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Abstract

Northern hemisphere snow water equivalent (SWE) distribution from remote sensing

(SSM/I), the ERA40 reanalysis product and the HadCM3 general circulation model

are compared. Large differences are seen in the February climatologies, particularly

over Siberia. The SSM/I retrieval algorithm may be overestimating SWE in this

region, while comparison with independent runoff estimates suggest that HadCM3 is

underestimating SWE. Treatment of snow grain size and vegetation parameterizations

are concerns with the remotely sensed data. For this reason, ERA40 is used as

‘truth’ for the following experiments. Despite the climatology differences, HadCM3

is able to reproduce the distribution of ERA40 SWE anomalies when assimilating

ERA40 anomaly fields of temperature, sea level pressure, atmospheric winds and ocean

temperature and salinity. However when forecasts are released from these assimilated

initial states, the SWE anomaly distribution diverges rapidly from that of ERA40.

No predictability is seen from one season to another. Strong links between European

SWE distribution and the North Atlantic Oscillation (NAO) are seen, but forecasts

of this index by the assimilation scheme are poor. Longer term relationships between

SWE and the NAO, and SWE and the El Niño-Southern Oscillation (ENSO) are also

investigated in a multi-century run of HadCM3. SWE is impacted by ENSO in the

Himalayas and North America, while the NAO affects SWE in North America and

Europe. While significant connections with the NAO index were only present in DJF

(and to an extent SON), the link between ENSO and February SWE distribution was

seen to exist from the previous JJA ENSO index onwards. This represents a long

lead time for SWE prediction for hydrological applications such as flood and wildfire

forecasting. Further work is required to develop reliable large scale observation-based

SWE datasets with which to test these model-derived connections.
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The more it snows

(Tiddely pom)

The more it goes

(Tiddely pom)

The more it goes

(Tiddely pom)

On snowing.

And nobody knows

(Tiddely pom)

How cold my toes

(Tiddely pom)

How cold my toes

(Tiddely pom)

Are growing.

Early discourse on the predictability of snowfall and its consequences, from A.A. Milne’s

‘The House at Pooh Corner’, 1928.
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Chapter 1

Introduction

1.1 Why is snow important?

Snow has an important role in the Earth’s climate, as it is part of both the surface

energy and water balances. The presence or absence of snow accounts for the largest

change in surface albedo on both seasonal and interannual timescales (Bagnoud et al.,

2005). A snowpack insulates the ground, keeping the top layer of soil relatively

warm. Snowmelt, and the associated latent heat flux, also significantly affects the

surface energy balance. The influence of snow is not limited to those areas in which it

falls; snowmelt often feeds rivers that are vital in providing water to more arid areas

(Frei et al., 2005). The atmosphere also takes up moisture from snowpacks through

sublimation.

Snow is an important component in terrestrial water storage, and for water

resources, both for drinking water and industry. It is estimated that snow accounts for

10% of mean continental water storage globally, and 16% of the interannual variability

(Guntner et al., 2007). Examples of the economic importance of snow in the USA

were presented by Carroll et al. (2003). The largest surface water user in the US

is manufacturing, and the contribution of snow to US manufacturing revenue was

estimated as $1.6 trillion annually. Agriculture is dependent on snowmelt for irrigation,

which supports a net US revenue exceeding $33 billion annually. 10% of the USA’s

electricity is provided by hydropower, 30% of which comes from snow. Snow also

supplies water estimated as worth about $25 billion to the coal-fired, oil-fired and

nuclear power plants that supply the rest of the country’s electricity demands.

The importance of studying snow, and the wider cryosphere, has been underlined in

several reports. The IPCC Fourth Assessment Report (Randall et al., 2007) highlights

the magnitudes of cryospheric feedbacks as a crucial uncertainty in determining

climate sensitivity. Priority hydrological science questions for the first decade of
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Chapter 1

the 21st century were set out in Entekhabi et al. (1999), and included, “What are

the mechanisms and pathways by which the coupling between surface hydrologic

systems and the overlying atmosphere modulate weather and climate variability?”.

Important contemporary issues such as global environmental change, an increasing

population’s access to drinking water, risks from flooding, wildfire and drought, all

require an understanding of the role of snow in the Earth system. Spatially continuous

observations of many land surface elements, particularly snow, are now becoming

available on global scales, and the strengths and limitations of both the observations

and the models must be understood in order to exploit them appropriately, and

potentially to produce useful long term forecasts.

The Grid for Coupled Ensemble Prediction (GCEP) project was funded as part of

the Natural Environment Research Council’s e-Science programme, and uses cluster

computing to investigate seasonal to decadal prediction. While the the upward trend

in global temperatures with climate change is the dominant forcing over centuries,

natural variability can have more impact on seasonal to decadal timescales. This

thesis compares output from GCEP climate model runs with observations, to gain

understanding of large scale snow and its predictability on these timescales.

1.2 Hypotheses and approach

The main aims of this project are:

• To investigate the variability of Northern hemisphere snow data as observed by

satellites

• To investigate the variability of Northern hemisphere snow data as modelled by

a general circulation model

• To understand the differences between the observed and modelled snow distribu-

tions

• To assess the ability of a general circulation model to reproduce observed snow

anomalies

• To assess the predictability of snow anomalies

The hypotheses are as follows:

1. Information on the distribution of snow in the Northern hemsiphere can be

reliably obtained from remote sensing and GCMs
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2. Snow distribution in coupled models will be better forecast from an initial state

that is constrained by observations of fields such as surface temperature.

3. Seasonal forecasts of snow anomalies can be made with knowledge of large scale

patterns of climate variability such as the El Niño-Southern Oscillation

1.3 Chapter summary

• Chapter 2 introduces the concepts used in the thesis.

• Chapter 3 describes the theory and practice of measuring snow distribution

at large scales, with emphasis on remote sensing using passive microwave

radiometers. EOF analysis is applied to the remotely sensed snow product to

assess interannual variability.

• Chapter 4 describes the modelling of snow at large scales, concentrating on

the land surface component of the general circulation model HadCM3. Runs

of the climate model, performed at ESSC, are investigated and compared to

previous studies. The concept of reanalysis, and the reanalysis product ERA40,

are introduced.

• Chapter 5 compares the measured and modelled snow distribution, assessing

the reasons for any differences between them. Many other remote sensing and

modelling studies are referenced. A study of runoff generated by HadCM3

(performed by researchers at the Met Office) is used as a further comparison.

• Chapter 6 uses data assimilation to reproduce snow anomalies with HadCM3.

The experiments and all the analysis were performed at ESSC.

• Chapter 7 uses a multi-century run of HadCM3 to assess potential snow

predictability. This multi-century run and the analysis of it were performed

at ESSC.

• Chapter 8 draws together the conclusions of this work and makes suggestions for

future studies.
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Chapter 2

Background

The material in this chapter provides context and general background information on

the work that will be presented in this thesis. First, the challenges of investigating snow

at large scales are introduced. This is followed by discussion of seasonal forecasting

and predictability, together with the definition of some large-scale climate modes

used in later chapters. The interactions between snow and atmospheric dynamics

are then discussed, followed by an introduction to general circulation models, and the

representation of these interactions within them. Finally, remote sensing is presented

as a means of making observations at large scales, and data assimilation is introduced

as a way of combining these large-scale data with climate models.

2.1 Investigating snow at large scales

While many studies of snow are at field or catchment scale, snow has an important

role at larger scales, both hydrologically and as part of the climate system. Water

stored as snow is an important component of the hydrological cycle on regional to

global scales, but is poorly characterised due to a lack of large scale information. Much

of the impact on climate comes from the high albedo of snow-covered surfaces, with

the exact value depending on the snowpack’s colour, age, depth, wetness and grain

size. Additional effects include the snowpack’s insulating properties, keeping the top

layer of soil relatively warm. Heat flux from the soil to the snow is small, although

it can have a cumulative effect on the timing of melt. This snowmelt not only affects

river discharge, but also significantly affects the surface energy balance, through the

associated latent heat flux.

Many snow properties can be measured, including depth, extent, grain size, albedo

and density. Here we are considering depth measurements, but even still there is a

choice: snow depth or snow water equivalent (SWE)? The former is simply the distance
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Chapter 2

from the ground surface to the top of the snowpack, while the latter is the amount of

water that the snowpack would produce if melted. The two are related by the snow

density. The latter is the more widely-used variable in water resource forecasting and

land surface models (as it is equivalent to lying snow in kg m−2) and is the variable

considered in this thesis.

Snow is highly variable both spatially (laterally and through the depth of the

snowpack) and temporally. While snow extent datasets are available and have been

well-studied, snow depth variability is less well understood. Gong et al. (2004)

showed that depth anomalies are as important as snow extent anomalies in affecting

atmospheric circulation. They perform three sets of ensemble experiments with a

GCM, one with both snow cover and depth forcing, one eliminating the snow depth

forcing, and one suppressing the surface albedo change due to the presence of snow.

Their analysis of the surface energy balance in each of the cases shows that snow depth

anomalies are important in local and remote feedbacks, and not purely due to an

increased albedo, as other thermodynamic mechanisms such as thermal conductivity,

thermal emissivity and phase changes are significant.

Ge and Gong (2008) showed that this large scale snow depth variability cannot be

inferred from snow extent variability, as is often done, for instance by using empirical

snow depletion curves that link SWE to snow extent. They even suggest that previous

results linking spring snow extent with summer climate (see discussion below) may

actually follow instead from winter snow depths influencing summer climate.

Many of the physical properties of snow are dependent on the size and shape of the

snow grains, which are usually expressed as a snow grain radius which can vary from

0.1 to 10mm, and is referred to simply as the ‘grain size’. However, in reality the snow

grains are irregular, with shapes ranging from dendritic, to quasi-spherical, to large,

faceted crystals (Domine et al., 2006). While alternative approaches to a catch-all

‘grain size’ have been explored, such as surface area to volume ratios, or the specific

surface area (surface area per unit mass), it is the grain size approach that persists both

in snow modelling and retrieval algorithms for the interpretation of remotely sensed

data.

The density, albedo, conductivity, depth of light penetration and amount of wind

transport all depend on the grain size, which itself can be transformed by settling and

metamorphism (Jones et al., 2001). The size of freshly fallen snow grains will hence be

different to those in a mature snowpack. Large vertical temperature gradients exist in

snowpacks, as the low thermal conductivity of snow means that the soil temperature

stays high when the air temperature above the snowpack is low. This temperature

gradient is the main driver for metamorphism in dry snow, with the resulting size and
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shape of the crystals depending on the strength of the gradient. With a temperature

gradient of less than 5oC m−1, the grains will tend to be small and rounded, whereas

a gradient higher than 15oC m−1 will drive the formation of quick-growing depth hoar

crystals (Jones et al., 2001).

Unfortunately, grain size is very difficult to measure in the field, and almost

impossible over large areas. An alternative approach is to classify snowpacks in different

regions according to their various characteristics, which can then be related back to

measurable fields such as temperature and windspeed. A commonly-used classification

of seasonal snow covers is that proposed by Sturm et al. (1995). The six classes

are defined on the basis of their textural and stratigraphic properties including the

thickness of snow layers, their density, crystal morphology and grain characteristics.

The Sturm classes are:

• Tundra: thin, cold, wind-blown snow, usually above or north of the tree line.

The layers consist of a basal depth hoar overlain by wind slabs. Max depth ≈

75cm.

• Taiga: thin to moderately deep low density cold snow cover. Present in cold

forest areas with low wind and initial snow density. Up to 50-80% depth hoar by

late winter covered by low density new snow. Max depth ≈ 120cm.

• Alpine: intermediate to deep cold snow cover. Often consists of alternate thick

and thin layers, with basal depth hoar and wind crusts common. Max depth ≈

250cm.

• Maritime: Warm, deep snow cover with melting features such as basal melting.

Ubiquitous coarse grains due to wetting. Max depth can be greater than 300cm.

• Prairie: Thin, moderately cold snow cover with some deep drifts. Wind slabs

common. Max depth ≈ 100cm.

• Ephemeral: Thin and extremely warm snow cover, which melts as soon as it falls,

often replaced by the next snowfall.

Global maps of Sturm classes are available to guide algorithm design and

interpretation. The maps are derived using an algorithm taking into account

precipitation, temperature, wind speed and vegetation data. The Sturm classes have

been widely used in the literature both as part of a variety of studies of remote sensing

(Dong et al., 2005; Langlois et al., 2004; Josberger and Mognard, 2002; Hall et al.,

2001), modelling (Liston and Elder, 2006; Strack et al., 2004; Slater et al., 2001) and

reanalysis (Brown et al., 2003).

6



Chapter 2

2.2 Climate indices and predictability

Advance information on the large-scale characteristics of the seasonal snowpack would

be useful for many applications, such as predictions of streamflows for water resource

management, and forecasts of the risk of wildfire and flooding. In order to produce

this sort of long range forecast, the climate must demonstrate predictability.

The day to day variations in weather patterns follow from the chaotic behaviour of

the atmosphere, but not all components of the climate system are as variable as the

atmosphere on short time scales. The ocean circulation varies much more slowly, and

has a strong influence on the atmosphere from below, mainly via the temperature of

the sea surface. Knowledge of this sea surface temperature (SST) is therefore crucial

in forecasting weather patterns, so if these temperatures are themselves predictable,

there is potential for some information on future atmospheric states.

The best understood link between ocean variability and weather is the El Niño-

Southern Oscillation (ENSO). Warmer than usual sea surface temperatures occur in

the eastern tropical Pacific every 3 to 8 years, warming the globe and triggering a

pattern of weather which brings droughts to some areas and floods to others. Forecasts

of ENSO events can therefore provide important information on likely weather in the

coming seasons. ‘El Niño’ is the name given to the positive phase, where tropical

Pacific SSTs are warmer than average, and ‘La Niña’ refers to the negative phase, with

cooler than average SSTs. In this thesis, ‘ENSO events’ includes both positive and

negative phases.

Figure 2.1 shows that when La Niña conditions exist during the Northern

hemisphere winter (DJF), cool and wet weather is brought to northwestern North

America, with drier and warmer conditions in the south east of the continent. Cooler

conditions are also seen over Japan and eastern China. The opposite is true in El Niño

winters.

The strongest impacts of ENSO are in the Tropics, rather than the mid- to

high latitudes where snow is more extensive. The variability in the Northern

hemisphere, particularly during winter, is dominated by the North Atlantic Oscillation

(NAO). Sometimes the storms track across northern Europe, bringing wet and windy

weather to northern countries, while at other times the storms track south across the

Mediterranean, making southern Europe wetter and northern Europe colder and drier.

It is through forecasts of this oscillation index that average conditions for Europe in

the coming months are usually predicted.

Figure 2.2 shows the impact of the different NAO phases on the weather of the

North Atlantic. In the positive phase, the jet stream is drawn to the North, making
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(a) La Niña

(b) El Niño

Figure 2.1: Effect of cold (upper) and warm (lower) ENSO episodes during Northern
hemisphere winter (DJF).
Source: http://www.ngdc.noaa.gov/paleo/ctl/images/
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northern Europe wetter and northeastern Canada colder, with reduced snow in the

eastern United States. This pattern is reversed in the negative phase.

The related Arctic Oscillation (AO) has also received much attention as a

potentially important mode of climate variability. It is identified as the first EOF of

the mean sea level pressure field, and consists of an annular mode, with anticorrelated

centres of action at mid- and high latitudes. Debate continues about the interpretation

of these large scale modes, as to whether the NAO is the Atlantic signature of the more

spatially extensive AO pattern, or whether the AO paradigm is misleading in indicating

related behaviour between the North Atlantic and Pacific sectors, the NAO being a

more physically robust index (Wallace, 2000; Deser, 2000; Ambaum et al., 2001).

Operational seasonal forecasting is an emerging area of research, with major

operational centres such as the UK Met Office, the Climate Prediction Center in the

United States, Environment Canada and the Australian Bureau of Meteorology now

issuing seasonal forecasts to the public. However, the field is not new; potential links

between Eurasian snow cover and the Indian summer monsoon have been investigated

for over a hundred years. Blanford (1884) was the first to propose that the varying

extent and thickness of snow could affect the thermal regime of the land and hence

alter the onset of the Asian summer monsoon. This ‘Blanford hypothesis’ suggested

a negative correlation between the snow in the Himalayas and rainfall in the plains

of western India. Further correlations between monsoon strength and snow depth

by Walker (1910) led to the adoption of Himalayan snow as an operational monsoon

predictor by the Indian Meteorological Service until the 1960s, when it was removed

after an extended period of poor performance. Interest in the topic was revived in the

1970s when Hahn and Shukla (1976) found an inverse relationship between Eurasian

DJFM mean snow cover and monsoon strength. Many studies have followed which

support this conclusion, although a lack of long term data means that the conclusions

are rarely statistically significant, and many of the results are based on model, rather

than observational, data. More recent studies using satellite observations of snow

(e.g. Bamzai and Shukla (1999)) only find strong inverse correlations between Indian

rainfall and climatic conditions in western Eurasia, remote from the areas studied

previously. A study of the historical Soviet snow depth data record (Kripalani and

Kulkarni, 1999) also finds an inverse correlation between snow depth in western Eurasia

and Indian monsoon rainfall, but also sees a positive correlation between the rainfall

and snow depth in Siberia. Robock et al. (2003) show that the relationship between

all-India rainfall and North Atlantic variability in the 1880s supported some aspects

of Blanford’s hypothesis. A similar link between SWE and the variability of the

North American monsoon was performed by Zhu et al. (2005). Despite testing several
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Figure 2.2: Effect of positive (upper) and negative (lower) NAO index on North Atlantic
winter climate.
Source: http://www.ncdc.noaa.gov/paleo/ctl/clisci100.html
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hypothesised mechanisms linking SWE with the following year’s monsoon, via changes

in soil moisture content, no stable relationship between the two was found. A study

using NOAA/NESDIS satellite snow cover data by Fasullo (2004) found that negative

correlations between snow cover and monsoon rainfall were robust and statistically

significant only in weak ENSO years. The findings suggest that the Blanford hypothesis

is correct, but the effect is overwhelmed during ENSO events.

2.3 Snow and the atmosphere

While it is the long timescales in the ocean that have received the most attention

for seasonal to decadal forecasting, slowly-varying water storage variables like snow

and soil moisture may also exhibit predictability at longer timescales. Anomalies of

these variables could potentially persist for weeks or even months, acting as a source

of ‘memory’ within the climate system, and be able to drive the atmosphere in a

predictable way by controlling the surface temperature and fluxes of energy and water.

The presence of snow has a direct effect on the energy balance at the surface,

and hence the surface temperature: the high albedo can reduce the solar energy

available to heat the atmosphere by 50% (Foster and Chang, 1993). Snow can induce

strong temperature inversions in the boundary layer by absorbing energy via melting or

sublimating the snowpack (Marshall et al., 2003), with the impact of the high albedo

most noticeable in spring when snow cover is still extensive but insolation is high

(Groisman et al., 1994). As it cools, the thickness of the air mass is reduced, causing

an atmospheric trough which can lead to persistence of the snow cover (Derksen et al.,

1997). This is one proposed mechanism by which snow information can be exploited

for longer term forecasting.

Marshall et al. (2003) set up a series of ensemble experiments with a general

circulation model to investigate the persistence and predictability of snow cover in

the western United States. The experiments were of two forms: the initial state was

either an extreme anomaly across the experimental domain, or a particularly high

or low instance of snow cover taken from a previous model run. Ensembles were

created by imposing the atmospheric state from a series of different days onto the start

conditions. Experiments were started in December and February and run for a season.

Their results suggest that in order to predict the coming snow cover, the initial snow

cover is much more important than the initial atmospheric state for runs beginning in

February. Results for December are less clear-cut, as a low snow anomaly in December

does not inhibit the accumulation of snow as the season progresses. However, the snow

state is shown to be more important than the atmospheric state for the maintenance
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of a snow extent anomaly, suggesting the presence of memory in the snow cover which

could be used for medium-range prediction.

Leathers and Robinson (1993) show that the presence of positive snow extent

anomalies in the United States leads to negative anomalies in surface temperature,

modifying the air mass above and extending a temperature anomaly far to the south,

often as far as the Gulf of Mexico. Clark and Serrezze (2000) demonstrate that snow

extent anomalies in east Asia show little persistence, so knowledge of anomalies in this

area is more suited to short range range than interseasonal forecasts. However, they also

find that relatively small snow extent anomalies in east Asia are associated with large

and significant changes in downstream circulation, suggesting that signals associated

with these short-term snow extent anomalies are amplified by the atmosphere. By

examining NOAA snow charts and NCEP-NCAR atmospheric reanalysis fields, they

suggest that these model-derived associations between snow extent and circulation are

present in observations.

Yang et al. (2001) investigate the relationship between snow cover and ENSO over

North America. The paper uses a suite of atmospheric general circulation model

experiments to assess how the continental surface temperature response is modulated

through snow-albedo feedback. They find that the response of the surface to ENSO

is magnified by local feedbacks, particularly at midlatitudes where there is sufficient

winter insolation and variability in snow amount to result in a significant change to

the surface energy balance. They emphasise that both the parameterization of albedo

and the initialisation of snow depths are therefore important in seasonal-to-interannual

climate predictions.

Cohen and Entekhabi (1999) propose that anomalous snow cover in the Northern

hemisphere is influential in the Northern hemisphere wintertime general circulation,

and that it affects extratropical storm tracks. Investigation of snow cover with various

climate indices showed that Eurasian snow cover showed stronger correlations with

the climate indices than did North American or Northern hemisphere snow cover. An

empirical orthogonal function (EOF) analysis of Eurasian snow cover with observed

500mb heights over a 23 year period produced the North Atlantic Oscillation (NAO)

and Pacific North American (PNA) mode as the first two modes of variability. The

authors went on to find that Eurasian SON snow cover correlated more strongly with

the DJF 500mb heights than did the DJF snow cover. This suggests that early season

snow cover could be forcing the atmosphere, and hence could be used as a predictor of

the Northern hemisphere winter climate. A mechanism for this coupling is suggested

by Cohen et al. (2007). By examining NCEP-NCAR reanalysis data, they found that

Eurasian snow anomalies in October can influence sea level pressure in January, via the
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vertical component of lower-stratospheric wave activity. Extensive October snow causes

a upward-propagating tropospheric wave which interacts with the polar stratosphere,

which in turn leads to high geopotential heights at the surface in January. A schematic

of this proposed mechanism is shown in figure 2.3. Fletcher et al. (2007) subsequently

show that a weak polar vortex is required for this coupling.

Gong and Entekhabi (2002) perform two ensemble experiments to determine the

effect of snow perturbations on the Arctic Oscillation. One experiment has monthly

climatological SSTs, sea ice and snow mass, whereas in the other experiment snow

is allowed to evolve. Both ensembles contained twenty members each beginning on 1

September, with the initial conditions coming from a 20-year control integration. They

show that in the fixed experiment, the atmosphere still exhibits the classic AO dipole

structure, supporting the hypothesis that this mode arises through internal climate

processes, not external forcing from the land or sea surface. However, the difference

between the free and fixed experiments shows that some enhancement of the AO-NAO

occurs with the variable snowpack, with relatively stronger climate variability over

Siberia and the North Atlantic.

Gong et al. (2003) perform two ensemble experiments to assess the effect of realistic

Siberian snow anomalies on Northern hemisphere winter climate. They find that a

positive SWE and extent anomaly over Siberia results in a statistically significant

decrease in the winter AO mode throughout the atmosphere. However, the magnitude

of the atmospheric response is only a third of that seen in observational studies. This

underestimation may be due to the poor stratospheric resolution in the model used

(ECHAM3) which inhibits the response of the atmopshere to the Siberian anomalies.

The experiment was then extended to examine the model response to North American

snow anomalies (Gong and Entekhabi, 2003), where it was shown that an anomaly

of comparable extent in North America does not have the same AO response as the

Siberian anomaly. This difference is ascribed to the different activity of the atmosphere

over North America, and supports the assertion that Siberia is a particularly important

region for snow-forced winter climate variability.

Foster et al. (1983) also find differences in the temperature response of the

continents to snow cover anomalies: autumn snow cover and winter temperature are

more correlated over Eurasia, while winter snow cover and winter temperature are more

correlated over North America. The authors explain that this is because of the greater

continentality of Eurasia: the Siberian anticyclone is more pronounced and persistent

because of the extensive area of snow cover that forms in the autumn over Siberia, and

so there is a longer-lasting impact on circulation.

13



Chapter 2

Figure 2.3: Schematic and text from Cohen et al. (2007), figure 6: Conceptual model
for how autumn snow cover modifies winter circulation in both the stratosphere and
the troposphere; case for extensive snow cover illustrated: 1) Snow cover increases
rapidly in the fall across Siberia, when snow cover is above normal. 2) Diabatic cooling
helps strengthen the Siberian high and leads to below normal temperatures. 3) Snow-
forced diabatic cooling in proximity to the high topography of Asia increases upward
flux of wave activity from the troposphere, which is absorbed in the stratosphere. 4)
Strong convergence of the Wave Activity Flux leads to higher geopotential heights, a
weakened polar vortex, and warmer temperatures in the stratosphere. 5) Zonal mean
geopotential height and wind anomalies propagate down from the stratosphere into the
troposphere all the way to the surface. 6) Dynamic pathway culminates with strong
negative phase of the Arctic Oscillation at the surface.
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2.4 General circulation models and land-atmosphere

coupling

To perform experiments of the sort described above, scientists require large scale

models. A general circulation model, or GCM, is a three-dimensional computer model

of the major components of the climate system. An atmospheric-GCM (AGCM) is a

model of the atmosphere, with boundary conditions provided by SSTs and the land

surface (often an interactive land surface model). A coupled atmosphere-ocean-GCM

(AOGCM) is an AGCM fully coupled to an ocean model. GCMs are used both to

predict the climate and to investigate the complex interactions within it. Much effort

has focussed on accurately modelling the oceans, particularly the tropical Pacific, which

is critical in obtaining good seasonal predictions of the ENSO phenomenon.

As such, there has been little research into the sensitivity of the modelled climate to

the representation of the land surface, and the land surface components themselves are

generally very crude. The land surface is an important part of coupled climate models,

not merely in providing boundary conditions for the atmosphere but also because

it is the part of the earth system that we, as humans, have most interaction with.

As such, forecasts of land surface conditions are particularly important and relevant

economically and politically, especially when examining impacts from climate change

scenarios.

The recent fourth assessment report by the Intergovernmental Panel on Climate

Change (IPCC) highlights the main advances in the development of coupled models

in recent years: the model dynamics have improved, including increased horziontal

and vertical resolutions, the physical parameterizations have been improved, and more

processes have been added, in particular with respect to aerosols, sea ice and the land

surface (Randall et al., 2007). However, there have been few studies assessing the

capability of land surface models in GCMs, which the report ascribes in part to a

lack of suitable observations. This has implications for the reliability of predictions

under climate change scenarios, especially as the magnitude of cryospheric feedbacks

are uncertain, which contributes to the range of model responses at mid- to high

latitudes. It is often assumed (Jones et al., 2001; Brown, 2000; Frei et al., 2003) that

increased surface temperatures with climate change produce a positive feedback effect,

with reduced snow cover due to warming resulting in increased absorption of more

incident radiation and hence more warming, and vice versa. However, Cess et al.

(1991) argue that this is too simplistic an assumption, and that by including cloud

interactions and longwave feedback the sign of the overall feedback can be reversed.

As described in the previous section, feedbacks between snow and the atmosphere
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have been the subject of both observational and model studies, which could have

important implications for seasonal to interannual predictions. For this predictability

to exist within a certain model, the atmosphere must be responsive to anomalies in

the land surface. The degree of responsiveness is referred to as the ‘coupling strength’

between the land surface and the atmosphere. As coupling strength has not been

determined in reality, it is only the relative strength between different models that can

be compared (Koster et al., 2002).

While snow, and the boreal winter in general, has not been studied in this

context, there have been many recent investigations using summer soil moisture. It is

hypothesised that precipitation anomalies could be transmitted back to the atmosphere

through the increased evaporation following a rainfall event that has increased the

moisture content of the soil. Koster et al. (2002) perform a set of AGCM experiments

designed to test the strength of land-atmosphere coupling across the globe in boreal

summer. For each of four models, a 16-member ensemble of runs each lasting one month

were run with prescribed SSTs, where the atmospheres were initialised independently

and allowed to evolve. A corresponding set of ensemble runs were then made, but with

the land surface of each member updated at each time step with conditions from one of

the previous freely-evolving runs. In this way, the effect of the land surface conditions

could be isolated from the SST forcing. By comparing the difference in precipitation

across the two ensembles, an estimate of the strength of land-atmosphere coupling was

obtained.

A further examination of land-atmosphere coupling was made by Dirmeyer (2005).

A series of ensemble experiments, with different initialization schemes and flux

replacement (with observed fluxes), were carried out to assess the role of the land

surface in communicating climate anomalies back to the atmosphere. The results show

that due to errors in downward fluxes, the climate model’s land surface state drifts

sufficiently after a month to ‘forget’ the soil moisture initial conditions, and that only

in arid areas do anomalies in initial soil wetness persist without flux replacement. Hence

systematic errors in the atmospheric model which generates these fluxes will lead to

an insensitivity to the land surface initialisation.

