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Beat perception is fundamental to how we experience music, and yet the mechanism
behind this spontaneous building of the internal beat representation is largely unknown.
Existing findings support links between the tempo (speed) of the beat and enhancement
of electroencephalogram (EEG) activity at tempo-related frequencies, but there are no
studies looking at how tempo may affect the underlying long-range interactions between
EEG activity at different electrodes. The present study investigates these long-range
interactions using EEG activity recorded from 21 volunteers listening to music stimuli
played at 4 different tempi (50, 100, 150 and 200 beats per minute). The music stimuli
consisted of piano excerpts designed to convey the emotion of “peacefulness”. Noise
stimuli with an identical acoustic content to the music excerpts were also presented
for comparison purposes. The brain activity interactions were characterized with the
imaginary part of coherence (iCOH) in the frequency range 1.5–18 Hz (δ, θ, α and lower β)
between all pairs of EEG electrodes for the four tempi and the music/noise conditions,
as well as a baseline resting state (RS) condition obtained at the start of the experimental
task. Our findings can be summarized as follows: (a) there was an ongoing long-range
interaction in the RS engaging fronto-posterior areas; (b) this interaction was maintained
in both music and noise, but its strength and directionality were modulated as a result
of acoustic stimulation; (c) the topological patterns of iCOH were similar for music, noise
and RS, however statistically significant differences in strength and direction of iCOH
were identified; and (d) tempo had an effect on the direction and strength of motor-
auditory interactions. Our findings are in line with existing literature and illustrate a part
of the mechanism by which musical stimuli with different tempi can entrain changes in
cortical activity.

Keywords: coherence analysis, imaginary coherency, electroencephalography (EEG), music tempo, brain
connectivity analysis
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INTRODUCTION

Our ability to spontaneously perceive the beat of a musical
piece—that is, the most prominent accent, periodicity or
rhythmic unit (meter) in the piece—is fundamental to the
experience of music and is independent of prior musical
training (Large et al., 2002). The mechanism behind this
spontaneous building of the internal beat representation from
music is largely unknown. The resonance theory for beat
perception proposes that the perception of periodicities in music
is accomplished through an internal mechanism underlined
by entrainment of neural populations that resonate to the
frequency of the beat (Large and Kolen, 1994; Large, 2008)
and studies by Nozaradan et al. (2011, 2012) show that this
effect is measurable in electroencephalogram (EEG) activity.
Such beat-related changes in the EEG are characterized by
EEG entrainment, the phenomenon that oscillations in the
EEG increase their activity when their frequency corresponds
to the musical beat (dominant tempo). Nozaradan et al.
(2015, 2017) report significant periodic increases of EEG
amplitude in the time domain at the same frequency as
the beat, and multiple peaks at frequencies corresponding
to the envelope of the rhythmic pattern in the frequency
domain (i.e., frequencies that are directly related to the beat;
Nozaradan, 2014). However, it has been shown that spectral
representations of rhythms are sensitive to acoustic features of
the tones that make up the rhythm, such as tone duration,
without affecting beat perception; thus, frequency-domain
representations of rhythms are dissociable from beat perception,
and entrainment should be interpreted with caution (Henry et al.,
2017).

The majority of studies that look at the effects of tempo
(the speed of the beat, usually expressed as beats per minute)
on brain activity concentrate on spectral features, with effects
mainly identified in the α (Yuan et al., 2009) and β ranges
(Hurless et al., 2013) of the neural activity. For example, activity
in the β range was found to increase when listening to more
activating, i.e., faster paced, music (Hurless et al., 2013). Beta
activity (14–25 Hz) in particular is associated with higher
arousal, which could explain why it was more prominent in
music with faster tempo as opposed to slower, more calming
music—in fact β activity increased with increasing tempo (Höller
et al., 2012). An additional explanation is that the more upbeat
music may influence motor regions due to the relationship
between activating music and dancing, which in turn results
in increased β activity (Höller et al., 2012). Activity in the α

range (8–13 Hz) was also found to be associated with tempo
modulations. Daly et al. (2014a) report strong α range event-
related desynchronization over the left motor cortex, correlated
with the variation in musical tempo. In a related study, Yuan
et al. (2009) looked at changes in EEG spectral power when
listening to tempo-transformed music. The main finding was
a decrease in EEG α power as the tempo moved further from
the tempo of the original piece. Two possible explanations for
this were: (i) increases in brain resources needed to process
perceptual information associated with the transformed tempo;
and (ii) higher brain activity related to changes in emotional

responses caused by the unnatural and odd tempo-transformed
music.

