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Capsule:24

Numerical weather prediction (NWP) models are increasing in resolution and becoming25

capable of explicitly representing individual convective storms. Is this increase in resolution26

leading to better forecasts? Unfortunately, we do not have sufficient theoretical understand-27

ing about this weather regime to make full use of these NWPs.28
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Abstract:29

After extensive efforts over the course of a decade, convective–scale weather forecasts with30

horizontal grid spacings of 1–5 km are now operational at national weather services around31

the world, accompanied by ensemble prediction systems (EPSs). However, though already32

operational, the capacity of forecasts for this scale is still to be fully exploited by overcoming33

the fundamental difficulty in prediction: the fully three–dimensional and turbulent nature of34

the atmosphere. The prediction of this scale is totally different from that of the synoptic scale35

(103 km) with slowly–evolving semi–geostrophic dynamics and relatively long predictability36

on the order of a few days.37

Even theoretically, very little is understood about the convective scale compared to our38

extensive knowledge of the synoptic-scale weather regime as a partial–differential equation39

system, as well as in terms of the fluid mechanics, predictability, uncertainties, and stochas-40

ticity. Furthermore, there is a requirement for a drastic modification of data assimilation41

methodologies, physics (e.g., microphysics), parameterizations, as well as the numerics for42

use at the convective scale. We need to focus on more fundamental theoretical issues: the Li-43

ouville principle and Bayesian probability for probabilistic forecasts; and more fundamental44

turbulence research to provide robust numerics for the full variety of turbulent flows.45

The present essay reviews those basic theoretical challenges as comprehensibly as possible.46

The breadth of the problems that we face is a challenge in itself: an attempt to reduce these47

into a single critical agenda should be avoided.48
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Background49

The improvements in numerical weather prediction (NWP) over the last half century50

may overall be considered as an outcome of a straightforward extrapolation of technolo-51

gies: increase of model resolution; relaxations of the dynamical approximations, from the52

quasi-geostrophic to the primitive equation system, and with the removal of the hydrostatic53

balance approximation; introduction of more complex physics as well as parameterizations1;54

and a more careful procedure for preparation of the forecast initial conditions. These model55

upgrades have been rather dramatic, thanks to an exponential growth in computer capabil-56

ities. These upgrades have been, in turn, contributing to the steady improvements of NWP57

forecast performance to date (cf., Bauer et al. 2015).58

The effort to straightforwardly–extrapolate technological capability has reached such a59

level that operational regional forecast models are now running with horizontal mesh sizes60

of 1–5 km worldwide. For example, in Europe, the French AROME (Applications de la61

Recherche à l’Opérationnel à Méso–Echelle) forecasts over France are run operationally with62

a grid spacing of 1.3 km, the Met Office in the UK uses a grid spacing of 1.5 km, and63

MeteoSwiss runs the COSMO (Consortium for Small-scale Modelling) model with a grid64

spacing of 1.1 km.65

NWP capacity has reached a critical threshold: NWP models now begin to resolve indi-66

vidual convective elements within multicell, mesoscale, and synoptic–scale storms (i.e., they67

are “convection–permitting” models). This tendency to higher resolution will continue: it68

is planned that the COSMO model will be run with a horizontal grid spacing of 500 m by69

2020, thus convection will be more resolved. A goal of convective-scale NWP is to accurately70

forecast high-impact storms, including their locations and intensities, which has the poten-71

tial to bring a wide range of benefits to society. Forecast guidance from convective-scale72

1Note that unlike the common custom in atmospheric modeling, the present essay strictly distinguishes

between physics and parameterizations: physics always refers to explicit physical processes, whereas param-

eterization always refers to subgrid–scale processes.
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NWP is already operationally available today. At the same time, this threshold also marks73

an end of straightforward extrapolation of technologies for NWP, even in the crudest sense:74

the convective–scale regime is very different from the well–studied synoptic weather regime,75

calling for a qualitatively different approach. The transition to forecasting at the convective–76

scale is hardly a matter of straightforward extrapolation. There are several important gaps77

in our understanding: our basic and overall theoretical understanding of this regime is much78

weaker than for the synoptic–scale regime. The convective–scale regime is far more complex,79

even more so than as suggested by existing theoretical studies on convective dynamics (e.g.,80

Moncrieff and Green 1972; Thorpe et al. 1982; Rotunno et al. 1988; Yano and Plant 2012).81

