1 · x,

where (x, g, F ) ∈ Π2.
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Proof. By Lemma 6.13, we can write

〈A〉Zar = gF (R)+g−1 · x

for some F ∈ Ω and some x ∈ V that factors through gGF g−1. In particular, (x, g, F ) ∈ Π0.
By assumption, we can and do choose x ∈ 〈A〉Zar such that

dimA = dimx(〈A〉Zar ∩ V) = dV(x, g, F ).

Suppose that (x, g, F ) does not belong to Π1 i.e. that there exists (x, g1, F1) ∈ Π0 such that

gF (R)+g−1 · x ( g1F1(R)+g−1
1 · x,

and

d(x, g, F )− dV(x, g, F ) ≥ d(x, g1, F1)− dV(x, g1, F1).(6.14.1)

Let B be an irreducible analytic component of

g1F1(R)+g−1
1 · x ∩ π

−1(V )

passing through x such that

dimB = dV(x, g1, F1).

From (6.14.1), we obtain δZar(B) ≤ δZar(A).
On the other hand, the Intersection Inequality (see [15], Chapter 5, §3) yields

dimx(B ∩ 〈A〉Zar) ≥ dimB + dim(〈A〉Zar)− d(x, g1, F1)

and, from (6.14.1), we obtain

dimx(B ∩ 〈A〉Zar) ≥ dim(A).

It follows that B ∩ 〈A〉Zar, and hence B itself, contains a complex neighbourhood of x in A,
which implies that A is contained in B.

Therefore, since A is Zariski optimal, we conclude that A = B. However, this implies that

d(x, g1, F1)− dV(x, g1, F1) > 2δZar(B) = 2δZar(A) = d(x, g, F )− dV(x, g, F ),

which contradicts (6.14.1).
Therefore, suppose that (x, g, F ) ∈ Π1 does not belong to Π2 i.e. that there exists (x, g1, F1) ∈

Π0 such that

g1F1(R)+g−1
1 · x ( gF (R)+g−1 · x,

and

dV(x, g1, F1) = dV(x, g, F ) = dimA.

But then A is contained in

g1F1(R)+g−1
1 · x ( 〈A〉Zar,

which is contradiction.
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Lemma 6.15. Assume that the weak hyperbolic Ax-Schanuel conjecture is true for V . Then,
if (x, g, F ) ∈ Π2, there exists a semisimple subgroup F ′ of G defined over Q such that gFg−1 is
equal to the almost direct product of the almost simple factors of F ′R whose underlying real Lie
groups are non-compact.

Proof. By [33], Proposition 3.1, it suffices to show that gF (R)+g−1 · x is a pre-weakly special
subvariety of X. Therefore, let A be an irreducible analytic component of

gF (R)+g−1 · x ∩ π−1(V )

passing through x such that

dimA = dV(x, g, F ).

Let B be an intersection component of π−1(V ) containing A such that δZar(B) ≤ δZar(A).
We can and do assume that B is Zariski optimal and, therefore, by the weak hyperbolic Ax-
Schanuel conjecture, pre-weakly special i.e. B is an irreducible component of

〈B〉Zar ∩ π−1(V )

and 〈B〉Zar is a pre-weakly special subvariety of X. Therefore, A is contained in

gF (R)+g−1 · x ∩ 〈B〉Zar

and so, since (x, g, F ) ∈ Π2, we conclude that gF (R)+g−1 · x is contained in 〈B〉Zar.
We also have

dim〈B〉Zar − dimx(〈B〉Zar ∩ V) ≤ δZar(B) ≤ δZar(A)
≤ d(x, g, F )− dimA

= d(x, g, F )− dV(x, g, F ),

and so, since (x, g, F ) ∈ Π1, we conclude that

gF (R)+g−1 · x = 〈B〉Zar.

Lemma 6.16. Assume that the weak hyperbolic Ax-Schanuel conjecture is true for V . Then,
the set

{gFg−1 : (x, g, F ) ∈ Π2}

is finite.

Proof. Decompose Π2 as the finite union of the ΠF , where F varies over the members of Ω and
ΠF denotes the set of tuples (x, g, F ) ∈ Π2. For each F ∈ Ω, consider the map

ΠF → G(R)/NG(R)(F ),

defined by

(x, g, F ) 7→ gNG(R)(F ),

whose image is, therefore, a definable set. However, Lemma 6.15, implies that it is countable
and hence finite.
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Proof of Proposition 6.11. Let A be an intersection component of π−1(V ) that is pre-weakly
special such that, for some x ∈ 〈A〉Zar,

dimA = dimx(〈A〉Zar ∩ V).

Then, by Lemma 6.14, we can write

〈A〉Zar = gF (R)+g−1 · x

where (x, g, F ) ∈ Π2. By Lemma 6.15, there exists a semisimple subgroup F ′ of G defined
over Q such that gFg−1 is equal to the almost direct product of the almost simple factors of
F ′R whose underlying real Lie groups are non-compact. In fact, by [33], Proposition 3.1, F ′ is
smallest subgroup of G defined over Q containing gFg−1. Since, by Lemma 6.16, gFg−1 comes
from a finite set, so too does F ′. In particular, the reductive algebraic group

M := F ′ · ZG(F ′)◦

is defined over Q and belongs to a finite set.
If we write Mnc for the almost direct product of the almost Q-simple factors of M whose

underlying real Lie groups are not compact, then x factors through M ′R := Z(M)◦R ·Mnc
R and,

if we write XM for the M ′(R) conjugacy class of x in X, then, by [32], Lemme 3.3, (M ′,XM )
is a Shimura subdatum of (G,X). Furthermore, by [36], Lemma 3.7, the number of Shimura
subdatum (M ′,Y) is finite. Therefore, since the M ′(R)+ conjugacy class XM of x in X is a
pre-special subvariety of X and 〈A〉Zar is a fiber of XM , the proof is complete.

Proof of Proposition 6.3. Let A be an irreducible analytic component of π−1(W ). By Lemma
6.10, A is an intersection component of π−1(V ) and is geodesically optimal in π−1(V ). Therefore,
by Lemma 6.8, A is Zariski optimal in π−1(V ) and so, by the weak hyperbolic Ax-Schanuel
conjecture, A is pre-weakly special. It follows that the image of 〈A〉Zar in S is equal to 〈W 〉ws.

After possibly replacing A by a γA, for some γ ∈ Γ, we can and do assume that there exists
x ∈ 〈A〉Zar such that

dim(A) = dimx(〈A〉Zar ∩ V).

By Proposition 6.11, 〈A〉Zar is a fiber of Y ∈ Σ, where Σ is a finite set of pre-special subvarieties
of X depending only on V .

7 Anomalous subvarieties
In this section, we recall the notion of an anomalous subvariety, which is defined by Bombieri,
Masser, and Zannier in [5] for subvarieties of algebraic tori. In fact, we give the more general
notion of an r-anomalous subvariety, as introduced by Rémond [29].

Let V be a subvariety of S. We will use Proposition 6.3 to show that, under the weak
hyperbolic Ax-Schanuel conjecture, the union of the subvarieties of V that are r-anomalous in
V constitutes a Zariski closed subset of V . We will then give a criterion for when it is a proper
subset.

Definition 7.1. Let r ∈ Z. A subvariety W of V is called r-anomalous in V if

dimW ≥ max{1, r + dim〈W 〉ws − dimS}.