It has also been shown that each individual has a preferred
musical tempo, and the preferred tempo for the population peaks
slightly above 120 beats per minute (2 Hz). The neural correlates
of this preferred tempo have been identified as arising from
neural activity in themotor cortex and are significantly correlated
with the β rhythm (Bauer et al., 2014). This is not surprising as a
strong relationship between movement and beat perception has
previously been identified: movement influences the perception
and metrical interpretation of musical rhythms (Phillips-Silver
and Trainor, 2007; Iversen et al., 2009) and listening to rhythmic
sequences activates specific motor areas (Schubotz and von
Cramon, 2001; Grahn and Brett, 2007; Zatorre et al., 2007;
Chen et al., 2008; Bengtsson et al., 2009; McAuley et al., 2012).
Of particular interest is the relationship between the preferred
musical tempo with the preferred frequency in locomotion
(MacDougall and Moore, 2005) and the identification of the
contribution ofmotor areas to rhythm generation and perception
(Janata and Grafton, 2003). However, Nozaradan (2014) has
identified dampening of the selective enhancement of the
neural response to frequencies that correspond to the beat
when the tempo of the musical piece is either too fast or
too slow. The nature of this neural modulation also differs
across individuals and it can be observed as either increased
or decreased excitability as tempo approaches the preferred
individual tempo; this difference can be due to factors such
as attention, musical experience and rhythmic ability (Grahn
and Rowe, 2009; Michaelis et al., 2014). It has been suggested
that activity in the β band may play a role in this auditory-
motor co-ordination (Fujioka et al., 2009, 2012). These findings
seem to suggest the existence of a (long-range) neural coupling
mechanism between auditory and motor cortices underlying
the neural correlates of rhythm perception and production,
which has yet to be studied (for a more detailed review of this
sensorimotor synchronization see the review by Repp and Su,
2013).

In this study we extend previous findings to investigate the
modulation of neural connectivity patterns while participants
listen to musical stimuli that target a ‘‘peaceful’’ affective
state, played at 4 different tempi. In our previous work we
investigated the neural correlates of emotional responses to a
varied set of musical stimuli and identified areas with significant
power asymmetry and functional connectivity (i.e., temporal
correlations) during different induced emotions (Daly et al.,
2014b). These were significant in the higher β (18–22 Hz) and
γ (35–39 Hz) bands, and this long-range functional connectivity
always involved the pre-frontal cortex. However, the neural
relationships arising from listening to musical pieces at different
tempi have not been previously investigated. Thus, in the
current study we are interested in studying the underlying brain
coupling during music listening and how this is affected by
changes in tempo in particular. To measure this coupling we
use the imaginary part of coherence. Coherence is a widely
usedmeasure to infer linear non-directional interactions between
different areas, but its main weakness is that it is strongly
affected by volume conduction. In contrast, ‘‘non-interacting
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sources cannot explain a nonvanishing imaginary coherence’’;
therefore, the imaginary part of coherence cannot be generated
as an artifact of volume conduction (Nolte et al., 2004).
This is important in studies with less than 64 electrodes,
such as the current study, where methods that deal with
volume conduction are not beneficial. Moreover, the current
study is exploratory and it is important to be confident
that any significant results identified are a result of some
coordinated brain activity that is taking place and not of volume
conduction.

MATERIALS AND METHODS

Measurements
Participants
Twenty-one volunteers, comprising staff and students from the
University of Reading and members of the public, participated in
this experiment. They were recruited using University emailing
lists and word of mouth. This study was carried out in
accordance with the recommendations of the University of
Reading Research Ethics Committee guidelines. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki and were compensated £10 for their time. The
protocol was approved by the Head of School, following the
recommendation of the University of Reading Research Ethics
Committee.

The median age of the participants was 25 (range 21–30,
standard deviation 2.65), all were right-handed, and 11 were
female. Musical training of the participants was determined
using a self-report questionnaire: six participants indicated no
training, seven only attended obligatory music classes at school,
two attended optional music classes at school, five had private
music lessons, and one attended music college.

EEG Recording
EEGwas recorded via a Brain Products BrainAmp EEG amplifier
(Brain Products, Germany). Nineteen channels were positioned
according to the international 10/20 system for electrode
placement (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4,
T5, P3, Pz, P4, T6, O1 and O2), referenced to electrode FCz
and a ground electrode at AFz. The EEG data were sampled at
1 kHz. Electrode impedances were kept below 5 k� for 17 of
the participants and below 15 k� for all participants. For three
participants, channel O2 was excluded from analysis as it had
impedance greater than 100 k� due to a fault with the EEG input
box.