The impact of land surface conditions on the atmosphere also depends on the model

orography: Sobolowski et al. (2007) find that the representation of North American

orography in the ECHAM3 GCM affects how snow cover anomalies in North America

impact circulation over Eurasia. A series of experiments in which the mountains in

North America were removed showed a pronounced reduction in the response of the

sea level pressure field to snow anomalies. This implies a nonlinear coupling between
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snow forcing and orographic forcing of the atmosphere, both of which will need to be

well-represented in a GCM to produce realistic responses to snow distribution.

2.5 Remote sensing and data assimilation

As noted in the IPCC report, the main obstacle to improving the land surface

components of GCMs is the lack of suitable land surface data. It is logistically

and economically impossible to use in situ data to provide spatially and temporally

continous monitoring of climate variables such as snow. An important advance in the

second half of the twentieth century was the ability to monitor the Earth from space,

using instruments mounted on satellites.

Most spaceborne instruments are measuring the energy fluxes from the Earth’s

surface and atmosphere. As the temperature of the Earth is above absolute zero

it emits some amount of radiation at all frequencies. A radiometer measurement is

generally expressed as a brightness temperature TB, which is a function of the physical

temperature of the scene and the emissivity of the various components within that

scene. The radiation arriving at the radiometer can be decomposed into two orthogonal

components: horizontally polarized, or parallel to the plane of incidence, and vertically

polarized, perpendicular to the plane of incidence.

Some frequencies are more appropriate to viewing the surface, while others

provide information on different layers in the atmosphere. Of those channels

that ‘see’ the surface, different frequencies are sensitive to different land surface

components. Measurements have been made at frequencies appropriate for obtaining

snow information for several decades, while instruments that could measure frequencies

responsive to changes in soil moisture are yet to be launched. This is part of

the motivation for this thesis: while both snow and soil moisture show potential

for exploitation in seasonal forecasting, it is only snow that has a time series of

measurements long enough to use for this purpose.

A different type of remote sensing campaign, which has also been proposed as a

source of snow information, is the Gravity Recovery and Climate Experiment (GRACE;

Tapley et al. (2004)). Twin satellites, launched in 2002, make detailed measurements of

the Earth’s gravity fields. Changes in this field are due, in part, to mass variations on

the Earth’s surface, including changes in continental water storage (Guntner et al.,

2007). However, isolating the contribution of SWE variations to this integrated

measurement will be a challenge, in particular the difficulty in untangling the seasonal

cycles. For instance, in snow-dominated river areas, the seasonal cycle of groundwater

storage is opposite to that of total water storage, which is dominated by the snow.
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Obtaining snow estimates is therefore difficult without accurate information on the

other components of total water storage such as groundwater, which are currently

unavailable.

The most widely-used snow products from remote sensing are snow cover datasets

from visible-band sensors and SWE/snow depth/snow mass from microwave radiome-

ters. The former are more numerous, and more accepted within the scientific

community as reliable datasets for validation than the SWE datasets. However,

without this depth information, satisfactory forecasts will be impossible. It is also

important to bear in mind that although a SWE (or air temperature, or rainfall, etc.)

dataset is provided, the radiometer is only ever measuring energy fluxes, and the SWE

‘measurement’ is derived using a model based on assumptions about how SWE affects

the radiation reaching the satellite.

One way of exploiting a spatially extensive observational product is through

assimilation into a spatial model. There are many techniques that have been developed

for data assimilation. The simplest method is direct insertion, where model fields are

replaced by observed fields. This method is used by Rodell and Houser (2004), who

argue that by inserting snow extent data into a land surface model they can produce

accurate, high resolution maps of snow water equivalent in near-real time. The land

surface model that they use in their study, Mosaic, has explicit subgrid-scale variability

but a simple snow formulation. Snow cover in the model is updated daily using remotely

sensed snow extent data. They find that their updating scheme is good at removing

superfluous snow, but only rarely adds additional snow. This is explained by the fact

that the updates began on 1 January, once the snowpack was already established, and

the fact that in their scheme an added layer of snow was only 5mm thick, and would

quickly melt away if the surface temperature remained above freezing. They suggest

that a more sophisticated updating scheme involving SWE observations, or coupling

the land surface model to an atmospheric model, could improve results.

However, this direct insertion method assumes that the observations are perfect, and

that the model-generated fields contain no useful information, which is not necessarily

true. It can also introduce biases in other state variables which have to adjust to the

newly inserted information. More sophisticated methods of incorporating data into a

model have also been developed, such as the Kalman filter and variational methods,

which account for the relative confidence in the modelled and observed fields (Walker

et al., 2003). These approaches usually rely on continuous relationships between model

states and observations which are not always appropriate, depending on the model

used. They also require comprehensive analysis of the errors in both the model and

the observations.
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Sun et al. (2004) use a Kalman filter to assimilate synthetic SWE ‘observations’.

They present and demonstrate a methodology, though do not propose a treatment of

the observation and model biases, which they note is an important task for the future.

Their results suggest that the assimilation of SWE data improves model state variables,

and the fluxes of energy and water, and can negate the effect of poor initial condition

data. Recently, this Kalman filter approach has been applied to real remotely sensed

SWE data. Dong et al. (2007) use an error analysis of the observed SWE to inform

the method of Sun et al. (2004) described above. Assimilation improves simulation of

SWE in the land surface model, so that SWE estimates from the assimilation showed

better agreement with station data than either the modelled or observed states alone.

Assimilation of remotely-sensed SWE data into models is at an early stage, and the

success of the approach will be highly dependent on the quality of both the observations

and the models. Schlosser and Mocko (2003) suggest that improvements to the physical

parameterizations within GCMs need to be made before all the advantages of including

snow observations can be realized. They performed a pair of experiments with the

COLA and GEOS GCMs to investigate the impact of snow conditions on seasonal

prediction. Pairs of runs starting in each of the years from 1982-1998 are run from

March to June, one with prescribed snow from a daily, global snow depth analysis,

and one where the snow is allowed to evolve interactively. The results show that the

prescribed snow has a positive effect on the local climate, reducing errors in near-surface

air temperature, but that this improvement in skill was not transferred to non-local

effects. They suggest that this highlights the problems of parameterization in GCMs,

as to generate a realistic non-local response to snow forcings requires the ability to

represent boundary layer processes such as advection.

A Kalman filter approach was recently used by Andreadis and Lettenmaier (2006)

to assimilate remotely sensed SWE data into a macroscale hydrology model, but the

output appeared to be dominated by retrieval errors. Foster et al. wrote in 1996

that SWE retrievals needed to improve before this remotely-sensed data could be

assimilated into GCMs; clearly there still need to be further improvements in the

method of obtaining SWE data from space in order to exploit it fully in GCMs.
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2.6 Summary

Snow is a complex and highly variable component of the land surface water and

energy balances. Many snow properties depend on its crystal structure, commonly

parameterized using a ‘grain size’, which is difficult to measure in the field.

Snow has been suggested as playing a role in the large scale circulation of the

atmosphere, which could be exploited for seasonal forecasting. Much of the impact

comes from the high albedo, although other effects such as the insulation of the ground

and latent heat fluxes associated with snowmelt are also important. The importance

of these other factors illustrate the fact that it is the depth of snow on the ground,

rather than its mere presence, that can have an influence on the atmosphere.

Siberia in particular has emerged as an influential area in the wintertime circulation,

and differences in the atmospheric response to snow anomalies over North America and

Eurasia have been demonstrated. It is this large scale behaviour, and the fact that the

continental snow distribution will be influenced by large scale climate modes such as

ENSO, that requires an appreciation of the distribution of, and variability of, snow

across the whole Northern hemisphere.

Large-scale snow information is therefore required to understand the role of snow in

the circulation, and the impact of circulation changes upon snow distribution. The two

main sources of information at these scales are remote sensing and general circulation

modelling. The development of better land surface models is hampered by the lack of

large scale observations. While remote sensing observations appropriate to retrieving

snow data have been gathered for many years, the observations appear dominated by

retrieval errors. Better understanding of both model and retrieval is required to exploit

both fully and close the cryosphere feedback loop.

This thesis examines the distribution of SWE at hemispheric scale, from both

remotely sensed observations and general circulation models. It is hypothesised that

a better understanding of this SWE distribution would lead to better seasonal and

decadal predictions.
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Measuring snow at large scales

3.1 Introduction

In order to understand the climate system, and constrain and validate models at

all scales, scientists require frequent, good quality observations. Ground-based snow

measurements have been made at meteorological stations in many parts of the world,

and time series of up to 100 years exist at certain locations (Derksen et al., 2004; Jones

et al., 2001). In the last half of the 20th century, observations of snow began to be

obtained from satellites, providing more complete spatial and temporal coverage than

was possible with ground stations.

This chapter briefly describes some techniques for measuring snow in situ, before

considering the main measurement method in this work, satellite remote sensing. While

in situ measurements can provide detailed measurements at a point, the only way to

gather large scale near-simultaneous observations is with remote sensing. The two main

snow properties that are regularly derived from satellite measurements are snow extent

(also referred to as snow-covered area, or SCA) and snow water equivalent (SWE).

Methods for retrieving both snow extent and SWE information are introduced, and

the limitations of each are described. Finally the remotely sensed snow product used

in this thesis is introduced and a first analysis is performed, using empirical orthogonal

functions (EOFs). This method is used both to assess the noise and spatial coherence

within the data, and investigate patterns of interannual variability.

3.2 In situ monitoring

Measurements of snow depth can be made in situ, using rulers, fixed snow stakes and

snow boards. Measurements of SWE can also be made in situ, for instance by melting

a sample or by weighing it and using a measured or assumed density to calculate the
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water equivalent. In situ measurements are subject to a number of errors: systematic

biases can be introduced through the measurer’s choice of location (with respect to

topography, vegetation density, ease of access etc.), and any error in the measuring

process. Furthermore, a point measurement, although accurate for that locality, is

not always representative of a wider area. Snow is particularly variable on relatively

small spatial scales. Trujillo et al. (2007) measured snow depths in five 1km2 areas, and

found that this spatial variability was driven by the interaction of the wind with surface

features and vegetation, or by vegetation when wind redistribution was minimal. This

leads to characteristic scales of variability of 15m or less.

Scaling point measurements up to provide large scale gridded products will always

be subject to sampling errors, because of this large spatial variability. Chang et al.

(2005) suggest that to obtain an error of less than 5cm in a 1 degree by 1 degree grid

cell, at least ten measurements are required. This density of measurements is unlikely

to be achieved over a wide area, particularly as many snow-covered areas are dangerous

or otherwise inaccessible (Gupta et al., 2005).

3.3 Remote sensing

3.3.1 Snow extent

The monitoring of snow from space began in 1966 with USA’s National Oceanic

and Atmospheric Administration (NOAA) satellites providing data in the visible and

near infra-red wavelengths (Matson and Wiesnet, 1981). This dataset provided the

first global spatially and temporally continuous measurements of snow, and weekly

snow extent charts are still being produced today. The method is simple: snow

has a very high albedo in the visible part of the spectrum so shows up clearly

next to the (low albedo) snow-free surface. Snow cover is interpreted manually

using data from the Advanced Very High Resolution Radiometer (AVHRR), the

Geostationary Observational Environmental Satellite (GOES) and station data, with

a pixel designated as snow-covered when more than 50% is covered with snow. A

major drawback is that clouds are also highly reflective in this part of the spectrum

and obscure the view of the ground. Careful discrimination is required between snow-

covered and cloud-covered surfaces; the data for clouded areas has to be estimated

by interpolating between neighbouring values. This can lead to biases, particularly

during periods of snowmelt where the timing of melt can be crucial, for instance in

flood forecasting. The data is also affected by low solar illumination in winter, making

the satellite pictures harder to interpret (Frei et al., 2003).
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Figure 3.1: Global 8-day snow extent from MODIS, 30 March to 06 April 2003. Data
available from NSIDC.

An important addition to visible band remote sensing is the MODIS instrument,

launched in 2000. MODIS has a fully automated algorithm for determining snow

extent, unlike the NOAA product, and daily products at 500m resolution are available.

The data are based on the difference between various measurements in the visible

band, and are masked for the presence of cloud. An example MODIS image is shown

in figure 3.1. Masking of the snow due to vegetation, however, can be a problem

for visible band sensors. Hall et al. (2001) assess errors in the MODIS snow cover

retrieval due to land cover type by assigning percentage errors for each of seven land

cover classes, plus additional errors due to mixed pixel effects. These errors are then

aggregated according to the land cover types north of the snowline each month. They

estimate that the Northern hemisphere snow extent mapping error is 8%, largely due

to the amount of forest cover north of the snowline.

Other large scale snow extent products include a North America-only 1km dataset

from the National Operational Hydrologic Remote Sensing Center (NOHRSC), also

based on AVHRR and GOES data, and products derived from microwave radiometers

such as the Special Sensor Microwave/Imager (SSM/I) and the Scanning Multichannel

Microwave Radiometer (SMMR). The detection of snow cover using microwave

frequencies has a number of advantages over using visible-band imagery. Data does

not have to be interpreted manually, and can be obtained during darkness or when the

sky is overcast, as clouds are fairly transparent at microwave frequencies. However,

the microwave measurements are not sensitive to thin snow, so will underestimate the

total extent.

A number of hemispheric-scale comparisons of snow extent have been performed. A

comparison of data from MODIS, NOHRSC and SSM/I was undertaken by Hall et al.

(2002). They found that MODIS and NOHRSC often agree well, although MODIS

nearly always maps a larger area as snow-covered. As expected, SSM/I shows the

lowest snow-covered area although agreement between MODIS and SSM/I increases
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as the snow season progresses. Armstrong and Brodzik (2001) found that data from

visible and passive microwave sensors showed similar interannual variability, but that

the microwave measurements underestimated the extent by up to eight million square

kilometres, compared to the visible data. The largest differences were found in autumn

with some improvement in winter and the most agreement in spring.

Despite the drawbacks, the NOAA weekly snow charts have been judged by some

to be the most reliable snow dataset (Foster et al., 1996). However, this dataset can

only provide estimates of snow extent and not snow water equivalent or mass.

3.3.2 Snow water equivalent (SWE)

Theory

Information on SWE can be obtained by measuring the amount of energy reaching the

satellite at microwave frequencies. If a snowpack is present, it will scatter and attenuate

the radiation emitted by the Earth, so a different emission signature is recorded by

the satellite (Foster et al., 1987). This scattering is from a combination of physical

characteristics, such as grain size, and thermodynamic control of the snow’s dielectric

constant. Different algorithms are required to retrieve snow over ice sheets and sea ice

instead of snow over ice-free land, and it is only the latter that is considered in this

thesis.

Most SWE retrievals are empirically-derived, using the difference in brightness

temperature between two frequency channels, referred to as the ‘spectral gradient’.

At frequencies less than 25GHz, the snowpack is virtually transparent, so the signal

is dominated by emission related to the temperature of the scene. Above 25GHz the

response is affected by scattering from the snowpack. By comparing the brightness

temperatures at frequencies either side of this threshold, the amount of scattering due

to the snowpack, and hence its water equivalent, can be inferred. This method is

simple, however there are many important factors to take into account.

Passive microwave methods are unable to detect very thin snow cover (less than

≈ 5cm, Armstrong and Brodzik (2002)), as the difference between the two frequencies

is not large enough to detect. The signal is also unable to penetrate a depth of snow

10-100 times the microwave wavelength, so for a 37GHz signal, with a corresponding

wavelength of 0.8cm, the signal saturates at depths greater than 800mm (SWE ≈

250mm) (Foster et al., 2005).

Snow pack morphology affects the emission through changes in grain size, which is

controlled by temperature and water vapour. The presence of large, plate-like depth

hoar crystals can result in artificially high SWE retrievals (Derksen et al., 2005), as the
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radiometer ‘sees’ a deep snowpack, whereas in fact it is looking at a shallow but dense

one. In wet snow, large grains grow at the expense of smaller ones which rapidly melt.

However, water has an emissivity close to 1 at microwave frequencies and the signal

from any liquid water present (either in the snowpack or as an open body of water)

will overwhelm the decreased signal from the Earth, and low or no snow depth values

are retrieved. Ice crust layers, resulting from melt-refreeze cycles or wind compaction,

can also cause increased microwave scattering and an overestimation of SWE.

When Mie scattering theory and conventional radiative transfer equations were

applied to modelling snow microwave retrievals, it was found that the amount of

scattering should be strongly dependent on grain size. However, algorithms using

a constant grain size assumption appeared to do much better than expected under

a wide range of conditions. Armstrong et al. (1993) suggest that the assumption

of independent scatterers in the conventional theory is not rigorous, and that dense

medium transfer theory, which accounts for correlated scattering in a dense material

such as snow, shows a much less sensitive response to grain size. Despite the high

degree of sensitivity to grain size, Foster et al. (1999) found that scattering appears

relatively insensitive to grain shape.

The emissive properties of the soil beneath the snowpack will also influence the

brightness temperature. The dielectric behaviour of dry soils is roughly the same as

for frozen soils (Kelly et al., 2003), but any wetness will raise the emissivity towards 1.

Surface roughness also becomes more influential for a wet soil. It is assumed that the

soil temperature will be at or below freezing for most snowpacks, although these factors

will become important when the snow is thin or in maritime areas where temperatures

can rise above freezing (Kelly et al., 2003; Pulliainen, 2006). Therefore air temperature

will also affect SWE retrieval, by driving the metamorphism of snow grains, and by

causing melt.

Forest cover also affects the microwave measurement, as vegetation has the effect of

masking the signal from underlying snow cover by contributing scatter, absorption

and emission through snow interception and the water content of the vegetation

itself (Derksen and MacKay, 2006). This effect is usually thought to result in an

underestimation of SWE of up to 50% (e.g. Foster et al. (2005); Brown et al. (2003)).

It is important to account for vegetation in the retrieval, as at the scale of a satellite

pixel (many kilometres square) the scene is unlikely to be free of vegetation.

Retrievals in practice

The regular recording of passive microwave brightness temperatures from space

began in 1978 with the Scanning Multichannel Microwave Radiometer (SMMR),
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which functioned until 1987 when the Special Sensor Microwave/Imager (SSM/I) was

launched on NASA’s F8 satellite. It has now been operational on five satellites (F8,

F10, F11, F12 and F13). The Advanced Microwave Scanning Radiometer for the Earth

observing system (AMSR-E) began recording brightness temperatures in 2002.

A simple algorithm for SWE retrieval was developed by Chang et al. (1987) for

SMMR:

SWE (mm) = c(TB18H − TB37H) (3.1)

where H refers to the horizontally polarized channel, TB is brightness temperature

in degrees Kelvin and the gradient of the linear fit, c, is 4.8mmK−1, a constant derived

from radiative transfer models. Two important assumptions in this derivation are a

constant snow grain radius of 0.3mm and a constant density of 300kg m−3. Defining

these variables as constants in the retrieval, independent of space or time, means that

this is a ‘static’ retrieval. This is the most common form of SWE retrieval, though

‘dynamic’ retrievals, where the changing grain size over time is taken into account,

have also been developed and will be discussed below.

Defining an appropriate grain size and density for use in any retrieval algorithm

is difficult. Foster et al. (1996) showed that a representative snow density for mature

snow packs in North America is 300kg m−3, however, in reality the grain size and snow

density can be highly variable both temporally and spatially. As snow grains tend

either to grow or to remain the same size over a snow season, the constant grain size

assumption will lead to an overestimation of SWE, all other things being equal (Foster

et al., 2005). Although snow density is related to the snow grain size, its influence

on retrievals is much smaller (Pulliainen, 2006). The use of a difference algorithm

minimises certain errors in the retrieval, such as the effect of snow temperature, the

dielectric constant of the soil and the surface roughness (Kelly et al., 2003). However,

Chang et al. (1987) suggest that application of their algorithm should be limited to

snow depths of less than 1m, and any retrieved depths less than 25mm should be set

to zero. To apply the Chang algorithm (equation 3.1) to SSM/I data, a modification

for the difference between the 18GHz and 19GHz channels is needed. Armstrong and

Brodzik (2001) suggest:

SWE (mm) = 4.77(TB19H − TB37H − 5) (3.2)

Unfortunately, the SMMR and SSM/I operational periods overlap for only six weeks

of the Northern hemisphere summer, limiting the amount of data that could be used

to compare the readings from the two systems. Derksen and Walker (2003) show that
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Table 3.1: Land cover specific algorithms for SWE retrieval used by the Meteorological
Service of Canada

Open SWE (mm) = −20.7 − 2.59[(TB37V − TB19V )/18]
Coniferous SWE (mm) = 16.81 − 1.96(TB37V − TB19V )
Deciduous SWE (mm) = 33.5 − 1.97(TB37V − TB19V )
Sparse SWE (mm) = −1.95 − 2.28(TB37V − TB19V )

there is a systematic bias in the cross-platform time series, with SSM/I measurements

systematically higher than those from SMMR. They also show that this bias is regional,

so a global adjustment factor would be inappropriate

Rather than apply the same algorithm at every point, the Meteorological Service of

Canada (MSC) has developed a suite of land cover-specific SWE retrieval algorithms,

following airborne passive microwave and ground measurement campaigns (Goodison

et al., 1984; Sellers et al., 1997). Weekly maps of Canadian SWE are derived from

SSM/I brightness temperatures in near-real time. The four land cover types used are

open prairie, coniferous forest, deciduous forest and sparse forest, and the grid cell

land cover fractions are determined using the IGBP 1km land cover data set. The four

difference algorithms are shown in table 3.1.

The open prairie algorithm has been well validated, producing results within

±15mm of observed values (Derksen and Walker, 2003). Higher uncertainty of ±30-

50mm exists in forested areas, and the problem of SWE retrieval uncertainty in very

dense forest is still present. Despite most errors in the static retrieval tending towards

underestimation, Chang et al. (2005) found no bias in whether SSM/I results over- or

underestimate SWE in a 10 year record. Similarly, but in a spatial rather than temporal

context, Derksen et al. (2005) subsampled a single SSM/I grid cell (25x25km) and

found that the microwave estimate lay in the centre of a highly variable but normally

distributed set of in situ measurements, suggesting that the spatial averaging performed

over a pixel by the radiometer leads to a representative brightness temperature for that

pixel.

Alternative approaches to the static retrieval have also been attempted. Kelly

et al. (2003) derive a new form of the coefficient c in the snow depth version of

the SSM/I retrieval algorithm (equation 3.2). Rather than a continent-wide static

approach, assuming a constant grain size and density, Kelly et al. (2003) use a dynamic

approach. Simple empirical models of grain size evolution and density are used to derive

the coefficient c and predict its spatial and temporal variation.

This new dynamic algorithm estimates snow depth with greater root mean square

error (RMSE) but a generally smaller bias than the static algorithm of equation 3.2
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when compared to ground station data (the larger RMSE is believed to be due to a

few stations exerting a strong influence on the results). No account was taken in this

study of the effects of vegetation.

Josberger and Mognard (2002) also used a dynamic approach that takes into

account the temperature history of the snowpack. They define a temperature gradient

index (TGI), based on the integral of the bulk temperature gradient, and find a high

correlation between this index and the SSM/I spectral gradient. This allowed them to

derive a new snow depth retrieval dependent on air temperature and the TGI, which

works well in the Great Plains region of North America. The algorithm was then

tested in Siberia (Grippa et al., 2004) and appears to improve estimates compared to

the static case, although the lack of frequent in situ observations in the region limits

calibration and validation.

More deterministic retrievals have also been attempted, by coupling radiative

models of the snowpack to hydrological models (e.g. Chen et al. (2001)). So far

this approach requires site-specific parameterizations which are unavailable at large

scales, and obtaining detailed snowpack properties for areas the size of an SSM/I pixel

is not practical.

3.3.3 Summary

Remote sensing using satellites emerged in the second half of the twentieth century as

a means of gathering spatially and temporally continuous datasets of both snow extent

and SWE. Snow extent datasets are derived from a range of different instruments

and require differing amounts of manual processing. SWE data is only retrieved

from microwave instruments, which generally use a linearized difference between two

frequency channels to derive a SWE measurement. This retrieval method is sensitive

to assumptions regarding grain size, and the frequency difference saturates in deep

snowpacks and is insensitive to very shallow ones. The masking effect of vegetation

has also to be taken into account. Most operational retrievals use a ‘static’ approach,

where the algorithm uses a constant grain size both spatially and throughout the

season. ‘Dynamic’ approaches, where the grain size used is dependent on, for example,

the temperature history of the pixel, have also been developed but are not as widely

used.
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3.4 Analysis of passive microwave data

3.4.1 Data

The only available global snow water equivalent product based entirely on observations

is the Global Snow Water Equivalent Climatology, provided by the National Snow

and Ice Data Center (Armstrong et al., 2005). The climatology is produced from

a combination of SMMR, SSM/I and visible data, with the passive microwave data

providing the SWE information, and visible data is used to fill in any pixels that were

seen to be snow covered but not detected by the microwave radiometer. Only data from

the 37GHz and 19GHz channels are used, first re-sampled to the 19GHz -3dB footprint

of 69x43km and then gridded to the 25km Equal Area Scalable Earth (EASE) grid

(Brodzik and Knowles, 2002). The dataset comprises monthly means from November

1978 to March 2005. An example of a month’s worth of Northern hemisphere data is

shown in figure 3.2 (note that ice sheets such as Greenland and parts of the Canadian

Arctic are masked).

Equation 3.2 is used for SWE retrieval. To avoid overmeasure due to melting

snow, only data from the “cold” pass (the 0600 ascending equator crossing) are used.

Any SWE values less than 7.5mm are deemed unreliable and set to zero, and areas

with permanent ice according to the MODIS dataset are masked. Missing data

are interpolated from surrounding days, and the monthly mean is calculated from

interpolated daily values.

To account for the masking effect of vegetation, the algorithm is adjusted by a

forest factor ff using the 25km EASE-grid version of MODIS land cover. ff increases

on a linear scale with forest cover percentage, up to a maximum value of 0.5 for forest

cover fraction of 50% or above. SWE is then adjusted according to equation 3.3.

SWEadjusted (mm) = SWE (mm)/(1 − ff) (3.3)

Only in one area does the microwave data indicate snow where the visible data

does not, which is over the Tibetan plateau, an area of extremely high elevation.

Most SWE retrieval algorithms assume that the atmosphere is transparent at 37GHz

and 19GHz, i.e. the radiation leaving the snowpack reaches the radiometer in space

unaffected by the atmosphere in between. Recent studies comparing data from airborne

and spaceborne radiometers have found that this may not be the case (Pulliainen and

Hallikainen, 2001; Wang and Tedesco, 2007), and Armstrong et al. (2004) suggest that

this may be the cause of the discrepancy over the Tibetan plateau. Since this area

has a mean elevation of over 4000m, there is a much reduced atmosphere between the

snowpack and the radiometer, so the calibration using data gathered at low elevation
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Figure 3.2: February 1992 from the Global Monthly Snow Water Equivalent
Climatology. Note that ice sheets are masked out (purple), and that the product
is supplemented with data from visible band satellites (red) where the snow is not
sufficiently deep to be detected by the microwave radiometer

may not be appropriate. A correction is being developed but is not yet part of the

released product.

For this study, it was decided to use only the data from the SSM/I radiometers,

which starts in August 1987, due to the systematic biases found between the data from

the SMMR and SSM/I instruments (Derksen and Walker, 2003). It was also decided

to remove the visible data from the dataset. Firstly this allows the monthly data to be

easily averaged, as all the data are provided in the same units, and secondly it allows

conclusions to be drawn about the quality of the passive microwave data and retrieval

algorithm.

Figure 3.3 shows the average monthly climatology for the SSM/I data. In August,

the only snow-covered pixels are found in the Himalayas. Snow begins to develop

in Alaska and northeast Siberia in September and extends across high latitudes in

October. By December most of Siberia, Canada and the Tibetan Plateau are snow-

covered, with the deepest values still found in Alaska and northeast Siberia. SWE

values peak at over 300mm in eastern Siberia and central Canada in February and

March. The US and Europe become mainly snow-free in April, and the snowline
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retreats northwards on both continents until in June it is only the high Arctic regions

of Canada and Siberia and the high altitude Himalayas that are snow-covered. The

latter still have some snow-covered pixels in July where the rest of the hemisphere is

snow-free.

In the data documentation (Armstrong et al., 2005), the authors suggest overmea-

sure due to depth hoar could be occurring in eastern Siberia, although sufficient snow

depth data were not available to verify whether this was the case. They also note that

persistently high SWE values are measured between the western edge of Hudson’s Bay

and North Alaska. Few measurements are available for this region, but those that exist

suggest that this gradient is real, but perhaps of a smaller magnitude than the passive

microwave measurements indicate (Derksen and MacKay, 2006).

3.4.2 Empirical Orthogonal Function analysis

Nearly 20 years of SSM/I data are now available, making the study of interannual

patterns possible. This section assesses the coherence and interannual variability of

this SWE dataset using empirical orthogonal functions (EOFs). EOFs are used to

quantify spatial patterns of variability, with the method also returning a time series

of that variability, and a measure of the importance of that pattern in the overall

variability within the original dataset.