Though specific issues for convective–scale NWP may be found discussed in the literature,82

the big-picture view is missing: we can properly tackle the convective–scale NWP problems83

only by taking into account the full breadth of all the issues. Some of these challenges are84

particularly problematic: the “convection–permitting” regime is sometimes called the “grey85

zone”, referring to a transition from a regime in which convection is fully parameterized86

to a regime in which convection is fully resolved, especially in the convection community.87

However, we should not reduce the problems of this regime just to that of convection pa-88

rameterization. The extent of the challenge at the convective scale becomes apparent only89

when seeing all of the challenges together.90

The practical issues faced by European weather services may be understood by the fact91

that, for example, a typical public user requirement in Switzerland would be a prediction92

of precipitation in a specific valley. A more specific example is a thunderstorm event at93

the Belgian music festival Pukkelpop in August 2011 (de Meutter et al. 2015). During the94

music festival, at which about 60,000 people were present, a short-lived downburst occurred.95

Five people were killed and at least 140 were injured. An operational failure to predict96

this downburst event was something to be criticized from a public perspective, although97

the downburst had a width of only 100 m and so was far too small to be resolved by98
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current operational NWP models.2 Weather services naturally need to follow those public99

expectations. In responding to such expectations from the public, we also need to shift the100

focus to the finer scales and more fully exploit the information from convective–scale NWPs.101

The present essay has emerged from a sense of an urgent need for action within Eu-102

ropean NWP consortia — ALADIN (Aire Limitée Adaptation dynamique Développement103

InterNational), COSMO, and HIRLAM (High Resolution Limited Area Model) — in re-104

sponding to these challenges. This essay complements previous BAMS articles, including105

Mass et al. (2002), Fritsch and Carbone (2004), Mass (2006), Stensrud et al. (2009), and106

Sun et al. (2014). As discussed therein, we clearly acknowledge that currently there are107

extensive research efforts at the operational level to improve convective–scale NWP by ex-108

ploiting various existing observations as well as modeling techniques. The main emphasis109

put forward in the present essay is an urgent need to properly address more fundamental110

theoretical issues. With our lack of basic understanding of this regime, current efforts will111

sooner or later otherwise become deadlocked. A good awareness of these more fundamental112

issues and of the limits of the current operational efforts is crucial just for good continuation113

of the current progress, even though those fundamental problems may not be immediately114

solvable.115

To keep a reasonable focus, so that we can discuss the issues in depth, this essay addresses116

only the most basic theoretical issues. We recognize that other issues could be equally117

important, such as observation-related issues, but here we limit ourselves to only discussing118

these in the theoretical context. As we clearly acknowledge the current operational efforts119

are of crucial importance, but for the sake of keeping focus they are not covered herein.120

In the next section, these fundamental issues are examined one by one. Discussions begin121

with the most basic issues of partial differential equations (PDEs), then turn to the issues of122

fluid mechanics, and then gradually move to more operational issues. Though the argument123

2See further discussions on the parameterization problems in the subsection Parameterizaton.
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as a whole evolves over the section, since the issues to be discussed are so extensive each124

subsection on an issue is written in an almost stand–alone manner for ease of reading. In125

this manner, this essay provides a full breadth of the most fundamental problems of the126

convective–scale NWP.127

Scientific Challenges128

Partial–differential equation problem129

The synoptic weather system of the 103–km scale can be described by the primitive equa-130

tion system under hydrostatic balance. The basic mathematical structure of this system is131

relatively well understood (Petcu et al. 2008). This is in stark contrast to the nonhydro-132

static anelastic system, a standard formulation adopted for convective–scale modeling.3 This133

system is far more difficult to analyze mathematically, hence it is much less well known.134

The synoptic–scale weather system can, furthermore, be approximated by quasi–135

geostrophy or, alternatively and better, by semi–geostrophy, based on the fact that the136

system exhibits a close balance between the Coriolis and the pressure–gradient forces. This137

basic feature enables us to understand, to a large extent, synoptic–scale weather in terms of138

balanced dynamics (cf., Leith 1980).139

Unfortunately, under the convective–scale regime, we lose these basic balances of the140

system, making it much harder to understand the fundamental characteristics of the system.141