A subvariety of V is maximal r-anomalous in V if it is r-anomalous in V and not strictly
contained in another subvariety of V that is also r-anomalous in V .
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We denote by an(V, r) the set of subvarieties of V that are r-anomalous in V and by V an,r

the union of the elements of an(V, r).
We say that a subvariety of V is anomalous if it is (1+dimV )-anomalous. We write an(V )

for an(V, 1 + dimV ) and V an for V an,1+dimV .

Theorem 7.2. Assume that the weak hyperbolic Ax-Schanuel conjecture is true for V and let
r ∈ Z. Then V an,r is a Zariski closed subset of V .

We refer the reader to [5], [29], and [18] for similar results on algebraic tori and abelian
varieties. We will require the following facts.

Proposition 7.3 (cf. [19], Chapter 2, Exercise 3.22 (d)). Let f : W → Y be a dominant
morphism between two integral schemes of finite type over a field and let

e := dimW − dimY

denote the relative dimension. For h ∈ Z, let Eh denote the set of points x ∈ W such that
the fibre f−1(f(x)) possesses an irreducible component of dimension at least h that contains x.
Then

(1) Eh is a Zariski closed subset of W ,

(2) Ee = W , and

(3) if h > e, Eh is not Zariski dense in W .

Lemma 7.4. Let W ∈ an(V, r). Then W is weakly optimal in V .

Proof. Let Y be a subvariety of V containing W such that δws(Y ) ≤ δws(W ). Then

dimY = dim〈Y 〉ws − δws(Y )
≥ dim〈Y 〉ws − δws(W )
= dim〈Y 〉ws − (dim〈W 〉ws − dimW )
≥ dim〈Y 〉ws + r − dimS.

Since Y contains W , we know that dimY ≥ 1 and so Y ∈ an(V, r). We conclude that Y must
be equal to W and, therefore, that W is weakly optimal in V .

Proof of Theorem 7.2. Let Σ be a finite set of pre-special subvarieties of X (whose existence is
ensured by Proposition 6.3) such that, if W is a subvariety of V that is weakly optimal in V ,
then there exists x ∈ X such that, if M := MT(x), then the M(R)+ conjugacy class XM of x in
X belongs to Σ and 〈W 〉ws is equal to the image in S of a fiber of XM . That is, we may write
Mad as a product M1×M2 of two normal Q-subgroups, which induces a splitting X = X1×X2
such that 〈W 〉ws is equal to the image in S of {x1} ×X2, for some x1 ∈ X1.

Let W ∈ an(V, r). By Lemma 7.4, there exists XM ∈ Σ such that 〈W 〉ws is equal to the
image in S of {x1} ×X2, for some x1 ∈ X1, where XM = X1 ×X2, as above.

Let ΓM be a congruence subgroup of M(Q)+ contained in Γ, where M(Q)+ denotes the
subgroup of M(Q) acting on XM , and let Γ1 denote the image of Γ under the natural maps

M(Q)→Mad(Q)→M1(Q).

We denote by f the restriction of

ΓM\XM → Γ1\X1
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to φ−1(V ), where φ denotes the natural map

ΓM\XM → Γ\X = S.

Therefore, by Proposition 7.3 (1), the set Ef of points z in φ−1(V ) such that the fibre f−1(f(z))
possesses an irreducible component of dimension at least h that contains z is a Zariski closed
subset of φ−1(V ). Since φ is a closed morphism, φ(Ef ) is Zariski closed in V .

We claim that W is contained in φ(Ef ), where

h := max{1, r + dimX2 − dimS},

which is equivalent to the claim that any irreducible component of φ−1(W ) is contained in Ef .
Fix such a component WM . Then 〈WM 〉ws is equal to the image of {x1} ×X2 in ΓM\XM

and so WM lies in a fiber of f . Since

dimWM = dimW ≥ max{1, r + dim〈W 〉ws − dimS} = max{1, r + dimX2 − dimS},

our claim follows.
Finally, we claim that φ(Ef ) is contained in V an,r. To see this, let z ∈ Eh and let Y be an

irreducible component of the fibre f−1(f(z)) of dimension at least h containing z. Then Y is
contained in the image of {x1} ×X2 in ΓM\XM , where x1 ∈ X1 lies above f(z) ∈ Γ1\X1, and
so

dim〈Y 〉ws ≤ dimX2.

Therefore,

dimφ(Y ) = dimY ≥ h = max{1, r + dimX2 − dimS} ≥ max{1, r + dim〈φ(Y )〉ws − dimS}

and so φ(Y ) ∈ an(V, r).
Hence, if we let E denote the union of the φ(Ef ) as we vary over the finitely many maps

f obtained from the XM ∈ Σ and their possible splittings, we conclude that E = V an,r, which
finishes the proof.

We denote by V oa the complement in V of V an. By Theorem 7.2, this is a (possibly empty)
open subset of V . In the literature, it is sometimes referred to as the open-anomalous locus,
hence the subscript. We conclude this section by showing that, when V is sufficiently generic,
V oa is not empty.

Proposition 7.5. Suppose that V is Hodge generic in S. Then V an = V if and only if we can
write Gad = G1 ×G2, and thus X = X1 ×X2, such that

dim f(V ) < min{dimV,dimX1},

where f denotes the projection map

Γ\X → Γ1\X1,

and Γ1 denotes the image of Γ under the natural maps

G(Q)→ Gad(Q)→ G1(Q).
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Proof. First suppose that V an = V . Then, for any set Σ as in the proof of Theorem 7.2, V
is contained in the (finite) union of the images in X of the XM ∈ Σ. Therefore, since V is
assumed to be Hodge generic in S, it must be that X ∈ Σ and, furthermore, that there exists
W ∈ an(V ) such that Gad = G1 ×G2, and thus X = X1 ×X2, such that 〈W 〉ws is equal to the
image in S of {x1} ×X2, for some x1 ∈ X1.

Let f denote the projection map

Γ\X → Γ1\X1,

as in the statement of the proposition, and consider its restriction

V → f(V ),

where f(V ) denotes the Zariski closure of f(V ) in Γ1\X1. Since V an = V , it follows from
Proposition 7.3 (3), that

h := max{1, 1 + dimV + dimX2 − dimX} ≤ dimV − dim f(V ).

Hence,

dim f(V ) < dimX − dimX2 = dimX1.

Furthermore, since V contains W , which is of positive dimension and contained in the image in
S of {x1} ×X2, we conclude that the dimension of f(V ) is strictly smaller than the dimension
of V .

Conversely, suppose that Gad = G1 ×G2, and thus X = X1 ×X2, such that

dim f(V ) < min{dimV,dimX1},

where f denotes the projection map

Γ\X → Γ1\X1,

as above. Restricting f to

V → f(V ),

as before, we see from Proposition 7.3 (2) that the set Ef of points z in V such that the fibre
f−1(f(z)) possesses an irreducible component of dimension at least

h := max{1, 1 + dimV − dimX1} ≤ dimV − dim f(V ) = dimV − dim f(V )

that contains z is equal to V . However, from the proof of Theorem 7.2, we have seen that Ef
is contained in V an, so the claim follows.

Corollary 7.6. If Gad is Q-simple and V is a Hodge generic subvariety in S, then V an is
strictly contained in V . In particular, V an is strictly contained in V whenever V is a Hodge
generic subvariety of Ag.
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8 Main results (part 1): Reductions to point counting
In this section, we prove our main theorem, that, under the weak hyperbolic Ax-Schanuel
conjecture, the Zilber-Pink conjecture can be reduced to a problem of point counting. We also
give a reduction of Pink’s conjecture in the case when the open-anomalous locus is non-empty.

Definition 8.1. Let V be a subvariety of S. We denote by Opt0(V ) the set of all points in V
that are optimal in V .