Jin et al. (2006) use EOF analysis of station data in the western United States.

They compare the EOF patterns with patterns found by stratifying the station data

according to climate indices such as ENSO, to establish how much of the variability

in SWE data is caused by these climate indices. Derksen et al. (2002) use EOFs

to characterize the spatial variability of in situ SWE in central North America, to

assess the accuracy of the MSC SWE algorithms (shown above). These studies have

concentrated on regional or catchment-scale analysis of SWE, where the patterns are

potentially more influenced by the sensitivity of the retrieval to local features such as

snow grain size. By looking at patterns on the continental and hemispheric scale we

hope to minimise these sensitivities, and understand SWE patterns on the hemispheric

scale.

The aim of Empirical Orthogonal Function (EOF) analysis in this context is to

find patterns of variability in SWE and snow cover, from seasonal to decadal scales.

The method works by decomposing the original monthly ‘snapshots’ into static spatial

patterns (EOFs) with an associated time series. This is somewhat similar to the

decomposition of, for instance, a time series into orthogonal sine and cosine functions,

however in this case the orthogonal functions in the EOF method are not chosen a

priori, but so as to maximise the amount of variance in the dataset that they explain.
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Figure 3.3: Seasonal cycle of snow water equivalent (mm) from the Global Monthly Snow Water Equivalent Climatology dataset,
for the period August 1987 – March 2005. Note that permanent ice sheets such as Greenland are masked.

32



Chapter 3

The first EOF thus explains the most variance, the second EOF the next largest amount

of variance and so on, until all the variance has been explained. It is essentially an

eigenvector-eigenvalue problem, with the eigenvector being the EOF pattern, and the

eigenvalue the proportion of the variance explained. The time series associated with

each EOF pattern, here referred to as the principal component (PC), is constructed

by projecting the pattern onto each of the original monthly snapshots. The method

produces as many EOF patterns as there are timesteps in the data, though only those

explaining significant proportions of the data are retained for analysis (this is discussed

in the Results section below). The method followed here was that of Bjornsson and

Venegas (1997), described as singular value decomposition for very non-square matrices.

To reconstruct the original dataset, you would multiply each EOF pattern by its PC

and then sum. EOF analysis is often used to reduce noise in datasets by retaining only

the first few EOFs in this summing procedure, and rejecting the remaining EOFS

as containing noise uncorrelated to the dominant patterns. In many studies, the

orthogonal condition is relaxed by rotating the first few EOF patterns to maximise

the variance each explains. We chose not to perform any rotation of the EOFs, as

this procedure can favour local modes of variability at the expense of global modes

(Dommenget and Latif, 2002).

EOFs of SSM/I data

To prepare the data for analysis, the time mean of each pixel is removed, so the PCs

are each centred around zero. As the data were obtained in an equal area grid, no

area weighting was required. To calculate the seasonal cycle, an ‘average year’ was

produced by finding the mean of all Januaries, all Februaries and so on. This average

year was then used to calculate anomaly fields by subtracting the appropriate monthly

mean from each month. EOF analysis was performed on both the seasonal cycle and

anomaly datasets, for the entire Northern hemisphere, and for Eurasia and North

America separately.

When applying this method to the SSM/I SWE dataset, it is important to recognise

where the sources of error are, whether they are random or systematic, and how they

affect the output of the analysis:

• Strong dependence on vegetation is assumed to have been removed by the forest

factor, although the EOFs should be inspected for any evidence of correlation

with vegetation type
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• Signal contamination due to open water is expected to be large but constant

throughout the dataset, and therefore to have a limited effect on patterns of

variability

• Areas likely to develop depth hoar (particularly eastern Siberia) are expected

to show overestimated SWE values, and hence an enhanced variability between

snow-free and snow-covered seasons

• Seasons when snowpacks become warm and wet will exhibit SWE underestima-

tion, masking the true variability of the area

• The absence of thin snow cover is not expected to affect the SWE EOF patterns,

as the variance will be dominated by areas with deep snow in winter and shallow

or no snow in summer.

• Areas affected by signal saturation at large SWE values may show a reduced

variability as the whole range of SWE values may be missed. This also means

that large negative anomalies are captured by the retrieval, but large positive

anomalies may be missed.

It is also important to note that not all the error to be taken account of in the

analysis will come from the retrieval algorithm. Previous studies referenced in this

report have used pentads (five-day averages), not the monthly averages to be used in

the EOF analysis. The approach here will smooth out some of the higher frequency

errors, but lead to the amplification of some anomalies as a timing error. As this study

uses a multi-decadal dataset, it was felt to be computationally too intensive to use

5-day data.

Results

Figure 3.4 shows the first four EOFs, and their associated PCs. The EOF patterns are

presented as correlation maps, where each pixel shows the correlation of that gridpoint’s

time series with the respective PC, while the PC’s themselves are normalized by their

variance.

EOF1 accounts for over 80% of the variance, and contains a coherent pattern of

the SWE seasonal cycle. This is the dominant spatial pattern in the data, showing an

annual cycle peaking in February, with some interannual variability in the amplitude

of that peak. EOF2 and EOF3 show dipole structures accounting for accumulation

and melt in the seasonal cycle, as seen by the frequencies present in the time series,

and figure 3.7 shows a closer view of a few years of the time series. EOF3 removes
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Figure 3.4: Correlation maps of the first four empirical orthogonal function patterns
and associated principal component time series of monthly SWE data. The percentage
variance explained by the patterns is, in order, 81%, 3.9%, 1.9% and 1.3%.
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Figure 3.5: Forest cover percent per pixel from BU-MODIS data, capped at 50%. This
is the map used to determine the adjustment to the SWE retrieval in the Global Snow
Water Equivalent Climatology product.

SWE in the red areas in early winter and adds snow to these areas in spring - these

are areas in the dataset that retain snow longer in spring than is captured by EOF1

alone. EOF2 has two peaks per year, in winter and spring, relating to accumulation

and melt respectively (the latter peak being larger in almost every case). Hence EOF3

shows areas that have snow in spring but not autumn, whereas EOF2 peaks in autumn

and spring, showing areas that have a longer snow season than those picked up in

EOF1. These areas are mountains, such as the Rockies and those in Norway, and

the high latitudes. The Alps are visible in EOF1, presumably because of their lower

latitude and hence shorter snow season. All the first three EOFs contribute to the

seasonal cycle, as shown by the periodic PCs (figure 3.4). The PC for EOF4 however

is dominated by an interannual pattern.

The EOF method will only remove uncorrelated noise; any contamination in the

signal that is correlated to the main pattern will remain. None of the leading patterns

look like the map of forest cover (figure 3.5) or grain size (figure 3.6). Therefore, this

analysis does not reveal a separable pattern in the data that relates only to forest cover

or grain size.
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Figure 3.6: Snow type classes over Eurasia and North America, taken from Sturm et al.
(1995).
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Figure 3.7: Close-up of three years of the second and third principal component time
series of monthly SWE data.

The upper panel of figure 3.8 shows the first 20 eigenvalues obtained from the

analysis of the Northern hemisphere, North American and Eurasian datasets: as the

larger Eurasian landmass dominates the first EOF, the analysis was repeated on the

continents separately. Clearly all three are dominated by the annual cycle which

explains around 80% of the variance in each case. To examine interannual patterns, the

seasonal cycle was removed as described above. The lower panel of figure 3.8 shows the

first 20 eigenvalues obtained from the analysis of Northern hemisphere, North American

and Eurasian anomalies. Here the eigenvalues are more closely spaced, though the first

eigenvalue is well separated from those following in each dataset. EOF1 in North

America explains nearly 16% of the interannual variability, and EOF1 in Eurasia

explains just over 13%. These two leading patterns are shown in figure 3.9. EOF1

for North America is shown in the upper panel with its PC. The main area of action of

this pattern is in the boreal forest band stretching between southern Alaska and Hudson

Bay. Where the PC is positive, anomalies in this region were negative (e.g. winter 1988,

spring 1993 and late winter 2003), and vice versa. The lower panel shows EOF1 for

Eurasia, where the centre of action again lies in the boreal forest region, stretching from

northern Scandinavia and across northern central Siberia. These first EOF patterns

for the anomaly time series over North America and Eurasia are negatively correlated

at -0.2 which is low (although statistically significant at 95%). If just the February

values are used, the correlation changes sign to 0.36. No correlation is seen with either

ENSO or the NAO.
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Figure 3.8: Eigenvalues of the first twenty EOFs from the whole Northern hemisphere
(left), North America (middle) and Eurasia (right). Top row shows the original dataset,
the bottom row shows the anomaly data.
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Figure 3.9: EOF1 and PC1 from North American (upper) and Eurasian (lower) regional
analysis
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3.5 Discussion

Spatially and temporally continuous snow data have been retrieved from space since

the 1960s. While snow extent data from space are reliable and well-studied, for a

complete picture of the Earth system we also require reliable information on SWE.

The only readily available long term global SWE dataset is derived from passive

microwave data from the SMMR and SSM/I satellites. The SMMR data period is

1978-1987, although this thesis concentrates on the data from the SSM/I satellite only

(1987-2005). The dataset makes use of an empirical retrieval first derived by Chang

et al. (1987) and makes two important assumptions: a constant grain size, and SWE

underestimation wherever there is forest cover. Despite many newer approaches being

proposed, these static retrievals are often found to be the most consistently reliable

choice at large scales (Koenig and Forster, 2004; Armstrong and Brodzik, 2002; Foster

et al., 1997).

The SSM/I-derived SWE product analysed in this chapter is dominated by a

coherent annual signal. This signal gives a plausible representation of the pattern of

SWE across the Northern hemisphere. The effect of topography on the snow variability

is more easily visible once the data are decomposed into EOFs.

Although no obvious contamination of signals from the forest cover or grain size were

found, we would expect the SWE to be correlated in some way to both. The presence of

forest will not only mask the snow from the radiometer, it will also affect the amount of

snow that lies there, so a correlation between the distribution of forest and the seasonal

pattern of SWE would not be entirely due to errors in the remote sensing technique.

Similarly, there will also be a relationship between grain size and SWE that could be

revealed or masked by the remote sensing technique and the retrieval used. Until more

is understood about the interaction of both grain size and vegetation with SWE and

microwave radiation, these components are difficult to decompose and the reliability

of this SWE product difficult to assess.

As well as a means of assessing the noise in the SSM/I data, the EOF analysis is

a way of finding patterns of interannual variability in the data. The most prominent

interannual pattern is active over central Eurasia, and accounts for 1.3% of the variance

of the entire dataset, and 13% with the seasonal cycle removed.

As the Eurasian land mass dominates this result, the continents were then analysed

separately with the seasonal cycle removed, to form ‘anomaly’ datasets. The anomaly

patterns in North America and Eurasia appear to have different characteristics. The

dominant North American anomalies are a modulation of the seasonal cycle, whereas

the Eurasian pattern occurs over a different portion of the continent to the seasonal

maximum. Neither are correlated with either ENSO or the NAO, although February
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values for the two PC time series are correlated at 0.36. This suggests that there may

be some relationship between high and low years, although there are evidently other

factors contributing to the extremes on each continent. These patterns could be related

to westerly storm tracks across each continent, and there could also be a relationship

with the boreal forests (see figure 3.5). As the seasonal cycle has been removed and it

is now an anomaly dataset we are analysing, the effect of the forest factor vegetation

correction has been removed. If this first anomaly EOF pattern is indeed related to the

vegetation map, then this suggests that it is SWE in the boreal forests that dominates

the interannual variability of SWE anomalies.

Before attempting further validation of the SSM/I-derived SWE distribution, the

next chapter will introduce the model to be used in this thesis. Chapter 5 will then

return to the issues presented here, as part of a more detailed evaluation of the

observed SWE with respect to both the model climatology and other sources of SWE

information.
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Modelling snow at large scales

4.1 Introduction

Although observations are important, good models are a vital tool for understanding

physical processes, and filling in gaps where observations are unavailable. Snow

modelling is required in many applications at many scales; these include avalanche,

flood and wildfire forecasting, water resource management and climate prediction.

Different applications require different modelling approaches and varying complexity,

many of which are being investigated in the snow modelling intercomparison project

(SnowMIP, Etchevers (2004)). SnowMIP compares snow models on a ‘stand alone’

basis, driven by meteorological forcing data and producing 1D output for a point in

space. Most snow modelling studies have been performed at this point scale, or using

data from field sites of a limited size for validation (Essery, 1998; Slater et al., 2001;

Boone et al., 2006); validation of distributed snow models on a large (continental to

hemispheric) scale is more difficult as suitable observation data are limited.

Boundary conditions for the atmosphere are provided by the land surface, as

summarised by Bagnoud et al. (2005):

“The role of the land surface in climate models is primarily to partition

available radiative energy between the sensible and latent heat fluxes (the

surface energy balance), to partition available water between evaporation

and runoff (the surface water balance) and to simulate momentum and,

most recently, carbon exchange between the land surface and the atmo-

spheric boundary.”

Snow is recommended by Foster et al. (1996) as a challenging diagnostic for climate

models, as both the temperature and precipitation must be realistic to ensure good

predictions of snow cover and depth. The representation of snow processes varies
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between GCMs. Typically, precipitation occurs as snow when the temperature of the

lowest atmospheric level is at or below freezing. The energy balance of the snowpack

dictates melt, and many models add a sublimation term to the evaporative flux

from surface to atmosphere. However, computational constraints limit the complexity

that can be included in a snow model to be used as part of a GCM. This leads to

parameterization, and a problem in land surface models is that snow is heterogeneous on

a smaller scale than the model grid, and so is particularly sensitive to parameterization

choices (Essery et al., 2003).

Model structure influences the physics of the snow model; an illustration of common

structures is shown in figure 4.1 (from Slater et al. (2001)). A model with a single

snow layer above the soil, known as a ‘bulk-layer model’, will allow the snow to be

thermodynamically separate to the soil, with an explicit temperature and separate

fluxes calculated for the snow-covered fraction of the gridbox. A multi-layer snow

model will, in addition, be able to represent more complicated compaction and melting

processes. Some models have a composite snow-soil layer, where the snow will

still occupy a fraction of the gridbox, but thermally the snow and soil will not be

independent. Alternatively, an implicit scheme is one where the properties of the

upper soil layer(s) are modified to allow for the difference between snow and soil, for

instance in albedo or thermal conductivity. In this scheme, the grid box thus becomes

an aggregate of the different components within it.

An alternative to using models alone for large scale information is to use a reanalysis

product, where the aim is to recreate climate fields by exploiting the best features of

both the model and observing system. An estimate of the state of the atmosphere,

ocean or land surface for a point in time, often prepared in real time for operational

forecasting, is referred to as an ‘analysis’. Subsequently, observations collected at that

point in time can be assimilated into that analysis, providing a retrospective ‘best

estimate’ of the state of the climate system. This is known as a ‘reanalysis’. The

first generation of reanalysis products were proposed in the late 1980s and became

available in the mid-1990s (see section 4.5.2 for details). Since then, improvements

in data assimilation, observing systems and computing resources has led to a second

generation of reanalyses with improved resolution and parameterizations.

This chapter comprises an introduction to the general circulation model that has

been used in this thesis. A brief overview of the general features of the GCM is followed

by a more detailed assessment of the land surface component, and the representation

of snow in particular. Some examples of snow climatologies from runs of the model

with differing boundary conditions are also presented.
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Figure 4.1: Classification of GCM snow model structure, after Slater et al. (2001),
figure 5. Note that MOSES is an implicit scheme; other land surface model acronyms
are listed in the original reference.
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The GCEP project also uses the ERA40 reanalysis product (Uppala et al., 2005)

both as a source of fields for assimilation into the model and for validation of model

output. ERA40 is also introduced in this chapter, and a similar assessment of the

product’s climatology and snow distribution is presented.

4.2 Choosing a GCM

To study snow at continental to global scales, and as part of the climate system as

a whole, it is necessary to use a GCM. Many different centres have developed GCMs

and all will have particular strengths and weaknesses. A further choice is between

AGCMs and AOGCMs, i.e. whether or not the model should have an interactive

ocean component. While atmosphere-only models (most of which also comprise an

interactive land surface) are widely used for weather forecasting, the much longer runs

to be performed in GCEP require the seasonal to decadal variability of the ocean to

be represented, which demands a fully-coupled AOGCM.

The GCM chosen for the GCEP project is HadCM3, an AOGCM developed in the

1990s by the Hadley Centre (Gordon et al., 2000; Collins et al., 2001). The atmospheric

component of HadCM3 has a resolution of 3.75o longitude by 2.5o latitude, producing

96x73 grid boxes. There are 19 vertical levels, and it is coupled to the Met Office Surface

Exchange Scheme (MOSES, described below). The ocean component of HadCM3 has

a horizontal resolution of 1.25o by 1.25o with 20 vertical levels.

The GCEP project required a GCM that could be run on a PC cluster, rather

than a supercomputer. The relatively low resolution of HadCM3 allows multiple runs

to be performed on the ESSC computing cluster (typically on 4 processors). The

model has also been shown to have a good representation of longer term variability,

as represented by phenomena such as ENSO, the NAO and Atlantic Meridional

Overturning Circulation. Many aspects of the model, particularly the ocean, have

been well-studied, but the land surface model has received little attention, particularly

at large scales.

One area of concern with respect to the Hadley Centre models is the land-

atmosphere coupling strength, as determined by Koster et al. (2002). The AGCM

HadAM3 participated in this experiment and showed very little coupling strength

anywhere (in terms of soil moisture anomalies influencing anomalies of precipitation).

The effect of land surface conditions on the model’s evaporative fluxes was stronger, but

it seemed that this did not translate into effects on precipitation. This suggests that

the influence of land surface initial conditions on decadal predictions will be minimal

with this model, however seasonal and decadal variability in circulation patterns are
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expected to affect the distribution of lying snow. It is also important to note that the

land-atmosphere coupling strength is yet to be determined in reality, so while small,

the coupling in HadCM3 cannot be definitively ‘wrong’. In any case, the benefits

of HadCM3 for GCEP overall outweigh this limitation, and sections 4.3 to 4.4.3 will

concentrate on this GCM.

4.3 The Coupled Model Intercomparison Project

HadCM3 was one of over 20 AOGCMs used in the Fourth Assessment Report from

the Intergovernmental Panel on Climate Change (IPCC, Randall et al. (2007)). The

analysis and intercomparison of these state of the art climate models also formed part

of the third phase of the Coupled Model Intercomparison Project (CMIP3, Covey et al.

(2003)), during which a comprehensive database of model output from standardised

experiments was collected. Figure 4.2 shows output from HadCM3 compared to the

mean of all participating models from a 140-year run beginning in 1860, including

forcing from both natural and anthropogenic sources. Shown is the annual mean surface

temperature (upper panel) and annual mean precipitation (lower panel), expressed

as the model field minus observations. HadCM3 displays a slight cold bias over

the continents of one to two oC, and a cold bias of up to 5 oC in the annual mean

temperature of northwestern Russia and northern Scandinavia. There is a warm bias

of a few degrees in the Arctic. This is similar to the distribution of biases in the mean

model.

The precipitation plots in figure 4.2 show large differences between the model

climatology and observed precipitation in the tropics, particularly over the maritime

continent (Indonesia) where there is a wet bias of greater than 150cm in the annual

mean. Biases are much lower at high latitudes, but a lack of data in this region,

either from satellites or in situ monitoring, makes reliable error quantification almost

impossible. While the precipitation differences in the Tropics are a long way from

areas that become snow-covered in winter, changes in precipitation over the maritime

continent were shown by Neale and Slingo (2003) to have an impact across North

America and northeast Eurasia. However, this study was performed with HadAM3,

the atmosphere-only counterpart to HadCM3, which shows large dry biases over

the maritime continent (i.e. of the opposite sign to biases in the coupled model).

This highlights the dangers in comparing atmosphere-only GCM output (driven by

predefined SSTs) to output from a GCM with a fully coupled ocean that allows

feedbacks. Nevertheless, it is likely that the maritime continent has an important
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HadCM3 Mean model

Surface temperature difference (ºC)

Precipitation difference (cm)

Figure 4.2: Annual mean surface temperature (top) and annual mean precipitation
(bottom) difference fields from HadCM3 (left) and mean of all IPCC models (right).
Difference fields are model-observations, computed for the periods where the selected
observational validation datasets were available. Further details of model runs and
observational datasets in Randall et al. (2007).

role in the circulation patterns of the Pacific, and biases in this region will affect the

climatology of more remote regions.

Figure 4.3 shows the zonally-averaged mean sea level pressure (MSLP) from the

CMIP models, taken from Covey et al. (2003). HadCM3 (dashed brown) shows good

agreement with the observations (thick black) for latitudes below 50oN, almost all the

way to the South Pole, where there is a small low pressure bias. Above 50oN the model

displays a zonally-averaged high pressure bias of around 10hPa. This will impact the

circulation pattern and hence the snow cover, although with a zonally-averaged metric

it is impossible to tell how that bias is distributed around the hemisphere. The position

of storm tracks is a more local measure of circulation biases, and according to Slingo

et al. (2003), the model has a generally good representation of wintertime Northern

hemisphere storm tracks, when compared to reanalysis products. However it is again

important to bear in mind that measurements at high latitudes are sparse and the

reanalysis products used for validation will be poorly constrained in these areas.
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Figure 4.3: Zonally-averaged mean sea level pressure from CMIP models, after Covey
et al. (2003).

4.4 The land surface in HadCM3

4.4.1 MOSES

The interactive land surface model MOSES provides boundary conditions to the

atmosphere in both HadCM3 and HadAM3 (a detailed description of the model is

found in Cox et al. (1999)). The seasonal cycle of air temperature in HadCM3 is very

similar to that in HadAM3, showing the dominant role of land surface temperatures

(Slingo et al., 2003) and hence the importance of the land surface model. The prognostic

variables in MOSES are canopy water, mass of lying snow and the temperature and

moisture contents of each soil layer. The scheme has inputs of rainfall, snowfall and

net radiation and returns moisture and energy fluxes and skin temperature to the

atmospheric model. MOSES performs calculations with only one surface type simulated

for each gridbox, so effective parameters are calculated by an area-weighted mean

(except roughness length, which is calculated using a blending height approach). A

schematic of MOSES is shown in figure 4.4.

The soil model is comprised of four layers, at depths below the surface of 0.1, 0.25,

0.65 and 2.0m. Moisture input to the soil comes from throughfall through the canopy

and snowmelt, and is lost at the surface via surface runoff, and from the lowest soil

layer via subsurface flow. Surface runoff occurs when the water flow into the top layer

exceeds the saturated hydraulic conductivity of the soil. The subsurface flow is equal
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Figure 4.4: Schematic representation of the Meteorological Office surface exchange
scheme (MOSES). Prognostic variables are denoted by rectangles. After Cox et al.
(1999), figure 1.
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to the hydraulic conductivity of the lowest layer (‘free drainage’). HadCM3 has no

river routing model, so any surface or subsurface flow is instantaneously transported

to the river mouth appropriate to that gridbox.

The surface temperature is reduced in the presence of snow, due to its high albedo,

until the snow begins to melt. In snow-free areas the surface temperature will be

strongly dependent on soil moisture and its impact on the surface energy balance. The

evaporation from bare soil depends on the soil moisture concentration in the top soil

layer: if the top layer begins to dry out and is not recharged from below, evaporation

will tend towards zero and sensible heat fluxes will increase. In vegetated regions, soil

moisture controls transpiration, with the moisture content in each layer determining

the fraction of the total transpiration extracted from each layer within the rootdepth

(which depends on vegetation type). Photosynthesis also depends on the soil moisture

availability, which feeds back into fluxes of water and carbon from the canopy.

4.4.2 Snow in HadCM3

The snow model in HadCM3 is a simple one. MOSES has an implicit snow layer

structure, so as snow falls, the top two subsurface layers become combined snow/soil

layers, and the snow is assumed to be evenly distributed across the gridbox. The depth

of snow, where required, is calculated by dividing the snow mass by an assumed snow

density, fixed at 250kg m−3. Important parameterizations in the model include the

following, many of which depend on the skin temperature T∗ (shown in figure 4.4):

• Albedo is adjusted from a snow-free value, which is dependent on soil colour, to its

deep snow value at large snow depths. This deep snow value is also temperature-

dependent if T∗ rises above 2oC.

• The insulating properties of snow are modelled by adjusting the soil thermal

conductivity. This impacts on the soil heat flux, reducing its contribution to the

surface energy balance.

• Snowmelt occurs if either T∗ or the temperature of the top snow/soil layer exceeds

the melting point of water, Tm. If T∗ exceeds Tm, sufficient snowmelt occurs to

restore the surface energy balance.

• When snow is present, all the evaporative demand is met by sublimation from

the snowpack, setting canopy transpiration and evaporation from the soil to zero.

• The aerodynamic roughness of the surface is also reduced to account for the

smoothing effect of snow cover.
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SnowMIP categorises participating models according to complexity, from simple

(1) to very complex (4). MOSES is given a 2 on this scale. It was found that the

model complexity has a strong impact on the simulation of net longwave radiation,

through the difficulty of simulating the snow surface temperature accurately with a

simple model (Etchevers, 2004). In contrast, it is possible to parameterize the albedo

successfully, leading to good simulations by simple models.

An investigation of snow in land surface models was made as part 2(d) of the

Project for the Intercomparion of Land-Surface Parameterization Schemes (PILPS).

Slater et al. (2001) compare the snow output of 21 land surface schemes at point scale.

The models are driven by 18 years of forcing data for a grassland catchment in Valdai,

Russia, and are able to reproduce the broad features of the observed SWE, though

there is considerable inter-model and inter-annual spread. In general, MOSES tends

to estimate a lower SWE than many of the other models when driven by identical

meteorological data (including prescribed snowfall amounts). MOSES also melts SWE

too quickly, which is a consequence of the implicit scheme: as the albedo of the

aggregate grid box is raised by the soil portion, more energy is absorbed (and hence

more snow melted) than if the energy balance calculation were performed on snow-

covered and snow-free parts of the grid box separately (Essery et al., 2005). A more

recent version of MOSES, version 2.2, includes subgrid tiling which goes some way to

remedying this problem, but it is the older version that was available for use in the

configuration of HadCM3 in this project.

Many models in Slater et al. (2001) were shown to decouple from the atmosphere

under very stable conditions. As net radiation becomes negative during winter, surface

temperature drops and turbulent fluxes of sensible and latent heat can drop to zero

(this is dependent upon the Richardson number, a dimensionless number expressing

the degree of turbulent transfer under given conditions of boundary layer stability).

At this point the soil heat flux becomes very negative to balance the net radiation,

which cools the surface further, hence a positive feedback loop is set up. In the suite of

simulations at Valdai, while the sensible heat in MOSES never dropped to zero, there

was 70mm more SWE in spring during runs where net radiation was allowed to become

negative, compared to control simulations where it did not. This is mainly due to the

colder environment allowing the SWE to persist for longer.

A further PILPS study (part 2(e); Bowling et al. (2003a)) tested the land surface

schemes’ simulation of hydrological processes in a high latitude basin (the Torne-Kalix

basin in northern Scandinavia). The 21 models that participated showed large variation

in the simulation of the energy budget, and were grouped according to the partitioning

of sensible and latent heat fluxes. MOSES was placed in group 4: models with high
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annual average latent heat and low annual average sensible heat. In fact MOSES

simulated the highest latent heat of all participating models, around 50% higher than

that measured at the site. This could explain why MOSES SWE estimates are low, if

there is excessive sublimation of fallen snow from the surface, which could in turn be

related to the parameterization of atmospheric resistance (Bowling et al., 2003b).

A limitation of the PILPS experiments is the lack of feedback between atmosphere

and land surface, as the land surface schemes are driven by observed fluxes. To include

these feedbacks, comparisons of the schemes as part of coupled models are required.

There have been several investigations into the ability of GCMs to model snow (Foster

et al., 1996; Cess et al., 1991; Etchevers, 2004; Frei and Robinson, 1998; Frei et al.,

2003, 2005). Foster et al. (1996) compare seven GCMs and find that snow was generally

well simulated, except in October, when snow cover begins to extend. Snow mass is

also better modelled during winter than during the transitional periods of spring and

autumn, when the temperature and precipitation fields are less reliable. This could

also be due in part to the parameterization of the albedo; Etchevers (2004) found that

a temperature-dependent parameterization, as found in many GCMs, only works well

during non-melting periods. While a Hadley Centre model was part of this study, it

was a much older version than that used in this thesis.

Snow was considered in the Atmospheric Model Intercomparison Project (AMIP).

The atmosphere-only GCM, HadAM3 (which includes MOSES), took part in the second

round, AMIP-2. Frei et al. (2003) describe the results with respect to snow covered area

(SCA). The suite of AGCMs showed little seasonal bias and improved representation

of interannual variability with respect to the older models in AMIP-1 (as discussed in

Frei and Robinson (1998)), although it remains underestimated. Regional biases are

apparent, however, with overestimates of SCA in eastern Eurasia and underestimates in

western Eurasia. Suggestions for improvement include better simulation of the climate

of central Asia, and improved parameterizations of precipitation and sublimation in

cold, dry regions of high elevation.