Musical Stimuli
The generation and validation of a set of 56 piano music excerpts
that convey four intended emotions (happiness, sadness, threat,
and peacefulness) is reported in Vieillard et al. (2008). For our
experiment, 12 excerpts were selected from this dataset as base
clips by uniformly drawing three excerpts without replacement
from each emotional category. Using the MIDI files of these
base clips, a 50 beats per minute (bpm), 100 bpm, 150 bpm
and 200 bpm MIDI version of each clip was created using Anvil

Studio by Willow Software1. In this process, care was taken to
ensure that all versions of a clip had similar content, mainly by
constructing the faster versions by looping the slower ones. Each
constructed MIDI file was synthesized to a piano WAVE file.
The conversion to a piano instrument was performed with the
damped version of the ‘‘HS Classic Grand Piano’’ (SoundFont
format), freely available by DSK Music and Hispasonic2. Each
WAVE file was truncated to have length of 9.5 s; this length
was long enough to evoke the desired affect and short enough
to allow more trials to be included in each session. The last
second was faded out by decreasing the amplitude linearly
to 0 dB.

Noise clips were used as a means of controlling neural
coupling mechanisms that arise as a result of brain response to
stimulation with identical acoustic content, but which lacks the
specific musical structure. For every music clip, a corresponding
noise clip was constructed using the un-windowed Fourier
transform algorithm for surrogate data generation described
in Theiler et al. (1992). Using this method, surrogate data
is generated by computing the Fourier transform of a signal,
randomizing the phases by multiplying each complex amplitude
with ei8, where Φ is uniformly drawn from [0, 2π], and then
taking the inverse Fourier transform of the resulting construct.
Phases were randomized by being randomly permuted between
frequencies so that the phase distribution retained its original
shape. As with the music clips, the last second of the noise clips
was faded out by decreasing the amplitude linearly to 0 dB. Noise
clips have the same average power spectra as their corresponding
music clips and, thus, the corresponding music and noise clips
have the same energy. The generated noise stimuli do not have a
specific temporal structure and, thus, no tempo per se, but we can
refer to the tempo of the original music stimuli from which the
noise clips were generated.

In total, participants were presented 96 clips in random order
(48 music clips comprising 12 base clips each at 4 tempi and a
corresponding noise clip for each music clip).

Paradigm
The experiment consisted of six runs of EEG recording, and
lasting approximately 50 min. Participants had their eyes open
throughout the experiment. Resting state (RS) recordings were
made in the first run in which participants were instructed to
rest while fixating on a cross in the center of the screen for
5 min. The four intervening runs comprised 24 trials each. Each
trial began with a 200 ms beep and a fixation cross in the
center of the screen. After a 2 s interval, a 9.5 s clip was played.
This was followed by a 1 s pause after which participants were
asked to rate the music on a scale of 1–9 in terms of induced
valence (unpleasant to pleasant) and arousal (calm to intense)
via self-assessment manikins (SAMs). These two questions were
presented on the screen simultaneously, and their layout order
was randomly switched between trials. Before the experiment,
participants were instructed through an information sheet, a
slideshow, a practice trial and a reminder by the investigator

1http://www.anvilstudio.com/
2https://www.hispasonic.com/
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to report only their induced emotions. Each trial ended with
a distraction task in which participants were presented with a
selection of different colored shapes, uniformly distributed across
the screen, and instructed to click on all the red squares. The
distractor task was used to reduce inter-trial bleed over effects
between different stimuli and ensure that neighboring trials were
less homogeneous (Liu et al., 2015). The inter-trial interval was
between 2–5 s. After each run of 24 trials, participants took a
short break, during which they were asked if they felt any fatigue.
None of the participants reported that they felt fatigued.

Imaginary Part of Coherence
Coherence is a measure of the linear relationship of two
time-series at a particular frequency. It can be thought of as the
equivalent of correlation in the frequency domain. Given two
time-series, X = [x1,x2,. . .,xT] and Y = [y1,y2,. . .,yT], we define
the cross-spectrum at frequency f,

Sxy(f ) =
〈
X(f )Y∗(f )

〉
(1)

where X(.), Y(.) are the Fourier transforms of the original
time series, ∗ denotes complex conjugation and <. . .> is
the expectation over a sufficiently large number of epochs.
Coherence can now be defined as the cross-spectrum normalized
by the spectra of X and Y, which are denoted as Sxx(f) and Syy(f)
respectively:

Cxy(f ) =
Sxy(f )√

Sxx(f )Syy(f )
(2)

Since the cross-spectrum is a complex number then coherence
is also, by definition, a complex number. It is, thus, common
to use the magnitude of this measure, the magnitude squared
coherence (MSC), as a measure of connectivity:

MSCxy(f ) =
∣∣Cxy(f )

∣∣ (3)