Consider the following corollary of the Zilber-Pink conjecture.

Conjecture 8.2. Let V be a subvariety of S. Then Opt0(V ) is finite.

We will later show that, under certain arithemtic hypotheses, one can prove Conjecture
8.2 when V is a curve. Our main result in this section is that (under the weak hyperbolic
Ax-Schanuel conjecture), Conjecture 8.2 implies the Zilber-Pink conjecture.

Theorem 8.3. Assume that the weak hyperbolic Ax-Schanuel conjecture is true and assume
that Conjecture 8.2 holds.

Let V be a subvariety of S. Then Opt(V ) is finite.

Proof. We prove Theorem 8.3 by induction on dimV . Of course, Theorem 8.3 is trivial when
dimV = 0 or dimV = 1. Therefore, we assume that dimV ≥ 2 and that Theorem 8.3 holds
whenever the subvariety in question is of lower dimension.

We need to show that the induction hypothesis implies that there are only finitely many
subvarieties of positive dimension belonging to Opt(V ).

Let Σ be a finite set of pre-special subvarieties of X, as in the proof of Theorem 7.2, and let
W ∈ Opt(V ) be of positive dimension.

By Corollary 4.5, W is weakly-optimal and, therefore, there exists x ∈ X such that, if
M := MT(x), the M(R)+ conjugacy class XM of x in X belongs to Σ and 〈W 〉ws is equal to
the image in S of a fiber of XM . That is, we may write Mad as a product

Mad = M1 ×M2

of two normal Q-subgroups, thus inducing a splitting

XM = X1 ×X2,

such that 〈W 〉ws is equal to the image in S of {x1} ×X2, for some x1 ∈ X1.
Let ΓM be a congruence subgroup of M(Q)+ contained in Γ, where M(Q)+ denotes the

subgroup of M(Q) acting on XM , such that the image of ΓM under the natural map

M(Q)→Mad(Q) = M1(Q)×M2(Q)

is equal to a product Γ1 × Γ2. We denote by f the natural morphism

ΓM\XM → Γ1\X1,

and by φ the closed morphism

ΓM\XM → Γ\X = S.

Let Ṽ be an irreducible component of φ−1(V ) and let W̃ denote an irreducible component of
φ−1(W ). Then W̃ is optimal in Ṽ . On the other hand, by the generic smoothness property,
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there exists a dense open subset V0 of Ṽ such that the restriction f0 of f to V0 is a smooth
morphism of relative dimension ν. We denote by V1 the Zariski clsoure of f(V0) in Γ1\X1.

Now suppose that

W̃ ∩ V0 = ∅.(8.3.1)

Then W̃ is a subvariety of some irreducible component V 0 of Ṽ \V0. Furthermore, W̃ is optimal
in V 0. However, since dimV 0 is strictly less than dimV , our induction hypothesis implies that
Opt(V 0) is finite.

Therefore, we assume that (8.3.1) does not hold. As an irreducible component of the fibre
f−1

0 (z), where z denotes the image of x1 in V1, its dimension is equal to ν. In particular,

dim W̃ = ν.

We claim that z is optimal in V1. To see this, note that f(〈W̃ 〉) contains z and is a special
subvariety of dimension

dim〈W̃ 〉 − dimX2 = dim W̃ + δ(W̃ )− dimX2 = ν + δ(W̃ )− dimX2.

Therefore, let A be a subvariety of V1 containing z such that

δ(A) ≤ δ(z) ≤ ν + δ(W̃ )− dimX2,

and let B be an irreducible component of f−1(A) containing W̃ . Since V0 is open in Ṽ and A
is contained in V1,

dimB = dimA+ ν.

Therefore,

δ(B) ≤ dim〈A〉+ dimX2 − dimB = δ(A) + dimA+ dimX2 − dimB ≤ δ(W̃ )

and, since W̃ is optimal in Ṽ , we conclude that B is equal to W̃ . In particular, W̃ is an
irreducible component of f−1(A) but, since it is also contained in f−1(z), it must be that A
was z, proving the claim.

Since W was assumed to be of positive dimension, so too must be X2. It follows that
dimV1 is strictly less than dimV and so, by the induction hypothesis, Opt(V1) is finite. Since
z ∈ Opt(V1) and since Σ and the number of splittings are finite, we are done.

We will later prove that the following conjecture is a consequence of the weak hyperbolic
Ax-Schanuel conjecture and our arithmetic conjectures. It is inspired by the cited theorem of
Habegger and Pila.
Conjecture 8.4 (cf. [18], Theorem 9.15 (iii)). Let V be a subvariety of S. Then the set
V oa ∩ S[1+dimV ] is finite.

The importance of Conjecture 8.4 for us is that, when V is suitably generic, Conjecture 8.4
implies Pink’s conjecture (assuming the weak hyperbolic Ax-Schanuel conjecture).
Theorem 8.5. Assume that the weak hyperbolic Ax-Schanuel conjecture is true and that Con-
jecture 8.4 holds.

Let V be a Hodge generic subvariety of S such that (even after replacing Γ) S cannot be
decomposed as a product S1 × S2 such that V is contained in V ′ × S2, where V ′ is a proper
subvariety of S1 of dimension strictly less than the dimension of V . Then

V ∩ S[1+dimV ]

is not Zariski dense in V .
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Proof. We claim that the assumptions guarantee that V an is strictly contained in V . Otherwise,
by Proposition 7.5, we can write Gad = G1 ×G2, and thus X = X1 ×X2, such that

dim f(V ) < min{dimV,dimX1},

where f denotes the projection map

Γ\X → Γ1\X1,

and Γ1 denotes the image of Γ under the natural maps

G(Q)→ Gad(Q)→ G1(Q).

Therefore, after replacing Γ, we can write S as a product S1 × S2 so that f is simply the
projection on to the first factor and V is contained in V ′ × S2, where V ′ is Zariski closure of
f(V ) in S1. However, since

dimV ′ = dim f(V ),

this is a contradiction.
Therefore, by Theorem 7.2, V an is a proper Zariski closed subset of V . On the other hand,

V ∩ S[1+dimV ] is contained in

V an ∪
[
V oa ∩ S[1+dimV ]

]
and so the theorem follows from Conjecture 8.4.

9 The counting theorem
Henceforth, we turn our attention to the counting problems themselves. We will approach these
problems using a theorem of Pila and Wilkie concerned with counting points in definable sets.
We first recall the notations.

Let k ≥ 1 be an integer. For any real number y, we define its k-height as

Hk(y) := min{max{|a0|, ..., |ak|} : ai ∈ Z, gcd{a0, ..., ak} = 1, a0y
k + ...+ ak = 0},

where we use the convention that, if the set is empty i.e. y is not algebraic of degree at most k,
then Hk(y) is +∞. For y = (y1, ..., ym) ∈ Rm, we set

Hk(y) := max{Hk(y1), ...,Hk(ym)}.

For any set A ⊆ Rm × Rn, and for any real number T ≥ 1, we define

A(k, T ) := {(y, z) ∈ Z : Hk(y) ≤ T}.

The counting theorem of Pila and Wilkie is stated as follows.

Theorem 9.1 (cf. the proof of [18], Corollary 7.2). Let D ⊆ Rl × Rm × Rn be a definable
family parametrised by Rl, let k be a positive integer, and let ε > 0. There exists a constant
c := c(D, k, ε) > 0 with the following properties.