Frei et al. (2005) went on to consider AMIP-2 simulations of SWE over North

America, using a gridded dataset of interpolated in situ snow depth observations

for validation, and snow density estimated from a simple snowpack model. Most

of the models reproduced the seasonal timing and relative patterns of continental-

scale SWE well, with simulated values peaking in the correct month. However, there

was significant inter-model variability found in all diagnostics, and the rate of spring

snowmelt tended to be overestimated. HadAM3 slightly underestimated snow mass

over North America, and the interannual variability was much less than observed. In

estimating climatological means, the median result from all models tended to perform
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better than any individual model, which supports the use of ensembles of models in

studies of this kind. It is also suggested that SSTs, the primary boundary conditions

in the AMIP studies, do not play a significant role in determining the interannual

variability of the snowpack in atmospheric models. Frei et al. suggest that coupled

ocean-atmosphere models are required to produce accurate predictions of snow cover,

particularly at midlatitudes. This is supported by the work of Yang et al. (2001)

described in chapter 2, where important feedbacks between ENSO and snow cover

were found.

4.4.3 Snow in GCEP runs

To investigate the seasonal cycle of snow in HadCM3, three separate runs were

performed on the compute cluster at ESSC.

Control run This 545-year run includes solar and prescribed volcanic forcings, but

fixed greenhouse gas forcings.

Transient run This 150-year run begins in 1860 and includes increasing concentra-

tions of greenhouse gases and aerosols to match that observed.

Flux adjustment run This short run from December 1994 - November 2004 includes

spatially and seasonally varying flux adjustments over the oceans. Fluxes are

adjusted so that the sea surface temperatures match those observed. This

accounts for ocean circulation patterns not simulated in the model, and corrects

imbalances in the surface heat flux (Collins et al., 2006). The method still allows

SSTs to vary in response to influences such as changing CO2 amounts.

The need for flux adjustment arises from model errors; flux adjustments were

necessary in many GCMs to stop the model drifting away from the observed climate.

HadCM3 was one of the first coupled atmosphere-ocean models to run without the need

for flux adjustments, although the successful simulations of large-scale SST features

comes at the expense of regional biases (Gordon et al., 2000). This can reduce the

plausibility of predicted changes in, for example, circulation patterns in longer climate

runs, as SST biases will impact crucial feedback processes, however the flux adjustment

will inevitably constrain the model’s ability to respond to the changes in forcing.

Nevertheless, some authors (for instance Collins et al. (2006)) suggest continuing to use

flux adjustments particularly for applications where the remaining biases could reduce

the usefulness of model fields, for instance as initial conditions for shorter runs.

To derive the adjustments used here, the model is run for around 100 years, during

which SST and sea surface salinity are relaxed to climatology. The fluxes from this are
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stored and then applied as flux adjustments. This is done for about 300 years, before

starting runs from 1860 with increasing greenhouse gas forcings. Details follow those

found in Collins et al. (2006).

Figure 4.5 shows the seasonal cycle of monthly SWE from the control run. As for

the passive microwave data in chapter 3, areas of permanent ice, such as Greenland

and parts of the Canadian Arctic, have been masked out. Thin snow cover begins to

form in September at high latitudes and deepens during Autumn, particularly along

coastal areas with high elevation, such as the Rockies and Kamchatka. By February

snow has accumulated to depths of over 150mm of water equivalent across Scandinavia,

western and central Russia, the Himalayas and Canada. The most widespread deep

values are found along the western coast of Canada in March. The snowline recedes

during April, May and June, leaving a few gridpoints with snow cover at high latitude

or high elevation. By July the hemisphere is almost entirely snow-free.

Figure 4.6 shows the difference in the SWE seasonal cycle between the control run

and the transient run (as transient minus control). Differences are small (less than

40mm maximum, generally less than 10mm), with the largest of these occurring over

the mountainous west coast of North America. There is also no clear effect of increasing

greenhouse gases on the snow line, as has been suggested in the literature (Groisman

et al., 1994; Brown, 2000; Dye, 2002), though this is unlikely to be discernable in a

climatology averaged over the whole run. Figure 4.7 shows the Northern hemisphere

mean SWE as seasonal means for the transient run. Some declining trend may be

present in the JJA and SON averages, although the mean SWE present in the Northern

hemisphere over these seasons is very low. Continental means will also average out

regional differences: Hamlet et al. (2005) found that in North America, the sign of

regional trend varied, as while some areas associated declining SWE with a warming

trend, others showed increasing SWE due to an upward trend in precipitation. Figure

4.8 shows the same as figure 4.7 except for snow-covered area (SCA). Again, no clear

trend is seen, though there may be some decrease with time in the SON average.

Figure 4.9 shows the seasonal cycle of SWE from the run with flux adjustments,

expressed as departures from the control run climatology (flux adjusted minus control).

This run shows much larger departures from the control run climatology (more than

150mm at certain gridboxes), and almost all negative, showing that the impact of

realistic SSTs (or alternatively the inhibition of ocean feedbacks) is to reduce the

depth of snow across much of the hemisphere. Reductions are mainly found along the

west coast of North America but also in western Russia, where some of the largest land

surface temperature biases occur (as shown in figure 4.2; note that the run used to

produce this plot of surface temperature errors was a transient run, similar to the one
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Figure 4.5: Seasonal cycle of snow water equivalent (mm) for a 545-year control run of HadCM3. Note that permanent ice sheets
such as Greenland are masked.
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Figure 4.6: Seasonal cycle of monthly snow water equivalent (mm) for a transient run of HadCM3, expressed as departures from the
control climatology in figure 4.5. The transient run is 150 years from 1860 including the best estimate of greenhouse gas forcing.
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Figure 4.7: Northern hemisphere mean monthly snow water equivalent (mm) by season
for a 50-year transient run of HadCM3. Thick line: ten-year running average. Top to
bottom: DJF, MAM, JJA, SON
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Figure 4.8: Northern hemisphere monthly snow-covered area (km2) by season for a
150-year transient run of HadCM3. Thick line: ten-year running average. Top to
bottom: DJF, MAM, JJA, SON
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performed at ESSC, and that figure 4.9 shows differences relative to a pre-industrial

control run. Since the snow climatology for the control and transient runs in figures

4.5 and 4.6 are so similar it is reasonable to assume that the differences between the

flux-adjusted and transient climatologies would look much the same as those plotted

in 4.9, particularly over Eurasia).

4.5 Snow in reanalyses

4.5.1 ERA40

ERA40 is a widely-used second generation reanalysis product from the European

Centre for Medium Range Weather Forecasting (ECMWF, Uppala et al. (2005)).

It provides the atmospheric data for the GCEP project to constrain and validate

HadCM3. This section describes the product and its snow component.

ERA40 provides global climatologies of a range of surface and atmospheric variables

for the time period mid-1957 to 2001. The ERA40 system produces a new analysis every

6 hours. A background field is generated as a short range forecast from the previous

analysis, and observations are assimilated into this analysis, using statistically-based

estimates of the errors in both the observations and the background model. Three

dimensional variational assimilation (3DVar) is the method used in ERA40, a process

which minimises the sum of deviations of the analysis from both the observation and

background fields. The biases in the reanalysis will depend on the model physics and

the dynamical and physical relationships within the statistical error estimates, and will

vary spatially and temporally, and from variable to variable.

The model used to produce the analysis is based on the ECMWF’s Integrated

Forecast System (IFS), the operational medium-range weather forecasting system used

at the Centre. Observations come from a range of satellites, radiosondes and ground

observations, which are described in more depth on the ERA40 project website1.

Snow depths from surface synoptic reports are assimilated, and while many SSM/I

brightness temperatures are assimilated, no retrieved snow products are used. As the

IFS has no ocean component, SST data are needed to supply boundary conditions to

the atmospheric model over the oceans. These data come from the UK Met Office’s

HADISST1 (until November 1981) and the NOAA/NCEP 2D-Var dataset (thereafter

until June 2001).

There are a number of known problems with the ERA40 dataset, in particular that

the rain rate over the tropical oceans is too high, and too low over the extratropics.

1ERA website: http://www.ecmwf.int/research/era/ERA-40/Observations/index.html
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Figure 4.9: Seasonal cycle of monthly snow water equivalent (mm) for a flux-adjusted run of HadCM3, expressed as departures from
the control climatology in figure 4.5. The flux adjustment run is for 1994-2004.
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Figure 4.10: Daily values of the ERA40 RMS background (grey) and analysis (black)
fits to daily 500hPa extratropical radiosonde measurements of temperature (K) for (a)
Northern hemisphere and (b) Southern hemisphere. After Uppala et al. (2005).

Constraining the model at high latitudes is difficult, especially as there are few

radiosonde measurements over Russia through the 1990s. At the start of the ERA40

epoch, a lack of reports from surface stations adversely affects 2m temperature

estimates which leads to biases in the soil moisture in particular. Despite these issues,

the ERA40 dataset compares well against many independent observations. Figure

4.10 shows one example: RMS fits to daily temperature measurements at 850hPa.

The background field is shown in black, and the reanalysis in grey. The assimilated

observations are clearly improving the RMS fit in both hemispheres, with particularly

improvement seen in the Southern hemisphere in the later part of the time series, as

more satellite observations become available. Reichler and Kim (2008) have undertaken

a systematic assessment of the time mean errors and uncertainties of a number of

reanalysis products over the period 1979-1999, and find that the ERA40 dataset is the

best match for the observations used, which include a wide variety of both dynamical

and physical atmospheric quantities.

ERA40 land surface

A new surface scheme was designed for the ERA40 project, and a series of offline

experiments are described in van den Hurk et al. (2000). The main innovation in

the new scheme is the use of tiled surface characteristics to represent sub-gridscale
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heterogeneity. Each land surface gridbox is comprised of appropriate areal fractions

of bare soil, high vegetation, low vegetation, high vegetation with snow underneath,

snow on low vegetation and a canopy interception layer. Snow water equivalent is

a prognostic variable, and the fraction of the gridbox covered by snow is linearly

related to the SWE in that gridbox. The scheme has an explicit snowpack layer with

prognostic equations for the snow albedo and density. The snow albedo is only used

for exposed snow; snow under vegetation has a reduced albedo of 0.2. This was found

to dramatically reduce errors in the 850hPa temperatures in March and April in the

boreal forest regions (Viterbo and Betts, 1999).

Evaluation of the land surface scheme in snow conditions was performed with data

from the BOREAS field campaign (Sellers et al., 1997). The results (figure 4.11) showed

that in this offline simulation, snow depth in the new (tiled) model was improved over

the previous (control) model, though was still an underestimate of the actual snow

depth. This was more likely due to inaccurate precipitation forcing data suffering from

gauge under-catch than model bias. The tiled scheme delays snowmelt realistically,

as seen in other studies with tiled models (Essery et al., 2005). The addition of soil

freezing leads to large runoff peaks not seen in the control runs (figure 4.12), and the

temperature of the top soil layer is increased due to the insulating effect of the separate

snowpack above. These changes were shown to make particular improvements to the

turbulent fluxes above boreal forests, with beneficial impacts on the surface Bowen

ratio and the atmospheric boundary layer.

The ECMWF land surface scheme, like MOSES above, took part in part 2(e) of the

PILPS study (Bowling et al., 2003a). While one configuration of the scheme was run

with calibration for the basin, it is the uncalibrated run that is considered here, as this

will better reflect the performance of the scheme globally in the ERA40 product. Like

MOSES, the uncalibrated ECMWF scheme was also placed in group 4. The average

annual latent heat was high (though not as high as MOSES), and the average annual

sensible heat flux was low, almost equal to that of MOSES. Basin average snow water

equivalent, however, was higher. Total runoff was similar to that of MOSES, though a

greater proportion was subsurface flow.

Uppala et al. (2005) note that there is an error in the ERA40 snow analysis between

1992 and 1994. Figure 4.13 shows the time series of anomaly SWE values in North

America and Eurasia (referenced to the 1958-1987 monthly climatology). This suggests

that the error is present from 1989 onwards, so for the rest of this thesis all ERA40

SWE data between 1989 and 1994 are omitted. The ERA40 SWE climatology for

1958-2001, with these years omitted, is shown in figure 4.14.
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Figure 4.11: Improvement of snow water equivalent predictions in the tiled version of
the ERA40 land surface scheme (solid line) as compared to the control version (dashed),
after van den Hurk et al. (2000). In situ data comes from the BOREAS field experiment
(dashed with crosses).

Figure 4.12: Differences in simulated runoff between the tiled version of the ERA40
land surface scheme (solid line) as compared to the control version (dashed), after
van den Hurk et al. (2000).
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Figure 4.13: ERA40 North American (blue), Eurasian (green) and Northern
hemisphere (red) mean SWE anomaly time series (mm). Anomalies are referenced
to 1958-1987 climatology.

SWE begins to accumulate in September in the Canadian Archipelago, north-

eastern Siberia and the Himalayas. The snowline spreads southwards through October

and water equivalents of greater than 100mm begin to appear in Alaska and northern

central and far northeastern Siberia in November. Water equivalent values reach a

maximum in March in central Siberia and northeastern Canada. The snowline recedes

fairly rapidly during Spring with the only snow cover remaining in June at highest

latitudes and over the Himalayas. July and August are almost entirely snow-free.

4.5.2 Other reanalysis products

A number of other global reanalysis products are available. Prior to ERA40, ECMWF

produced a 15-year reanalysis beginning in 1979, called ERA15 (Gibson et al., 1997).

This first generation reanalysis contained several deficiencies which were specifically

addressed in the creation of ERA40, and hence the earlier reanalysis will not be

considered further in this thesis.

The United States National Centre for Environmental Prediction (NCEP), in

collaboration with the National Center for Atmospheric Research (NCAR), produce a

reanalysis which stretches back to 1948 and is ongoing in near-real time (Kalnay et al.,

1996). A later collaboration between NCEP and the Department of Energy improved
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Figure 4.14: ERA40 monthly SWE climatology (mm) for the years 1958-2001, omitting 1989-1994 which contained an error in the
snow analysis. Note that permanent ice sheets such as Greenland are masked.
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upon the earlier product and has data for 1979 onwards. This revised reanalysis system

aimed to fix errors and improve parameterizations in the earlier reanalysis, although it is

not considered a ‘second generation’ reanalysis product as it remains at low resolution

and there is no direct assimilation of satellite brightness temperatures (Kanamitsu

et al., 2002).

A North American snow reanalysis at 0.25 degree resolution was produced by Brown

et al. (2003) to provide a dataset for AMIP model evaluation. A first-guess SWE field

was produced using a simple snow model driven by meteorological forcing data from

ERA15, then snow depth observations from 8000 meteorological stations across the

US and Canada were blended into this background field using optimal interpolation.

Evaluation using independent in situ and satellite data showed the product successfully

captured the main features of continental SWE and snow extent variations, although

the product is less reliable at latitudes greater than 50o N as station data here are

sparse. Unfortunately no equivalent product exists for Eurasia.

The Brown et al. reanalysis data is plotted in figure 4.15. Note that the product

does not extend across Alaska to the edge of the continent. Some SWE is present all

year round in the Canadian Arctic and parts of Alaska, but becomes more extensive in

September. Through October and November the snowline advances and at the highest

latitudes deepens to over 60mm. In December and January deeper snow becomes more

extensive along the west coast and to the east of Hudson Bay, and through February

and March the coasts are joined by a band of deeper SWE (>150mm in places) along

the boreal forest region. The snowline retreats in April, although SWE on the west and

NE coasts continues to deepen. The snowline continues to retreat through May and

June until only a few patches of SWE remain in July. At high latitudes, the product

shows many ‘bullseye’ features which are a consequence of the interpolation of sparse

in situ data points in these areas.

A further renanalysis product is under generation at ECMWF. The ERA-Interim

analysis implements a higher model resolution than ERA40, and 4D variational data

assimilation, where the influence of an observation extends through time as well as

space. Improvements to physical parameterizations and the use of satellite brightness

temperatures are also included, though the observation database is largely the same as

ERA40. Ten years of this new product became available in early 2008. ERA40 data

are used in preference in this thesis for consistency with the rest of the GCEP project.
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Figure 4.15: Monthly SWE climatology (mm) for North America from Brown et al.
(2003).
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4.6 Discussion

A GCM is required to study the role of snow in the global climate. HadCM3 has been

chosen for the GCEP project thanks to a combination of its low resolution (to allow it

to be run on a compute cluster instead of a supercomputer) and good representation

of seasonal to decadal variability. A disadvantage of this GCM for studies of the

land surface is its low land-atmosphere coupling strength. This suggests that initial

conditions over the land surface will have little impact on the evolution of longer term

model runs, although the impact of the variability of other fields (such as temperature

and precipitation) on snow can still be studied.

This chapter has examined the climatology of HadCM3 and its land surface

component, MOSES, with respect to snow. HadCM3 produces deep SWE along the

Pacific coasts of North America and Eurasia, and also in the western half Eurasia

and northeastern Canada. Little snow is seen in Siberia. The SWE distribution is

little changed in a transient run with increasing greenhouse gases when compared to a

pre-industrial control. A run with flux adjustments generally reduces SWE across the

hemisphere, with increases confined to the higher latitudes.

The land surface component, MOSES, has been studied independently of the GCM

by Slater et al. (2001). It produces a lower SWE in a 1D analysis at a grassland site

compared to other land surface models driven by the same forcing data. MOSES has

a simplistic snow scheme based around an implicit snow layer, which means that when

snow falls, the top layers of the land surface model become combined snow/soil layers.

This leads to the model melting snow too quickly, because the increased albedo of the

merged snow and soil leads to additional solar energy being absorbed by the layer.

MOSES also produced low SWE estimates for a high latitude basin compared to other

schemes (Bowling et al., 2003a), and overestimates latent heat flux.

While HadCM3 is an older model, many aspects of it have been well-studied, and

its participation in CMIP3 allows comparison with other state of the art climate

models. Although the snow cover in the atmosphere-only GCM has been studied

as part of AMIP2, the biases in the AOGCM are very different and should not be

compared. The land surface model is crude and less well-studied than the atmosphere

and ocean components, so a study of snow is an important addition to the body of

work surrounding this coupled model.

The outcome of CMIP is encouraging with respect to GCMs: in general, the

difference between a typical model simulation and observations is comparable to the

differences between observational datasets from different sources. Some fields are better

simulated than others, however, which can be related to the quality of observational
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datasets with which to validate the models. Surface temperature is observed and

modelled with some confidence, while precipitation remains a challenge in both respects

(Covey et al., 2003).

Observations of many different fields are used to constrain the ERA40 reanalysis

product. This includes in situ snow data from meteorological stations around the

world, although these stations are sparse at high latitudes. The land surface scheme

was compared to that of HadCM3 in part 2(e) of PILPS (Bowling et al., 2003a), and

the results were very similar to that of MOSES, despite the greater complexity of the

ECMWF scheme.

ERA40 has been well-studied, and the analysis of Reichler and Kim (2008) supports

the use of ERA40 in this thesis as the best available reanalysis product. Further work

by the same authors suggests that HadCM3 also performs well against other coupled

climate models (Reichler, pers. comm. 2008), although snow fields were not used in

this comparison.

Hemispheric-scale comparison of snow distribution from models, reanalysis products

and observations is required in order to use the model for understanding climate

interactions and producing reliable forecasts. The evaluation of the HadCM3 snow

climatology against both ERA40 and the SSM/I-derived SWE is the subject of the

next chapter.
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Comparison of hemispheric-scale

snow climatologies

5.1 Introduction

Three sources of global SWE data used in this thesis have been introduced in the

last two chapters: satellite observations from SSM/I, the HadCM3 coupled climate

model and the ERA40 reanalysis product. Comparing datasets at large scales is a

difficult task, and attempts with snow mass data have been infrequent. Biases in both

the modelled and observed datasets are known to exist, but are difficult to quantify,

particularly for remote regions. Foster et al. (1996) used SMMR-derived SWE data to

validate snow distribution in seven GCMs, including a Hadley Centre model which was

a precursor to HadCM2. SMMR data was also used by Yang et al. (1999) in a study of

NCAR’s CCM3 climate model, and the authors concluded that the GCM distribution

was more reliable. Both studies used a global snow dataset from the US Air Force

Environmental Technical Applications Center (Foster and Davy, 1988), which used

synoptic stations, literature searches and climatological records to reconstruct manually

a gridded hemispheric snow depth product. While this constitutes an independent,

observation-based data source, Foster and Davy themselves acknowledge low confidence

in data at high latitudes, and systematic biases have been identified by Brown and Frei

(2007), which are particularly problematic over Eurasia. Brown and Frei go on to note

that “there is no detailed snow depth of SWE reanalysis available for evaluating...SWE

results for Eurasia”.

With new generations of climate models emerging all the time, the evaluation of

global snow distribution is a topic which must be returned to, particularly in the

context of understanding how it may be affected by climate change. In this chapter the

climatologies of SSM/I, HadCM3 and ERA40 are compared. While a full quantitative
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Figure 5.1: Northern hemisphere average climatologies of SWE (mm) and SCA (km2)
from SSM/I (blue), HadCM3 (green) and ERA40 (red).

error assessment of the three datasets is outside the scope of this thesis, attempts

are made to understand the sources of the differences between them. To do this, we

examine alternative models and retrieval algorithms, and use long-term runoff data as

an independent estimate of winter snow mass.

5.2 Climatologies in SSM/I, HadCM3 and ERA40

Figure 5.1 shows the average seasonal cycle for Northern hemisphere SWE and snow-

covered area (SCA) for all three datasets. ERA40 has the deepest SWE values during

the accumulation period, followed by HadCM3, with SSM/I the lowest. SSM/I and

ERA40 both produce peak SWE in February while the HadCM3 peak is in March.

HadCM3 then has the most SWE during the melting period with SSM/I again showing

the lowest values, although SSM/I and ERA40 are almost equal in May. Examining

the seasonal cycle of SCA (figure 5.1b), HadCM3 and ERA40 are almost identical

throughout the season, with a peak SCA in January of around 45 million square

kilometres. SSM/I shows less than 40 million square kilometres at its peak (also in

January), although the three datasets agree from April onwards. It is not surprising

that SSM/I shows the lowest values of SCA, as the retrieval is unable to detect very

thin snow cover. Data from the MODIS instrument suggest a maximum value of

47 million square kilometres in January, supporting the values seen in HadCM3 and

ERA40 (Armstrong and Brodzik, 2001).

Previous chapters have shown the month-by-month climatologies for the three

global datasets (figures 3.3, 4.5 and 4.14). Plotting February values side by side in figure
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5.2, together with the February climatology for North America from the reanalysis of

Brown et al., it is clear that the climatologies for this month are quite different. The

model produces much more snow over western Eurasia and very little (< 60mm) over

Siberia, whereas in contrast the satellite observations show the deepest snow in Siberia

(> 150mm) and shallower snow in western Eurasia. ERA40 is more similar to the

SSM/I retrievals than the model, although the maximum is located further west than

in the SSM/I data. ECMWF have been investigating this, and have found that an

improvement to the parameterization of the aerodynamic surface roughness over snow

shifts the location of this maximum further east (G. Balsomo, pers. comm., 2008).

In North America, very deep values are seen along the west coast and northeastern

Canada in HadCM3, with less in the boreal forests in between. This is also seen in the

Brown reanalysis; although in situ data from Canada are sparse, this product relies

more on model data at high latitudes. HadCM3 shows more SWE in the United States

than the Brown reanalysis, which is well-constrained in this region. Chapter 4 showed

climatologies from both a normal control run of HadCM3, and a similar one with

sea surface flux adjustments (figures 4.5 and 4.9 respectively). The flux adjustments

reduced the SWE in the United States, the west coast of North America and western

Eurasia, while adding SWE in eastern Siberia and the Canadian Arctic. These changes

bring the model climatology closer to that of ERA40 and the Brown reanalysis.

ERA40 shows a similar pattern to HadCM3 with some deeper snow in the boreal

forests. SSM/I, in contrast, shows its deepest values in the boreal forests, as part

of a deep SWE band crossing the continent. Ground investigations by Derksen and

MacKay (2006) confirmed the presence of this SWE gradient across the northern boreal

forest, and their simulations with a climate model suggested it is formed each autumn

by lower tropospheric frontal activity aligned with the boreal forest.

A study of long term in situ daily snow depth and SWE data was performed by

Kitaev et al. (2005). They found that SWE values > 250mm are typical for western

North America (due to the effect of the Aleutian Low and orography), while maximum

Eurasian values are in Western Siberia (133mm) and the Eastern European plain

(110mm), with values of 90mm found in Eastern Siberia. The ERA40 data comes

closest to this distribution, which is to be expected since the ERA40 system assimilates

the in situ data from WMO stations. In situ data from the Former Soviet Union (as

distributed by the NSIDC (Krenke, 2004) and discussed in Kripalani and Kulkarni

(1999)) also find that snow depths of over 60cm in Siberia are not uncommon.

Figure 5.3 reproduces EOF and PC3 from the EOF analysis of SSM/I data

performed in chapter 3. Interestingly, this pattern is reminiscent of the distribution

of SWE in HadCM3, with red areas corresponding to regions of deeper SWE (western
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Eurasia, Kamchatka, northern and eastern Canada and the west coast of North

America), and blue areas corresponding to region of reduced SWE. The PC shows

that in the SSM/I dataset, this pattern is expressed positively (more snow in the red

areas) in Spring and negatively (less snow in the red areas) in Autumn. This could

be interpreted in two different ways: the model could be reproducing only part of the

seasonal cycle of SWE, due to errors or deficiencies in the model, or the SSM/I data

are contaminated by the seasonal cycle of other fields, such as vegetation, reducing

the proportion of variance explained by this pattern. A closer examination of both

the retrieval and the model are required to determine which of these interpretations is

correct.

Gong and Entekhabi (2002) suggest that Siberian snow, particularly as it forms in

autumn, is important in influencing the circulation across the Northern hemisphere. In

a later paper, Gong et al. (2003) go so far as to describe Siberia as “the region with the

greatest potential for snow-forced climate modulation”. It is clear that the differences

between these datasets across this crucial region must be understood, however there is

a lack of data to do so. Various SWE reanalyses have been produced for North America

using different sources of observations and models of varying complexity (Brown et al.,

2003; Brasnett, 1999; Foster and Davy, 1988), however no such reanalysis exists for

Eurasia. In the next section (5.3), runoff data is examined as a means of validating

SWE in the region. In the following two sections (5.4 and 5.5), the errors in both

the satellite retrieval and climate model will be discussed in more detail. Particular

attention will be paid to the differences that have emerged in Siberia and the boreal

forests.

5.3 Comparison with runoff data

Patterns at this large scale are difficult to validate with point SWE measurements,

so as an alternative, summer runoff data is presented here as an integrated in situ

measurement of the previous winter’s snow accumulation. The Global Runoff Data

Center provide monthly average discharge rates for 35 large catchments worldwide,

based on decades of in situ measurements (Dumenil Gates et al., 2000). Relevant

Siberian catchments included in the dataset are shown in figure 5.4, together with each

catchment’s average measured hydrograph. All three show a distinct peak in June,

characteristic of snowmelt. The runoff observations are multidecadal averages, and the

Lena values in particular show tight confidence limits.

A ‘water equivalent’ value can be derived for each catchment by summing the May,

June and July discharges and dividing them by the area of the catchment. These water
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Figure 5.2: February SWE climatology (mm) from SSM/I, HadCM3, ERA40 and the
Brown et al. reanalysis.
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Figure 5.3: EOF3 and PC3 of SSM/I SWE data, as presented previously in chapter 3.
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Figure 5.4: Three large Siberian catchments (the Ob, Yenisey and Lena) and their
hydrographs from Dumenil Gates et al. (2000).

equivalent values are shown in table 5.1. The largest water equivalent is found for the

Yenisey river, which coincides with the location of maximum SWE in ERA40. The

value for the Lena catchment (where the maximum SWE from the satellite data is

found) is almost as large, and is double the value for the Ob catchment - the opposite

way round to the model.

The Met Office have used a river routing model to generate hydrographs from

HadCM3. Results from this comparison for the large Eurasian catchments are shown

in figure 5.5 (paper submitted to Journal of Hydrology). Discharge in the Ob is

well-modelled, but HadCM3 is not generating enough summer discharge to match the

Table 5.1: Water equivalents required across the Siberian catchments to produce
observed May+June+July discharge found in the average hydrograph

River Catchment Area (km2) Discharge (m3/s) Water equivalent (mm)
May June July

Lena 2430000 5000 75000 40000 130
Yenisey 24400000 30000 75000 30000 150
Ob 2950000 15000 33000 30000 70
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Long-term observations from the Global Runoff Data Center

10-year mean output from river routing model using HadCM3 inputs

Figure 5.5: Comparison of discharge from HadCM3 (dashed) and observations (solid),
after Falloon and Betts (in press, 2008)

observations in the Lena and Yenisey catchments. The HadCM3 hydrograph for the

Lena shows no distinct snowmelt peak, which is consistent with the lack of snow in the

region. The study of runoff generated by land surface schemes in part 2(e) of PILPS

(Bowling et al., 2003a) showed that MOSES tended to underestimate runoff, mainly

due to low snow accumulation. This study was performed at a high latitude basin,

and while the Lena is a much larger catchment, many of the characteristics are shared,

such as the dominance of snow in the land surface hydrology and limited energy input

over winter.