MSC is bounded between 0 (no similarity) and 1 (maximum
similarity). However, one limitation of MSC is that, just like
many other measures of connectivity, it is affected by volume
conduction. A number of transforms exist that can reduce the
effect of volume conduction, e.g., Laplacian transform, but these
work best when more than 64 electrodes are available (Cohen,
2014). In contrast, Nolte et al. (2004) have shown that the
imaginary part of coherence, Imag(Cxy(f)), is not susceptible
to such volume conduction artifacts, while also possessing
some additional advantages over MSC. The imaginary part
of coherence (the term ‘‘imaginary coherence’’—iCOH—will
be used from this point on for simplicity) exploits the fact
that the imaginary component represents interactions occurring
with certain time lags. In this respect, even though imaginary
coherence is a more conservative measure, the interactions it
reveals cannot be biased by volume conduction or a common
reference that occur with zero time lag (Nolte et al., 2004).
The study of coherent activity using the imaginary part of
coherence has since then been applied to a number of studies
(e.g., Schlögl and Supp, 2006; Guggisberg et al., 2007; Kelly
et al., 2015; Borich et al., 2016; Ohki et al., 2016). Compared
withmagnitude-squared coherence, imaginary coherence has the

additional property of antisymmetry. Antisymmetry is useful for
inferring the directionality of interaction and can be extracted
from the sign of the imaginary coherence. From Nolte et al.
(2004): ‘‘if the imaginary part of Cxy(f ) is positive, then x and y
are interacting and x is earlier than y; indicating that information
is flowing from x to y’’, and vice versa for negative values. In the
following sections we use the term iCOH to refer to the imaginary
part of coherence.

EEG Analysis
For this study we analyzed the EEG that was recorded while
participants listened to the ‘‘peacefulness’’ musical stimuli. The
particular stimuli was chosen as it was previously shown that
tempo had a significant effect inmusic stimuli that was associated
with a calming effect (Singer et al., 2016), as well as to allow
comparison with a study byWu et al. (2012), who found changes
in EEG phase coherence in the α frequency range during listening
to Guqin music and noise. A total of 252 9.5-s length segments
(3 peaceful stimuli × 4 tempi × 21 participants) were available
for analysis for each type of acoustic stimulus (music, noise). In
addition, each participant had a 5-min RS recorded before the
start of the experiment, which was split into non-overlapping
9.5-s segments (31 segments total) and imaginary coherence
estimates of the RS were also obtained. Prior to any analysis
the EEG data was z-scored (zero mean, standard deviation 1).
No other processing was performed (Supplementary Material
provides a comparison of iCOH estimated from data processed
with Independent Component Analysis).

The spectra and cross-spectra were estimated using the
MATLAB function ‘‘cpsd’’ with the following parameters:
(i) moving Hanning window with duration 2 s (2000 samples)
and 90% overlap; and (ii) frequency range of 1.5–18 Hz
(in increments of 0.5 Hz). The imaginary part of coherence
(Equation 2) was then extracted and the average iCOH for each
frequency range and tempo was estimated over all subjects.
This was repeated for RS, music stimuli and noise stimuli. The
effect of acoustic stimulation was characterized by comparing
changes in iCOH ‘‘sources’’ and ‘‘sinks’’ (sum of iCOH flow into,
and out of, a specific electrode respectively) for RS, music and
noise. The terms ‘‘sources’’ and ‘‘sinks’’ are commonly used in
studies of directed connectivity to describe nodes that are mainly
drivers or receivers of activity respectively (e.g., Blinowska,
2011). The effect of tempo was characterized by identifying
statistically significant interactions between different tempi when
contrasting iCOH for music and noise stimuli.

We also performed behavioral data analysis. The music
stimuli induced a state of ‘‘peacefulness’’, which is a calm
and pleasant affective state. Calmness is described by arousal
(the level of physical response) and pleasantness by valence
(the emotional content). Thus, ‘‘peaceful’’ stimuli typically have
a slow tempo and target high valence (pleasant) and low
arousal (calm). However, changes in tempo are associated
with changes in arousal: as the tempo increases, so does
the arousal (see for example, Husain et al., 2002). Therefore,
we also wanted to verify whether the participants’ rating of
a stimulus that targeted ‘‘peacefulness’’ was modulated by
tempo. For this purpose we looked at how the arousal and
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valence reported by the participants in each trial for the
music or noise stimuli were modulated as a function of the
tempo.

The sources/sinks of activity were visualized using BrainNet
Viewer forMATLAB (Xia et al., 2013). BrainNet Viewer was used
purely for visualization purposes at the electrode level (no source
reconstruction was performed), as also done in other studies
(e.g., Crobe et al., 2016).