Let x ∈ Rl and let

Dx := {(y, z) ∈ Rm × Rn : (x, y, z) ∈ D}.
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Let π1 and π2 denote the projections Rm × Rn → Rm and Rm × Rn → Rn, respectively. If T ≥ 1
and Σ ⊆ Dx(k, T ) satisfies

#π2(Σ) > cT ε,

there exists a continuous and definable function β : [0, 1]→ Dx such that the following properties
hold.

1. The composition π1 ◦ β : [0, 1]→ Rm is semi-algebraic.

2. The composition π2 ◦ β : [0, 1]→ Rn is non-constant.

3. We have β(0) ∈ Σ.

Note that, although the conclusion β(0) ∈ Σ does not appear in the statement of [18],
Corollary 7.2, it is, indeed, established in its proof.

10 Complexity
In order to apply the counting theorem, we will need a way of counting special points and, more
generally, special subvarieties.

Let P be a special point in S and let x ∈ X be a pre-special point lying above P . In
particular, T := MT(x) is a torus and we denote by DT the absolute value of the discriminant
of its splitting field. We let Km

T denote the maximal compact open subgroup of T (Af ) and we
let KT denote K ∩ T (Af ).

Definition 10.1. The complexity of P is the natural number

∆(P ) := max{DT , [Km
T : KT ]}.

Note that this does not depend on the choice of x.

Now let Z be a special subvariety of S. There exists a Shimura subdatum (H,XH) of (G,X),
such that H is the generic Mumford-Tate group on XH , and a connected component XH of XH
contained in X such that Z is the image of XH in Γ\X. In fact, these choices are well-defined
up to conjugation by Γ.

By the degree deg(Z) of Z, we refer to the degree of the Zariski closure of Z in the Baily-
Borel compactification of S, defined in [4], which is naturally a projective variety.

Definition 10.2. The complexity of Z is the natural number

∆(Z) := max{deg(Z),min{∆(P ) : P ∈ Z is a special point}}.

Note that when Z is a special point, this complexity coincides with the former.

This is a natural generalization of the complexities given in [18], Definition 3.4 and Definition
3.8. In order to count special subvarieties, however, it is crucial that the complexity of Z satisfies
the following property.

Conjecture 10.3. For any b ≥ 1, we have

#{Z ⊆ S : Z is special and ∆(Z) ≤ b} <∞.

The obstruction to proving that this property holds for a general Shimura variety can be
expressed as follows.
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Conjecture 10.4. For any b ≥ 1, there exists a finite set Ω of semisimple subgroups of G
defined over Q such that, if Z is a special subvariety of S, and deg(Z) ≤ b, then

Hder = γFγ−1,

for some γ ∈ Γ and some F ∈ Ω.

Proof that Conjecture 10.4 implies Conjecture 10.3. By Conjecture 10.4, there exists a finite set
Ω of semisimple subgroups of G defined over Q, independent of Z, such that

Hder = γFγ−1,

for some γ ∈ Γ and some F ∈ Ω.
Let P ∈ Z be a special point such that ∆(P ) is minimal among all special points in Z and

let x ∈ X be a point lying above P such that MT(x) is contained in H. Therefore, Z is equal
to the image of F (R)+ · γ−1x in Γ\X. Furtherore, MT(γ−1x) is contained in

GF := F · ZG(F )◦

and, by [32], Lemme 3.3, if we denote by X′ the GF (R) conjugacy class of γ−1x, we obtain a
Shimura subdatum (GF ,X′) of (G,X).

Therefore, let X ′ denote the connected component GF (R)+γ−1x of X′ and let Γ′ denote
Γ∩GF (Q)+, where GF (Q)+ denotes the subgroup of GF (Q) acting on X ′. By [36], Proposition
3.21 and its proof, there exist only finitely many Γ′ orbits of pre-special points in X ′ whose
image in Γ′\X ′ has complexity at most b. Therefore, there exists λ ∈ Γ′ such that γ−1x = λy,
where y ∈ X ′ belongs to a finite set. We conclude that Z is equal to the image of

ΓF (R)+γ−1x = ΓF (R)+λy = ΓλF (R)+y = ΓF (R)+y

in Γ\X, which concludes the proof.

11 Galois orbits
In [18], Habegger and Pila formulated a conjecture about Galois orbits of optimal points in Cn

that in [17] they had been able to prove for so-called asymmetric curves. In [25], Orr generalized
the result to asymmetric curves in A2

g.
Recall that ShK(G,X) possesses a canonical model, defined over a number field E, which

depends only on (G,X). Furthermore, S is defined over a finite abelian extension F of E. In
particular, for any extension L of F contained in C, it makes sense to say that a subvariety V
of S is defined over L. Moreover, if V is such a subvariety, then Gal(C/L) acts on the points of
V .

If Z is a special subvariety of S and σ ∈ Gal(C/F ), then σ(Z) is also a special subvariety of
S and its complexity is ∆(Z). In particular, if V is a subvariety of S, as above, then Gal(C/L)
acts on Opt(V ).

Conjecture 11.1 (large Galois orbits). Let V be a subvariety of S, defined over a finitely
generated extension L of F contained in C. There exist positive constants cG and δG such that
the following holds.

If P ∈ Opt0(V ), then

#Gal(C/L) · P ≥ cG∆(〈P 〉)δG .
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Remark 11.2. In the context of the André-Oort conjecture, there is the pioneering hypothesis
that Galois orbits of special points should be large. See [12], Problem 14 for the formulation
for special points in Ag and see [39], Theorem 2.1 for special points in a general Shimura
variety. This hypothesis, which was verified by Tsimerman for special points of Ag [30] via
progress on the Colmez conjecture due to Andreatta, Goren, Howard, Madapusi Pera, Yuan,
and Zhang [1, 40], is now the only obstacle in an otherwise unconditional proof of the André-
Oort conjecture. The conjecture is that there exist positive constants c and δ such that, for any
special point P ∈ S,

#Gal(Q̄/Q) · P ≥ c∆(P )δ.

Of course, this conjecture does not follow from Conjecture 11.1 because special points lying in
V need not be optimal in V . However, the proof of the André-Oort conjecture only requires the
bound for special points that are not contained in the positive dimensional special subvarieties
contained in V i.e. special points contained in Opt0(V ) (see [7] for more details). Furthermore,
since special points are defined over number fields, we may also assume in that case that V is
defined over a finite extension of F . It follows that Conjecture 11.1 is sufficient to prove the
André-Oort conjecture.

To prove Conjecture 8.4, however, one only requires the following hypothesis.

Conjecture 11.3. Let V be a subvariety of S, defined over a finitely generated extension L of
F contained in C. There exist positive constants cG and δG such that the following holds.

If P ∈ V oa ∩ S[1+dimV ], then

#Gal(C/L) · P ≥ cG∆(〈P 〉)δG .

Remark 11.4. Note that, if P ∈ V oa ∩ S[1+dimV ], then P ∈ Opt0(V ). To see this, let W be a
subvariety of V containing P such that δ(W ) ≤ δ(P ) i.e.

dim〈W 〉 − dimW ≤ dim〈P 〉 ≤ dimS − 1− dimV.

Therefore,

dimW ≥ 1 + dimV + dim〈W 〉 − dimS ≥ 1 + dimV + dim〈W 〉ws − dimS,

and so dimW = 0, as P /∈ V an, which implies that W = P , proving the claim. Therefore, Con-
jecture 11.3 follows from Conjecture 11.1, but the former would seem genuinely more tractable.
Indeed, when S is an abelian variety and V is a subvariety defined over Q̄, Habegger [16] showed
that the Néron-Tate height is bounded on Q̄-points of V oa ∩ S[dimV ].