Even a basic proof of nonsingularity associated with latent heating has only recently been142

established for the simplest case (Temam and Tribbia 2014). Understanding of these flows143

may partially be accomplished by identifying a wide variety of subsystems defined as asymp-144

totic limits. However, such an understanding requires a much broader knowledge of fluid145

dynamics and thermodynamics, even without considering full microphysics, than for the tra-146

ditional synoptic–scale system. However, these subsystems under various asymptotic limits147

3Strictly speaking, many operational models do not follow the anelastic formulation, but adopt the fully–

compressible formulation. However, these models are still designed not to fully resolve the sound waves by

adopting semi–implicit methods for the time integration.
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occupy only a small fraction of the vast parameter space in the convective–scale regime. No148

asymptotic representation is likely to be identified in a bulk part of this regime.149

Though all these aspects may sound purely mathematical, our lack of understanding at150

this most basic level hinders crucial progress at more practical levels (cf., Numerics).151

Dynamical System152

Synoptic–scale flows may be understood as a type of dynamical system because mathe-153

matically they reside on a slow stable manifold (Leith 1980), which is only weakly coupled154

to the much more complex dynamics of smaller–scale convection. Thus dynamics on these155

scales can be described with a relatively limited number of effective degrees of freedom,156

i.e., low-dimensional dynamics like Lorenz’s (1963) strange attractor. Furthermore, such an157

effective low–dimensionality of the system guarantees relatively stable, reliable, long-term158

model forecasts, even though the evolution may be somehow chaotic.159

In the convective–scale regime on the other hand, although a wide variety of asymptotic160

regimes emerge, nothing equivalent to geostrophic balance is found: the effective dimension161

of the system is suddenly increased. As a result, the dynamical–system approach mostly de-162

veloped for low–dimensional systems no longer works effectively. Furthermore, this transition163

severely restricts predictability (cf., Probability).164

Turbulence165

Atmospheric flows are turbulent at almost all the scales of practical interest according to166

a standard definition of turbulence in fluid mechanics based on the Reynolds number, which167

measures the importance of nonlinearity relative to viscous dissipation (e.g., Fritsch 1995).168

Unfortunately, this feature is often neglected due to a custom of calling planetary–boundary169

layer (PBL) turbulence “atmospheric turbulence”, leaving an impression that turbulence is170

only found in the PBL of the atmosphere. It is also typical that a distinction is made between171

turbulence and convection, which further adds to the impression that atmospheric convection172

is not turbulent. While the nature of turbulence within convective cells is non-Kolmogorov,173
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and so has different properties to that typically found in the PBL, it is fundamentally a174

turbulent process.175

At the synoptic scale, the turbulent nature of the flow is limited by the stratification176

and rotation of the atmosphere and so tends to be quasi two–dimensional. An important177

feature of two–dimensional turbulence is that the energy is overall transferred from smaller178

scales to larger scales (an “inverse cascade”). As a result, atmospheric flows tend to be179

organized at larger scales which maintains a relative smoothness of the flow (cf., Tennekes180

1978). This property of two–dimensional turbulence allows us to treat synoptic–scale flows181

as a low–dimensional dynamical system.182

On the other hand, once the horizontal scale of the system reaches below O(10 km), the183

aspect ratio of the flow becomes unity,4 hydrostatic balance is no longer satisfied, there is184

no longer constraint from rotation, and the flow becomes fully three–dimensional: this is185

the essence of the convective scale. These flows are far more complex than two–dimensional186

turbulence, more transient and intermittent (i.e., they lack balance) and they are associated187

with a much larger degree of freedom. Thus, three–dimensional turbulent flows are much188

harder to predict than the chaotic system found in low–dimensional dynamical systems: in189

the fully–turbulent regime, the number of active modes keeps increasing with increasing190

resolution and prediction becomes increasingly harder with no sign of convergence.191

To understand fully three-dimensional convective atmospheric turbulence, the basic na-192

ture of the energy interactions between these many active modes in the system should first193

be properly understood. In fully three–dimensional turbulence, energy is predicted to be194

4Observation (cf., Nastrom and Gage 1985) shows that the slope of the kinetic energy spectrum as a

function of the wavenumber, k, turns from k
−3, as expected for the two–dimensional turbulence, to k