Statistical Analysis
Each pair of iCOH(x,y) values was assessed for significance from
zero by employing the commonly used method of surrogate
statistics, whereby iCOH(x,y) is compared with the iCOH
obtained from surrogate data. For each pair of (x,y) signals,
we constructed 500 surrogate ys signals using the un-windowed
Fourier transform algorithm for surrogate data generation
described in Theiler et al. (1992). Surrogate data, ys, are generated
by computing the Fourier transform of y, randomizing the phases
by multiplying each complex amplitude with ei8, where Φ is
uniformly drawn from [0, 2π], and then taking the inverse
Fourier transform of the resulting construct. We generated
500 such surrogate signals, estimated the surrogate iCOH values
and obtained the 95th percentile of the resulting surrogate
distribution, which we denoted as iCOH(x,ys). The original
iCOH(x,y) value is then set as follows:

iCOH
(
x, y
)
=

{
iCOH

(
x, y
)
, if iCOH

(
x, y
)
≥ iCOH

(
x, ys

)
0, otherwise

We next performed statistical testing to assess the significance
between the mean iCOH for different tempi, at each of
the frequency ranges investigated and for the conditions
music, noise and the differential (music-noise). For
each participant, we averaged the iCOH values within
each frequency range. At a group level, we compared
the obtained frequency-means for each tempo using a
non-parametric Wilcoxon signed rank test (α = 0.05), as
iCOH distributions were not Gaussian (Kolmogorov-Smirnov
test). The significance level (α = 0.05) was corrected for
multiple comparisons using the Holm-Bonferroni (HB)
correction (Shaffer, 1995), a more powerful alternative to
the commonly used Bonferroni correction method (Cohen,
2014). To isolate any significant tempo-induced differences
between music and noise with respect to spatial location,
we used again a Wilcoxon signed rank test (α = 0.05,
corrected for multiple comparison with HB correction) to
test for significant effect of tempo between the differential(
iCOHmusic

(
xi, yj

)
− iCOHnoise(xi, yj)

)
(where xi, yj: signals

from sensors i and j).

RESULTS

Figure 1 shows the valence and arousal reported by the
participants as the tempo of the (A) music (top row) and (B)
noise (bottom row) stimuli increases respectively. This figure
shows the number of trials that a particular combination of
arousal-valence (AV) was reported by the participants as a
function of tempo. As the tempo increases, the reported AV shifts

FIGURE 1 | (A) Reported arousal-valence (AV) as a function of tempo for the music stimuli. Increase in tempo results in increase of reported arousal. (B) Reported AV
as a function of tempo for the noise condition. The reported AV appears to converge towards neutral/high arousal and low/neutral valence as tempo increases. “T”
indicates the AV that the corresponding music stimulus was targeting. The scale represents the number of trials the participants reported a particular arousal and/or
valence for the music stimuli.
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FIGURE 2 | Reported arousal and valence for the music (A) and noise (B) stimuli. The y-axis represents the number of trials the participants reported a particular
valence and/or arousal.

from the target low arousal-high valence (indicated as ‘‘T’’ on the
matrices) to a higher arousal (valence remains high). Figure 2
shows a breakdown into reported arousal and valence, for the
(A) music (top row) and (B) noise (bottom row) conditions
respectively. Slower tempo is associated with more frequent
reports of low arousal. However, the effect of tempo is not as
clear-cut for valence, as the majority of participants reported
high valence regardless of the tempo. For the corresponding
noise stimuli, the majority of participant reports are high arousal
and low valence, which are usually associated with ‘‘scary’’
sounds. Tempo does not appear to have a strong effect on
these reports, but an association of faster tempo with higher
arousal and slower tempo with lower valence can also be seen
(Figure 2B).

Figures 3–5 show the group average iCOH strength for the
RS, music stimuli and noise stimuli respectively, estimated in the
frequency range 1.5–18 Hz (see also Supplementary Figure S1
for the corresponding figure for music stimuli obtained from the
processed EEG data). Themean iCOH over each frequency range
(and tempo for the music and noise conditions) is also provided
in Figures 3–5 (top right corner of each plot). Each column
represents the sources of interaction (from a specific electrode
to all other electrodes) while each row represents the sinks of
interaction (to a specific electrode from all other electrodes). The
iCOH patterns appear, at a first glance, to be topologically similar
for all conditions, with similar levels of mean iCOH strength,
which was expected at least for the α range (Wu et al., 2012).

Other interactions involving frontal midline locations are also
visible in all conditions, most prominent at 3.5–12Hz in all tempi
and conditions. A separate presentation of the motor-auditory
connectivity during music is shown in Figure 6. The inter- and
intra-hemispheric motor (C3, C4) and auditory (T3, T4, T5,
T6) connections are shown for all tempi and frequency ranges.
An effect of both frequency and tempo can be seen. There is
increased inter-hemispheric iCOH in the α and β ranges, and
tempo is found to modulate both the strength and direction of
interactions. Supplementary Figure S2 shows the corresponding
motor-auditory connections for the processed data; these are
very similar to the connectivity obtained from the unprocessed
data.