Yang et al. (2007) also investigate SWE in the Lena basin. The authors compile

weekly SWE accumulation measurements from microwave data in the Lena, Ob and

Yenisey basins, and discuss the impact of catchment management (such as damming) on

Lena runoff data. SWE in the Lena appears deeper than SWE in the other catchments,

but melts more quickly. The authors also state that the Lena basin is completely

permafrost, and that this leads to high summer runoff and very low winter runoff. This

again supports the observed hydrograph over the modelled hydrograph of HadCM3.

Although these runoff measurements appear to support the distribution in the

SSM/I data, this result should be treated with some caution. The Siberian rivers are

hydrologically complex, with large deltas and layers of sediment containing up to 80%

ice which can collapse in summer and release large amounts of water unexpectedly

into rivers. Furthermore, Yang et al. (2002) suggest that summer discharge in the

Lena river is only weakly correlated to snow depth, suggesting that other factors may

be contributing to discharge in this catchment. However, using a dynamic retrieval

algorithm, Grippa et al. (2005) find a correlation of 0.61 between SSM/I-derived snow

depths and discharge in the Ob river in June, and a correlation of -0.92 between May

runoff and snowmelt date, which suggests that snow depth is linked to runoff in May
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and June, and to SSM/I measurements in the basin. Fukutomi et al. (2003) also state

that the peak Lena runoff is due to snowmelt not summer precipitation.

5.4 A closer look at microwave retrievals

5.4.1 Errors in the static retrieval

While the analysis of runoff data presented above appears to support the larger values of

the SSM/I data when compared to the model, a closer examination of the retrieval and

other studies using microwave data are required to give confidence in the data. Could

the large retrieved SWE values in Siberia and the boreal forests be an overestimate?

The limitations of static difference retrievals were noted in chapter 3 and the treatment

of grain size and vegetation are particularly important in this region.

Foster et al. (2005) propose a modified version of the original Chang algorithm (eqn.

3.1) to investigate the errors due to the effect of vegetation cover and the assumption

of constant grain size. The new algorithm is:

SWEnew (mm) = Fc(TB19H − TB37H) (5.1)

F and c are time- and space-varying coefficients, relating to forest cover and grain

size respectively. F is a function of fractional forest cover, derived from the IGBP Land

Cover data set (Loveland et al., 2000), and assumes an underestimation of SWE with

increasing forest cover in the pixel. A new grain size coefficient, c, was estimated for

each of the six characteristic Sturm classes (introduced in chapter 2) and evolved month

by month. As expected, the new algorithm estimates more snow in densely forested

areas. In general, during the months of January, February and March the increase

was between 30 and 120mm, up to a maximum of 180mm in the extreme northern

taiga region. When validated using meteorological station data across Canada, the

new algorithm shows considerable improvement in the tundra and taiga classes, and

some improvement in the maritime and alpine classes. The new algorithm also captures

melting and ablation phases well. However there are still problems observed in dense

maritime forests and alpine regions around the Great Lakes. It is suggested that this

may be to do with the proximity to open water, warmer air temperatures and/or depth

hoar.

Figure 3.6 showed the map of Sturm snow classes for Eurasia. Siberian snow is

shown to be a mixture of tundra and taiga snow, which have significant amounts of

depth hoar. These large depth hoar crystals scatter microwave radiation dispropor-

tionately, leading to an overestimation of the water equivalent: the radiometer ‘sees’
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Figure 5.6: Estimate of SWE overestimation (%) per month by SSM/I retrieval due to
the assumption of constant grain size in tundra and taiga regions, taken from Foster
et al. (2005).

a deep snowpack, whereas in fact the snowpack is shallow and dense. But is this

effect enough to explain the difference between the modelled snow and the satellite

observations of Siberia? Figure 5.6 shows the attempt of Foster et al. (2005) to quantify

the error in the retrieval due to the assumption of constant grain size in tundra and

taiga areas. The maximum overestimation, according to their estimate, is 30%. Taking

180mm as a representative value of the satellite-derived SWE in Siberia in February, a

revised estimate would be 120mm, which is still twice the modelled SWE in that area.

The static algorithm has also been tested against observations in the tundra region:

an investigation of passive microwave retrievals in the Kuparuk River Watershed in

Alaska, a snowpack that is dominated by depth hoar, found that the Chang algorithm

produced estimates within 30mm of the spatially averaged SWE for the watershed,

despite large pixel-to-pixel errors (Koenig and Forster, 2004). This suggests that the

assumption of a constant grain size becomes more representative at larger areas.

If the difference between the model and observational data were purely due to

the effect of grain size on the retrievals, then we would expect it to manifest in late

winter/early spring, when conditions are favourable for the formation of depth hoar. On

the contrary, examining figures 3.3 and 4.5 it is clear that the difference is established

as soon as the snowpack forms, when depth hoar would not yet be present.
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Table 5.2: Summary of the error analysis of SWE retrieved from SMMR by Dong et al.
(2005). Relative bias is the bias of a given half-degree pixel divided by the mean SWE
retrieval for the 9 years used in the study.

Snow pack mass 90% SWE estimation bias for snowpacks deeper than
150mm. This error drops to less than 70% when values
greater than 100mm are excluded.

Air temperature Relative bias underestimation increases from less than
10% at -20oC to over 40% at 0oC

Distance to open water Relative bias underestimation tends towards zero as
the distance from open water increases, with a sharp
improvement at a distance of 200km, where the relative
bias is 50%

Roughness Slight increases in relative errors are found with increas-
ing roughness, but no obvious retrieval contamination

Forest fraction No trend with forest fraction was observed, though
there were large biases at some heavily forested
stations. When pixels close to water and at higher air
temperatures were omitted, the relative bias dropped to
almost zero.

A quantified error analysis was performed using the equation derived above (eqn.

5.1) applied to brightness temperatures obtained from SMMR (Dong et al., 2005). The

study was restricted to Canada, where in situ measurements for validation are much

more dense than across Eurasia. In their analysis, the researchers considered snow

pack mass, air temperature, distance to water, roughness, forest cover, snow class and

aspect as factors contributing to errors in the retrieval. They found the error to be

dominated by snow pack mass, with secondary factors being distance to open water and

air temperature. Their results suggest that the adjustments to the retrieval for forest

cover and grain size have removed the influence of these factors on the SWE error, with

the exception of heavily forested pixels. They also show that much of the error in the

maritime class can be attributed to higher air temperatures and the proximity of open

water. A summary of their results is shown in table 5.2.

These results suggest that the forest cover adjustment F of Foster et al. reduces

the effect of vegetation significantly, however Derksen et al. (2005) disagree with this

practice of adjusting SWE retrievals purely according to the fraction of forest cover

within a grid cell (a forest factor). Results from transects in Canada suggested

that there is little or no correlation between fractional forest cover and SWE

underestimation: forest inventory variables such as stem volume and canopy closure

are suggested as more physically relevant to the retrieval. A forest factor approach

is used in the SWE product considered here (see equation 3.3). A map of the forest
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cover fraction, derived from MODIS data, was shown in figure 3.5. Much of Siberia is

subject to large corrections (doubling wherever the pixel at least 50% forested), and if

this approach is inappropriate, this could be a large overestimation. In fact, any values

greater than ∼ 150mm must come from the application of this forest correction, as the

signal saturates around this value. If this is the case, and the forest factor approach is

wrong, then this could explain the large biases seen for deep snowpacks (as noted in

table 5.2).

5.4.2 Alternative retrieval techniques and satellite

climatologies

The errors in this SSM/I SWE product derive from both the brightness temperature

measurements and the retrieval algorithm used to derive the SWE value. Although

no other satellite-based SWE product is freely available for comparison, other retrieval

techniques have been tested using SSM/I data. Most SSM/I retrievals are performed

with a static algorithm very similar to the one used in the NSIDC product and will not

be considered separately here. Instead, presented here are two climatologies derived

using dynamic retrieval algorithms (i.e. the algorithm is adjusted over time, usually

with respect to a surface temperature history).

The dynamic retrieval of Josberger and Mognard (2002), described in chapter 3,

has been used to derive a snow depth climatology for a portion of Siberia (Grippa

et al., 2004). The January climatologies from the new ‘combined’ algorithm and the

old ‘static’ algorithm are shown in figure 5.7. Both algorithms show maximum snow

depths of over 60cm and a mean of around 30cm, which (assuming a snow density of

250 kg m−3) equate to snow water equivalents of 240mm and 120mm respectively. The

static retrieval locates the maximum snow depth about 15o eastward of the dynamic

one, which the authors ascribe to the effect of depth hoar. Interestingly though, the

dynamic retrieval does show a reduction in snow depth travelling east into the Lena

catchment similar to HadCM3, although the values here are still much deeper than the

shallow snow produced by the model.

An alternative dynamic retrieval derived by Kelly et al. (2003), and also introduced

in chapter 3, has been applied to data from the SSM/I instrument. Figure 5.8 shows

the retrieved snow depth (note, not snow water equivalent) using this revised dynamic

algorithm compared to the static algorithm for one day in January 2000. The dynamic

algorithm produces less snow over Siberia than both the static algorithm and the

dynamic algorithm of Josberger and Mognard described above. It also produces

shallower snow across the boreal forest region of Canada. Kelly et al. (2003) use snow

depth data from over 1000 WMO stations to assess the spatial errors of the retrieved
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Figure 5.7: January Siberian snow depth climatologies from SSM/I (cm), using (upper)
static and (lower) dynamic algorithms. Taken from Grippa et al. (2004).
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snow depth. Both the static and dynamic algorithms underestimate the snow depth,

particularly in boreal forest areas (no forest correction was used in this study). The

mean error is smaller for the dynamic algorithm than for the static, although the root

mean square error is larger, as a few locations are significantly biasing the overall value.

This study shows that a dynamic algorithm is an improvement over the static version

in most locations, although the effect of vegetation still hampers the accuracy of the

data.

5.4.3 Retrievals summary

This section has looked in more detail at the static retrieval used in the global SSM/I

SWE product in terms of its errors, and comparisons with other retrievals. Grain size

and vegetation are identified as important sources of error in the static retrieval. While

the assumption of a constant grain size at every location and time is clearly unphysical,

the retrieval performs well over large areas (Derksen et al., 2005). Heterogeneity in

the grain size within passive microwave satellite footprints, however, could explain why

retrievals over larger areas are more representative than those applied at a point.

Retrievals that attempt to account for changes in grain size over a season (the

dynamic approach) do show a reduction in SWE compared to the static retrieval over

Siberia.

The effect of vegetation on SWE is poorly understood, and hence difficult to account

for in the retrieval. Some authors (Dong et al., 2005; Foster et al., 2005) support the use

of the forest factor approach applied in this global dataset, while others have questioned

its validity (Derksen et al., 2005).

5.5 A closer look at GCM SWE modelling

5.5.1 HadCM3 and ERA40 SWE errors

Having examined the retrieval more closely, we now assess the limitations of the

HadCM3 land surface model. The participation of MOSES in the PILPS intercompar-

ison project was described in chapter 4. It was shown that for the same precipitation

forcing, MOSES produces a lower SWE than other models, and that it melts SWE

too quickly. Its simple representation of snow is also unlikely to simulate the surface

temperature of the snow correctly, as shown by the SnowMIP study (Etchevers, 2004),

leading to errors in the net longwave radiation. The surface could also become

decoupled from the atmosphere under the conditions in Siberia in winter as the surface

temperature and net radiation drop (Slater et al., 2001). These errors in the surface
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Figure 5.8: Snow depth from SSM/I data for 10th January 2000 using (upper) static
and (lower) dynamic retrieval algorithms. Taken from Kelly et al. (2003). Note that
as this shows data for only one day, the gaps between satellite overpasses can be seen.
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Figure 5.9: ECMWF operational 5-day 850hPa temperature bias when using a deep
snow albedo of (left) 0.8 and (right) 0.2 under forests, after Viterbo and Betts (1999).

energy budget will affect the formation and persistence of the snowpack as well as the

feedback to the atmosphere.

While boreal forests make the interpretation of satellite measurements difficult, they

are also a challenging environment for models. Limited data exist on the behaviour of

snow in dense forests, particularly in Siberia. Essery (1998) showed, using an earlier

version of the Met Office land surface model, that simulated fluxes are highly dependent

on whether the snow is modelled as being in the canopy or on the ground. The presence

of a canopy makes snow modelling more complex, mainly due to the energy exchange

between the snow and the canopy. This is being investigated in the second round of

the Snow Model Intercomparison Project, where simulations by many different snow

models in open and forested sites are compared. The presence of the canopy leads to

greater disagreement between models, even when calibration data has been provided

(N. Rutter, pers comm, 2008).

Adjustments to the ERA40 land surface model for boreal forests were noted in

chapter 4. ECMWF altered the surface scheme to use a reduced albedo of 0.2 for

snow under tall vegetation. This had a large impact on the errors in 5-day forecasts

of temperature at the 850hPa pressure level over Siberia, as shown in figure 5.9. The

original version displayed a cold bias of up to 7oC in the region, which is comparable

to that found for HadAM3 in the AMIP project (Neale and Slingo, 2003). While

both HadAM3 and the climate model used in ERA40 are atmospheric models, and

the biases in coupled ocean-GCMs are likely to be different, this does demonstrate the

large influence of the land surface, and specifically snow, on the atmosphere.
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A further challenge in modelling the distribution of snow is that of wind redistribu-

tion. Areas of snowdrifts (increased SWE) and scour (reduced SWE) are formed over

large areas where windspeeds are high (Trujillo et al., 2007), which is not represented

in a climate model. Strack et al. (2004) drove a land surface scheme at five BOREAS

stations and found that the modelled snow depth at the wind-blown station was

considerably worse than that of the other four. This will certainly be a challenge

for models at individual stations in Siberia, as wind speeds are high in many areas,

though the effect should be averaged out over the large gridbox in a climate model run.

Although the snow distribution will be influencing the atmosphere above it, and may

therefore have an impact on the circulation, it is also clear that the circulation will be

driving the snow distribution. However crude or sophisticated the land surface model

is, it can only process the amount of precipitation that falls as snow in that gridbox.

While in chapter 4 the precipitation and temperature climatologies of HadCM3 were

compared to the CMIP3 multi-model climatology, here we compare HadCM3’s winter

mean sea level pressure, and winter precipitation with available observation-based data

(figure 5.10). Mean sea level pressure in DJF is compared to ERA40, as the latter is

constrained by many pressure observations. The comparison shows that HadCM3 has

a high pressure bias at northern high latitudes, and a low pressure bias along the west

coast of North America. No clear pattern emerges over Siberia, although it is important

to note that the ERA40 product will be less well constrained in this area. Rikiishi

et al. (2004) investigate the sources of snow in Russia by correlating snowfall data at

particular stations (Krenke, 2004) with sea level pressures and 500hPa heights from

the U.S. National Meteorological Center. They suggest that snowfall in the European

Russian plain is caused by travelling disturbances from the Baltic or North Sea, whereas

it is synoptic disturbances from the Arctic ocean that causes snowfall over Siberia. A

high pressure bias at these high latitudes could therefore be causing a lack of snow over

Siberia, by diverting travelling disturbances from the region, and by causing the air to

be too cold for snowfall.

The model’s snowfall climatology (figure 5.14) shows that most solid precipitation

over Siberia in HadCM3 falls in October, with small amounts falling during the rest

of the winter. This reduction in snowfall occurs when the surface temperature drops

below ∼ 240K, so a cold bias in this region could be ‘switching off’ the precipitation too

early. In fact, a comparison of DJF precipitation amount to the CPC Merged Analysis

of Precipitation (CMAP, Xie and Arkin (1997)) (figure 5.10b) suggests that HadCM3

does a very good job across Siberia. However, the satellite data used in the CMAP

project is of limited use over snow-covered regions, so at high latitudes the observations

are merged with the NCEP-NCAR reanalysis product. This product is unlikely to be
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well-constrained in Siberia due to the lack of ground measurements, and the problems

of gauge under-catch when measuring solid precipitation, so the reanalysis product and

hence CMAP will be more model-dependent in this area (Xie and Arkin, 1997). This

highlights the difficulty in assessing model validity independently in this important

geographical region.

5.5.2 Alternative models and modelling approaches

In contrast to the lack of alternative SWE products for comparison, there is a wide

variation in approaches used to derive SWE fields from models. The climatologies

depend on the physics of the model and the data used to drive it: a selection of

alternative models and previous studies are presented here, beginning with higher

resolution climate models.

Precipitation is dependent on topography, so a model with a coarse resolution

such as HadCM3 could not be expected to produce completely accurate distributions

of snow. For comparison, HiGEM is a high resolution coupled atmosphere-ocean

GCM also from the Hadley Centre (although model physics are slightly changed from

HadCM3), with a gridbox size of 1.25 by 0.83 degrees in longitude and latitude in the

atmosphere. Figure 5.11 shows the 10-year average SWE climatology from HiGEM.

The distribution is very similar to that in HadCM3 (except of course at a much

higher resolution), suggesting that this distribution is not driven by the low-resolution

topography but by the atmospheric circulation pattern.

The direct effect of resolution on SWE distribution can be assessed easily with the

ECHAM5 model. While this model is an atmosphere-only GCM, results of equivalent

physical model runs at very different resolutions are available for comparison. Figure

5.12 shows the 10-year average SWE seasonal cycle from the T63 version of the model

(roughly equivalent to the resolution of HadCM3). This can be compared to figure

5.13, showing a 10-year average SWE from the T213 model (closer in resolution to the

satellite data). As expected, the higher resolution model shows much more local detail

in snow distribution, particularly over the Rockies, although the overall pattern is very

similar. ECHAM5, in either resolution, shows a much more zonal pattern of SWE

than HiGEM, with a smaller area snow-covered each month, and while ECHAM5 also

produces the ‘SWE hole’ over Siberia, it does show deeper SWE values than either of

the Hadley Centre models both here and in the Canadian boreal forest.
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(a) DJF MSLP: HadCM3 - ERA40 (hPa)

(b) DJF Precip: HadCM3 - CMAP (mm/day)

Figure 5.10: HadCM3 errors in mean sea level pressure (MSLP in hPa) and DJF
precipitation (in mm/day), relative to ERA40 and CMAP respectively.
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Figure 5.11: Seasonal cycle of snow water equivalent (mm) for HiGEM.
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Figure 5.12: Seasonal cycle of SWE (mm), from ECHAM5 at T63 resolution
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Figure 5.13: Seasonal cycle of SWE (mm), from ECHAM5 at T213 resolution
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Figure 5.14: Snowfall climatology from HadCM3 (mm/day)
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A more focussed study of SWE modelling in Siberia was carried out by Boone et al.

(2006). A land surface scheme was run for ten years with three types of atmospheric

forcing data over the region (50 to 80 degrees N and 55 to 115 degrees E). The forcing

data used were:

1. The Global Soil Wetness Project 2 control simulation, hybridized with observed

and satellite based precipitation data

2. ERA40 - the reanalysis product from the ECMWF

3. As (1), but without gauge under-catch corrections applied

The results of the ten year average (1986-1995) are shown in figure 5.15. The result

of the ten year average for the same area from the flux replacement HadCM3 run is

shown in figure 5.16. While the HadCM3 run produces its largest SWE values in the

right area, all three of the offline model runs in figure 5.15 show much greater peak

values, supporting the idea that HadCM3 is not snowing enough in this area.

As described in chapter 4, HadCM3 took part in the third round of the Coupled

Model Intercomparison project. A first investigation of the snow distribution in 14

of these models has been completed by Brown and Mote (in press). They note the

difficulty in validating large-scale SWE patterns due to a lack of a reliable global

SWE climatology, and choose as their reference dataset the daily snow depth analyses

produced by the Canadian Meteorological Center (Brasnett, 1999), converting to SWE

using a density climatology based on Sturm classes. Figure 5.17 shows the comparison

of the CMIP3 models with this SWE product. Again, the GCM consensus (middle

panel) is for reduced SWE in the Lena basin compared to surrounding regions, which

is not so evident in the validation data (upper panel). The largest differences however

are seen over the Himalayas and the west coast of North America (lower panel). The

main aim of the study was to analyse the changes in Northern hemisphere snow in the

CMIP3 models with climate change. While snow cover duration was shown to be more

sensitive to climate change than SWE, there was agreement between the models about

the location of increases in SWE. Figure 5.18 shows where the 14 models agree that

the maximum SWE increases with respect to a 1970-1999 reference. Increases are seen

in almost all models in northern Eurasia, in particular the Lena basin, and in northern

Canada. One explanation could be that in a warmer climate, a cold bias over Siberia

is reduced, allowing the model to precipitate in this area more freely.
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Figure 5.15: 10-year average SWE (mm) from the three Siberian modelling experiments
in Boone et al. (2006). Simulations driven by forcing data from (top) Global Soil
Wetness Project 2, (middle) ERA40, (bottom) GSWP-2 without gauge under-catch
corrections applied.
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Figure 5.16: 10-year average SWE (mm) from the HadCM3 flux replacement run, for
the area of northern Russia studied in Boone et al. (2006).
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Figure 5.17: Maximum SWE (mm) from the CMIP3 multi-model average (14 models),
compared to the daily snow depth analyses from the Canadian Meteorological Center
for 2001-2006. After Brown and Mote (in press).

5.5.3 Modelling summary

The land surface model in HadCM3 has been discussed more closely, and compared to

alternative modelling approaches. While similar patterns of SWE distribution are seen

across a range of models, in every case, HadCM3 produces the lowest values of SWE

across Siberia. This is likely to be due to the physics of the model rather than its low

resolution. The model does exhibit a high pressure bias at the high northern latitudes

which could be responsible for a lack of snowfall over Siberia. Large biases were also

seen in this area in a previous version of the ERA40 land surface, which were improved

by a reduction to the albedo of snow under vegetation.
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Figure 5.18: Percentage agreement between the fourteen CMIP3 models about
significant increases in maximum SWE compared to a 1970-1999 reference. After
Brown and Mote (in press).
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5.6 Discussion

The only purely observation-based global SWE product shows a very different

distribution of SWE across the Northern hemisphere when compared to the leading

reanalysis product, ERA40, and a fully coupled ocean-atmosphere GCM, HadCM3.

The differences are largest across Siberia, where the SSM/I data shows very deep SWE

values and HadCM3 very little. Similar differences are seen when using a range of

GCMs, with all showing lower SWE than SSM/I.

The comparison of modelled and observed hydrographs for large Siberian catch-

ments highlight a lack of runoff from the model in the Lena catchment. The

hydrographs show a large peak in early summer and many authors relate this to

snowmelt (Fukutomi et al., 2003; Grippa et al., 2005; Su et al., 2005). However,

the Lena is hydrologically complex and the runoff measurements are subject to many

uncertainties, although the large size of the basin will smooth out many of the variations

caused by dam regulations (Su et al., 2005). The Yang et al. (2007) analysis of

microwave data confirm higher retrieved SWE values in the Lena basin compared

to the Ob and the Yenisey, but SWE in this basin also melts the fastest. This could

be indicative of an erroneously deep snowpack from the retrieval, where in fact the

snowpack is shallow and composed of depth hoar, which then melts more quickly than

the snowpacks in the other basins.

The assumption of a constant grain size in the microwave retrieval will be

contributing to bias in the depth hoar-dominated tundra region, although the

differences between the datasets are established before conditions become favourable

for the formation of depth hoar. Examining climatologies from dynamic retrievals

show differences to the static algorithm, demonstrating the sensitivity of the retrieved

product to the algorithm used and the influence of the constant grain size assumption

on the retrieved product. The dynamic retrievals show reduced SWE going east across

Siberia, which is the pattern seen in the models, although the absolute values from the

retrievals are much higher.

Of more concern is the influence of vegetation on the retrieval, and the application

of a simple forest factor correction to the observed data. The unfactored SSM/I

SWE data are very likely an underestimate of the true values, but the degree of this

underestimation is not known well enough to justify a doubling of the retrieved value

in many areas.

The boreal forests are also problematic for land surface models, due to the

complicated energy exchange between the snow and the canopy, and the presence of

snow both on the ground and in the canopy. The distribution of SWE in the model is

driven by precipitation and hence the atmospheric circulation. While the mean sea level
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pressure compares favourably to ERA40 (which is constrained by observations), large

scale precipitation is harder to validate due to the paucity of measurements and the

inherent difficulty in making them, especially at high latitudes. Low SWE in the Lena

basin appears to be a common feature to GCMs, though HadCM3 has the lowest values

of all the models studied here. The agreement between GCMs as to the distribution of

SWE is not unexpected, as many will share the same atmospheric physics that drive

the precipitation and temperature patterns, and hence snow distribution. The lack

of observations at high latitudes mean that these fields are relatively unconstrained

in all models, so all could be suffering from the same biases. Likewise, the improved

agreement between ERA40 and HadCM3 with the addition of flux adjustments in the

latter is also expected, as the reanalysis will be using the same SST observations as

were used to provide the climatology for deriving the flux adjustments.

As a combination of both a climate model and observations, it is difficult to

diagnose the errors in the ERA40 product. As the fields with more global observations

(such as surface temperature and sea level pressure) are better constrained than in a

climate model, it is reasonable to assume that the precipitation and resulting SWE

climatology will exhibit lower average bias. The SWE climatology lies somewhere

between the climatologies from SSM/I and HadCM3, which is encouraging given that

the comparison with both other models and runoff data suggests that, on balance,

SWE in the Lena basin is too low in HadCM3 and too high in SSM/I.

Siberia has been shown to have potential in modulating Northern hemisphere

circulation patterns (Gong and Entekhabi, 2002; Gong et al., 2003). Due to its

remoteness and harsh climate, remote sensing is the only feasible way of getting

consistent, large-scale observational information on snow distribution here. Tying

up the large differences between the model and the remotely sensed data requires

a detailed study and is outside the scope of this project, but clearly must be done to

exploit both sources of data properly. It is also required for a correct interpretation of

GCM predictions of increased SWE in Siberia with climate change.

It is difficult to have confidence in any one dataset globally with so many factors

unconstrained and unvalidated. There is no ‘truth’ to compare with at these very

large scales. While we call the SSM/I SWE ‘observations’, they are really brightness

temperature observations which have been passed through a retrieval - a simple, and

flawed, model. What we are actually doing when comparing SSM/I SWE data to

HadCM3 output is comparing one model to another; approximations to the truth from

different perspectives. As a ‘middle ground’ between in situ observations and a climate

model, ERA40 will be used as the truth in the assimilation studies that follow, although

the independent SSM/I estimates are still an important dataset for comparison.
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Anomaly prediction using

assimilation in HadCM3

6.1 Introduction

The previous chapter showed that the HadCM3 SWE climatology is very different to

the climatologies of the observations and ERA40 in a number of respects. We could

still get useful snow information from the model, however, if it can be driven by, for

instance, well-constrained observed temperatures which would generate realistic snow

anomalies. Predictions of future anomalous SWE would be useful for many hydrological

applications, such as water resource management and streamflow forecasting. If the

method is successful in its generation of SWE anomalies, it could also be used to provide

SWE data for model initialisation for cases where atmospheric data is available but

reliable land surface data is not.

To forecast future conditions of any field, the forecast model needs to be constrained

in some way to the current observed state. This can be provided by the assimilation of

initial condition data and/or the assimilation of boundary condition fields throughout

the forecast, such as sea surface temperatures. Inevitably the introduction of outside

data into a model will interrupt the model’s preferred evolution, and step changes in

model fields can introduce large errors into the analysis. A related problem is the

tendency of a model to evolve away from the previously assimilated field and towards

its own preferred climatology, known as ‘climate drift’ (Stockdale, 1997).

Forecasting is often performed using an ensemble approach, with many forecasts

released with subtly different initial or boundary conditions in an attempt to sample the

error from incomplete knowledge of observed states. ‘Forecasts’ released at dates in the

past are known as hindcasts, and can be assessed against the subsequent observations.
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This chapter builds on decadal forecast work performed at the Met Office (Smith

et al. (2007), and discussed below) using atmospheric and oceanic data assimilation.

The ability of climate models to forecast the temporal and spatial variability of the

land surface, particularly important water storage variables such as snow, has been

little studied. This is partly because of the lack of reliable global estimates of snow,

however global reanalyses of atmospheric states are readily available and have been well

studied. This chapter assesses the ability of HadCM3 to reproduce and forecast SWE

distributions via assimilation of well-constrained fields from atmospheric and oceanic

reanalyses. SWE anomalies in both assimilation and hindcast runs are compared to

observations from ERA40 and SSM/I at lead times of up to two years.

Techniques in seasonal forecasting

Short-term weather forecasting is an initial value problem, in that the outcome depends

on the initial conditions, rather than the boundary conditions. Climate predictions

spanning decades to hundreds of years are dependent on the boundary conditions, but

forecasting at seasonal to interannual timescales lies somewhere in between. Predicting

the onset or development of an ENSO event, for instance, is an initial value problem,

but the influence of the ENSO is felt as changing boundary conditions through a longer-

term seasonal forecast. The accuracy of this forecast therefore depends on the initial

state of the model as well as the boundary conditions: the two are not necessarily

independent.