12 Further arithmetic hypotheses
The principal obstruction to applying the Pila-Wilkie counting theorems to our point count-
ing problems (except for the availabliity of lower bounds for Galois orbits) is the ability to
parametrize pre-special subvarieties of S using points of bounded height.

Definition 12.1. We say that a semisimple algebraic group defined over Q is of non-compact
type if its almost-simple factors all have the property that their underlying real Lie group is not
compact.
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Let Ω be a (finite) set of representatives for the semisimple subgroups of G defined over Q
of non-compact type modulo the equivalence relation

H1 ∼ H2 ⇐⇒ H2,R = gH1,Rg
−1, for some g ∈ G(R).

Add the trivial group to Ω. Our needs can be encapsulated in the following conjecture. Recall
that X is realised as a bounded symmetric domain in CN , for some N ∈ N, which we identify
with R2N . Henceforth, we fix an embedding of G into GLn such that Γ is contained in GLn(Z).
We consider GLn(R) as a subset of Rn

2 in the natural way.

Conjecture 12.2 (cf. [18], Proposition 6.7). There exist positive constants d, cF , and δF
such that, if z ∈ F , then the smallest pre-special subvariety of X containing z can be written
gF (R)+g−1x, where F ∈ Ω, and g ∈ G(R) and x ∈ X satisfy

Hd(g, x) ≤ cF∆(〈π(z)〉)δF .

This is seemingly the most natural generalization of the following theorem due to Orr and
the first author on the heights of pre-special points, which plays a crucial role in the proof of
the André-Oort conjecture.

Theorem 12.3 (cf. [8], Theorem 1.4). There exist positive constants d, cF and δF such that,
if z ∈ F is a pre-special, then

Hd(z) ≤ cF∆(π(z))δF .

We remark that the problem of finding d as in Conjecture 12.2 poses no obstacle in itself.
Indeed a proof of the following theorem will appear in a forthcoming article of Borovoi and the
authors.

Theorem 12.4. There exists a positive constant d such that, for any two semisimple subgroups
H1 and H2 of G defined over Q that are conjugate by an element of G(R), there exists a number
field K contained in R of degree at most d, and an element g ∈ G(K), such that

H2,K = gH1,Kg
−1.

A nice feature of Conjecture 12.2 is that it implies Conjecture 10.3 that there are only
finitely many special subvarieties of bounded complexity.

Lemma 12.5. Conjecture 12.2 implies Conjecture 10.3.

Proof. Let Z be a special subvariety of S such that ∆(Z) ≤ b and let P ∈ Z be such that
〈P 〉 = Z. Let z ∈ F be such that π(z) = P and let XH be the smallest pre-special subvariety
of X containing z. Then π(XH) = Z and, by Conjecture 12.2, XH = gFg−1x, where F ∈ Ω,
and g ∈ G(R) and x ∈ X satisfy

Hd(g, x) ≤ cF∆(Z)δF ≤ cFbδF .

The claim follows, therefore, from the fact that there are only finitely many algebraic numbers
of bounded degree and height.

Another, albeit longer, approach to our point counting problems can be given by replacing
Conjecture 12.2 with two related conjectures, although we will have to additionally assume
Conjecture 10.3 in this case. We will also rely on the fact that Theorem 9.1 is uniform in
families. The advantage is that the following two conjectures are seemingly more accessible.
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Conjecture 12.6. For any κ > 0, there exists a positive constant cκ such that, if Z is a special
subvariety of S, then there exists a semisimple subgroup H of G defined over Q of non-compact
type, and an extension L of F satisfying

[L : F ] ≤ cκ∆(Z)κ,

such that, for any σ ∈ Gal(C/L),

σ(Z) = π(H(R)+xσ),

where H(R)+xσ is a pre-special subvariety of X intersecting F .

Recall that, for an abelian variety A, defined over a field K, every abelian subvariety of A
can be defined over a fixed, finite extension of K. The analogue of Conjecture 12.6 is, therefore,
trivial. In a Shimura variety, one hopes that the degrees of fields of definition of strongly special
subvarieties grow as in Conjecture 12.6. If this were true, Conjecture 12.6 for strongly special
subvarieties would follow easily.

Our final conjecture is also inspired by the abelian setting.

Conjecture 12.7 (cf. [18], Lemma 3.2). There exist positive constants cΓ and δΓ such that, if
XH is a pre-special subvariety of X intersecting F and z ∈ F belongs to ΓXH , then z ∈ γXH ,
where γ ∈ Γ satisfies

H1(γ) ≤ cΓ deg(π(XH))δΓ .

Conjecture 12.7 has the following useful consequence.

Lemma 12.8. Assume that Conjecture 12.7 holds.
There exist positive constants d, cH, and δH such that, if H(R)+x is a pre-special subvariety

of X intersecting F , then

H(R)+x = H(R)+y

where Hd(y) ≤ cH∆(π(H(R)+x))δH.

Proof. Let d, cF , and δF be the positive constants afforded to us by Theorem 12.3, and let cΓ
and δΓ be the positive constants afforded to us by Conjecture 12.7.

Let x′ ∈ ΓH(R)+x ∩ F denote a pre-special point such that π(x′) is of minimal complexity
among the special points of π(H(R)+x). By Theorem 12.3, we have

Hd(x′) ≤ cF∆(π(H(R)+x)δF .

On the other hand, by Conjecture 12.7, x′ ∈ γH(R)+x, where

H1(γ) ≤ cΓ∆(π(H(R)+x)δΓ .

It follows easily from the properties of heights that there exist positive constants c and δ
depending only on the fixed data such that

Hd(γ−1x′) ≤ cH1(γ)δHd(x′)δ.

Therefore, the previous remarks show that

y := γ−1x′ ∈ H(R)+x

satisfies the requirements of the lemma.

We will now verify the arithmetic conjectures stated above in an arbitrary product of mod-
ular curves.
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13 Products of modular curves
Our definition of a Shimura variety allows for the possibility that S might be a product of
modular curves. In that case G = GLn2 , where n is the number of modular curves, and X is the
G(R) conjugacy class of the morphism S→ GR given by

a+ ib 7→


 a b

−b a

 , . . . ,

 a b

−b a


 .

We let X denote the G(R)+ conjugacy class of this morphism, which one identifies with the
n-th cartesian power Hn of the upper half-plane H.

For our purposes, we can and do suppose that Γ is equal to SL2(Z)n and we let F denote a
fundamental set in X for the action of Γ, equal to the n-th cartesian power of a fundamental
set FH in H for the action of SL2(Z). Note that, as explained in [24] Section 1.3, we can and
do choose FH in the image of a Siegel set. Via the j-function applied to each factor of Hn, the
quotient Γ\X is isomorphic to the algberaic variety Cn. Special subvarieties have the following
well-documented description.

Proposition 13.1 (cf. [10], Proposition 2.1). Let I = {1, . . . , n}. A subvariety Z of Cn is a
special subvariety if and only if there exists a partition Ω = (I1, . . . , It) of I, with |Ii| = ni, such
that Z is equal to the product of subvarieties Zi of Cni, where, either

? Ii is a one element set and Zi is a special point, or

? Zi is the image of H in Cni under the map sending τ ∈ H to the image of (gj · τ)j∈Ii in
Cni for elements gj ∈ GL2(Q)+.

First note that Conjecture 12.2 for Cn follows from Proposition 6.7 of [18]. Hence, we will
now verify Conjecture 12.6 and Conjecture 12.7 in that setting.