To isolate the effect of acoustic stimulation we contrasted
the RS with music (Figure 7). This type of contrast allows
us to identify areas where iCOH is increased (green) or
decreased (magenta) due to acoustic stimulation with respect
to RS. From this contrast it can be seen that the effect of
acoustic stimulation on the strength of iCOH is more isolated
to long-range fronto-posterior and fronto-temporal interactions
(1.5–12 Hz), while a more spatially broad effect is seen in the β

range (12.5–18 Hz).
To isolate the effect of tempo over and above the effect

of acoustic stimulation, we contrasted the group mean iCOH
from music and corresponding noise stimuli (Figure 8). This
type of contrast allows us to identify areas where iCOH is
increased (green) or decreased (magenta) due to the effect
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FIGURE 3 | Group mean imaginary coherence (iCOH) for resting state (RS) at different frequency ranges. The corresponding mean iCOH over all connections is also
shown in the top right corner of each plot.

FIGURE 4 | Group mean iCOH for musical stimuli estimated at different tempi (rows) and frequency ranges (columns). The corresponding mean iCOH over all
connections is also shown in the top right corner of each plot. Each matrix represents the iCOH for all electrode pairs for the particular tempo at each frequency
range. Matrix columns are sources of information flow (“From”), while rows are sinks (“To”). Channel order for each column/row: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3,
Cz, C4, T4, T5, P3, Pz, P4, T6, O1 and O2.
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FIGURE 5 | Group mean iCOH for noise stimuli at different tempi (rows) and frequency ranges (columns). The corresponding mean iCOH over all connections is also
shown in the top right corner of each plot. Each matrix represents the iCOH for all electrode pairs for the particular tempo at each frequency range. Matrix columns
are sources of information flow (“From”), while rows are sinks (“To”). Channel order for each column/row: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3,
Pz, P4, T6, O1 and O2.

of tempo, isolated from acoustic stimulation effects. We
examined the statistical significance in iCOH due to tempo
at each of the frequency ranges (Wilcoxon signed rank test;
α = 0.05, pBH: HB corrected p-value). Significant p-values
between the different tempi are provided at the bottom of
Figure 8. Tempo had significant effects in the group mean
iCOH strength, which varied across the frequency ranges
examined.

To examine the effect of tempo and acoustic stimulation on
the direction of interaction, we estimated the sources (sum of
iCOH flowing outwards from an electrode) and sinks (sum of
iCOH flowing inwards into an electrode) for RS, music and
noise over the four frequency ranges studied (Figures 9–12). To
isolate the effect of tempo over and above acoustic stimulation
we contrasted the corresponding sources/sinks of music and
noise. Tempo had an effect on the distribution of sources and

sinks (with the most striking difference observed at 150 bpm,
Figure 10), and this implies that tempo affects not only the
strength of iCOH, but also the direction of interaction.

DISCUSSION

As part of this study we investigated a potential mechanism
behind the internal beat representation from music. We looked
at how tempo may affect the underlying brain interactions
represented by imaginary coherence, as a new contribution
to the previous literature. We identified changes in both
the strength of imaginary coherence as well as topological
changes in connectivity as a function of tempo and frequency
range.

Our findings can be summarized in the following points:
(1) changes in tempo were associated with increased arousal;
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FIGURE 6 | Group mean (and standard deviation) motor (C3, C4) and auditory (T4/6, T3/5) imaginary coherence (iCOH) at different tempi (rows) and frequency
ranges (columns). Blue: motor→auditory; Yellow: auditory→motor. We observe increased iCOH in the α and β ranges, and modulation in strength and direction of
interaction in different tempi and frequency ranges.

(2) the RS is characterized by ongoing long-range interactions
engaging fronto-posterior areas; (3) music and noise both
modulate these interactions, but with a somewhat different
effect in the frontal/posterior sources and sinks that can
be isolated to significant differences in specific electrode
pairs involving temporo-posterior, cortical and frontal
locations; and (4) some of the significant differences in
music and noise conditions can be isolated as an effect of
tempo.

The music stimuli targeted ‘‘peacefulness’’, which is
characterized by high valence and low arousal. Our results
revealed that variations in tempo were indeed associated to
different subjective levels of arousal, with music played at
faster tempo eliciting increased arousal, without much effect
on the reported valence. This was in contrast to noise stimuli,
where faster tempo was associated with low valence and
high arousal, thus the noise stimuli had valence and arousal
that were more characteristic of a ‘‘scary’’ emotional state.
Thus, participants might tend to rate the music clips ‘‘more’’
pleasant as they are actively comparing them to the noise
clips.

We observed long-range interactions at all tempi, with
connection strengths that appeared to be modulated by tempo.
The iCOH connectivity for RS, music stimuli and noise stimuli
(Figures 3, 4) did not differ in terms of topological structure
(something that was also seen in Figure 1 of Wu et al., 2012).

We observe changes in the strength of the connectivity between
the three conditions (Figures 7, 8), as well as in the connectivity
strength between motor-auditory connections (Figure 6). The
topological similarity is not surprising. Luczak et al.’s (2009)
show that, at a population neuronal level, the activity patterns
in response to sensory stimuli and spontaneously without
sensory input are drawn from a limited ‘‘vocabulary’’, sampled
widely by spontaneous events and more narrowly by sensory
responses. It is reasonable to expect that Luczak et al.’s
(2009) findings of a population-level limited vocabulary of
neuronal patterns would also be somehow reflected in the EEG
activity, which is a manifestation of the underlying neuronal
activity.