Collins and Allen (2002) analyse decadal predictions in terms of their relative

dependence on initial conditions - the state of the ocean, atmosphere and land surface

at the start of the run - and boundary conditions - forcings such as greenhouse gases

and varying sea surface temperatures. The authors generate ensembles of a coupled

GCM (HadCM2, an earlier Hadley Centre model) with perturbations to either the

forcing or the initial conditions. The smaller the ensemble, the more noisy it will be

(i.e. the more the different weather in each run will influence the ensemble mean),

but the authors show that, for seasonal forecasting, this weather noise is minimised

through averaging over ensembles of more than 4 members.

Collins and Allen first examine the ensembles of varying boundary conditions.

Northern hemisphere land temperatures have a discernable response to the changing

boundary conditions only after a decade (prior to this any signal is indistinguishable

from climatological noise), with the influence of the snow-albedo feedback leading to

winters being more predictable than summers. No signal in the SSTs is detectable at

lead times of less than 20 years from these boundary condition experiments.
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Turning to the initial condition ensembles, Collins and Allen show that in an

idealised system with perfect knowledge of initial states, global temperatures may be

predictable up to 2 years ahead. The authors note that this figure is likely to be state

dependent; certain initial conditions, such as a developing strong ENSO event, are

likely to impart more predictability than others, and push this predictability beyond

the 2 year average. They also find that while North Atlantic SSTs may show decadal

predictability, temperatures over land are not predictable after around a month.

Hermanson and Sutton (2008) look at an ensemble of forecasts starting on 1st

December 1981 with initial states that show large regional differences in ocean heat

content. Differences in temperature, precipitation and mean sea level pressure are

examined in the second year of each forecast. Significant differences are found over

Europe and much of the Tropics, demonstrating the importance of the initial condition

differences at lead times of two years.

Latif et al. (1993) use a GCM to investigate the predictability of tropical SSTs

during ENSO events in the 1970s and 1980s. To eliminate the problem of model

climate drift, an approach is used where observed anomalies are introduced into the

model, rather than the complete fields. Oceanic initial conditions are supplied from an

uncoupled run of the ocean model, forced by observed wind stress at the sea surface.

This forcing field is derived by adding the observed wind stress anomalies to the wind

stress climatology of the model running in coupled mode. This anomaly-based approach

aims to reduce the tendency of the model to drift away from the observed state by

allowing its own climatology to persist. Latif et al. produce a total of 20 predictions

spanning 5 ENSO events, and find high correlations (>0.6) for lead times of up to a

year, and beyond in some cases.

This method was questioned by Stockdale (1997), who expressed concern that the

observed anomalies may not be compatible with the mean state to which they are

applied. Stockdale uses a different approach, estimating the model’s drift from a set

of control forecasts and subtracting it as an a posteriori mean bias correction. The

approach is demonstrated using 12-month ENSO forecasts which exhibit considerable

drift after the initial state was applied. The system produces skilful forecasts after

the bias correction is used, prompting the author to note that climate drift “should

not cause undue despair”. However, it is also noted that errors in the model’s basic

climatology are nevertheless likely to impact the skill in anomaly prediction through

nonlinear interactions, and it is likely that forecasts would be improved if the climate

drift was limited or constrained. This method is now used by ECMWF for seasonal

forecasting.
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Ensembles of multi-model seasonal forecasts were performed in the EU project

Prediction of Climate Variations on Seasonal to Interannual Timescales (PROVOST;

and its “sister” project, Dynamical Seasonal Predictions in the United States). 4-

month hindcasts were run with nine ensemble members per model, and considerable

inter-model variability was seen, despite all runs using the same prescribed SSTs. The

multi-model average was shown to have greater skill than any of the individual model

hindcasts.

Following this, a further EU project “Development of a European multi-model

ensemble system for seasonal to inter-annual prediction”, or DEMETER, was begun

(Palmer et al., 2004). This project ran seven GCMs on the same supercomputer with

standardised output diagnostics, the aim being to advance understanding of model-

to-model variability at seasonal timescales. For each model, 6-month hindcasts were

released each year on 1 Feb, 1 May, 1 Aug, 1 Nov, with ensembles created using a

mixture of wind stress and SST perturbations to ERA40 reanalyses. Hindcasts were

validated against ERA40 as ‘truth’ (an assumption that we are ‘in ERA40 world’).

The investigators found that while the skill of the hindcasts was linked to ENSO (as

before), the identity of the most skilful model varied in time and space. Once again,

the multi-model ensemble mean was found to perform the best overall. The output

from these multi-model hindcasts was used to produce probabilistic forecasts for other

applications that depend on weather data as inputs, such as crop yield forecasting and

modelling the spread of diseases such as malaria.

The decadal variability of snow extent in several of the IPCC-AR4 GCMs was

investigated by Frei and Gong (2005). They used data from ensemble runs under

different emission scenarios to assess the decadal to century scale variability and trends

of North American snow, comparing the results to the reconstructed snow extent

datasets of Brown (2000) and Frei and Robinson (1999). Although ensemble mean

variability was too low compared to observations, the individual ensemble member

variability was much closer. They found no temporal correlation between ensemble

members, or between model runs and observations. They propose therefore that the

decadal variability of snow extent in these models is due to the internal variability

within the models rather than the changing boundary conditions of the different

emissions scenarios.

DePreSys

In order to extend seasonal forecasting to decadal timescales, a way of predicting the

natural variability in a GCM must be found. The Met Office have used HadCM3

in developing the Decadal Prediction System, DePreSys (Smith et al., 2007), which
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makes interannual forecasts starting from assimilated initial conditions, to account for

the state of important modes of internal variability such as El Niño at the release of a

forecast. Assimilation of this initial condition information is achieved via an anomaly

assimilation scheme, rather than the a posteriori bias correction approach of Stockdale

(1997), above, since errors in the bias calculation required for the latter method risk

masking the smaller predictable signal at decadal timescales. The assimilated fields

are ocean temperature and salinity, atmospheric winds, atmospheric temperature and

surface pressure.

The accuracy of the system was tested using 10-year hindcasts, released 4 times a

year between 1982 and 2001 (a total of 80 start dates). The predictions from these

hindcast runs were compared against observations, and averaged over all lead times

the root mean square error (RMSE) in surface temperature hindcasts was 0.105oC.

To assess the impact of initial conditions, these hindcasts with assimilated initial

conditions were compared to an equivalent set of hindcasts with initial states taken

from four transient runs of HadCM3 with no assimilation, and therefore independent

of the observations. These ‘NoAssim’ hindcasts had an RMSE averaged over all lead

times of 0.132oC, 20% higher than the hindcasts with assimilated initial conditions.

The improvement in the RMSE of the DePreSys hindcasts compared to NoAssim was

even greater when only the longer lead times were considered (e.g. an improvement of

49% at a lead time of 9 years).

The success of the DePreSys hindcasts is very likely to be coming from the

initialisation of the ocean, as the internal variability of the atmosphere is only

predictable up to a few weeks. Smith et al. show that the main source of improvement

in the assimilated system is through the initialisation of the upper ocean heat content,

with atmospheric feedbacks maintaining the difference between the DePreSys hindcasts

and the NoAssim hindcasts at lead times of many years.

GCEP

The Grid for Coupled Ensemble Prediction (GCEP) project (Haines et al., 2008) uses

the assimilation and hindcast method of DePreSys for investigating seasonal to decadal

predictions. A compute cluster at ESSC runs the HadCM3 climate model both with

and without oceanic and atmospheric data assimilation, with model anomalies relaxed

towards observed anomalies using a simple nudging scheme, as in DePreSys.

Early GCEP results investigate known patterns of variability in ocean heat

content to test timescales over which HadCM3 exhibits predictability. Ensembles

were initialised from naturally-occurring extremes of ocean phenomena such as the

Interdecadal Pacific Oscillation and Southern Oscillation. The two ensemble plumes

103



Chapter 6

remain separate for a certain period before converging to the background climatology

of the model, and this separation time is an indication of the predictability within

the model. Predictability was found to be higher for ocean heat content than SSTs,

and despite the external forcing from increasing greenhouse gases, the initial conditions

were often found to have an impact for 5 years or occasionally even more (Haines et al.,

2008; Hermanson and Sutton, 2008).

The regional nature of skill in hindcasts of surface temperature has also been

investigated. The mean error from the second year of the hindcasts was improved

over much of the globe compared to a set of hindcasts released from a run without

assimilation. As expected, improvement was clear in the tropical Pacific (with improved

representation of ENSO events via assimilation) although there was also skill over land

areas (Haines et al., 2008).

Here we investigate whether snow anomalies within HadCM3 are realistically

reproduced by the DePreSys method, and also whether improved snow forecasts can be

made on monthly to seasonal timescales. This tests one simple method of initialising

land surface conditions for climate predictions, and also allows comparisons with

independent SSM/I data. Note that in the studies described above, the fields used for

assessment of the scheme (often surface temperature) are those that were constrained

by the assimilation. Here we assess a field that has not been assimilated, thus it is a

test of whether the assimilation of a limited set of atmospheric and oceanic fields have

a beneficial impact on other fields within the model.

6.2 Assimilation

6.2.1 Assimilation scheme

In order to produce the anomalies for assimilation into the model, a climatology

is required. In all model runs presented here, the time period December 1989 -

November 2001 is used to define the climatology of the atmospheric and oceanic fields

for assimilation.

Ocean data 3D anomaly fields of temperature and salinity are assimilated 6hr-ly.

Atmospheric data ERA40 3D anomaly fields of temperature and winds (u and v),

plus surface pressure (2D field) are assimilated 6hr-ly.

External forcing All observed greenhouse gas, ozone and volcanic and solar forcings

are included and are identical in both the assimilation and no assimilation runs.
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Flux adjustment Adjustments are applied to all runs, following the method de-

scribed previously (chapter 4).

Atmospheric data is taken from the ERA40 reanalysis product. The ocean data

is from the dataset that was created for the DePreSys project: covariances from

HadCM3 climatologies were used to perform a four-dimensional, multivariate optimal

interpolation of sub-surface observations and the Hadley Centre’s HadISST surface

temperature dataset, to construct a temperature and salinity analysis. For details see

Smith and Murphy (2007).

This ‘assimilation run’ tests the ability of the model to reproduce land surface

anomalies given some limited meteorological constraints. An ensemble of runs for the

same period, but without assimilation, is also performed, to derive a ‘No assimilation

ensemble mean’. This ensemble is thus the best estimate of the climate that can be

made without the use of direct ocean or atmospheric conditions. These No assimilation

ensemble members are initialised from a transient run started in 1860, with noise added

to the SST initial conditions. All runs begin in December 1989 and finish in November

2001, and fields are output on a monthly basis.

Monthly anomalies of SWE are calculated for the assimilation run and the No

assimilation ensemble. The period December 1989 - November 2001 is used to define the

climatology of SWE in the No assimilation ensemble mean, which forms the reference

climatology for all model anomalies (including the assimilation run). The same period

is used to define anomalies for SSM/I SWE data. An exception is ERA40: SWE

anomalies are calculated with respect to a 1984-2001 climatology, but omitting five

years due to the previously-noted error in the snow analysis during the period 1989-

1994 (see chapter 4).

Time series of ENSO index and the NAO index have also been calculated. The

ENSO index used here is the seasonal SST anomaly in the Nino3.4 box (defined

as between 5S, 5N and 170W, 120W). The NAO index is calculated seasonally by

subtracting mean sea level pressure in an Azores box (5 gridboxes wide, centred on

26W, 37.5N) minus that in an Iceland box (also 5 gridboxes wide, but centred on 34W,

60N).

6.2.2 Assimilation run performance

Figure 6.1 shows an example of the assimilation scheme working. Anomalies of

surface air temperature (over land and ocean) are plotted for the observations and the

assimilation run. While we would not expect the observations and model anomalies to
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Figure 6.1: Surface temperature anomalies in K for the observations (in black) and the
assimilation run (in red).

be exactly the same, they are very close and the interannual variability in particular is

well captured.

Biases in assimilation run SWE are calculated with respect to SWE in ERA40, as

it is ERA40 atmospheric data that are used in the assimilation scheme. Comparison

with the independent SSM/I anomalies will be performed when examining the case

studies below (section 6.4).

Figure 6.2 shows the mean seasonal bias for the assimilation run SWE anomalies,

calculated by subtracting the No assimilation ensemble mean anomalies from those of

the assimilation run, and constructing seasonal averages of this quantity.

For winter (figure 6.2a) the biases are predominantly positive (assimilation run has

more SWE than ERA40) in Europe, eastern Siberia, the Canadian Arctic and the west

coast of North America. Negative biases are seen in central North America, central

Eurasia and the Himalayas. A very similar pattern is seen in spring (figure 6.2b).

Smaller biases are seen in autumn (figure 6.2d), with the largest values being over the

Himalayas, the Pacific coasts and northern Siberia.

Figure 6.3a shows the root mean square error (RMSE) between the SWE anomalies

in the assimilation run (relative to the climatology of the no assimilation ensemble

mean) and the ERA40 SWE anomalies. The RMSE is higher for the assimilation run

than the No assimilation ensemble mean, which suggests that the assimilation scheme

is doing a poor job of reproducing SWE anomalies. However, examining the spatial

correlation (figure 6.3b), the assimilation run shows better correspondence with the

ERA40 anomalies in almost all months than the No assimilation ensemble mean. The

RMSE is a pointwise comparison of gridboxes; the anomalies in the assimilation run

and ERA40, while having a similar spatial pattern, are not exactly coincident, and

so large gridbox-to-gridbox errors occur. As the No assimilation field is an ensemble
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Figure 6.2: Mean seasonal bias of SWE (mm) of assimilation run anomalies with respect
to ERA40 anomalies.
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Figure 6.3: Monthly root mean square error of SWE (left, mm) and spatial correlation
(right) between ERA40 and the assimilation run (red) and the no assimilation ensemble
mean (black).
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mean of a noisy field, the anomalies are much smaller and smoother, so the RMSE

is generally lower. The superior performance of the assimilation run in reproducing

SWE anomaly patterns when compared to runs without assimilation is evident when

examining the case studies (below, section 6.4).

6.3 Hindcasts

6.3.1 Hindcast scheme

A well-constrained initial state may produce more reliable forecasts than those made

without initialisation. This will be tested using a hindcast approach, with hindcasts

released from the assimilation run. These hindcasts are therefore constrained by the

observations up to release, but after release are allowed to evolve freely. Hindcasts

are released twice a year, on the 1st May and 1st November, and run independently

for 2 years. Each hindcast result presented here is the mean of a 4-member ensemble,

generated by adding noise (of amplitude 0.05K) to the SST field at the point of release.

As the hindcasts are meant as a test of the scheme’s forecasting ability, the external

forcings are ‘unknown’ for the period of the hindcast. The solar forcing repeats the

forcing from the last 10 years (i.e. the 2-year hindcast will be forced with a repeat of

the first 2 years of the pattern starting 10 years prior to the date of release). Volcanic

aerosols in the atmosphere decay exponentially with an e-folding timescale of 1 year

from the point of release. No future information is used, so for example a hindcast

released before the Pinatubo eruption (May 1991) would not include the Pinatubo

aerosols, but a similar hindcast launched after the eruption (November 1991) would do

so. Anthropogenic forcing is taken from the intermediate IPCC SRES B2 scenario.

In total there are 10 hindcasts over the period 1995-2001 (the period when ERA40

SWE anomalies are available), with 5 released in May and 5 in November. An

equivalent set of hindcast ensembles with identical solar, volcanic and greenhouse gas

forcings are also released from the No assimilation ensemble each May and November.

6.3.2 Hindcast performance

Figure 6.4 shows the biases averaged across all hindcasts for the first and second year

of each hindcast separately. The upper panels shows results for the hindcasts released

from the assimilation run, while the lower panel shows results from the hindcasts

released from the No assimilation ensemble mean. Note that the absolute values of the

biases in this figure are lower than those in 6.2 as this is an average across 12 months,

and the very low values for JJA will bring the average down.
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Figure 6.4: Mean bias of SWE anomalies (mm) from hindcasts released from the
assimilation run (upper) and the No assimilation ensemble (lower), with respect to
ERA40 anomalies, for year 1 (left) and year 2 (right).

Figures 6.4c and 6.4d show different patterns of biases in the first and second years

of the hindcasts released from the No assimilation ensemble mean. As these hindcasts

are not initialised using observations, we would expect that the biases would look

similar in each case. The differences could be a consequence of the small ensemble size

(only 10 hindcasts).

The pattern of biases in figures 6.4b and 6.4d are similar, with positive biases in

northwestern North America, eastern Siberia and Europe, and negative biases in central

and western Asia. This could be an indication that the Assim hindcasts look similar to

the No Assim hindcasts by the second year since their release, but since the biases in

the first and second years of the No Assim hindcasts look quite different, this is more

likely to be down to chance (and variability across the small number of hindcasts).

The standard deviation calculation subtracts the mean bias from the month-to-

month errors, so acts as a bias correction which is tuned to the duration of the

model run. By comparing the standard deviation maps from the hindcasts launched
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Figure 6.5: Difference in standard deviation of SWE errors (mm) for hindcast anomalies
with and without assimilation, for year 1 (left) and year 2 (right). Calculated as
NoAssim minus Assim, so positive gridboxes are those where the hindcasts released
from the assimilation run have a lower standard deviation than the hindcasts released
from the No assimilation ensemble.

from the assimilation run with those launched from the No assimilation ensemble, the

regions where the assimilation hindcasts are performing better than the no assimilation

hindcasts can be seen. Figure 6.5 shows the difference between standard deviations (No

assim hindcasts minus assim hindcasts) for year 1 and year 2.

Figure 6.5a shows this difference in standard deviations for the first year of

the hindcasts. The assimilation hindcasts perform better than the No assimilation

hindcasts wherever values are positive: Europe, central Siberia and the coasts of North

America. There is a similar pattern when assessing the second year of hindcasts (figure

6.5b), with some additional improvement in central Canada but worsening performance

in Europe. These areas also showed the largest biases in figures 6.4 and 6.2, but with

the bias correction applied they are revealed to be areas of improved skill over the No

assimilation runs. However, the fields remain noisy, and the small number of hindcasts

limit the statistical significance of this result.

Figure 6.6 shows RMSE and spatial correlation scores for the hindcasts with and

without assimilation. The clear seasonal cycle in the SWE anomaly biases can be seen

in figures 6.6a and 6.6c. RMSE scores are similar across all hindcasts, with or without

assimilation, generally peaking at 30-35mm. The largest RMSE for the assimilation

hindcasts in figure 6.6a is for the May 1997 hindcast over the winter of 97-98, which

featured a large ENSO event. A lack of knowledge of the developing event after release

may explain the large RMSE.
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Figure 6.6: Monthly root mean square error (left column, mm) and mean spatial
correlation (right column) of SWE anomalies between ERA40 and the hindcasts
released from the assimilation run and the no assimilation ensemble mean. Spatial
correlations are averaged over May and November hindcasts separately, and error bars
show one standard deviation of the hindcast ensemble.
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Figure 6.7: Spatial correlation of SWE anomalies between hindcasts and assimilation
run

The spatial correlations for the hindcasts launched from the assimilation run (figure

6.6b) start high for the first month, but within 3-6 months the spatial correlations are

around zero. The No assimilation hindcasts (figure 6.6d) have spatial correlations with

ERA40 of around zero at all lead times. For comparison, the correlations between the

hindcasts released from the assimilation run and the assimilation run itself are also

plotted in figure 6.7. As expected, the correlations for the first month are very high

but again the correlations drop to zero, in 3-6 months for the May hindcasts and 8-10

months for November. In both cases this coincides with the start of the new snow

season, between August and October, and suggests there is little memory in the snow

state carried over from the previous season.

6.4 Case Studies

Having now examined the overall statistics of the assimilation runs and hindcasts, we

now examine some case studies month-by-month. The aim here is to assess whether

the broad features of the anomaly patterns in each dataset are similar, rather than

attempting more detailed gridbox-to-gridbox comparisons.

112



Chapter 6

sep oct nov dec jan feb mar apr may sep oct nov dec jan
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

1995−1996−1997

N
or

m
al

iz
ed

 N
A

O
 in

de
x

 

 

Assimilation run

May 1995 hindcast

Nov 1995 hindcast

Figure 6.8: NAO during 1995-1997 from assimilation run and hindcasts

6.4.1 Negative NAO event: 1995-6

The North Atlantic Oscillation (NAO) characterises variability in atmospheric pressure

and storm tracks in the North Atlantic, and forms the basis for much seasonal

forecasting research in the region. The winter of 1995-6 exhibited a large negative NAO

event: the DJFM average NAO index was highly negative1. Figure 2.2 in chapter 2

showed the effect of the NAO on winter climate. During the negative phase, northern

Europe is drier than normal, so negative snow anomalies would be expected. Southern

Europe is wetter than normal, so positive anomalies would be expected. In North

America, the negative phase brings above normal snow to the eastern United States,

while less snow than normal is found in northeastern Canada.

The monthly NAO index for the assimilation run (assumed close to truth as mean

sea level pressure anomalies are assimilated) and hindcasts launched in May and

November 1995 are shown in figure 6.8. The lowest values are seen in the assimilation

run for November, December and March, with higher values between these months.

The hindcasts follow a similar pattern but are generally higher, with the November

1995 hindcast oscillating between positive and negative NAO index and the May 1995

hindcast being generally positive.

1Tim Osborn’s page, Climate Research Unit at the University of East Anglia:
http://www.cru.uea.ac.uk/ timo/projpages/nao update.htm.
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Figure 6.9: Spatial correlation between anomalies of ERA40 and the assimilation run,
no assimilation ensemble mean, hindcasts launched in May 1995 and November 1995
and SSM/I, for the negative AO event in 1995-6

Figure 6.9 shows the spatial correlations of SWE anomalies during the NAO event

in 1995-6 between ERA40 and the different model runs, plus correlations between

ERA40 and SSM/I. As would be expected (and as seen previously in figure 6.3b,

the assimilation run shows a high correlation (>0.7) with ERA40 for all months.

Correlation between ERA40 and SSM/I is also high in September, but this rapidly

drops to zero before improving again in April and May. The hindcast released

in November 1995 shows fairly high correlations with ERA40 for the first month

(November) but this also drops to zero within two months. By the start of this case

study in September, the hindcast released the previous May is showing low correlations

with ERA40. The No assimilation ensemble mean shows low correlations throughout.

The spatial distribution of SWE anomalies during the case study period are now

examined. Figure 6.10 shows SWE anomalies from the model runs, SSM/I and ERA40.

The No assimilation ensemble mean is plotted for each month as an illustration of the

impact of assimilation.
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Autumn 1995

In September, ERA40 and the assimilation run both show widespread negative

anomalies, with a positive anomaly in far northern Russia. SSM/I also shows a positive

anomaly here, although the negative anomalies are not nearly as widespread, due to

the retrieval’s limitations in detecting very thin snow cover (as discussed in chapter 3).

In October, the positive anomaly in Russia in the assimilation run has got much

larger. The anomaly is still present in both ERA40 and SSM/I but is not so large.

ERA40 and the assimilation run also share small positive anomalies in northern

Scandinavia, central Asia and far northern Canada. The May 1995 hindcast is showing

a large positive anomaly further west which is not seen in either ERA40 or SSM/I.

By November, the positive anomaly over Russia in the assimilation run is even

larger, and still bigger than in SSM/I or ERA40. Negative anomalies are developing to

the south and east of this, and are seen in both ERA40 and SSM/I. Agreement between

ERA40 and the assimilation run also exists over northern Scandinavia, although this

is not seen in SSM/I. Broadly similar patterns are also seen over North America,

especially around Hudson Bay, although SSM/I anomalies are still much smaller than

those in the assimilation run and ERA40. The November 1995 hindcast, launched at

the start of this month, is still very similar to the assimilation run at this point.

Throughout Autumn, the anomalies from the hindcast launched in May 1995

look somewhat different to the other runs, with the main feature being a widespread

positive anomaly developing in northwestern Russia throughout the season. The No

assimilation ensemble mean also shows no correlation with the observations or the

assimilation run, and much smaller anomalies across the hemisphere.

Winter 1995-6

In December, the assimilation run anomalies have a similar distribution to the ERA40

anomalies over both continents. The pattern of anomalies in eastern North America and

Russia are particularly well-correlated, though the positive anomaly in northern Russia

is still too large. However, large negative anomalies are present in the Himalayas which

are not seen in ERA40, and are of the opposite sign in SSM/I. ERA40 and SSM/I show

similarities around Hudson Bay and northern Scandinavia, but the anomalies are rather

different across Russia. The November 1995 hindcast still shares many features with the

assimilation run, but these are diverging from the ERA40 observations. The May 1995

hindcast again looks very different to either the assimilation run, ERA40 or SSM/I, with

the persistent positive anomaly in northwestern Russia, and predominantly negative

anomalies in North America.
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In January, agreement is widespread over North America between the assimilation

run and ERA40, particularly towards the two coasts. ERA40 also shows agreement

with SSM/I in eastern Canada, and about the presence of a band of positive anomalies

across central North America. In Eurasia, the anomalies in central Russia are still

too large in the assimilation run, although the spatial distribution is still similar to

ERA40. Agreement in seen between SSM/I and ERA40 in eastern Europe, but there

is no clear agreement over the rest of the continent. The November 1995 hindcast still

shows reasonable correspondence with ERA40 in western North America and eastern

Eurasia but there is little agreement elsewhere. The sign of the NAO is positive in the

two hindcasts, so the anomalies in the North Atlantic region show little correspondence

to the assimilation run, where the NAO index is more neutral for this month (but has

been negative throughout autumn). In the May 1995 hindcast, the SWE anomaly

dipole in Europe is clearly opposite to that in the assimilation run.

February shows continuing agreement between ERA40 and the assimilation run

in eastern North America. Across Eurasia, the anomalies in the assimilation run are

much more zonal than in ERA40, although the dipole over western Russia is of the

correct sign, with negative anomalies further north and positive anomalies further

south. Further east in Eurasia, there is much less agreement. SSM/I and ERA40

again look similar over North America, but the Eurasian SSM/I pattern for February

is dominated by a large positive anomaly over eastern Europe/western Russia, and

there is no negative counterpart as seen in ERA40. The November 1995 hindcast

shows reasonable agreement with ERA40 in western North America and Siberia, and

shows some positive anomalies in southern Europe. Once again, the dipole of positive

anomalies in northern Europe and negative anomalies to the south is seen in the May

1995 hindcast, indicative of the positive NAO phase during this month in this hindcast.

Throughout winter the No assimilation ensemble mean has much smaller SWE

anomalies across the hemisphere, indicating that by averaging over the ensemble

members the patterns have been smoothed.

Spring 1996

In March, ERA40 and the assimilation run again show good correspondence in eastern

North America, and reasonable agreement to the west of the continent. In Eurasia,

the dipole is again present in both patterns, and while the pattern of positives and

negatives is similar further east, once more the assimilation run anomalies are larger

than those in ERA40. Agreement is also seen with SSM/I across much of North

America, although in Eurasia the widespread positive anomaly is not seen in any other

dataset. Agreement between SSM/I and ERA40 improves further east. The November
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1995 hindcast again compares reasonably around Hudson Bay, but less so across the rest

of North America. The dipole in western Eurasia has changed sign in the November

hindcast, corresponding to the change in sign of the NAO for this month, although

further east agreement with ERA40 improves.

ERA40, SSM/I and the assimilation run again agree over North America in April.

The western Eurasian dipole is weakening in ERA40, though not in the assimilation run

where anomalies are still very large. Agreement with ERA40 extends across Siberia.

The large positive anomaly is still present in SSM/I however and is not seen elsewhere.

Some agreement is seen between the November 1995 hindcast and ERA40 around

Hudson Bay, but there is little agreement elsewhere. The May 1995 hindcast shows

even less agreement with observations.

In May, ERA40, SSM/I and the assimilation run all agree in northern Eurasia,

with positive anomalies in northern Siberia and Scandinavia. ERA40 and SSM/I also

show some agreement in North America, although the assimilation run produces large

positive anomalies in the Canadian Arctic which are not seen in the observations. The

November 1995 hindcast has the positive anomalies in northern Russia, although they

extend too far east, but not those in Scandinavia. Agreement is also reduced over

North America. For this month, the May 1995 hindcast shows some similarities with

the assimilation run, but after such an extended period of differences, and being in a

month with limited snow extent, this is most likely due to chance.

6.4.2 Positive ENSO event: 1997-8

The winter of 1997-8 exhibited a large positive ENSO event. The assimilation and short

hindcast runs both reproduce the sea surface temperature anomalies in the Nino3.4

region during the 1997-8 ENSO event very well (reported in Haines (2007)). The No

assimilation runs are ENSO-neutral and are therefore not expected to reproduce any

of the relevant land surface anomalies.

Figure 2.1 in chapter 2 showed the expected pattern of climate anomalies during

a positive ENSO event. Warmer weather is brought to Pacific Asia and northwestern

and northeastern North America, which suggests negative SWE anomalies. Wetter and

cooler weather, and hence positive anomalies, are found in the United States.