Proof of Conjecture 12.6 for Cn. Let Z be a special subvariety of Cn, equal to a product of
special subvarieties Zi of Cni , as above. Without loss of generality, we may assume that the
product contains only one factor and, by Theorem 12.3, we may assume that it is not a special
point. Therefore, Z is equal to the image of H in Cn under the map sending τ ∈ H to the image
of (gj · τ)nj=1 in Cn for elements gj ∈ GL2(Q)+.

In other words, we have a morphism of Shimura data from (GL2,H±) to (G,X), where H± is
the union of the upper and lower half-planes (or, rather, the conjugacy class we associate with
it, as above), induced by the morphism

GL2 → GLn2 : g 7→ (gjgg−1
j )nj=1,

such that Z is equal to the image of H× {1} under the corresponding morphism

ShK(GL2,H
±)→ ShGL2(Ẑ)n(G,X),(13.1.1)

where K is the product of the groups

Kp := g1GL2(Zp)g−1
1 ∩ · · · ∩ gnGL2(Zp)g−1

n

over all primes p.
Since (13.1.1) is defined over E(GL2,H±) = Q, it suffices to bound the size of

π0(ShK(GL2,H
±)),
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which, by [22], Theorem 5.17, is in bijection with

Q>0\A×f /ν(K),

where ν is the determinant map on GL2. However, since A×f is equal to the direct product
Q>0Ẑ×, it suffices to bound the size of Ẑ×/ν(K).

To that end, let Σ denote the (finite) set of primes p such that gj /∈ GL2(Zp), for some
j ∈ {1, . . . , n}. In particular,

[Ẑ× : ν(K)] =
∏
p∈Σ

[Z×p : ν(Kp)]

and, since Kp contains the elements diag(a, a), where a ∈ Z×p ,

[Z×p : ν(Kp)] ≤ [Z×p : Z×2
p ] ≤ 4,

where Z×2
p denotes the squares in Z×p .

On the other hand, by [6],

deg(Z) ≥
∏
p∈Σ

p,

and the conjecture follows easily from the following classical fact regarding primorials.

Lemma 13.2. Let n ∈ N. The product of the first n prime numbers is equal to

e(1+o(1))n logn.

Proof of Conjecture 12.7 for Cn. Let XH be a product of spaces Xi equal to either a pre-special
point or to the image of H in Hni given by the map sending τ to (gj · τ)nij=1 for elements
gj ∈ GL2(Q)+. Without loss of generality, we may assume that the product contains only one
factor X1 = X.

If X is a pre-special point contained in F , then the claim follows from the fact that

{γ ∈ Γ : γF ∩ F 6= ∅}

is finite. Therefore, assume that X is equal to the image of H in Hn given by the map sending τ
to (gj · τ)nj=1 for elements gj ∈ GL2(Q)+. We can and do assume that g1 is equal to the identity
element and that all of the gj have coprime integer entries.

As in the statement of Conjecture 12.7, we assume thatX intersects F , and we let x ∈ F∩X.
Therefore,

x = (gjτx)nj=1,

where τx ∈ FH and, by [24], Theorem 1.2 (cf. [17], Lemma 5.2), H1(gj) ≤ c1 det(gj)2, for all
j ∈ {1, . . . , n}, where c1 is a positive constant not depending on Z. In particular,

H1(g−1
j ) ≤ det(gj) ·H1(gj) ≤ c1 det(gj)3,

for each j ∈ {1, . . . , n}.
Now, let z := (zj)nj=1 ∈ F be a point belonging to ΓX. For each j ∈ {1, . . . , n},

zj = γjgjgτx,
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for some g ∈ GL2(R)+ and some γj ∈ SL2(Z). Therefore, let

Λ :=
n⋂
j=1

g−1
j SL2(Z)gj

and let C denote a set of representatives in SL2(Z) for Λ\SL2(Z). Note that, if we define

mj := det(gj),

then, for any multiple N of mj , the principal congruence subgroup Γ(N) is contained in
g−1
j SL2(Z)gj . In particular, if we define N to be the product of the mj , then Γ(N) is con-
tained in Λ. It follows that any subset of SL2(Z) mapping bijectively to SL2(Z/NZ) contains a
set C, as above. Via the procedure outlined in [9], Exercise 1.2.2, it is straightforward to verify
that we can (and do) choose C such that, for any c ∈ C,

H(c) ≤ 7N5

(though we certainly do not claim that this is the best possible bound).
The union ⋃

c∈C
cFH

constitutes a fundamental set in H for the action of Λ. Hence, there exists c ∈ C and λg ∈ Λ
such that

c−1λggτx ∈ FH.

Furthermore, for each j ∈ {1, . . . , n}, we can write λg = g−1
j λjgj , for some λj ∈ SL2(Z) and,

hence,

zj = γjgjgτx = γjgjλ
−1
g c · c−1λggτx = γjλ

−1
j gjc · c−1λggτx.

Therefore, by [24], Theorem 1.2, we have H1(γjλ−1
j gjc) ≤ c1m

2
j , for all j ∈ {1, . . . , n}.

We write

H1(γjλ−1
j ) = H1(γjλ−1

j gjc · c−1g−1
j ) ≤ c2H1(γjλ−1

j gjc)δH1(c−1)δH1(g−1
j )δ,

where c2 and δ are positive constants not depending on Z, and we obtain

H1(γjλ−1
j ) ≤ c3(Nmj)5δ,

for each j ∈ {1, . . . , n}, where c3 is a positive constant not depending on Z.
Conversely, by [6], §2,

deg(Z) ≥ [SL2(Z) : Λ]

and, by writing the gj in Smith normal form i.e.

gj = γ
(1)
j

 1 0

0 mj

 γ
(2)
j ,

where γ(1)
j , γ

(2)
j ∈ SL2(Z), we conclude that

[SL2(Z) : Λ] ≥ [SL2(Z) : Γ0(mj)],

for all j ∈ {1, . . . , n}. Since

[SL2(Z) : Γ0(mj)] ≥ mj ,

the result follows.
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14 Main results (part 2): Conditional solutions to the counting
problems

We conclude by demonstrating how our arithmetic conjectures might be used to resolve the
counting problems stated in Section 8. In our applications of the counting theorem, we will
need the following.

Lemma 14.1. Let β : [0, 1] → G(R) × X be semi-algebraic. Then Im(β) is contained in a
complex algebraic subset B of G(C)× CN of dimension at most 1.

Proof. Let Y denote the real Zariski closure of Im(β) in G(R)×R2N . In particular, dimY ≤ 1.
Without loss of generality, we can and do assume that Y is irreducible. If Y is a point then there
is nothing to prove. Therefore, we can and do assume that Y is an irreducible real algebraic
curve. In particular, the complexification YC of Y in G(C) × C2N is an irreducible complex
algebraic curve.

Let g1, . . . , gn2 , x1, y1, . . . , xN , yN denote the real coordinate functions on G(R)×X and let
zj = xj + iyj denote the coordinate functions on CN = R2N . If all of the coordinates functions
on R2N are constant on Y , the result is obvious. Therefore, without loss of generality, we can
and do assume that x1 is not constant on Y .

We claim that each of the coordinate functions x2, y2, . . . , xN , yN on C2N is algebraic over
the field C(z1), considered as a field of functions on YC. To see this, note that z1 is non-constant
on YC, and so C(z1) has transcendence degree at least 1. On the other hand, C(z1) is contained
in C(x1, y1), which is algebraic over C(x1).