−5/3

at about the few–hundred kilometer scale (roughly corresponding to the radius of the deformation) in a

virtual contradiction to this aspect ratio argument. This regime with a k
−5/3 spectrum above the 10–km

scale (often called “stratified turbulence”) is still quasi–two dimensional, arising from a strong influence of

the stratification on this scale range (cf., Lindborg 2006).
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transferred overall to the smaller scales, but some of the energy at smaller scales is also195

transferred to the larger scales leading to a tendency for organized convection. Although196

the basic mechanism of organized atmospheric convection is classically attributed to vertical197

wind shear (cf., Moncrieff and Green 1972; Thorpe et al. 1982; Rotunno et al. 1988), its198

full mechanism from a point of view of full turbulence dynamics is still to be established199

(cf., Yano et al. 2012). Here, we also need to move beyond a conventional framework of200

interactions between convection and the large scale towards a true multi–scale framework.201

Our current understanding of turbulent flows is essentially based on a straightforward202

extrapolation of Kolmogorov’s theory for homogeneous, three–dimensional turbulence (cf.,203

Zilitinkevich et al. 2013). Existence of the stratification and an active role of buoyancy are204

likely to qualitatively change the basic nature of the flow. Such an investigation into the205

fundamental nature of self-organized turbulence has not yet been accomplished.206

Predictability207

The predictability of atmospheric flows is fundamentally limited because the errors in208

prediction exceed the typical amplitude of a signal of a given scale at a certain point in time.209

Once the error exceeds this amplitude, the prediction loses any practical value, although it210

is always possible to run an NWP model beyond this limit.211

The fully turbulent nature of the convective–scale regime limits the predictability more212

severely than for low–dimensional chaotic flows (cf., Palmer et al. 2014). In a chaotic system,213

an error of the initial condition limits the predictability. In principle, the predictability214

can always be extended by defining the initial condition more accurately. However, in a215

fully–turbulent regime, the accuracy of the initial condition no longer ultimately limits the216

predictability (Sun and Zhang 2016), although a denser observational network may extend217

the predictability to some extent. Rather, the intrinsic nature of the flow itself (notably its218

intermittency) becomes the ultimate limiting factor. More observations by, e.g., a denser219

network, do not overcome this intrinsic predictability limit.220
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On the other hand, one may wish that the predictability of synoptic scale would be im-221

proved by explicitly resolved convection rather than an unreliable parameterized convection.222

However, even this is not obvious considering the complex multiple–scale interactions of the223

turbulent flows associated with convection (cf., Turbulence).224

Probability225

The predictability of convective systems is about a few hours (e.g., Hoheneger and Schär226

2007), but this is not a fixed number. In some situations, the convective system is strongly227

controlled by a synoptic–scale process, giving a longer predictability. It is also spatially228

dependent. Detailed surface data (vegetation, soil types, topography) may further help to229

extend the predictability. Identifying situations with enhanced predictability is an important230

forecast issue in convective–scale NWP.231

However, regardless of its precise value, there always exists a limit beyond which a forecast232

becomes so uncertain that it loses any deterministic usefulness. As a result, when an NWP233

model is run for a few days, as is the basic strategy of the NWP community (e.g., ALADIN,234

COSMO, HIRLAM, Met Office), the resulting forecast can only be interpreted in terms235

of probabilities: we cannot say precisely when and where an afternoon shower should be236

expected on the next day, but only give a probability distribution in time and space. In this237

manner, convective–scale NWP must be inherently based on probability.238

Unfortunately, probability is not an easy concept to understand.5 It is true that there are239

already many methodologies for predicting the probability of weather events (e.g., Schwartz240

5Note that the probability is even not a measurable quantity. For example, if a 30% probability of rain

is verified by actual rain by 30% of the time, this probability forecast is statistically consistent with the

observation. However, this is not a sufficient condition to verify it. The true verification must be performed

on the probability forecast for each event (or non–event) individually. Of course, this is not possible, because

the actual realization is rain or no–rain without an intermediate state. In other words, we can never measure

a probability observationally for an individual event, but only in a statistical sense. However, the latter is

not sufficient for the verification.
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et al. 2010). A typically–adopted approach is to estimate a probability by creating a large241

sample or ensemble. However, the frequency of an event within a certain sample is not242

equivalent to a probability of a single unique event of particular interest. Such frequency–243

based thinking may be helpful for analyzing a homogeneous sequence of tries (or events),244

such as the tossing of a coin or dice. In contrast, a sequence of rainfall events is hardly245

“homogeneous”: each event happens under unique circumstances. In this case, a different246

probability must be assigned for each rainfall event, without creating a sample.247