Figure 6.11 shows the spatial correlations between ERA40 SWE anomalies and

those from the assimilation run, no assimilation ensemble mean, hindcast released in

May 1997, hindcast released in November 1997 and SSM/I. In general, the assimilation

run shows the greatest correlation with ERA40 (>0.4 for most months). Again, SSM/I

shows fairly high correlation with ERA40 in September and spring, but this drops to

zero and even becomes negative during the winter months. The No assimilation run is
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ERA40, assimilation run, hindcasts and no assimilation ensemble mean
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SSM/I, ERA40, assimilation run, hindcasts and no assimilation ensemble mean
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SSM/I, ERA40, assimilation run, hindcasts and no assimilation ensemble mean
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Figure 6.11: Spatial correlation between SWE anomalies of ERA40 and the assimilation
run, no assimilation ensemble mean, hindcasts launched in May 1997 and November
1997 and SSM/I, for the positive ENSO event in 1997-8

negatively correlated with ERA40 for most of the period. The hindcasts both have low

correlations with ERA40 in 1997, but the correlations increase in 1998 to a maximum

for both hindcasts in April.

The spatial distribution of SWE anomalies during the case study period are now

examined. Figure 6.12 shows SWE anomalies from the model runs, SSM/I and ERA40.

Autumn 1997

In September, all anomalies are small. The spatial extent of SWE anomalies is slightly

lower in the assimilation run than ERA40, though not as low as in SSM/I. ERA40 and

SSM/I do agree about a small area of positive anomalies in northeastern Siberia. In

October, positive anomalies develop in North America in ERA40, the assimilation run

and in the May 1997 hindcast, although they are not seen in SSM/I. In November,

the assimilation run, ERA40 and SSM/I agree about a positive anomaly just east of

Scandinavia, although there is disagreement both further east in Eurasia and in North

America. The November 1997 hindcast is very similar to the assimilation run, having

been released at the beginning of the month, but more surprisingly, the May 1997

hindcast also looks similar to the assimilation run, 7 months after release. SSM/I

121



Chapter 6

also bears more resemblance to the assimilation run than ERA40, with large positive

anomalies in eastern Siberia. There is perhaps more agreement this month over North

America between SSM/I and ERA40.

Winter 1997-8

In December, more agreement is seen in North America between ERA40 and the

assimilation run, with a band of negative anomalies stretching across Canada with

positive anomalies to the north. This band is also seen in SSM/I. Differences are larger

across Eurasia, particularly to the east where ERA40 shows negative anomalies while

those in the assimilation run and SSM/I are positive. More agreement between the

assimilation run and ERA40 is seen in western Eurasia. Very little agreement in either

continent is seen when looking at the hindcasts, and indeed the spatial correlations

between the hindcasts and ERA40 for December are around zero (figure 6.11).

In January, agreement is seen between ERA40 and the assimilation run around

Hudson Bay, although little is seen over the rest of North America. ERA40 and

SSM/I show a little more agreement in this case. The May 1997 hindcast still shows

remarkable agreement with the assimilation run in North America, with the November

1997 hindcast looking quite different (though, in fact, more similar to ERA40). In

Eurasia, little large-scale agreement is seen between any of the runs.

By February, the assimilation run and ERA40 look more similar in North America,

with positive anomalies at high latitudes and negative anomalies further south, with

some positive anomalies on the east and west coasts. SSM/I also shows some

similarities, although the large positive anomalies in Alaska are not seen in ERA40.

In Eurasia, ERA40 shows positive anomalies in northwest Russia and northern

Scandinavia, with negative anomalies further south. In the assimilation run these

signs are reversed, though there is more agreement around the Black Sea. SSM/I is in

better agreement with ERA40 in this area, as is the November 1997 hindcast. Again,

the May 1997 hindcast looks much like the assimilation run in North America, though

less so over Eurasia.

Spring 1998

In March, agreement is still reasonable over North America between ERA40 and the

assimilation run. SSM/I, however, shows a very different pattern of anomalies to the

west, though the east agrees better. The November 1997 hindcast does a good job in

eastern North America, although the anomalies on the west coast are too large. The

May 1997 hindcast is again similar to the assimilation run. In Eurasia, ERA40 has a

122



Chapter 6

band of positive anomalies going from northern Scandinavia down towards Kazakhstan,

surrounded by negative anomalies. A similar pattern in seen in the assimilation run,

although shifted further west. A similar but much thinner band of positive anomalies

is seen in SSM/I, but there is little overall agreement in Eurasia. The November 1997

hindcast shows the best agreement with ERA40 in Eurasia, and particularly Europe,

out of all the model runs.

In April, a large positive anomaly has developed over northwestern Russia in

ERA40, and is also present in the assimilation run and SSM/I, though with a smaller

spatial extent in the latter. The feature is also present in both hindcast runs, though it

is small in the May hindcast. Agreement is also good further east in Eurasia between

the assimilation run and ERA40, although SSM/I is still showing much larger positive

anomalies in far eastern Siberia. In North America, negative anomalies across Canada

are seen in ERA40, the assimilation run and SSM/I, though the latter has larger

positive anomalies towards both coasts, and the assimilation run has large positive

anomalies in the Canadian Arctic which are not seen in the observations. The May

1997 hindcast is the closer of the two hindcasts to the assimilation run over North

America.

In May, the assimilation run, ERA40 and SSM/I are all very similar over the whole

hemisphere. Again it is the May 1997 hindcast that performs the better of the two

hindcasts in this case.

6.5 Discussion

In this chapter, results have been presented from an assimilation scheme using

atmospheric and oceanic reanalysis data to reproduce SWE anomalies with the

HadCM3 GCM. By assimilating only atmospheric and ocean temperature, ocean

salinity, sea level pressure and wind fields, the model was able to reproduce ERA40

SWE anomalies between 1995 and 2001 with a good degree of success (spatial

correlations > 0.6 for much of the period). However, RMSE scores were higher than for

the No assimilation ensemble mean, as the statistic is biased by some large gridbox-to-

gridbox differences between ERA40 and the assimilation run (despite correspondence in

the spatial patterns). The No assimilation ensemble mean shows much lower anomaly

values than the assimilation run, a sign of the SWE anomaly field having spatial noise

across the No assimilation ensemble members which is smoothed out with the averaging.

The largest biases in the assimilation run are seen in winter and spring, with

positive biases in Europe, eastern Siberia, the Canadian Arctic and the west coast

of North America, and negative biases in central North America, central Eurasia and
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SSM/I, ERA40, assimilation run, hindcasts and no assimilation ensemble mean
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-50 -40 -30 -20 -10 0 10 20 30 40 50Figure 6.12: (cont) Positive ENSO event 1997-8: monthly SWE anomalies (mm) from
SSM/I, ERA40, assimilation run, hindcasts and no assimilation ensemble mean
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the Himalayas. It is interesting to note that these areas roughly correspond with areas

of differences in the ERA40 and HadCM3 climatologies: in particular HadCM3 has

much deeper snow along the west coast of North America, and much shallower snow in

central Siberia (see figure 5.2 in chapter 5). As the size of SWE anomalies are related

to the SWE climatology (larger values in an area in the climatology make larger SWE

anomalies more possible), removing the climatologies does not eliminate the differences

due to the basic SWE distributions.

As both surface temperature and sea level pressure are assimilated fields, it is likely

that most of the bias comes from precipitation differences. The SWE field in ERA40

is also not purely model-generated, as in situ data are assimilated into the reanalysis,

so there may be imbalances in the water and energy cycles.

The success of the assimilation run in reproducing SWE patterns is encouraging,

although there are still differences in the characteristics of the anomalies between the

different datasets. The ERA40 anomaly field is more speckled, with lots of ‘bullseye’

structures which could be a consequence of interpolation from sparse in situ data. The

SSM/I data is at a much higher resolution and hence has much fine structure in it, but

the spatial coherence is much higher than for ERA40. The model anomalies, with the

lowest resolution examined here, are much more zonal than either of the observational

datasets.

To assess the skill of the system in forecasting mode, SWE anomalies from ensembles

of hindcasts were also examined. The hindcasts were released every year in May and

November and run for 2 years, leading to a total of 10 hindcasts spanning the period

1995-2001. Correlations of hindcast anomalies, both with the assimilation run and

with ERA40, drop to around zero by the time a new snow season starts. This suggests

that there is little memory from season to season for SWE, unlike the results previously

shown with DePreSys and GCEP for surface temperature. However, when the standard

deviations of the hindcast runs with and without assimilation are compared, there are

areas that show more skill in the hindcasts with assimilation, even by year 2 (although

with the small number of hindcasts, this is unlikely to be significant).

Two case studies, spanning the snow seasons of 1995-6 (a large negative NAO

event) and 1997-8 (a large positive ENSO event) were examined. While the correlations

between the hindcast and ERA40 drop quickly after release, on examining the spatial

patterns there is often still some correspondence. During the case studies, the anomalies

from SSM/I correlate best with ERA40 during the autumn and spring. Examining the

spatial patterns shows that there is better correspondence between these two datasets

over North America than Eurasia. This is not surprising, as North America has more

snow observations which will better constrain ERA40, and most calibration for the
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SSM/I retrieval has been performed using data from the Great Plains. The spatial

correlations across the Northern hemisphere will also be most influenced by the larger

Eurasian land mass, so although the overall correlation for the ENSO case study was

lower than that of the NAO case study, the correspondence in North America is better.

ENSO would be expected to influence the SWE distribution in North America more

significantly than the NAO.

Agreement is good in western Eurasia between the assimilation run, hindcasts and

ERA40 when the sign of the NAO is also the same. Although ENSO has greater

impact on the world’s weather, on the basis of these case studies snow distribution in

the Northern hemisphere (in particular around the North Atlantic) is more sensitive to

the NAO index. However the NAO is variable between hindcasts, showing that for this

example, the assimilation scheme is not able to generate good forecasts of the NAO.

Snow affects regional temperatures, and since snow in the Northern hemisphere

is also likely to undergo changes in distribution with climate change, so an ability

to forecast snow distribution will be an important advance in the predictability of

global temperatures. While the results in this chapter show that the snow distribution

in a climate model can be relatively well-constrained by assimilation, forecasts diverge

rapidly once that assimilation ceases. Collins and Allen (2002) found that temperatures

over the land surface were not predictable over lead times greater than about a month,

and this limited predictability is also seen here in hindcasts of SWE. SSTs however

showed predictability at longer timescales, so if links between SST-driven variability,

such as ENSO, on snow distribution can be found, there is potential to extend the lead

times on snow anomaly forecasts. More work is required to understand the controls on

snow distribution in models, such as precipitation patterns and the NAO in particular,

and this is the subject of the next chapter.
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Predictability of snow anomalies in

HadCM3

7.1 Introduction

7.1.1 Predictability and seasonal forecasting

Advance information on snow distribution would be useful information for hydrological

and climate applications. The previous chapter showed that when constrained by

some observed initial condition anomalies such as temperature, the snow anomaly

distribution was only predictable a month or two ahead. Longer term predictions

could be possible, however, if the controls on snow distribution by boundary conditions

such as ocean conditions could be determined. Understanding more about the effect

of climate modes such as the El Niño-Southern Oscillation (ENSO) and the North

Atlantic Oscillation (NAO) on the rest of the climate system is an important step in

delivering useful forecasts.

Few published studies have attempted to link these climate indices to forecastable

patterns of snow distribution. Clark and Serrezze (1999) examine observed snow extent,

and find strong links in Europe with the NAO. Links with other climate modes, such as

the Siberian high, cannot be obtained by examining only snow extent as these areas are

entirely snow-covered during winter, so anomalies will only be evident in snow depth,

for which there are few observations.

Global precipitation was analysed by Dai et al. (1997) using a gridded dataset

derived from station data for the years 1900-1988 inclusive. The first EOF of the

dataset is a pattern related to ENSO, centred over the Tropics, and ENSO is also shown

to be the single largest cause of global extreme precipitation events. The authors also

consider the effect of the NAO on precipitation, which they show accounts for 10% of
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the DJF precipitation variance in the North Atlantic region. They confirm that positive

NAO periods bring increased rainfall to northern Europe (> 50oN), the East coast of

the United States, northern Africa and the Mediterranean, with decreased rainfall in

southern Europe, eastern Canada and western Greenland. The authors also find trends

in the global data (which are consistent with model-derived responses to increasing

CO2 levels) together with an increase in the period between dry events over the United

States. This presence of trend in the observed data, together with the difficulty of

making accurate precipitation measurements with good spatial coverage, makes the

patterns and mechanisms of interannual variability difficult to discern. GCMs become

an important tool for generating very long datasets with idealised forcings that can be

used for this sort of investigation. This model-based approach is the subject of this

chapter.

Most studies relating to snow and climate indices such as ENSO and the NAO have

been performed from a meteorology and atmospheric dynamics perspective: exploiting

snow information in order to predict the behaviour of the atmosphere some weeks ahead

(see references in chapter 2). However, HadCM3 has low land-atmosphere coupling

(Koster et al., 2002) so is poorly suited to these kinds of experiments. In this study,

the objective is reversed: can knowledge of the current snowpack and/or certain climate

modes be used to predict the state of the snowpack later in the season, or the following

one? This would represent an important advance in improving the lead times for both

hydrological and climate applications.

7.2 Data and methodology

7.2.1 The long HadCM3 control run

In order to understand the model’s internal variability, a long control run with fixed

external forcings (such as greenhouse gases) has been studied. This control run was

done on the computing cluster at ESSC, and was initialised from a much longer

control run performed at the Met Office, to ensure the model components had reached

equilibrium and there was no climatology drift. This run will be referred to as the

‘control run’.

The run is 545 years long, and fields are output at timesteps of one month. Snow-

covered area (SCA) is derived from the SWE field. For a gridbox to be completely

snow-covered, a threshold of 6.25mm SWE is required (following the method of Frei

et al. (2003) as part of the Atmospheric Model Intercomparison Project). Below this

threshold the fractional snow coverage of a gridbox decreases linearly with SWE.
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In all of the results that follow, North America and Eurasia have been treated

separately, as analysing the Northern hemisphere in its entirety leads to results heavily

biased by the larger Eurasian land mass. In the discussion that follows, NA refers to

North America and EU to Eurasia. Continental mean indices for SWE and SCA show

no trend in the 545 years (not shown).

7.2.2 Experiments

Extreme events

Extremely high or low snow years are important to predict for both hydrological and

climate forecasting. It may be that years with very high or very low amounts of snow

have an impact on the following year’s snowpack development, or that they may be

preconditioned in some way by events the previous year. To test this, ensembles of

high and low snow years (both SWE and SCA) are created from the long control

run, by extracting the years with the highest and lowest continental mean conditions

respectively. Ensembles of preceding and following SWE distributions can also be

compiled, at various lags, so the effect of particular conditions can be established.

Mean February SWE or SCA is used as representative of the snowpack for the winter.

To assess the signature of extreme years in the earlier part of the season, composites of

monthly SWE from the September to December preceding the extreme February will

also be analysed.

Student’s t-test is used to determine whether the distributions in different cases are

significantly different from the mean distribution in the run. A threshold for significance

of 99% is used, as the length of the run provides enough data to justify a high threshold.

The implication of the threshold is that only one case (e.g. one gridbox) in a hundred

will pass the test for significance by chance, so we can be 99% sure that the cases that

pass are indeed statistically significant.

ENSO

ENSO events have impacts on weather patterns across the globe, which may extend

far enough to modulate the characteristics of Northern hemisphere snow distribution.

While little has been published on the relationship of ENSO to snow distribution, this

approach has been used to analyse precipitation data. Ropelewski and Bell (2008)

examined the shift in the statistics of daily rainfall in South America with ENSO

phase. They find that useful information about the character of the rainfall season

can be extracted, and extend this to gridded datasets and the NCEP-NCAR reanalysis

product. They use the Kolmogorov-Smirnov test to determine whether the frequency
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distributions in positive and negative phases of ENSO are significantly different, and

this approach will be replicated here with snow data. Clark et al. (2001) also use station

data to examine the influence of ENSO events, this time on snowpack evolution in two

North American river basins. Composites of mean anomalous snow in warm and cold

phases are compared, and then used to predict runoff. This approach showed that

with the inclusion of ENSO information, there was skill in predicting Spring runoff

even before the snow begins to accumulate in Autumn. Here, this anomaly composite

approach is extended to hemispheric snow distribution, by employing a GCM.

The representation of ENSO in HadCM3 is discussed in Slingo et al. (2003). The

response of the Indian Ocean to an ENSO event is well modelled, but an exaggerated

response exists in the tropical Atlantic. The model reproduces the high-frequency

component (with a return period of ∼ 3 years) of the variability successfully, but does

not generate the additional lower frequency response (with a return period of ∼ 3 − 8

years) seen in the observations. Nevertheless, the representation of ENSO in HadCM3

is generally good (Collins et al., 2001). The ENSO index used here is the seasonal SST

anomaly in the Nino3.4 box (defined as between 5S, 5N and 170W, 120W), with an

anomaly of greater than 0.5oC denoting a positive ENSO event and less than -0.5oC

being negative.

The frequency distributions of continental mean values are generated and examined.

The Kolmogorov-Smirnov (K-S) test is used to determine whether the frequency

distribution of SWE at a gridbox is significantly different when the ENSO is in

opposite phases. The K-S test uses the maximum separation distance between the two

cumulative frequency curves to determine whether the distributions are statistically

different.

Composite seasonal anomalies are also created to assess the impact of ENSO on

SWE distribution. Four separate composites are created, based on the phase of the

ENSO in the four seasons leading up and coincident with the SWE anomaly. For

example, the February SWE anomalies are grouped based on whether ENSO was

positive in the MAM, JJA, SON or DJF leading up to that February. Likewise,

composites are formed for negative phases of ENSO. As an ENSO event will last for

consecutive seasons, each February anomaly can be in several groups. This will suggest

whether the distribution of snow in February can be predicted in any way from the

ENSO phase in the preceding seasons.
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NAO

Analogous experiments to those described above for ENSO can also be constructed for

the NAO. In this study, the NAO has been chosen as the index to use rather than

the AO, partly for the simplicity with which it can be extracted from model data (i.e.

without performing an EOF analysis). The NAO index is calculated seasonally by

subtracting mean sea level pressure in an Azores box (5 gridboxes wide, centred on

26W, 37.5N) minus that in an Iceland box (also 5 gridboxes wide, but centred on 34W,

60N). Positive events are defined as those seasons where the index is more than one

standard deviation above the control run mean, and negative events are those seasons

where the index is more than one standard deviation below the seasonal mean.

Collins et al. (2001) compare the NAO in HadCM3 to that in observations. The

model captures the observed variability well, though the amplitude is underestimated.

However, there is too much teleconnection to the Pacific sector, and the signature is

not strong enough over western Europe. In general, the representation of winter storm

tracks in HadCM3 is good (Slingo et al., 2003). The relevant storm tracks for this

study, the Atlantic, Eurasian and Mediterranean tracks, are all represented, although

weaker than observed in both density of tracks and their intensity.

As for the ENSO case described above, frequency distributions are calculated for

February SWE anomalies, stratified by NAO index in preceding seasons. Likewise, a

K-S test is performed, and spatial anomaly distributions are also composited.

7.3 Results

7.3.1 Extreme snow events

Figure 7.1a shows the frequency distribution of continental mean February SWE for

North America. The distribution has a mean value of 83mm, a standard deviation of

5mm, and a slightly positive skew (0.16). Table 7.1 shows the number of extreme events

that coincide with ENSO or NAO events. 7 years make up the ensemble of extremely

low snow years, with 12 years in the high snow years ensemble. 3 of the low years are

during positive ENSO events, 2 are neutral and 2 are negative. These proportions are

roughly the same as the control run as a whole. Of the 12 high years, 4 are during

positive events, 3 neutral and 5 negative. The proportion of extremely high snow years

that are ENSO-positive are roughly the same as for the control run as a whole, while

proportionally more extremely high snow years are during ENSO-negative events.

The frequency distribution for Eurasia is shown in figure 7.1b. The mean is lower

at 58mm (which is expected as the continental area is much larger), with a smaller
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Figure 7.1: Frequency distribution of continental mean February SWE (mm) from all
545 years of control run for North America (left) and Eurasia (right). Vertical lines
are shown at ±2σ away from the mean, with the number of years with SWE outside
this range indicated.

Table 7.1: Extreme events coincident with ENSO or NAO

Continent Extreme Total ENSO NAO
Pos Neutral Neg Pos Neutral Neg

NA High SWE 12 4 3 5 2 8 2
Low SWE 7 3 2 2 2 5 0

EU High SWE 14 6 5 3 3 10 1
Low SWE 11 0 3 8 1 9 1

standard deviation and skewness (2.6mm and 0.08 respectively). As shown in table

7.1, 11 years make up the low snow ensemble, with 14 years in the high snow ensemble.

Of the 11 low years, none are during positive ENSO events, 3 neutral and 8 negative.

This means an extremely low snow year is much more likely to be during an ENSO-

negative event than not, and the proportion of extreme events that are during negative

ENSO years is much higher than for the control run as a whole. The spread over ENSO

positive and negative events is more even for high years, with 6 during positive events,

5 neutral and 3 negative. Hardly any of the extreme years occur during positive or

negative NAO events.

First we examine the SWE distribution in extreme years. Figure 7.2 shows the

spatial distribution of February SWE for the ensembles of extremes for the two

continents. In high snow years, significant anomalies are seen in North America in

Alaska, central Canada, the Canadian East Coast and the American Rockies. In low
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Figure 7.2: Mean February SWE (mm) from highest and lowest SWE years expressed
as the difference between these and the mean (crosses showing pixels with differences
significant at 99%).
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Figure 7.3: Mean February SWE (mm) from the winters coincident with the highest
and lowest SCA years expressed as the difference between these and the mean (crosses
showing pixels with differences significant at 99%).

SWE years, significance in North America is found more zonally, with a wide band

of negative anomalies across the US. This suggests that extremely low snow years in

North America come about from a reduction in snow along the southern snow line,

whereas extremely high snow years have extra snow in mountainous and maritime

areas. Over Eurasia, high snow years bring significant anomalies to the Himalayas,

far eastern Siberia and the Urals. The pattern is reversed in low snow years, so both

extremes in continental mean SWE over Eurasia are driven by the amount of snowfall

in mountainous and maritime areas.

Figure 7.3 shows SWE anomalies in extreme SCA years. As would be expected,

large areas of significant anomalies are found along the fringes of the SWE distribution

where the anomalous SCA is found, but significant anomalies of the opposite sign are
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Figure 7.4: Mean February SWE distribution (mm) from the ensemble of years
preceding the highest and lowest SWE years. Expressed as the difference between
these and the mean (crosses showing pixels with differences significant at 99%).
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Figure 7.5: Mean February SWE distribution (mm) from the ensemble of years
following the highest and lowest SWE years. Expressed as the difference between
these and the mean (crosses showing pixels with differences significant at 99%).

also seen in a large area of western Russia. So, low extent years are associated with

higher SWE in western Russia, and vice versa. This could be indicative of an NAO-

type pattern, where storm tracks shift, bringing more snow to southern areas and less

to the north, and vice versa.

Now we examine seasons either side of the extremes. Figures 7.4 and 7.5 show

the ensemble of years preceding and following the highest and lowest SWE years

respectively. Little significance of the distribution of SWE anomalies is seen in the

Februaries following high or low SWE or SCA years (latter not shown). Some scattered

gridboxes are statistically significant, but 1 in 100 are expected to appear by chance

as part of the statistical test.
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Figure 7.6: Mean SWE (mm) from the autumn/winter months preceding the highest
and lowest SWE years expressed as the difference between these and the mean (crosses
showing pixels with differences significant at 99%).
From left to right, October SWE in NA, November SWE in EU, December SWE in
NA and EU.

As the preceding year’s snowpack has no influence on an extreme year’s distribution,

we now examine the SWE distribution in the months leading up to the extreme

February (figure 7.6). For extremely high years in North America, widespread

significance is first seen in October, with more than average SWE found in Alaska and

west of Hudson Bay. In Eurasia, it is not until November that widespread significance

begins to appear, with more SWE in the Urals and Himalayas. For both continents,

these areas remain significant through to February.

Examining now the extremely low years (figures 7.6c and 7.6d), it is not until

December that significance is seen on either continent. In North America, some low

SWE values are significant in the centre of the continent, though not nearly as extensive

as the significant low values in the February distribution (figure 7.2c). In Eurasia,

significance is seen in December at high latitudes in Russia, with some significance in

the Himalayas, all areas that have reduced SWE in February (figure 7.2d).

7.3.2 ENSO

Figures 7.7 and 7.8 show the effect of ENSO episodes on the frequency distribution of

February SWE during the control run. The frequency distribution of continental mean

February SWE values are shaded according to the ENSO index in different seasons

leading up to February. For instance, shown in red in figure 7.7a are the February

values that occurred when the preceding year’s MAM ENSO index was positive. The

mean, standard deviation and skewness for each of the distributions are listed in table

7.2.
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For North America, February SWE anomalies show a much more positive skew

than the rest of the control run when composited by warm ENSO phase in DJF, SON

or JJA. February anomalies in cold ENSO phases also show a more positive skew when

composited by MAM and JJA ENSO phase, though the skew is reduced when ENSO

is negative in the coincident DJF. The February anomalies that occur when ENSO is

positive in DJF have the lowest mean, a high standard deviation and the most positive

skew, while those that occur when ENSO is negative in DJF have the highest mean,

lowest standard deviation and most negative skew. Hence the generally warmer climate

in ENSO positive phases is generally leading to less snow over North America, but the

high standard deviation and long positive tail of the distribution (as shown by the

positive skew) show that there are not consistently low snow values in every positive

ENSO event: there are still many ENSO-positive years with positive snow anomalies.

The same pattern is true for ENSO negative years, in that while the climate is cooler

and snow anomalies are generally positive, the negative skew means there are still a

lot of low snow years amongst them.

For Eurasia, the statistics are mainly the opposite to the North American case:

the positive ENSO phase in DJF brings a higher mean SWE and lower standard

deviation, and vice versa for the negative phase. The changes in skewness however

are similar to North America: the positive phase displays a more positive skew, while

the negative phase shows a negative skew. It is interesting to note this difference

between the continents: the warmer climate of ENSO positive events leads to deeper

snow in Eurasia. It is therefore expected that the changes due to ENSO in Eurasia

are to increase precipitation in areas where it must fall as snow, namely those areas

at high latitudes or high elevation. It also appears that the response of Eurasian snow

to ENSO may be more predictable than for North America, as the skewness is in the

same direction as the change in mean values: for example, with both a higher mean

and more positive skew in ENSO-positive years, it is likely that a year with positive

ENSO index also has a positive SWE anomaly.

ENSO phase is clearly having an effect on the expected continental mean SWE

values for both North America and Eurasia. To see which areas are most affected

by ENSO phase, the cumulative frequency distribution of SWE at each gridbox

is calculated for both positive and negative ENSO phases (using the value in the

coincident DJF for simplicity, though the results are very similar whichever season

is used). These gridbox distributions are compared using the K-S test. In this study,

a significance threshold of 99% is used.

Figure 7.9 shows the K-S plot for SWE anomalies. The gridboxes which have

significantly different frequency distributions during opposite ENSO phases are shaded:
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Figure 7.7: Frequency distribution of North American mean February SWE (mm) with
ENSO index in preceding MAM, JJA, SON and coincident DJF. Left panel: ENSO
positive, right panel: ENSO negative.
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Figure 7.8: Frequency distribution of Eurasian mean February SWE (mm) with ENSO
index in preceding MAM, JJA, SON and coincident DJF. Left panel: ENSO positive,
right panel: ENSO negative.
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Table 7.2: Statistics of February SWE distribution with ENSO index in preceding
MAM, JJA, SON and coincident DJF.

No of years mean (mm) std (mm) skewness
NA whole run 545 83.4 5.15 0.16

MAM pos 143 84.0 5.03 0.02

neg 152 82.8 5.52 0.27
JJA pos 128 83.9 4.94 0.50

neg 132 83.3 5.54 0.32
SON pos 155 83.5 4.97 0.41

neg 164 83.5 5.37 0.10
DJF pos 154 81.9 5.45 0.54

neg 179 84.9 4.90 -0.07
EU whole run 545 57.7 2.62 0.08

MAM pos 143 57.1 2.36 0.34

neg 152 57.7 2.84 -0.13
JJA pos 128 57.3 2.51 0.18

neg 132 57.7 2.58 -0.29
SON pos 155 57.1 2.70 0.30

neg 164 57.6 2.61 -0.28
DJF pos 154 58.2 2.39 0.16

neg 179 56.7 2.75 0.06

Figure 7.9: Gridboxes with significantly different frequency distribution of SWE during
positive and negative ENSO phases are shaded (light: threshold = 95%, dark: threshold
= 99%). Significance assessed using the Kolmogorov-Smirnov test.
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dark shading represents a threshold of 99%, while lighter shading represents a threshold

of 90%. In North America, significant differences are found along the west coast and the

southern US. In Eurasia, differences are seen across the Himalayas, China and Japan.

These are areas of low latitude but high elevation, which are could see increased snow

even in a warmer global climate, if this is driving anomalously large precipitation.