In particular, each of the functions x2 + iy2, . . . , xN + iyN is algebraic over the field C(z1).
It follows that, for each j ≥ 2, there exists a polynomial fj(z1, zj) ∈ C[z1, zj ], non-trivial in
zj , such that fj(z1, zj) = 0 on Y . Similarly, for each k = 1, . . . , n2, there exists a polynomial
fj(z1, gk) ∈ C[z1, gk], non-trivial in gk, such that fk(z1, gk) = 0 on Y . In particular, Y is
contained in the vanishing locus of the fj and the fk, which define a complex algebraic curve
in G(C)× CN .

We denote by X∨ the complex dual of X, which is a complex algebraic variety on which
G(C) acts via an algebraic morphism

G(C)×X∨ → X∨.

Furthermore, X naturally embeds into X∨ and the embedding factors through an embedding
of CN i.e. the Harish-Chandra realization, into X∨. We could have defined subvarieties of X
using X∨ in the place of CN but, in fact, the two notions coincide. If we have a decomposition
Gad = G1 ×G2, and thus X = X1 ×X2, then we have a natural decomposition

X∨ = X∨1 ×X∨2 .

Furtherore, if (H,XH) denotes a Shimura subdatum of (G,X) and XH is a connected component
of XH contained inX, thenX∨H is naturally contained inX∨. We refer the reader to [35], Section
3 for more details.

Theorem 14.2. Assume that Conjecture 11.1 holds and assume that either

? Conjecture 12.2 holds or

? Conjectures 10.3, 12.6, and 12.7 hold.

Then Conjecture 8.2 is true for curves i.e. if V is a curve contained in S, then the set Opt0(V )
is finite.
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Proof. We will assume that Conjecture 12.2 holds. The proof in the case that Conjectures 10.3,
12.6, and 12.7 hold is very similar, hence we omit it. To elucidate the use of Conjectures 10.3,
12.6, and 12.7 we will use them in the proof of Theorem 14.3, at the expense of making the
proof longer. We suffer no loss of generality if we assume, as we will, that V is Hodge generic.

Let Ω denote a finite set of semisimple subgroups of G defined over Q as in Section 12 and let
d, cF , and δF be the constants afforded to us by Conjecture 12.2. Let L be a finitely generated
extension of F contained in C over which V is defined and let cG and δG be the constants
afforded to us by Conjecture 11.1. Let κ := 2δG/3δF .

We claim that there exists a positive constant c such that, for any P ∈ Opt0(V ), we have

#Gal(C/L) · P ≤ ccκF∆(〈P 〉)κδF .

This would be sufficient to prove Theorem 14.2 since then, by Conjecture 11.1, we obtain

cG∆(〈P 〉)δG ≤ #Gal(C/L) · P ≤ ccκF∆(〈P 〉)κδF

and, rearranging this expression, we obtain

∆(〈P 〉) ≤ (c3c
κ
Fc
−1
G )3,

which is a bound independent of P . We remind the reader that P is one of only finitely many
irreducible components of 〈P 〉 ∩ V . Hence, Theorem 14.2 would follow from Lemma 12.5 and
it remains only, therefore, to prove the claim.

To that end, for each σ ∈ Gal(C/L), let zσ ∈ V be a point in π−1(σ(P )). Therefore,
by Conjecture 12.2, the smallest pre-special subvariety of X containing zσ can be written
gσFσ(R)+g−1

σ xσ, where Fσ ∈ Ω, and gσ ∈ G(R) and xσ ∈ X satisfy

Hd(gσ, xσ) ≤ cF∆(〈σ(P )〉)δF = cF∆(〈P 〉)δF .

Without loss of generality, we can and do assume that F := Fσ is fixed. Therefore, for each
σ ∈ Gal(C/L), the tuple (gσ, xσ, zσ) belongs to the definable set D of tuples

(g, x, z) ∈ G(R)×X ×X ⊆ Rn
2+2N × R2N ,

such that z ∈ V ∩ gF (R)+g−1x and x(S) ⊆ gGF g−1. We consider D as a family over a point in
an omitted parameter space and choose for c the constant c(D, d, κ) afforded to us by Theorem
9.1 applied to D. Since Ω is finite, we can and do assume that c does not depend on F . We let
Σ denote the union over Gal(C/L) of the tuples (gσ, xσ, zσ) ∈ D. In particular, Σ is contained
in the subset

D(d, cF∆(〈P 〉)δF ).

Let π1 and π2 be the projection maps from Rn
2+2N ×R2N to Rn

2+2N and R2N , respectively,
and suppose, for the sake of obtaining a contradiction, that

#Gal(C/L) · P = #π2(Σ) > ccκF∆(〈P 〉)κδF .

Then, by Theorem 9.1, there exists a continuous definable function

β : [0, 1]→ D,

such that β1 := π1 ◦ β is semi-algebraic, β2 := π2 ◦ β is non-constant, and β(0) ∈ Σ. Let
z0 := β2(0) and let P0 := π(z0). To obtain a contradiction, we will closely imitate arguments
found in [25].
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Since β2 is continuous, it follows from the Global Decomposition Theorem (see [15], p172)
that there exists 0 < t ≤ 1 and an irreducible analytic component V1 of π−1(V ) that contains
β2([0, t]). By [34], Theorem 1.3 (the inverse Ax-Lindemann conjecture), 〈V1〉Zar is pre-weakly
special and so, since V is Hodge generic in S, we can decompose Gad = G1 × G2, and thus
X = X1 ×X2, so that

〈V1〉Zar = X1 × {x2},

where x2 ∈ X2 is Hodge generic. By abuse of notation, we denote by π2 both the projection
from G to G2 and from X∨ to X∨2 .

Note that, for any (g, x) ∈ Im(β1), we have (g−1x)(S) ⊆ GF,R. If we write G′F for the largest
normal subgroup of GF of non-compact type, then the properties of Shimura data imply that
g−1x factors through G′F,R and, if we write X′ for the G′F (R) conjugacy class of g−1x in X, then,
by [32], Lemme 3.3, (G′F ,X′) is a Shimura subdatum of (G,X). Furthermore, by [36], Lemma
3.7, the number of Shimura subdata (G′F ,Y) of (G,X) is finite and, by [22], Corollary 5.3, the
number of connected components Y of Y is also finite. It follows that, after possibly replacing t,
we can and do assume that g−1x belongs to one such component Y , which we write as Y1× Y2,
such that F (R)+ acts transitively on Y1. We let p2 denote the projection from Y ∨ to Y ∨2 .

Let B denote the complex algebraic subset of G(C)×X∨ of dimension at most 1 containing
Im(β1) afforded to us by Lemma 14.1. For any (g, x) ∈ B, we have g−1x ∈ Y ∨.

Let V 1 denote the Zariski closure of V1 in X∨ and consider the complex algebraic set

WB := {(g, x, y) ∈ B × Y ∨ : p2(y) = p2(g−1x), gy ∈ V 1}.

Let VB denote the Zariski closure in X∨ of the set

{gy : (g, x, y) ∈WB}.

Since the latter is the image of WB under an algebraic morphism, we have dimVB ≤ dimWB.
Since V1 is an irreducible complex analytic curve having uncountable intersection with VB,

it follows that V1 is contained in VB. Therefore, 〈V1〉Zar is contained in VB also, and so

dimX1 = dim〈V1〉Zar ≤ dimVB ≤WB.(14.2.1)

Now, for each (g, x) ∈ B, consider the fibre W(g,x) of WB over (g, x) i.e. the set

{y ∈ Y ∨ : p2(y) = p2(g−1x), π2(y) = π2(g)−1x2}.