The current standard methodology for estimating weather probabilities, the ensemble248

prediction system (EPS), is also based on this sample–space based thinking (cf., Leith 1974).249

Although the EPS is indeed a useful approach, it does not predict by itself a probability in250

any obvious manner: three rain forecasts out of ten ensemble members does not automat-251

ically mean a 30% chance of rain, unless the sample is defined in a homogeneous manner.252

Generating such a homogeneous sample with a reasonable, finite ensemble size is not a simple253

matter, and it becomes more difficult for a system with an increasing number of unstable254

modes (cf., Uboldi and Trevisan 2015).255

Frequency and probability must carefully be distinguished from each other, as Bayesian256

probability teaches us (cf., Jaynes 2003). Furthermore, any probabilistic prediction system257

should be derived, ideally, from the basic physical principle for predicting probability, i.e., the258

Liouville equation (Yano and Ouchtar 2017), although its practical use may appear difficult259

(cf., Data Assimilation).260

Stochasticity261

Prediction of individual convective events is so difficult that it is tempting to deal with262

them as random events arising from stochasticities. Such a formulation also more naturally263

leads to a probabilistic description. However, we have to be cautious in proceeding in this264

manner.265

Some of the physical processes may be intrinsically stochastic: Brownian motion is a266
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classical example. Many complex microphysical processes that do not provide simple closed267

analytical expressions, e.g., generation rate of the secondary ice crystals by a collision of268

two ice particles (Yano and Phillips 2016), may also be best considered to be stochastic.269

Following this line of reasoning, one may wish to consider any noisiness in a system as a con-270

sequence of stochasticity. However, such reasoning is not necessarily justified. For example,271

although turbulent flows are extremely noisy, their physics is completely deterministic and272

presented in a closed form by the Navier–Stokes equations: a relatively simple nonlinearity273

can easily produce a noisy time series. The choice between using a stochastic or nonlinear274

representation of a given process must therefore be made carefully.275

We should also realize that noisiness in short–time and small–spatial scales does not276

necessarily lead to a stochastic influence at larger scales: the two levels of the processes277

must be carefully distinguished from each other. The method of homogenization developed278

under multi–scale asymptotic expansions (Pavliotis and Stuart 2007) provides a rigorous279

procedure for assessing whether the large–scale influences of those noise-like features are280

actually stochastic.281

Generally speaking, we should not assume that all the difficulties in predicting the282

convective-scale regime arise from randomness: adding more stochasticity is not necessarily283

a solution. We should also carefully distinguish between the intrinsic stochasticity in physics284

and the stochasticity introduced as an artificial device in parameterizations. The latter must285

be addressed with more mathematical rigor (cf., Berner et al. 2017).286

Data Assimilation287

As the horizontal resolution of NWP models increases, a denser observational network288

is also required. However, simply increasing the number of observations is not enough.289

NWP models require more information than is being measured: observations generally do290

not cover the entire model domain, and more importantly, observed quantities are often291

only indirectly related to model variables. Methodologies for estimating the model state292
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from observations come from nonlinear filtering and optimal control theory (Jazwinski 1970;293

Crisan and Rozovskii 2011), also referred to as data assimilation (DA: cf., Kalnay 2002) in294

geosciences.295

The full problem of DA consists of estimating the so–called posterior probability: i.e.,296

the probability of the model–system state based on the observations as well as on our gen-297

eral knowledge of the system (prior information). This problem can be formally solved by298

invoking the Bayesian theorem (cf., Jaynes 2003). The Liouville equation (or its generaliza-299

tion including stochastic forcing) predicts the time evolution of the probability. However,300

such a formal approach has so far been seen as unsuitable for NWP applications: the vast301

dimension of the systems involved renders impractical even just estimating the probabilities,302

let alone computing their time evolution.303

To simplify the problem, Gaussian approximation has often been introduced so that304

only the mean and covariance of the uncertainty probability must be computed. The two305

most widely–adopted DA methods for operational NWP, four-dimensional variational as-306

similation (4DVar: Talagrand and Courtier 1987) and the ensemble Kalman filter (EnKF:307