An area of gridboxes significant at 95% is also seen in northeastern Canada. Single

significant gridboxes are found in other locations such as Europe; again, these are likely

to be the 1/100 (or 5/100) gridboxes that pass the test by chance. The shaded areas

correspond to regions that are highlighted in figure 2.1 as influenced by ENSO but also

have large amounts of seasonal snow.

Figure 7.10 shows the February SWE anomaly composites according to the

ENSO index of a particular season (preceding MAM, JJA, SON and coincident

DJF respectively). Examining first the SWE anomalies when the coincident DJF is

positive (figure 7.10d), large positive anomalies are seen over the Himalayas which are

significantly different from those years when ENSO is not positive in DJF. In North

America a dipole pattern is seen, with large negative anomalies along the west coast

and positive anomalies in the southern central US, both of which show widespread

statistical significance. This pattern is reproduced when considering DJF anomalies

following positive ENSO phase in SON and JJA (figures 7.10c and 7.10b respectively),

but not for positive ENSO phase in MAM (figure 7.10a).

Figure 7.11 shows the anomaly composites for February SWE following negative

ENSO phases. The spatial pattern is very similar to that for the positive ENSO phase

shown in figure 7.10, except with the sign of the anomalies reversed. Large negative

anomalies over the Himalayas are significant, though there are also significant negative

anomalies further east in China. Significance is also found in North America, with a

similar dipole pattern of opposite-signed anomalies on the west coast and central US.

Again the same pattern is seen whether considering ENSO phase in the coincident

DJF or preceding JJA and SON (figures 7.11b to 7.11d).In this case, the pattern and

significance in Eurasia is seen even when considering ENSO phase in the MAM leading

up to the February anomalies, though there is little significance in North America

(figure 7.11a). There are also significant negative anomalies in Europe in figures 7.11c

and 7.11a.

These results suggest that if a developing ENSO event can be detected or predicted

in JJA or SON, the characteristics of the snowpack the following February can also be

forecast.
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Figure 7.10: February SWE anomaly distribution (mm) from years with positive ENSO
index in the previous MAM, JJA, SON and coincident DJF respectively. Crosses show
pixels with significant differences from non-positive Februaries at 99%.

143



Chapter 7

SWE anomaly (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50

(a) MAM ENSO negative

SWE anomaly (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50

(b) JJA ENSO negative

SWE anomaly (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50

(c) SON ENSO negative

SWE anomaly (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50
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Figure 7.11: February SWE anomaly distribution (mm) from years with negative ENSO
index in the previous MAM, JJA, SON and coincident DJF respectively. Crosses show
pixels with significant differences from the mean at 99%.
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Table 7.3: Statistics of February SWE distribution with NAO index in preceding MAM,
JJA, SON and coincident DJF.

No of years mean (mm) std (mm) skewness
NA whole run 545 83.4 5.15 0.16

MAM pos 90 82.7 5.31 0.19

neg 96 83.6 4.32 0.22
JJA pos 83 83.0 5.29 0.38

neg 89 83.4 4.83 0.19
SON pos 90 82.7 4.99 -0.07

neg 75 83.8 4.98 0.06
DJF pos 91 82.8 5.02 0.31

neg 92 83.8 4.77 0.11
EU whole run 545 57.7 2.62 0.08

MAM pos 90 57.8 2.74 0.29

neg 96 57.2 2.59 -0.06
JJA pos 83 57.5 2.79 0.14

neg 89 57.4 2.47 0.06
SON pos 90 57.2 2.64 0.18

neg 75 56.9 2.18 -0.06
DJF pos 91 57.6 2.66 0.17

neg 92 56.9 2.33 0.05

7.3.3 NAO

Figures 7.12 and 7.13 show the effect of the NAO index on the frequency distribution

of February SWE during the control run. The frequency distribution of continental

mean February SWE values are shaded according to the NAO index in different seasons

leading up to February. The mean, standard deviation and skewness for each of the

distributions are listed in table 7.3.

For North America, the mean SWE is reduced in Februaries composited by positive

NAO index, and increased in composites with negative NAO index. The standard

deviation is also reduced in negative cases. No consistent pattern is seen with respect

to skewness. Over Eurasia, the continental mean SWE is very similar in each case,

showing that, as expected, the total amount of snow does not change with NAO index,

simply the tracks of the storms. The standard deviation is raised for positive cases,

and lowered for negative ones. There is also more positive skew in positive cases, and

very little skew in negative cases.

Figure 7.14 shows the result of the K-S test for the NAO, with the same shading as

in figure 7.9. SWE anomalies with significantly different frequency distributions with

opposite NAO index are shaded. Significant gridboxes are more widespread in this case
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Figure 7.12: Frequency distribution of North American mean February SWE (mm)
with NAO index in preceding MAM, JJA, SON and coincident DJF. Left panel: NAO
positive, right panel: NAO negative.
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Figure 7.13: Frequency distribution of Eurasian mean February SWE (mm) with NAO
index in preceding MAM, JJA, SON and coincident DJF. Left panel: NAO positive,
right panel: NAO negative.
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Figure 7.14: Gridboxes with significantly different frequency distribution of SWE
during positive and negative NAO phases are shaded (light: threshold = 95%, dark:
threshold = 99%). Significance assessed using the Kolmogorov-Smirnov test.

compared to ENSO (figure 7.9), which is to be expected given that the main influence

of ENSO is the Tropics, whereas the NAO directly impacts higher latitudes which have

more snow. Significance is seen in the United States, the coasts of Canada, most of

Europe and midlatitude Asia.

Figure 7.15 shows the composite of February anomalies by NAO phase. When

the NAO is positive in DJF (figure 7.15d, European SWE anomalies are negative and

significant. Significant positive anomalies are found further east around the Black Sea

and much of central Asia. Widespread significant negative anomalies are also seen

across the United States, with some large positive anomalies found on the west coast.

This pattern of anomalies reflects the expected pattern of the NAO from the illustration

in figure 2.2. Some significance at high latitudes in Europe is seen when the NAO is

positive in SON (figure 7.15c), along with far eastern Russia/northern China and the

east coast of North America. Very little significance is evident in composites based on

other seasons.

The picture is almost exactly reversed when the NAO is negative in DJF (figure

7.16d), with widespread positive SWE anomalies in Europe and the United States.

Again, significant negative anomalies are seen in central Eurasia. In addition,

northeastern Canada shows a cluster of significant positive anomalies. Figure 7.16c

shows significant positive anomalies in Scandinavia and Mongolia, with large significant

negative anomalies on the west coast of North America. Once more, no significance is

seen when considering JJA and MAM NAO index (figures 7.16b and 7.16a respectively).
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Figure 7.15: February SWE anomalies (mm) from years with positive NAO index in
the previous MAM, JJA, SON and coincident DJF respectively. Crosses show pixels
with significant differences from the mean at 99%.

The results show that some information on February SWE distribution can be

obtained from the NAO index in SON, but more widespread significance is seen when

using the coincident DJF NAO index.

7.4 Discussion

An investigation of the distribution of SWE anomalies in extreme years and during

ENSO and NAO events has been made, in order to see where potential predictability

of SWE anomalies may exist. The most extreme years, in terms of highest and lowest

continental mean SWE, have a similar pattern (with opposite sign) over Eurasia in both

cases, with the largest anomalies occurring in the Urals, central Siberia, the Himalayas

and northeastern Siberia. In North America, however, the opposite extremes look

quite different. Extremely high snow years have more snow along the coasts and in

the central states, while extremely low snow years have a zonal pattern of less snow

149



Chapter 7

SWE anomaly (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50

(a) MAM NAO negative

SWE anomaly (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50

(b) JJA NAO negative

SWE anomaly (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50

(c) SON NAO negative

SWE anomaly (mm)

-50 -40 -30 -20 -10 0 10 20 30 40 50

(d) DJF NAO negative

Figure 7.16: February SWE anomalies (mm) from years with negative NAO index in
the previous MAM, JJA, SON and coincident DJF respectively. Crosses show pixels
with significant differences from the mean at 99%.
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across the United States. The high years also show significance earlier in the season,

while for both continents there is little sign, even by December, that the mean SWE

for February will be extremely low. No significance was found in years before or after

extremes of continental mean SWE, so in HadCM3 at least there is no preconditioning

of extreme SWE by the previous year’s snowfall, and no memory of an extreme year

in the following year’s snowfall. La Niña events are more common amongst high snow

years in North America and low snow years in Eurasia than for the run as a whole,

although the spatial SWE distribution in either case does not look the same as the

average La Niña pattern for the run. This suggests that other factors are involved in

driving the extremes of continental SWE. As was shown by Sobolowski et al. (2007)

the forcing effects of snow and orography are likely to combine non-linearly and hence

are very difficult to predict.

The effect of ENSO on the frequency distribution of SWE in North America is to

reduce the mean SWE and skew the distribution slightly towards lower values when

ENSO is positive in DJF, and to shift the mean higher and skew the distribution

towards higher values when DJF is negative. This is associated with a dipole anomaly

structure, with significant anomalies of opposite sign centered in western Canada

and the central United States. This dipole structure reduces the effect of ENSO on

continental mean values: a further study which analyses these two regions of North

America separately may show enhanced predictability. In Eurasia the effect of ENSO

on the frequency distribution of SWE is somewhat reversed: while warm episodes

still lead to a more positively skewed distribution, the mean value is raised. Again,

the opposite effect is seen during cold episodes. In Eurasia the significant anomalies

are concentrated in the Himalayas, and it is this area that dominates the effect on

continental mean values. The areas showing significance during both positive and

negative events correspond to the regions with significantly different SWE distributions

found using the K-S test. As expected, it is the high elevation areas of Eurasia that

dominate the Eurasian SWE response, while the high elevation region of North America

shows an opposite response. At this higher latitude it is the warmer climate of the

positive event that dominates (and vice versa for negative events), while the lower

latitude region of North America responds similarly to Eurasian regions.

While most of the anomaly patterns were as expected, the clear link between

Himalayan snow in HadCM3 and ENSO was more surprising. However, a recent

study by Mariotti (2007) of a combination of station data and reanalysis products

finds a similar relationship between SON precipitation and ENSO in this region,

driven by anomalous moisture flux from the Arabian Sea and tropical Africa. The

relationship is important if using HadCM3 to investigate, for instance, the Blanford
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hypothesis, although ENSO-monsoon links in HadCM3 are somewhat weaker than in

reality (Turner et al., 2005).

The link with February SWE distribution is seen to exist from the previous JJA

ENSO index onwards. This suggests that if there is a positive or negative ENSO event

occurring in JJA, characteristics of the February SWE distribution in certain regions

can be forecast. This represents a long lead time for hydrological applications such as

flood and wildfire forecasting. It also makes sense in terms of an ENSO event lasting

several seasons, and impacting on precipitation during the Northern hemisphere snow

accumulation period. This seasonal dependence within predictability studies has been

noted before, with lowest predictability occurring in spring (MAM) e.g. Latif et al.

(1998). This ‘spring predictability barrier’ is not well understood, and it has been

suggested that it is an artifact of models.

The results of NAO composites also show significant impacts on SWE distribution,

particularly in Europe and eastern North America. Significant areas also occur along

the west coast of North America and eastern Russia, which could be a consequence

of the exaggerated teleconnection between the NAO and the Pacific in HadCM3, as

documented in Collins et al. (2001). The NAO does not show potential for seasonal

forecasting beyond the coincident DJF, and some limited areas using SON; this is not

surprising, as the NAO index is more a measure of current storm activity. While this

is important for SWE accumulation, the NAO index is not so much a driver of longer

term variability as a measure of that variability itself. To exploit this behaviour, the

mechanism that drives the NAO index (perhaps longer term ocean variability) needs to

be understood. Recently, the utility of the NAO index was put into doubt by Ambaum

(2008), who showed that the seemingly bimodal distribution into positive and negative

states in the last 30 years could be explained by sampling variability alone, and that the

underlying behaviour is in fact Gaussian. Clearly, more investigation is required into

mechanisms that drive mid- to high latitude variability if we are to produce reliable

snow forecasts.

The study presented here shows that ENSO has the most promise as a predictor

of February SWE. Applying the results to real world predictions requires confidence in

both the model’s representation of climate dynamics and its snow component, and the

latter has been shown earlier in this thesis to be crude. While a GCM will always be

an incomplete representation of reality, it is an appropriate tool for this kind of study

as long time series with prescribed forcing can be produced, allowing more statistical

confidence in the output and an examination of purely the internal variability. The

results in this section do mirror other similar studies that have been performed using

other models and observational datasets, which lends confidence to these conclusions.
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Conclusions

8.1 Summary of results

The GCEP project aims to test a method of producing seasonal predictions of climate.

Results for the land surface, and in particular snow, are an important aspect of this

research, as they will help to inform many aspects of economic and social policy. A

number of aims were set out at the start of this thesis, and a summary of these and

the results are presented below.

I. To investigate the variability of Northern hemisphere snow data as observed by

satellites.

The SSM/I dataset used in this thesis is the only long-term, global observation-

based SWE product available. The retrieval used to derive SWE was developed

in 1987 by Chang et al., and this simple empirical difference equation has changed

little in twenty years. Despite many newer approaches being proposed, this type

of static retrieval is often found to be the most consistently reliable choice at

large scales (Koenig and Forster, 2004; Armstrong and Brodzik, 2002; Foster

et al., 1997). An EOF analysis of the data from 1987-2005 revealed a coherent

annual cycle. The most prominent interannual anomaly pattern is active over

central Eurasia, and accounts for 1.3% of the variance of the entire dataset, and

13% with the seasonal cycle removed. This interannual pattern is most active in

the boreal forest region (figure 3.9).

II. To investigate the variability of Northern hemisphere snow data as modelled by a

GCM.

The GCM used in GCEP is HadCM3, developed by the UK Met Office in the

1990s. This makes it a relatively old model, but it does a good job of simulating

the Earth’s climate compared to other coupled climate models (see, for instance
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the CMIP3 study by Covey et al. (2003)). Many aspects of HadCM3 have been

well-studied, in particular the tropical oceans, but the representation of the land

surface, and snow in particular, is crude. As GCMs become more sophisticated

and represent more physical processes, further investigation of this crucial aspect

of the climate system is required to build on the success of HadCM3 in the future.

The climatology of a long control run of HadCM3 shows deep SWE along the

Pacific coasts of North America and Eurasia, and also in the western half Eurasia

and northeastern Canada (figure 4.5). Little snow is seen in Siberia. The

SWE distribution is little changed in a transient run with increasing greenhouse

gases when compared to a pre-industrial control (figure 4.6). A run with

flux adjustments generally reduces SWE across the hemisphere, with increases

confined to the higher latitudes (figure 4.9).

The ERA40 reanalysis product is used to provide the atmospheric data for the

GCEP project to constrain and validate HadCM3. It is a synthesis between

meteorological observations and a GCM, and its snow fields are constrained by

the assimilation of (albeit sparse) in situ snow data. The SWE climatology for

1958-2001 (figure 4.14) shows maximum SWE in March in central Siberia and

northeastern Canada.

III. To understand the differences between the observed and modelled snow data.

Having generated climatologies of SWE from HadCM3, SSM/I and ERA40, it is

clear that these datasets are very different, particularly over Siberia. It is difficult

to validate the data in this region, as there are few in situ observations to constrain

SWE, and precipitation estimates are particularly inaccurate at high latitudes,

due to the problem of gauge undercatch (Guntner et al., 2007). Boreal forests

are a challenging environment for both the satellite retrievals and the GCM, not

least because the behaviour of snow in the boreal forests is not well understood.

Using summer runoff as an integrated measurement of winter snow amount, the

Lena shows a large snowmelt peak in June not replicated in the HadCM3-derived

hydrograph. Having compared a range of other models and retrieval techniques,

the SSM/I product is more likely to be an overestimate in this region (due to

assumptions inherent in the retrieval algorithm), while HadCM3 is more likely to

be an underestimate. The ERA40 climatology lies somewhere in between, and is

constrained by available observations, so this could well be a more reliable SWE

distribution.
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IV. To assess the ability of a GCM to reproduce observed snow anomalies.

Having established the differences between the climatologies, for this chapter

ERA40 is taken as ‘truth’. The model’s ability to reproduce the distribution of

ERA40 SWE anomalies is tested via an anomaly assimilation scheme, as used

in the Met Office’s DePreSys project (Smith et al., 2007). The SWE anomaly

distribution is well reproduced in assimilation mode, but when hindcasts are

released from this run and allowed to evolve freely, the pattern diverges from

both ERA40 and assimilation run. The memory of the initial conditions (the

point of release from the assimilation run) is lost at the start of the following

snow season. Unfortunately, a statistically robust analysis of the biases in the

hindcasts was limited by the small ensemble size, which was necessary due to the

errors in the ERA40 reanalysis for 1989-1994. As an alternative, two case studies

were examined in detail.

A case study of a large negative NAO event in 1995-6 shows that SWE anomalies

are well reproduced in Europe when the sign of the NAO is the same in the

hindcast and the observations, but predictions of the index are not reliable in the

cases examined here. An examination of the 1997-8 ENSO event showed better

reproduction of SWE anomalies over North America, despite the hemispheric

spatial correlations being lower than for the NAO case study (the larger Eurasian

land mass dominates the hemispheric calculation).

V. To assess the predictability of snow anomalies.

The results from the assimilation and hindcast experiments suggest that the

SWE anomaly distribution is governed more by the boundary conditions of the

assimilated fields (temperature, pressure, winds and ocean salinity) than the

initial state at the point of release. In the final results chapter, the model is

allowed to evolve according to is own internal variability over a multi-century run,

and the SWE distribution examined. Years of extremely high or low SWE and

snow-covered area were shown to have no memory from one season to the next,

and were not preconditioned by the previous year’s snow distribution. ENSO

and NAO events had a much more obvious impact on the SWE distribution,

with ENSO driving significant anomalies in the Himalayas and North America,

and the NAO impacting North America and Europe.

While significant connections with NAO index were only present in DJF (and to

an extent SON), the link with February SWE distribution was seen to exist from

the previous JJA ENSO index onwards. This suggests a lead time of 6-8 months

on SWE anomaly distribution during ENSO events.

155



Chapter 8

Chapter 1 of this thesis set out three hypotheses to be tested:

1. Information on the distribution of SWE in the Northern hemisphere can be

reliably obtained from remote sensing and GCMs

2. Snow distribution in coupled models will be better forecast from an initial state

that is constrained by observations of fields such as surface temperature.

3. Seasonal forecasts of SWE anomalies can be made with knowledge of large scale

patterns of climate variability such as the El Niño-Southern Oscillation

Hypothesis 1 is rejected. Hypothesis 2 is supported only for a few months, as

at longer lead times the hindcasts released from the assimilation run show similar

characteristics to those released from the No assimilation ensemble mean. Hypothesis

3 has been accepted within HadCM3, as SWE anomalies show predictability with

ENSO at lead times of over 6 months. However, this hypothesis has yet to be tested

with observational data.

8.2 Discussion

The first notable result in this work is the large disagreement in the SWE distribution

between the available datasets: it appears that we do not know how the snow is

distributed across the Northern hemisphere. In many respects this is unsurprising; the

very presence of snow can make a location inhospitable and inaccessible, and ground

truth data difficult to retrieve. What is more surprising is the lack of remarks on this

in the literature. Yang et al. (1999) make a comparison of GCM SWE distribution and

SMMR-derived SWE, and conclude that “the available datasets and models are not yet

ready to fulfil this objective [a rigorous evaluation of snow simulations in coupled land-

atmosphere models]”. Most studies of remotely sensed SWE (Derksen and LeDrew,

2000; Derksen et al., 2005; Langlois et al., 2004; Mognard and Josberger, 2002; Parde

et al., 2007; Pulliainen and Hallikainen, 2001) have understandably concentrated on

studying limited areas with good ground-based data, often the Great Plains in North

America. However, comparing the large scale distributions highlights the gulf between

the datasets.

Neither dataset can be established a priori as the truth. HadCM3 is a large,

complex model which, while physically-based and extensively studied, will always be

an incomplete approximation to a complex system. On the other hand, the SSM/I

radiometer measures brightness temperatures, not SWE, and a model is required to
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retrieve one from the other. Examining both together should enable more conclusions

to be drawn about each individually.

If the SWE distribution within HadCM3 is correct, then the assumptions used in

deriving the SWE retrieval algorithm are critically flawed, and the algorithm should

not be applied globally. If the SWE distribution from SSM/I is more correct, then the

model is not snowing enough over Siberia, suggesting that there are large circulation

biases occurring in this region. The work of Gong and Entekhabi (2003) and Cohen

et al. (2007) highlight snow in Siberia as having an important role in the circulation

patterns of the Northern hemisphere, so errors in the region are likely to have important

consequences downstream. Additionally, if the modelled snow and hence modelled

runoff is wrong, then this will be affecting the amount and distribution of sea ice,

which has an important role in climate feedbacks. There appears to be agreement across

GCMs about the Siberia ‘hole’ in SWE (see figure 5.17), so if this SWE distribution

does diagnose a circulation problem, it is widespread. Additionally, this is also an

area where GCMs predict large changes in precipitation amounts with climate change

(figure 5.18), so an understanding of the basic state in the models is critical for the

interpretation of these future changes.

An important caveat that emerges from this line of thought is that the results one

obtains when investigating SWE distribution and its links to the rest of the climate

system could depend heavily on the source of the SWE data. Taking the Blanford

hypothesis as an example, as discussed in chapter 2, recent studies have produced

contradictory results as to the sign of the snow anomaly correlation with the monsoon,

the region of Eurasian snow that has the most influence, and whether it is depth or

extent anomalies that are most influential (Bamzai and Shukla, 1999; Kripalani and

Kulkarni, 1999; Robock et al., 2003). Could these contradictions be a consequence

purely of the contradictions between the different sources of snow data?

With these issues in mind, the approach taken in chapter 6 of this thesis is

to take ERA40 as ‘truth’, and to test HadCM3’s ability to reproduce the ERA40

SWE anomalies when given other ERA40 anomaly fields as input. Assimilation of

temperature, salinity, sea level pressure and winds was shown to be broadly successful

in reproducing the correct SWE anomaly distribution. The main drivers of SWE

distribution are temperature and precipitation, so since the temperature fields are

assimilated, the remaining biases must come from differences in precipitation. The

CMIP3 study showed that GCMs have been shown generally to have difficulty in

reproducing accurate precipitation fields (Covey et al., 2003).

The results of the hindcast runs showed that, for HadCM3 at least, boundary

conditions are more important for reproducing snow anomalies than correct initial
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states of the assimilated fields in the schemes tested. Biases in this case come from both

those fields that had biases during the assimilation period (such as precipitation) and

those that diverge quickly from the constrained initial state. Land surface temperatures

have previously been shown to be predictable only up to a month ahead (Collins and

Allen, 2002), although other results from GCEP suggest that after bias correction there

may in this case be some skill in air temperature over land at longer lead times (Haines

et al., 2008). The NAO case study in particular showed the sensitivity of European

snow anomaly distribution to the sign of the NAO index, which was variable across

the hindcasts.

Despite reduced skill over land, GCEP results show multi-annual predictions are

possible for other fields such as ocean heat content, and relate initial conditions of

these storage variables to predictability in other fields such as mean sea level pressure

(Hermanson and Sutton, 2008). The results of chapter 7 show that there are links

between large scale modes and snow anomalies in HadCM3, and if long term predictions

of ENSO could be made, this may be a more useful way of obtaining snow predictions

at long lead times.

However, the land surface component of HadCM3 is crude, and improvements are

required (such as, perhaps, an explicit snow layer and surface tiling to better partition

the flux calculations) for the results from the model to carry greater confidence.

Nevertheless, these results are an encouraging step in understanding snow variability.

In order to both develop better snow models and apply these model-derived results to

the real world, more reliable long-term snow observations are required. Once greater

confidence is reached in the global snow observations, assimilation of these observed

SWE fields into models would be an important next step in understanding the feedbacks

between the land surface and climate in interannual predictions.

Remote sensing is the only way to achieve large scale snow mass measurements with

high temporal and spatial resolution, yet existing satellite-derived SWE estimates are

often rejected because of their perceived unreliability. The limitations of the static SWE

retrieval method are well-known, so why is it still used, and why is it believed to perform

better than the other retrievals that have been developed since? Microwave retrievals

at a point are extremely sensitive to the snow grain size parameter, which in reality will

vary across a snowpack both vertically and horizontally. Derksen et al. (2005) found

that by subsampling a single SSM/I grid cell, the microwave estimate lay in the centre

of a highly variable but normally distributed set of in situ measurements. This suggests

that the spatial averaging performed over a pixel by the radiometer cancels out the

high variability of the grain size (and other varying parameters to which the retrieval

is sensitive). This scaling is not well understood, and improved understanding could
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provide more insight into how the retrieval works. If the properties of the snowpack

and its interaction with radiation were better understood at the scale of a satellite

pixel, which may be up to tens of kilometres across, a more physically-based retrieval

could be applied to over 30 years of existing satellite measurements and deliver an

important dataset for use in many applications.

An alternative approach in using the remotely sensed data would be to assimilate

the radiance measurements from the radiometer directly. This is common in variational

data assimilation schemes, but in order to understand the radiance measurements we

would still have to develop a better understanding of the surface interaction with

radiation. Additionally, while radiance assimilation is common in numerical weather

prediction, there will always be applications which require a derived product (SWE,

snow depth, or snow mass) either for input into a model or for comparison with in situ

data.

New satellite missions that are scheduled for launch in the future could also benefit

from the SWE information that SSM/I could provide. One such mission is the

Global Precipitation Measurement mission (GPM)1, due to be launched in 2013. The

aim of this mission is to measure precipitation, including solid precipitation at mid-

and high-latitudes using high frequency passive microwave channels. Validation of

high latitude solid precipitation estimates will be challenging, and while one of the

mission’s aims is to improve passive microwave retrievals over land, it would surely

be a benefit to this mission if reliable high latitude lying snow estimates were already

available. Precipitation reconstruction from snow depth measurements combined with

a model has already been tested (e.g. Cherry et al. (2005)), and while reliable ground

measurements of snow depth or SWE are not easy, these quantities are more measurable

than snowfall. The accumulation of snow on the ground would provide a simple first

order check on the retrievals from GPM, and help to validate estimates of global

precipitation that are so lacking at the moment.

8.3 Future work

The work in this thesis has tested the hypotheses as set out, but inevitably, these

answers lead on to new questions. In particular, the following areas could be addressed:

I. Improvements to microwave SWE retrievals

There are a number of issues with the microwave retrievals that need to be

addressed. A better understanding of how retrievals at a point scale up to the

1http://gpm.gsfc.nasa.gov/index.html
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size of the radiometer footprint is essential for dealing with subpixel variability,

for instance with grain size. More investigation of how vegetation interacts with

microwaves is also required, along with more appropriate ways of characterising

the vegetation than simply the fraction of forested pixel (for instance canopy

closure or stem volume). A more physically-based, forward modelling approach

would be a start to addressing these issues, and yield results that would be more

applicable to regions outside the calibration areas.

II. Testing predictability links with real data

Links between ENSO and snow distribution have been found in models, but these

need to be applied to the real world. Clearly, a 545-year observational dataset

is unrealistic, so to test these results with real-world data requires a different

approach. One method could be to break the control run down into many shorter

runs, of a length more similar to observational datasets, and assess the statistical

likelihood of detecting the ENSO-SWE or NAO-SWE signals in any one run of

this length. Results could then be compared with the observations themselves.

The presence of trends in the real world (for instance due to climate change) will

also need to be understood in this context in order to apply these results.

III. Evaluation of MSLP and precipitation in hindcast runs

Up till now, the assessment of hindcast performance within GCEP has been

mainly in terms of surface temperature, and ocean fields such as sea surface

temperature and heat content. Mean sea level pressure is a field that is

assimilated as part of the scheme presented here, and an evaluation of the

scheme’s success in forecasting circulation patterns would provide a useful context

for the lack of predictability that was seen for snow. Precipitation is not

assimilated, but a similar assessment of the global field would provide further

information on areas in which the model is having difficulty.

IV. Extension of the method to other storage/memory variables

The same methods presented here could be applied to other important storage

fields such as soil moisture and sea ice. Soil moisture presents additional

challenges, as there are even fewer observations available than for SWE. ESA’s

SMOS (Soil Mositure-Ocean Salinity) mission, and the NASA mission SMAP

(Soil Moisture Active Passive) are due to be launched in the coming years, and

aim to provide global soil moisture fields for analysis. Sea ice observational

datasets are more readily available, though as for snow, extent datasets are more

common and cross-validated than depth data.
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8.4 Concluding remarks

In order to plan for the years and decades ahead, knowledge of the internal variability

of the climate system is required. Policy makers need to make decisions now, so

it is important to make best use of the tools which are currently available, while

appreciating the limitations of each. SSM/I has been providing data for twenty years,

and the time series extends back further if the SMMR instrument is included. This

represents an important resource in characterising the climate system, and how it

has changed in the last decades. Even if the established SWE retrieval is flawed,

the brightness temperature data are real, and have been responding to the surface

environment. Linking this data source with studies using models such as HadCM3 is

vital for understanding how these changes may affect our climate in the future.
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