Since P0 ∈ V , it follows that π2(F ) = G2 and so, for any y ∈ Y ∨2 , the natural projection

Y ∨1 × {y} → X∨2

is an equivariant morphism of F (C)-homogeneous spaces. In particular, its fibres are equidi-
mensional of dimension

dimY ∨1 − dimX∨2 = dimY1 − dimX2.

Since W(g,x) is contained in such a fibre, we have

dimW(g,x) ≤ dimY1 − dimX2 ≤ dimX − 2− dimX2 = dimX1 − 2,

where we use the fact that P0 ∈ Opt0(V ), hence,

dimY1 = δ(P0) ≤ δ(V )− 1 = dimX − 2.

Since this holds for all (g, x) ∈ B and dimB ≤ 1, we conclude that

dimWB ≤ dimX1 − 1,

which contradicts (14.2.1).
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Of course, Theorem 14.2 is not really satisfactory. One would hope that, for V of arbitrary
dimension, a path such as β would yield, via the weak hyperbolic Ax-Schanuel conjecture, a
positive dimensional subvariety of V , containing a conjugate of P , having defect at most δ(P ),
thus contradicting the optimality of P . However, the authors haven’t been able to carry out
this procedure. Instead, the very same idea appears to work when one attempts to contradict
the membership of a point in the open-anomalous locus. The difference is that we are only
required to bound the weakly special defect, as opposed to the defect itself.

Theorem 14.3. Assume that Conjecture 11.3 holds and assume that the weak hyperbolic Ax-
Schanuel conjecture is true. Assume also that, either

? Conjecture 12.2 holds, or

? Conjectures 10.3, 12.6, and 12.7 hold.

Then, Conjecture 8.4 is true i.e. if V is a subvariety of S, then the set

V oa ∩ S[1+dimV ]

is finite.

Proof. We will assume that Conjectures 10.3, 12.6, and 12.7 hold. The proof in the case that
Conjecture 12.2 holds is very similar, hence we omit it. We used Conjecture 12.2 in the proof
of Theorem 14.2.

Let Ω denote a finite set of semisimple subgroups of G defined over Q as in Section 12. Let
cΓ and δΓ be the constants afforded to us by Conjecture 12.7, let κ := δG/3, and let cκ be the
constant afforded to us by Conjecture 12.6. Let d, cH, and δH be the constants afforded to us
by Lemma 12.8, and let

c := max{cH, cΓ} and δ := max{δH, δΓ}.

Let L′ be a finitely generated extension of F contained in C over which V is defined and let cG
and δG be the constants afforded to us by Conjecture 11.1. Let

P ∈ V oa ∩ S[1+dimV ]

and let L and H be, respectively, the field extension of F and the semisimple subgroup of G
defined over Q of non-compact type afforded to us by Conjecture 12.6 applied to 〈P 〉. Replace
L by its compositum with L′. In particular, we have

[L : L′] ≤ cκ∆(〈P 〉)κ.

We claim that there exists a positive constant c3, independent of P , such that

#Gal(C/L) · P ≤ c3c
κ
δ ∆(〈P 〉)κ.

This would be sufficent to prove Theorem 14.3 since then, by Conjecture 11.3, we obtain

cG
cκ

∆(〈P 〉)2κ ≤ 1
[L : L′]#Gal(C/L′) · P = #Gal(C/L) · P ≤ c3c

κ
δ ∆(〈P 〉)κ.

and, rearranging this expression, we obtain

∆(〈P 〉) ≤ (c3c
κ
δ cκc

−1
G )

1
κ ,
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which is a bound independent of P . We remind the reader that, as explained in Remark 11.4,
P ∈ Opt0(V ) and, therefore, P is one of only finitely many irreducible components of 〈P 〉 ∩ V .
Hence, Theorem 14.3 would follow from Conjecture 10.3 and it remains only, therefore, to prove
the claim.

By Conjecture 12.6, for each σ ∈ Gal(C/L),

σ(〈P 〉) = π(H(R)+xσ),

where H(R)+xσ is a pre-special subvariety of X intersecting F . By Lemma 12.8, we can and
do assume that

Hd(xσ) ≤ cH∆(σ(〈P 〉))δH = cH∆(〈P 〉)δH .

We let zσ ∈ V be a point in π−1(σ(P )), so that

zσ ∈ ΓH(R)+xσ

and so, by Corollary 12.7, there exists γσ ∈ Γ satisfying

H1(γσ) ≤ cΓ∆(〈P 〉)δΓ

such that zσ ∈ γσH(R)+xσ.
By definition, there exists F ∈ Ω and g ∈ G(R) such that HR is equal to gFRg

−1. In
particular, for each σ ∈ Gal(C/L), the tuple (g, (γσ, xσ), zσ) belongs to the definable family D
of tuples

(g, (γ, x), z) ∈ G(R)× [G(R)×X]×X ⊆ Rn
2 × Rn

2+2N × R2N ,

parametrised by G(R), such that

z ∈ V ∩ γgF (R)+g−1x, and x(S) ⊆ gGF g−1.

We choose, then, for c3 the constant c(D, d, κ/δ) afforded to us by Theorem 9.1 applied to D.
Since, Ω is finite, we can and do assume that c3 does not depend on F . We let Σ denote the
union over Gal(C/L) of the tuples ((γσ, xσ), zσ) ∈ Dg (to use the notation of Section 9). In
particular, Σ is contained in the subset

Dg(d, c∆(Z)δ).

Let π1 and π2 be the projection maps from Rn
2+2N ×R2N to Rn

2+2N and R2N , respectively,
and suppose, for the sake of obtaining a contradiction, that

#Gal(C/L) · P = #π2(Σ) > c3c
κ
δ ∆(Z)κ.

Then, by Theorem 9.1, there exists a continuous definable function

β : [0, 1]→ Dg,

such that β1 := π1 ◦ β is semi-algebraic, β2 := π2 ◦ β is non-constant, and β(0) ∈ Σ. Let
z0 := β2(0) and (γ0, x0) := β1(0). Denote by P0 the point π(z0) and denote by X0 the special
subvariety 〈P0〉 = γ0H(R)+x0.

We claim that there exists a positive dimensional intersection component of π−1(V ) contain-
ing z0 := β(0). To see this, letW denote the union of the totally geodesic subvarieties γH(R)+x
of X, where (γ, x) varies over Im(β1), and let W denote the Zariski closure of W in X∨. The
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irreducible analytic components of W ∩ π−1(V ) are, by definition, intersection components of
π−1(V ). Since β2 is continuous, it follows from the Global Decomposition Theorem (see [15],
p172) that there exists 0 < t ≤ 1 and an intersection component A of π−1(V ) that contains
β2([0, t]), which proves the claim.

Let B denote a Zariski optimal intersection component of π−1(V ) containing A such that

δZar(B) ≤ δZar(A),

and let Z denote the Zariski closure of π(B) in S. By the weak hyperbolic Ax-Schanuel conjec-
ture, 〈B〉Zar is pre-weakly special and, as in the proof of Proposition 6.10,

〈Z〉ws = π(〈B〉Zar).

Therefore, we have dimZ ≥ 1 and, also,

dimZ ≥ dimB ≥ dim〈B〉Zar − δZar(A) ≥ dim〈Z〉ws − (dimW − 1),

where we use the fact that δZar(A) is at most dimW − 1. We claim that dimW − 1 ≤ dimX0,
which would conclude the proof as

dimX0 ≤ dimS − dimV − 1

and this would imply that Z ∈ an(V ), which is not allowed as P0 ∈ Z.
Therefore, it remains to prove the claim. However, this is easy to prove working with

complex duals and using the methods explained in the proof of Theorem 14.2.
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