Evensen 2009), adopt this simplification. To be even more practical, operational DA is308

further simplified by tuning the DA to just a single dominant scale, usually the synoptic309

scale.310

On the other hand, as model resolution increases, new phenomena are resolved on a311

broader range of scales including convection, and so DA must also be designed to simultane-312

ously keep control on all resolved scales. Studies suggest that this problem may, in principle,313

be solved by 4DVar (Lorenc and Payne 2007) and EnKF (Snyder and Zhang 2003). However,314

even more changes in DAs are required to efficiently deal with two main features inherent at315

the convective scale: (i) a much faster and intermittent error growth rate (cf., Predictability)316

and (ii) the nonlinear and non-Gaussian characters of the underlying dynamics and error317

statistics.318
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The first issue is intimately related to the concept of observability (cf., Jazwinski 1970)319

that may be defined as the problem of identifying the minimum spatio-temporal observational320

density to efficiently counteract error growth (Quinn and Abarbanel 2010). Observability is321

a necessary condition for the stability of a DA solution, which is in turn a necessary condition322

to reduce the state-estimation (and prediction) error (Carrassi et al. 2008). Observability323

can be achieved through development of the observational network itself as well as of the324

DA procedure. The former includes, for example, the development of a C–band dual–325

polarization Doppler–radar network under the European Operational Program for Exchange326

of Weather Radar Information (OPERA: Huuskonen et al. 2014). Surface measurement (e.g.,327

soil moisture) networks with sufficient spatio-temporal resolution also contribute, although328

they are still to be strengthened over Europe.329

There are several approaches for dealing with the second issue, including the rank his-330

togram filter applied to Kalman–filter methods (Anderson 2010). However, the most funda-331

mental approach for dealing with this issue is to turn to a more basic principle based on fully332

Bayesian Monte Carlo methods (particle filters, PFs: Doucet et al. 2000). A problem with333

PFs is that the number of particles required for accurate performance grows exponentially as334

the system’s dimension increases (Bocquet et al. 2010). Choosing the importance–proposal335

densities that give a larger overlap with the conditional density may delay the filter collapse,336

or even prevent it (Slivinski and Snyder 2016). Hybrid EnKF–PF methods are promising337

alternative approaches to this problem (Chustagulprom et al. 2016). The development of338

advanced PFs for DA in convection–permitting NWP models will be an important priority339

for the coming years (cf., Poterjoy et al. 2017).340

Cloud Microphysics341

Increasing model resolution also demands more sophisticated physics. Unfortunately,342

the issues of physics are vast. Here, we deliberately limit our discussions to the cloud343

microphysics, due to its unique status.344
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Our knowledge of microphysical processes coming both from laboratory and theoretical345

studies is quite extensive (cf., Pruppacher and Klett 1997), although our knowledge is hardly346

perfect and the existing bin–microphysics parameterizations certainly do not make full use347

of this knowledge. At the same time, even the current bin microphysical schemes are still348

too expensive to use for convective-scale NWPs. In short, we know the microphysics too349

well and we have to somehow simplify it for it to be included in operational NWP models350

while maintaining a reasonable model run speed. The main problem with current microphys-351

ical modeling is that these simplifications are made in a rather arbitrary manner without352

performing any systematic “investment–gain” analysis. For example, one can find many353

articles in the literature claiming an improvement of a model by upgrading, for example,354

from a single-moment to a double-moment scheme. However, a carefully balanced judgment355

is often missing on relative gain against a given investment. Here, Bayesian decision theory356

(Berger 1985) may be called for. A solid first step towards this direction is taken by e.g.,357

van Lier–Walqui et al. (2014).358

The benefits of implementing more realistic, and more complex, descriptions of cloud359

microphysics may appear enormous: hail damage could be better estimated by fully consid-360

ering the hail size and hardness (Phillips et al. 2014), and winter precipitation (due to ice,361

liquid, or a mixture of both) may be better predicted by using a more detailed description of362

the melting process (e.g., Phillips et al. 2007). However, in the convective–scale regime, the363

expected improvements may not be attainable: with convective–scale turbulence intrinsi-364

cally interacting with the enhanced cloud microphysics, an increase in the complexity of the365

microphysics may not automatically lead to a more reliable forecast, but may lead merely366

to higher forecast uncertainties as if adding white noise. A suitable level of sophistication in367

deterministic physics (not only microphysics, but surface processes, radiation, etc) must be368

objectively and quantitatively assessed, with this aspect being fully taken into account.369