The modulation in the strength of the observed long-range
connections in the brain while listening to music may
play a role in neural transformation of the rhythm and
explain how the information from movement or other sensory
modalities contributes to the internal representation of the
beat (Nozaradan et al., 2017). This long-range functional
connectivity is likely represented in frequencies lower than
30 Hz, while frequencies higher than 30 Hz could reflect a
more local scale of neural activity (Nozaradan et al., 2017).
Our findings reveal a relationship between motor and auditory
cortices in all frequency ranges studied, but most prominent
in the α (8–12 Hz) and β (12.5–18 Hz) ranges. These
findings are consistent with prior reports in the literature
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FIGURE 7 | Contrast between RS and music group mean iCOH. Areas in green indicate stronger iCOH for the music condition, while areas in magenta indicate the
opposite. Grayscale indicates areas of similar strength; black: areas where iCOH is zero in both conditions; white: areas where iCOH is equal in both conditions.

(e.g., Janata and Grafton, 2003; Bauer et al., 2014; Daly et al.,
2014a).

Tempo has been shown to affect the ability to synchronize
with the beat during finger tapping, with faster tempi being
associated with increased accuracy of beat synchronization
(Nozaradan et al., 2016). However, this sensorimotor
synchronization was found to break down for tempi greater
than 2 Hz (120 bpm; Nozaradan et al., 2016), and tempi that
are even higher (300 bpm) were found to disrupt the EEG
entrainment to the beat-related frequency (Nozaradan et al.,
2017). The results reported by Nozaradan (2014), Nozaradan
et al. (2015, 2017) were obtained with frequency-tagging and, as
argued by Henry et al. (2017), any EEG entrainment identified
using this method should be interpreted with caution. On the
contrary, iCOH is one of the measures that capture long-range
functional interactions and as a result may reveal a more general
underlying mechanism of tempo modulation. Schroeder et al.
(2010) propose that rhythmic motor oscillations modulate
oscillations in the auditory cortex, and auditory perceptual
processes may in turn be influenced by them. This is also

supported by Phillips-Silver and Trainor (2007) who show
that musical rhythm processing is a multisensory interaction
relying primarily on reciprocal interactions between auditory-
motor systems. Our findings of bidirectional motor-auditory
interactions modulated by tempo are in agreement with the
literature.

An additional interesting finding is the strong sink of activity
at Cz and the strong source from Fz. These strong interactions
are most prominent in the θ and α ranges. It is also interesting
that these are not unique to the type of stimulus or RS.
This is not simply a channel issue as these interactions are
not as prominent in all participants or throughout all trials
for a single participant. There was no correlation between
participant characteristics that could be associated with these
interactions, such as sex or musical education. Thus, these
interactions are related to the experimental task, either as a
direct consequence of auditory stimulation (see Skoe and Kraus,
2010 and references within), activation of premotor cortical
areas responsible for movement planning (frontal midline
region) as a consequence of an internal timing mechanism
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FIGURE 8 | Contrast between music and noise group mean iCOH. Areas in green indicate stronger iCOH for the music condition, while areas in magenta indicate
the opposite. Grayscale indicates areas of similar strength; black: areas where iCOH is zero in both conditions; white: areas where iCOH is equal in both conditions.
Significant effects of tempo were also identified and corresponding p-values are also shown (Wilcoxon signed rank test, α = 0.05, corrected for multiple comparisons
with Bonferroni-Holm).

linked to rhythm perception (Kaufer and Lewis, 1999; Repp
and Su, 2013) or visual stimulation as participants had their
eyes open in all conditions and were looking at a fixation
cross.

Perhaps the closest study to our own is a study by
Wu et al. (2012) investigating the large-scale structure of
functional brain networks during music perception using
graph theoretical measures obtained from phase coherence
networks in the α range (8–13 Hz). Wu et al. (2012) used
Guqin music excerpts as musical stimuli, which also has a
peaceful effect on listeners, 1/f noise, and silence. Looking at
Figure 1 in Wu et al. (2012) there are no striking visible

differences between the music, noise and silence conditions.
This is in line with our findings in the α range, as well
as the additional frequency ranges that we investigated. Wu
et al. (2012) report an increase in phase coherence during
music perception in contrast to noise and silence, as well as
increased connections between prefrontal and frontal regions,
and parietal, occipital and temporal regions. This is consistent
with our findings in both the statistically significant differences
in group mean strength and topology of the iCOH. However,
the interactions identified in Wu et al. (2012) are localized.
Their particular method of analysis used instantaneous phases,
however there was a lack of any pre-processing to remove
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FIGURE 9 | Sources (iCOH flowing outwards) and sinks (iCOH flowing inwards) of activity for RS, music and noise stimuli estimated for the δ (1.5–3.5 Hz) frequency
range.