Parameterization370
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The role of subgrid-scale parameterizations becomes more subtle as convection starts to371

become explicitly resolved. In traditional NWP models, individual convective storms are key372

elements to be parameterized. Under the “convection–permitting” regime, these parameteri-373

zations become almost unnecessary. In fact, most operational “convection–permitting” NWP374

models turn off the deep–convection parameterization. However, the threshold resolution for375

turning it off is not well established.376

It is more likely that the transition towards a situation where it is no longer necessary to377

parameterize deep convection should be more gradual, and certain intermediate procedures378

are required in this transition regime (e.g., Gerard et al. 2009). These procedures should be379

performed without traditional parameterization assumptions such as scale separation and380

quasi–equilibrium. Some studies propose a stochastic formulation (e.g., Plant and Craig381

2008), although a formal formulation analysis shows that the system remains deterministic382

even without these traditional assumptions (Yano 2014).383

The focus is likely to shift to the PBL (Ching et al. 2014). However, many new parame-384

terization issues also arise there, including those for sub–cloud scales of deep convection: it385

is very likely that the turbulent mixing between the clouds and the immediate environment386

must be described more carefully than traditional entrainment–detrainment descriptions (cf.,387

de Rooy et al. 2013).388

Overall, we face challenges for subgrid–scale parameterizations from two sides. On the389

one side, we need to further elaborate existing parameterizations (e.g., deep and shallow390

convection, PBL). On the other side, we also need to introduce new parameterizations, e.g.,391

for the sub–cloud scale processes. It naturally follows that the consistencies between the392

existing and the new parameterizations must also be carefully established. The interactions393

between various subgrid–scale processes, e.g., between the PBL and convection, also become394

more critically important.395

To effectively tackle all these problems together, we face issues of consistency and uni-396
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fication. Here, we propose that the best solution would be to develop a single consistent397

unit of subgrid–scale parameterizations by returning to the first principles of explicit physics398

(e.g., a large–eddy simulation PDE system), and re–construct everything from there. For399

specific procedures, see Yano et al. (2015), Yano (2016). Rebuilding everything from scratch400

is often much faster, in the end, than trying to unify something already in place, but devel-401

oped without much regard for mutual consistencies. These more robust parameterizations402

are, furthermore, expected to make the subgrid–scale information more practically useful in403

forecasts (cf., Kain et al. 2010, de Meutter et al. 2015).404

Numerics405

In the traditional synoptic–scale regime, which in essence resides on a low–dimensional406

dynamical system, increases in spatial resolution have, overall, contributed to a better con-407

vergence of the forecast quality. On the other hand, in the convective–scale regime, with408

so many modes actively involved in the dynamics, solutions of the governing equations are409

computable with much smaller accuracy at any practical resolution, and the solutions do not410

converge with increasing resolution. For example, the Met Office Unified Model finds no ten-411

dency towards forecast convergence when increasing horizontal grid spacing from 1.5 km to412

100 m (Stein et al. 2015), since the increase of horizontal resolution gradually resolves more413

turbulent processes. As a conventional wisdom, grid spacings at least as fine as O(10−102 m)414

are required for large–eddy simulations (LESs) to be meaningful. The typical “convection–415

permitting” grid spacing is only just comparable to the size of the largest eddies within the416

PBL.417

Prominent flow features are often realized right at the limit of the model resolution418

in “convection–permitting” scale simulations, making the simulations sensitive to details of419

subgrid-scale parameterizations as well as to the properties of the numerical algorithms. As a420

result, some artifacts in outputs may result. For example, investigating the flow over a heated421

plane, Piotrowski et al. (2009) find that anisotropic viscosity can artificially produce realistic-422
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looking regular structures that mimic naturally–generated Rayleigh-Bernard cells. Clearly,423

verification of these numerical results critically depends on the availability of theoretically424

and mathematically correct solutions of the PDEs, which can help provide a more rigorously-425

defined testing and selection of the numerical algorithms suitable for convection-resolving426

computations.427

Among the numerical algorithms, advection is common to every physical variable and428

therefore of particular importance. A good advection scheme must conserve the sign and429

the shape of a variable to be advected, when the system is purely advective, by suppressing430

artificial oscillations and numerical diffusion. Some advection schemes suppress numerical431

diffusion by introducing an anti-diffusion term (“limiter”). For example, the “flux corrected432

transport” method, as adopted by e.g., Smolarkiewicz (2006), constructs advective fluxes as433

weighted averages of a flux computed by a monotonic, but diffusive, low order scheme and434

a flux computed by a high order scheme so as to suppress unphysical behaviour.435

Semi-Lagrangian schemes (Staniforth and Côté 1991) are popular among NWP mod-436

els because they permit a relatively large time step while still allowing the model to run437

smoothly. However, we must be cautious with their application to the turbulent convective–438

scale regime (cf., Lauritzen et al. 2011). Although some successful turbulent applications439

may be found in the literature, semi-Lagrangian schemes work most efficiently for a relatively440

laminar flow.441

In convective–scale turbulent calculations, the numerics must be robust.6 Particular442

attention is required for the dynamical core, including the treatment of advection. Though443

no explict discussion is provided herein, attention must also be equally paid to the numerical444

solver for the physics and the subgrid–scale parameterization (Dubal et al. 2006, Termonia445

6In certain situations, “robust” only narrowly refers to whether a given scheme is conditionally stable.

On the other hand, here we use this notion in the more general sense that given numerics are not only stable,

and insensitive to a change of the resolution, etc., but also preserve the basic numerical properties predicted

by theory.
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and Hamdi 2007)446

Conclusions447

We have identified the following fundamental theoretical challenges in convective–scale448

NWPs:449

• PDE: A lack of proper understanding both of the dynamics and the partial differential450

equations describing this regime poses serious difficulty, especially for the verification451

of numerical model results.452

• Turbulence: A theory of turbulence must be developed going beyond the traditional453

approaches based on relatively straightforward extrapolation of Kolmogorov’s theory454

for homogeneous turbulence, to the buoyancy–driven stratified case.455

• Probability: Probability becomes a key variable to be predicted, because NWP models456

are run for much longer time–scales (a few days) than the predictability limit (a few457

hours). The intrinsic probability, as defined by the Bayesian probability theory, should458

be evaluated rather than the oft-used estimation of probability by frequency counting.459

The Liouville equation, as a basic physical principle of probability prediction, should460

be further exploited to accomplish this.461

• Data Assimilation: New assimilation approaches such as the particle filters (PFs)462

must be pursued because the traditional assumptions of quasi–linearity and Gaussian-463

distributions are no longer valid.464

• Observational Network: Although the development of a denser observational network465

may be crucial, it is meaningful only under the constraints of observability. Moreover,466

the intrinsic limit of predictability (a few hours) due to the fully turbulent nature of the467

convective–scale regime ultimately prevents us from extending predictability through468

the inclusion of more observations.469
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• Stochasticity: Stochasticity must be introduced into forecast models in a more robust470

and solid manner, for example, based on the method of homogenization under multi–471

scale asymptotic expansions. It is important to keep in mind that more than a mere472

existence of fluctuations is required to justify the introduction of stochasticity into473

physics.474

• Physics: The degree of sophistication of the model physics, notably of the cloud micro-475

physics, must be decided by investment–gain analysis, e.g., based on Bayesian decision476

theory. Some of the physical processes may be better represented simply as a stochas-477

ticity.478

• Parameterizations: Subgrid–scale parameterizations should be re–developed from479

scratch in a unified manner, starting from a basic set of equations for the physics480

and dynamics, as given by e.g., LES models, so that universality and consistency are481

ensured.482

• Numerics: The fully turbulent nature of the convective–scale regime demands that the483

numerical algorithms be much more robust than in traditional NWP models, espe-484

cially to avoid generation of artificially–organized structures at the scale of the model485

resolution.486

Each research direction requires its own substantial investments, augmenting current487

efforts and being subject to development of more detailed research strategies. We do not488

even pretend that these investigations are easy. For example, at this stage, it would be489

impossible to make any progress with the convective–scale regime as a PDE problem if the490

traditional, rigorous methodologies are to be applied; a completely different approach would491

be required here. On the other hand, the assimilation problem can be addressed more easily492

as a continuation of the current efforts. Intensive investments into the currently–existing493

top–end methodologies are likely to lead to breakthroughs in the relatively short term.494
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It is also crucial to extensively exploit existing knowledge from non–atmospheric sci-495

ence literature, for example, from turbulence research. These fundamental scientific issues496

require our re–thinking and re–structuring, but also re–directing of some non–atmospheric497

science research to more fundamental problems. For example, non–Kolmogorov turbulence498

is not solely an atmospheric problem, but it has much wider applications. A well–organized499

research network, as well as supporting funding, would be required so that highly multi–500

disciplinary research may be formed to address these problems in full.501
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