FIGURE 10 | Sources (iCOH flowing outwards) and sinks (iCOH flowing inwards) of activity for RS, music and noise stimuli estimated for the θ (3.5–7.5 Hz) frequency
range.

volume conduction artifacts (64 electrodes). The absence of
long-range phase synchrony, coupled with the increased short-
range synchrony could be an indicator of volume conduction
artifacts.

Imaginary coherence is conceptually easy to estimate, has low
computational complexity and is robust to volume conduction
artifacts (the imaginary component ignores any relationships
at time lag zero; Nolte et al., 2004). The latter is an
important advantage, particularly for an exploratory study such
as this one: we can be certain that any brain interactions
revealed by imaginary coherence result from dependencies
that are less likely an artifact of volume conduction. The

caveat is, however, that any true interactions at time lag
zero or interactions with a time delay that is statistically
indistinguishable from zero will not be captured. Methods such
as Partial Directed Coherence (PDC) and (direct) Directed
Transfer Function (DTF; Blinowska, 2011) are also robust to
volume conduction and are more popular methods of choice.
However, we must make a distinction between the different
types of relationships that these methods capture. Following
the definitions by Friston (1994), a measure of functional
connectivity estimates temporal dependencies between spatially
remote neurophysiological events (e.g., imaginary coherence,
Guggisberg et al., 2007), while a measure of effective connectivity
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FIGURE 11 | Sources (iCOH flowing outwards) and sinks (iCOH flowing inwards) of activity for RS, music and noise stimuli estimated for the α (8–12 Hz) frequency
range.

FIGURE 12 | Sources (iCOH flowing outwards) and sinks (iCOH flowing inwards) of activity for RS, music and noise stimuli estimated for the β (12.5–18 Hz)
frequency range.

explicitly hypothesizes a linear model of dependence (e.g., PDC
and DTF). One must, therefore, be clear on what types of
dependencies are captured by a particular method. Horwitz
emphasizes that the multiple ways by which functional
connectivity is determined will not necessarily lead to the
same conclusion, and this can even be the case for data
from the same task or obtained from the same modality;
this is complicated further when one goes from functional to
effective connectivity, which is underpinned by a hypothesized
model (Horwitz, 2003). The majority of published studies
concentrate on a single measure of interaction (for example,

Babiloni et al., 2005; Daly et al., 2012; Nicolaou et al.,
2012; Wu et al., 2012; Park et al., 2017; Sunwoo et al.,
2017) and it is reasonable to expect some differences in the
conclusions when different methods are applied, especially if
those methods capture different types of functional and/or
effective connectivity. Deviations can also be expected if
non-linear dependencies are also present and a measure that
captures such dependencies is used (imaginary coherence only
captures linear dependencies).

We note some limitations of our study. First, the
investigations are performed on static coherence networks
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obtained from the entire EEG segment. This is useful in
characterizing generalized changes. However, it may also be
interesting to study the changes in connectivity strength at
different snapshots throughout the entire stimulus period, as
such changes could be important in identifying re-setting of
connectivity and modulation of it by the musical stimulus
(as per Fujioka et al., 2012) and whether tempo has an effect
that is sustained over time—and similarly for the resting
period. Second, we have tried here to dissociate the effect of
tempo from emotional effects, as supported by literature. Our
behavioral findings, however, support a relationship between
tempo and arousal. Thus, investigating the connectivity over
perceived, rather than intended, affect may reveal additional
information related to tempo-related mechanisms of brain
activity modulation. Lastly, we were not able to provide a
concrete explanation for the strong Fz and Cz connectivity. Even
though there are some plausible mechanisms in the literature to
explain this, a more thorough investigation must be performed
to identify the origins of these connections.

CONCLUSION

This study investigated the effect of tempo on brain
connectivity during passive listening to musical stimuli
designed to induce ‘‘peacefulness’’, contrasted with passive
listening to corresponding noise stimuli generated from
the music stimuli at each of the four tempi investigated.
Connectivity was measured with imaginary coherence and
the estimated networks were analyzed in four frequency
ranges spanning 1.5–18 Hz. The current study contributes
towards elucidating neural representations of musical beat,
although future investigations will need to clarify these
mechanisms further, such as looking at tempo irrespective
of target and perceived musical affect, and vice versa,
i.e., investigating changes related to both tempo and perceived
affect, and isolating the nature of the midline interactions.
Our findings indicate significant changes to the strength and
directionality of long-range functional brain connections,
as measured by imaginary coherence, resulting from both
acoustic stimulation and variations in tempo. The identified

changes in connectivity support an effect of tempo on brain
interactions.
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